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Abstract

To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While

some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the

genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq)

has proven to be an ef�cient method to identify these genomic features and to improve genome annotations. However,

processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming,

and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the

required analyses and simpli�es RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from

conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding

RNAs, with high precision. The software is available under an open source license (ISCL) at

https://pypi.org/project/ANNOgesic/.
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Background

As the number of available genome sequences has rapidly ex-

panded in databases, numerous tools have been developed that

can detect genomic features of interest based on the genome se-

quence. Prominent representatives are Glimmer to identify open

reading frames (ORFs) [1], tRNAscan-SE [2] to spot tRNAs, and

RNAmmer to �nd rRNAs [3]. Pipelines such as Prokka [4] or Con-

sPred [5] combine such tools and are able to searchmultiple fea-

tures in bacterial and archaeal genomes. Still, these tools make

their predictions purely based on the genome sequences and

can predict features such as transcriptional start sites and non-

coding RNAs, if at all, only with low con�dence.

Recent developments in high-throughput sequencing offer

solutions to this problem. RNA sequencing (RNA-seq) has rev-

olutionized how differential gene expression can be measured

and is widely used for this purpose [6]. In addition, it has

also been applied in numerous cases to improve the genome

annotation of bacteria [7,8,9]archaea [10], and eukaryotes [11].

For the global detection of genomic features, several RNA-

seq-based protocols have been created. For example, differen-

tial RNA-seq (dRNA-seq) [12,13] represents a method for the

system-wide mapping of transcriptional start sites (TSSs). For

the construction of dRNA-seq libraries, a sample is split into

two aliquots: one is digested by terminator exonuclease (the

TEX+ library), which degrades processed RNA molecules with

5’-monophosphate, while the other aliquot remains untreated
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2 ANNOgesic - RNA-Seq based genome annotation

(TEX- library). Both subsamples are then used to generate cDNA

libraries. Based on this method, primary transcripts that have a

5’-triphosphate are enriched in the TEX+ libraries. The digestion

of matured transcript in the TEX+ library leads to a relative en-

richment of primary transcripts. Thus, TSSs can be identi�ed by

comparing normalized coverage values between the TEX+ and

TEX- libraries [12,13]. In addition to dRNA-seq, other RNA-seq-

based protocols such as Term-seq [14] and ribosome pro�ling

[15,16] have been applied to globally detect terminators, ORFs,

and riboswitches but require dedicated data processing. While

there are tools that can process RNA-seq data in order to predict

genome-wide features such as TSSs based on dRNA-seq data

[17,18,19] or based on conventional RNA-seq data [20,21], there

has been,to date, no solution that combines different predic-

tions of genomic features and compiles them into a consistent

annotation.

Here we present ANNOgesic, a modular, command-line tool

that can integrate data from different RNA-seq protocols such

as dRNA-seq as well as conventional RNA-seq performed af-

ter transcript fragmentation and generate high-quality genome

annotations that include features missing in most bacterial

annotations (e.g., small noncoding RNAs, untranslated regions

[UTRs], TSSs, and operons). The central approach is to detect

transcript boundaries and then subsequently attach additional

information about type as well as function to the predicted

features and also to infer interactions between them. Several

of ANNOgesic’s core functions represent new implementations

that are not found in other programs. Third-party tools embed-

ded into ANNOgesic are accessible via a consistent command-

line interface. Furthermore, their results are improved, e.g., by

dynamic parameter optimizations or by removing false posi-

tives. Numerous visualizations and statistics help the user to

quickly evaluate the feature predictions. The tool ismodular and

has been intensively tested with several RNA-seq datasets from

bacterial as well as from archaeal species.

Materials and Methods

Modules of ANNOgesic

ANNOgesic consists of the following modules, their names indi-

cate their functions: Sequence modi�cation, Annotation trans-

fer, SNP/Mutation, Transcript, TSS, Terminator, UTR, Processing

site (PS), Promoter, Operon, sRNA, sRNA target, small ORF (sORF),

Gene Ontology (GO) term, Protein-protein interaction network,

Subcellular localization, Riboswitch, RNA thermometer, Circu-

lar RNA, and Clustered regularly interspaced short palindromic

repeat (CRISPR). Several potential work�ows connecting these

modules are displayed in Supplementary Fig. S1. An overview of

the novelties and improvements of the modules in ANNOgesic

are listed in Supplementary Table S1, and all the dependencies

of ANNOgesic are shown in Supplementary Table S2.

Depending on the task, ANNOgesic requires a speci�c set of

input information, either as coverage information in wiggle for-

mat or alignments in binary alignment map (BAM) format. This

can be generated by short-read aligners such as STAR [22], sege-

mehl [23], or a full RNA-seq pipeline such as READemption [24].

Certain modules additionally require annotations in GFF3 for-

mat. In case a suf�cient genome annotation is not available,

ANNOgesic can perform an annotation transfer from a closely

related strain based on fasta and GFF3 �les provided by the user.

Figure 1: Schema of the genetic algorithm for optimizing the parameters of

TSSpredator. It starts from the default parameters. These parameter sets will

go through three steps: global change (change every parameter randomly),

large change (change two of the parameters randomly), and then small change

(adds/subtracts a small fraction to one of the parameters). It will then select the

best parameter set for reproduction when one step is done. Usually, ANNOgesic

can achieve the optimized parameters within 4,000 runs.

Implementation and installation

ANNOgesic’s source code is implemented in Python 3 and

hosted at https://pypi.org/project/ANNOgesic/. The comprehen-

sive documentation can be found at http://annogesic.readthed

ocs.io/, and releases are automatically submitted to Zenodo

(https://zenodo.org/) to guarantee long-term availability. It can

be easily installed using pip (https://pip.pypa.io). In order to pro-

vide a frictionless installation including non-Python dependen-

cies, we additionally offer a Docker image at (https://hub.docker

.com/r/silasysh/annogesic/) [25].

Optimization of the parameter set for TSSpredator

For several parts of ANNOgesic, the selection of parameters has

a strong impact on the �nal results. Especially the TSS predic-

tion, building on TSSpredator [17], requires a sophisticated �ne-

tuning of several parameters (namely, height, height reduction,

factor, factor reduction, enrichment factor, processing site fac-

tor, and base height). To overcome the hard task of manual pa-

rameter selection, ANNOgesic optimizes the parameters by ap-

plying a genetic algorithm, a machine learning approach, [26]

that is trained based on a small user-curated set of TSS pre-

dictions. This approach has the advantage of being able to �nd

global, not only local, optima. The process of optimization is

composed of three parts: random change, large change, and

small change (Fig. 1). In this context, a global change means a

random allocation of values to all parameters; a large change is

a random allocation of values to two parameters; and a small

change is adding or subtracting a small fraction to or from one

parameter value. The result of each iteration is evaluated by a
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decision statement (Equation 1).

T P Rc − T P Rb ≥ 0.1 (1)

(T P Rc > T P Rb) ∧ (F P Rc < F P Rb) (2)

(T Pb − T Pc > 0) ∧ (F Pb − F Pc ≥ 5 × (T Pb − T Pc)) (3)

(T Pb − T Pc < 0) ∧ (F Pc − F Pb ≤ 5 × (T Pc − T Pb)) (4)

(T Pm ≥ 100) ∧ (T P Rc − T P Rb ≥ 0.01) ∧ (F P Rc − F P Rb ≤ 5 × 10−5)

(5)

(T Pm ≥ 100) ∧ (T P Rb − T P Rc ≤ 0.01) ∧ (F P Rb − F P Rc ≥ 5 × 10−5)

(6)

In Equation 1, TPm is the number of manually detected TSSs.

TPc/TPRc represents the true positive/true positive rate of the cur-

rent parameters. TPb/TPRb represents the true positive/true pos-

itive rate of the best parameters. FPc/FPRc represents the false-

positive/false-positive rate of the current parameters. FPb/FPRb

represents the false- positive/false-positive rate of the best pa-

rameters. If one of these six situations is true, it will replace the

best parameters with current parameters.

Test datasets

In order to test ANNOgesic’s performance, we applied it to RNA-

seq datasets originating from Helicobacter pylori 26695 [7,13] and

Campylobacter jejuni 81116 [17]. The dRNA-seq datasets were re-

trieved from (National Center for Biotechnology Information

(NCBI) GEO where they are stored under the accession num-

bers GSE67564 and GSE38883, respectively. For H. pylori conven-

tional RNA-seq data, i.e., without TEX treatment (which de-

grades transcripts without a 5’-triphosphate) and with frag-

mentation of the transcript before the library preparation, was

also retrieved from NCBI SRA (accession number SRR031126).

Moreover, for assessing the performance of ANNOgesic, dRNA-

seq, and conventional RNA-seq datasets of Escherichia coli, K-12

MG1655 were downloaded from NCBI GEO (accession numbers

GSE55199 and GSE45443; only the data of the wild-type strain

were retrieved) [21,27]. The ANNOgesic predictions generated

using these datasets of E. coli K-12 MG1655 were compared to

the databases RegulonDB, EcoCyc, and DOOR2 [28 –33]

Results

Correction of genome sequences and annotations

All genomic features that can be detected by ANNOgesic are

listed in Table 1. In order to demonstrate and test ANNOgesic’s

performance, we analyzed RNA-seq data of H. pylori 26695 and

C. jejuni 81116 and discuss the prediction results as examples in

the following sections.

Table 1: Overview of feature predictions for H. pylori 26695 and C. je-
juni 81116

H. pylori 26695 C. jejuni 81116

Gene 1560 1685

Coding

sequence (CDS)

Total 1448 1630

Expressed 1406 1513

Transcript 1716 1147

TSS Total 2458 1242

Primary 703 565

Secondary 156 92

Internal 719 360

Antisense 1161 510

Orphan 111 30

Processing site 281 345

Terminator Total 820, (437) 874, (375)

TransTermHP 631, (314) 655, (269)

Convergent genes 229, (151) 276, (145)

UTR 5’ UTR 693 560

3’ UTR 325 286

sRNA Total 184 40

Intergenic 60 16

Antisense 85 21

5’ UTR-derived 10 0

3’ UTR-derived 23 2

InterCDS-derived 6 1

Operon Total 554 710

Monocistronic 268 386

Polycistronic 286 324

sORF 150 25

Riboswitch 3 5

RNA

thermometer

1 1

circular RNA 0 1

CRISPR 0 1, (8)

The numbers in parentheses for terminator and CRISPR represent occurrences

of terminators with coverage drop and repeat units of CRISPR, respectively. For

the prediction of terminators, ANNOgesic only keeps the high con�dence ones

in case a coding sequence (CDS) is associated with multiple terminators.

Genome sequence improvement and single nucleotide polymor-

phism/mutation calling

Conventionally, differences in the genome sequence of a strain

of interest and the reference strain are determined by DNA se-

quencing. However, RNA-seq reads can also be repurposed to de-

tect such single nucleotide polymorphisms (SNPs) or mutations

that occur in transcribed regions, which can help to save the

resources required for dedicated DNA sequencing or DNA SNP

microarray measurements. The two drawbacks of this method

are that only locations that are expressed can be analyzed and

that, due to RNA editing, changes could be present only in the

RNA level and are not found in the genome. On the other hand,

it has been shown to be a valid approach for eukaryotic species

and that the majority of SNPs are found in the expressed tran-

scripts [34,35]. Such analysis could be useful to generate hy-

potheses that then need to be testedwith complementarymeth-

ods. ANNOgesic can perform SNPs/mutation calling via SAM-

tools [36] and BCFtools [36] applying read counting-based �lter-

ing.

Annotation transfer

ANNOgesic integrates the Rapid Annotation Transfer Tool [37],

which can detect the shared synteny and mutations between a
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reference and query genome to transfer annotation (i.e., genes,

CDSs, tRNAs, rRNAs) by applying MUMmer [38]. For the chosen

strains,H. pylori 26695 and C. jejuni 81116 annotation �les in GFF3

format were obtained from NCBI RefSeq. Because of this, there

was no need to transfer the annotation from a closely related

strain.

Detection of transcripts

Knowing the exact boundaries and sequence of a transcript is

crucial for a comprehensive understanding of its behavior and

function. For example, UTRs can be the target of regulation by

sRNAs or small molecules (e.g., riboswitches) [39,40] or even

sources of sRNAs [41]. Unfortunately,most bacterial annotations

only cover the protein-coding regions, while the information

about TSSs, terminators, and UTRs is lacking. To address this

issue, ANNOgesic combines several feature predictions for a re-

liable detection of transcripts and their boundaries (Fig. 2).

Coverage-based transcript detection

There are numerous tools available for the detection of tran-

scripts (e.g., [42]), but most of them are optimized for the assem-

bly of eukaryotic transcripts. Because of this, we combined sev-

eral heuristics to perform such predictions. Nucleotide coverage

data are used for de�ning the expressed regions, and genome

annotations are applied for extending or merging the gene ex-

pressed regions to form complete transcripts. Several parame-

ters such as the threshold of coverage values can be set by the

user to �ne-tune the predictions (Fig. 3).

By running ANNOgesic’s subcommand for transcript predic-

tion, we detected 1,716 transcripts in H. pylori 26695 and 1,147

transcripts in C. jejuni 81116. These transcripts cover 1,520 and

1,568 genes, which shows that 97% and 93% of the known genes

are expressed in at least one condition, respectively.

Transcriptional start sites

For the prediction of TSSs, ANNOgesic builds on TSSpredator

[17], which takes dRNA-seq coverage data as input. The outcome

of TSSpredator’s predictions depends strongly on the setting of

numerous parameters, and �ne-tuning those can be time con-

suming. Because of this, a parameter optimization was imple-

mented in ANNOgesic that builds on a small, manually curated

set of TSSs to �nd optimal values.

In order to test the performance of ANNOgesic, we manu-

ally annotated TSSs in the �rst 200 kb of the genome of H. pylori

26695 and C. jejuni 81116 (Supplementary Tables S5 and S6). This

set was used to perform the predictions of TSSpredator with de-

fault settings as well with the parameters optimized by ANNO-

gesic. For the test set of the benchmarking, we manually anno-

tated TSSs from �rst 200 kb to 400 kb in the genome of H. pylori

26695 and C. jejuni 81116 (Supplementary Tables S5 and S6). As

displayed in Table 2, the optimization had minor sensitivity im-

provements in H. pylori 26695 (from 96.8% to 99.6%); it strongly

increased the sensitivity for the TSS prediction for C. jejuni 81116

(67.1% to 98.7%) while keeping the same level of speci�city. To

underpin those �ndings, we looked at the overlap of the pre-

dicted TSS and predicted transcripts. This was nearly the same

forH. pylori 26695 (82% for default and 83% for optimized setting)

but also increased signi�cantly for C. jejuni 81116 from 81% for

default parameters to 96% with optimized parameters.

Moreover, TSSs are classi�ed depending on their relative po-

sitions to genes by TSSpredator. Based on these classi�cations,

Venn diagrams representing the different TSS classes are auto-

matically generated (Supplementary Fig. S2).

Table 2: Comparison of default and optimized parameters of
TSSpredator for TSS and PS prediction

Strain Parameter Sensitivity Speci�city

(TP) (FP)

TSS

H. pylori 26695 Default 96.8% (244) 99.98% (32)

Optimization 99.6% (251) 99.98% (32)

C. jejuni 81116 Default 67.1% (104) 99.98% (31)

Optimization 98.7% (153) 99.99% (7)

PS

H. pylori 26695 Default 92.9% (26) 99.99% (7)

Optimization 92.9% (26) 99.99% (7)

C. jejuni 81116 Default 61.3% (19) 99.99% (2)

Optimization 93.5% (29) 99.99% (6)

The numbers in parentheses represent true positive or false positive.

Processing sites

Several transcripts undergo processing, which in�uences their

biological activity [41,43]. In order to detect PSs based on dRNA-

seq data, ANNOgesic facilitates the same approach as described

for TSS detection but searches for the reverse enrichment pat-

tern, i.e., a relative enrichment in the library not treated with

TEX in comparison to the library treated with TEX. This cover-

age pattern is observed as the TEX enzyme will not degrate pro-

cessed transcripts due to the missing triphosphate at the 5’end,

which leads to a relative enrichment in samples. As done for

the TSSs, we manually annotated the PSs in the �rst 200 kb of

the genomes by looking for such enrichment patterns. Based on

thesemanually curated sets, we performed parameter optimiza-

tion on the test set (manually curated from the �rst 200 kb to

400 kb; Supplementary Tables S7 and S8, Table 2) and could im-

prove the prediction of PSs by TSSpredator [17]. With optimized

parameters 281 and 345, PSs were detected in H. pylori 26695 and

C. jejuni 81116, respectively.

ρ-independent terminators

While the TSSs are in general clearly de�ned borders, the 3’-end

of a transcript is often not very sharp. A commonly used tool for

the prediction of the 3’-end of a transcript is TransTermHP [44],

which detects ρ-independent terminators based on genome se-

quences. Manual inspection showed us that TransTermHP pre-

dictions are not always supported by the RNA-data (Supplemen-

tary Fig. S3E and S3F). This could be due to the lack of expression

in the chosen conditions. Additionally, certain locations in 3’-

ends that may be ρ-independent were not detected by TransTer-

mHP. Because of this, we extended the prediction by two ad-

ditional approaches based on RNA-seq coverage and the given

genome sequence. At �rst, terminators predicted by TransTer-

mHP that show a signi�cant decrease of coverage are marked

as high-con�dence terminators. For this, the drop of coverage

inside the predicted terminator region plus 30 nucleotides up-

stream and downstream is considered suf�cient if the ratio of

the lowest coverage value and the highest coverage value is at

a user-de�ned value (the default value is 0.5, and the schemes

and examples are shown in Supplementary Fig. S3). In order to

improve the sensitivity, an additional heuristic for the detection

of ρ-independent terminators was developed. In this approach,

only converging gene pairs (i.e., the 3’-end are facing each other)

are taken into account (Supplementary Fig. S4). In case the re-

gion between the two genes is A/T-rich and a stem-loop can be

predicted in there, the existence of a ρ-independent termina-

tor is assumed. As a default, the region should consist of 80 or
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Figure 2: Transcript boundary detection. (A) Schema: ANNOgesic can predict TSSs, terminators, transcripts, genes, and UTRs and integrate them into a comprehensive

annotation. (B) Gene HP1342 of H. pylori 26695 as an example. The pink coverage plot represents RNA-seq data of libraries after fragmentation, the blue coverage plots

TEX+ libraries of dRNA-seq, and the green coverage plots TEX- libraries of dRNA-seq. Transcript, TSS, terminator, and CDS are presented as red, blue, orange, and

green bars, respectively. The �gure shows how the transcript covers the whole gene location and how UTRs (presented by purple bars) can be detected based on the

TSS, transcript, terminator, and gene annotations.

Figure 3: Coverage-based transcript detection. If the coverage (blue curve-blocks) is higher than a given coverage cutoff value (dashed line), a transcript will be called.

The user can set a tolerance value (i.e., a number of nucleotides with a coverage below the cutoff) on which basis gapped transcripts are merged or are kept separated.

Information of gene positions can also be used to merge transcripts in case two of them overlap with the same gene.

fewer nucleotides, the T-rich region should contain more than 5

thymines, the stem-loop needs to be 4-20 nucleotides, the length

of the loop needs to be between 3 and 10 nucleotides, and amax-

imum of 25% of the nucleotides in the stem should be unpaired.

UTRs

Based on the CDS locations and the above-described detection

of TSSs, terminators, and transcripts, 5’ UTR and 3’ UTR can be

annotated by ANNOgesic. Additionally, it visualizes the distribu-

tion of UTR lengths in a histogram (as shown in Supplementary

Fig. S5).
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6 ANNOgesic - RNA-Seq based genome annotation

Promoters

ANNOgesic integrates MEME [45], which detects ungapped mo-

tifs, and GLAM2 [46], which discovers gapped motifs, for the de-

tection and visualization of promoter motifs. The user can de-

�ne the number of nucleotides upstream of TSSs that should be

screened and the length of potential promoter motifs. The mo-

tifs can be generated globally or for the different types of TSSs

(example in Supplementary Fig. S6).

Operons

Based on the TSS and transcript prediction, ANNOgesic can gen-

erate statements regarding the organization of genes in operons

and suboperons as well as report the number of monocistronic

operons and polycistronic operons (Fig. 4).

Detection of sRNAs and their targets

The detection of sRNAs based on RNA-seq data is a nontrivial

task. While numerous sRNAs are found in intergenic regions,

several cases of 5’ and 3’ UTR-derived sRNAs are reported [41,47,

48,49]. ANNOgesic offers the detection of all classes combined

with a detailed characterization of the sRNA candidates (Fig. 5).

In order to classify newly detected intergenic transcripts as

sRNAs, ANNOgesic tests several of their features. If a Basic Lo-

cal Alignment Search Tool + [50] search of a transcript �nds ho-

mologous sequences in BSRD [51], a database that stores exper-

imentally con�rmed sRNAs, the transcript gets the status of an

sRNA. The user can also choose additional databases for search-

ing homologous sequences. In case a search against the NCBI

nonredundant protein database leads to a hit, it is marked as

potentially protein-coding. Otherwise, a transcript must have a

predicted TSS, form a stable secondary structure (i.e., the folding

energy change calculated with RNAfold from Vienna RNA pack-

age [52] must be below a user-de�ned value), and their length

should be in the range of 30 to 500 nt in order to be tagged as

an sRNA. All these requirements are used per default but can be

modi�ed or removed via ANNOgesic’s command line parame-

ters. ANNOgesic stores the results of all analyses and generates

GFF3 �les, fasta �les, secondary structural �gures, dot plots, as

well as mountain plots based on those predictions.

For sRNAs that share a transcript with CDSs—5’ UTR, inter-

CDS, or 3’ UTR located sRNAs—we implemented several detec-

tion heuristics (Fig. 5B and 5C). The 5’ UTR-derived sRNAs must

start with a TSS and show a sharp drop of coverage or a PS in

the 3’-end. The requirement for the detection of inter-CDS lo-

cated sRNAs is either a TSS or a PS as well as a coverage drop at

the 3’-end or a PS. Small RNAs derived from the 3’ UTR are ex-

pected to have a TSS or a PS and either end with the transcript

or at a PS. After the detection of a bona �de sRNA, the above-

described quality �lters (e.g., length range, secondary structure)

are applied to judge the potential of a candidate (examples are

shown in Supplementary Figs. S7, S8). For the validation of sRNA

candidates in our test case, the described sRNAs of two publica-

tions were chosen. Sharma et al. [7] described 63 sRNAs of which

4 were not expressed in the condition of the test dataset (re-

moved from the dataset) (Supplementary Fig. S9). Of these 59, 53

(90%) were detected by ANNOgesic. In the C. jejuni 81116 set, 31

sRNAs were described by Dugar et al. [17], and ANNOgesic could

recover 26 (84%). The sRNA ranking system provided by ANNO-

gesic is displayed in Supplementary Fig. S10 and Supplementary

Equation S1.

In order to deduce potential regulatory functions of newly

predicted sRNAs, ANNOgesic performs prediction of interaction

between themandmRNAs using RNAplex [52,53], RNAup [52,54],

and IntaRNA [55]. The user can choose if only interactions sup-

ported by all tools are reported.

Detection of sORFs

All newly detected transcripts that do not contain a previously

described CDS aswell all 5’ UTRs and 3’ UTRs are scanned for po-

tential sORFs [56] (Fig. 6). For this, ANNOgesic searches for start

and stop codons (noncanonical start codons are not included but

can be assigned by the user) that constitute potential ORFs of 30

to 150 base-pairs. Furthermore, ribosomal binding sites (based

on the Shine-Dalgarno sequence, but different sequences can

be assigned as well) between the TSS and 3 to 15 bp upstream of

the start codon are required for a bona �de sORF.

Detection of functional-related attributes

In order to facilitate a better understanding of the biological

function of known and newly detected transcripts, ANNOgesic

predicts several attributes for these features.

This includes the allocation of GO as well as GOslim [57]

terms to CDSs via searching of protein ids inUniprot [58]. The oc-

currence of groups is visualized for expressed and nonexpressed

CDSs (Supplementary Fig. S11). Furthermore, the subcellular lo-

calization is predicted by PSORTb [59] for the proteins (Sup-

plementary Fig. S12). Additionally, the protein entries are en-

riched by protein-protein interaction information retrieved from

STRING [60] and PIE [61] (examples in Supplementary Fig. S13).

Circular RNAs

ANNOgesic integrates the tool ”testrealign.x” from the segemehl

package for the detection of circular RNAs [62] and adds a �lter

to reduce the number of false positive. Candidates for circular

RNAs must be located in intergenic regions and exceed a given

number of reads.

CRISPRs

CRISPR/Cas systems represent a bacterial defense system

against phages and consist of repeat units and spacer sequences

as well as Cas proteins [63]. The CRISPR Recognition Tool [64]

is integrated into ANNOgesic and extended by comparison of

CRISPR/Cas candidates to other annotations to remove false pos-

itive (Supplementary Fig. S14).

Riboswitches and RNA thermometers

Riboswitches and RNA thermometers are regulatory sequences

that are part of transcripts and in�uence the translation based

on the concentration of selected small molecules and tem-

perature change, respectively. For the prediction of these ri-

boswitches and RNA thermometers, ANNOgesic searches [65]

the sequences that are between TSSs (or starting point of a

transcript if no TSS was detected) and downstream CDSs, as

well as those associated with ribosome binding site in the Rfam

database using Infernal [66].

Comparison between ANNOgesic predictions and

published databases for E. coli K-12

In order to assess the performance of ANNOgesic, we compared

its predictions based on a dRNA-seq dataset and conventional

RNA-seq of E. coli K-12 MG1655 by Thomason et al. [27] and Mc-

Clure et al. [21] with the entries in several databases [28–33].
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Figure 4: Operon and sub-operon detection. (A) If there is more than one TSSs that does not overlap with genes located within one operon, the operon can be divided to

several sub-operons based on these TSSs. (B) An example from H. pylori 26695. The coverage of RNA-seq with fragmentation, TEX+, and TEX- of dRNA-seq are shown in

pink, blue, and green coverages, respectively. TSSs, transcripts/operons, and genes are presented as blue, red, and green bars, respectively. The two genes are located

in the same operon but also in different sub-operons (two empty red squares).

Figure 5: Detection of intergenic, antisense, and UTR-derived sRNAs. The length of potential sRNAs should be within a given range, and their coverages should exceed

a given minimum coverage. (A) Detection of intergenic and antisense sRNAs. Three potential cases are shown. In the upper panel, the transcript starts with a TSS,

and length of the transcript is within the expected length. In the middle panel, the transcript starts with a TSS, but the transcript is longer than an average sRNA. In

that case, ANNOgesic will search in the region of high coverage (blue region) for a point at which the coverage is decreasing rapidly. In the bottom panel, the image is

identical to the one in the middle, but the sRNA ends instead with a PS. (B) Detection of UTR-derived sRNAs. For 3’ UTR-derived sRNAs: if the transcript starts with a

TSS or PS, it will be tagged as a 3’ UTR-derived sRNA. For 5’ UTR-derived sRNAs: if the transcript starts with a TSS and ends with a PS or the point where the coverage

signi�cant drops. (C) Detection of interCDS-derived sRNAs; this is similar to the 5’ UTR-derived approach, but the transcript starts with a PS.

Most of the benchmarking features can be precisely detected

(80% ormore) (Supplementary Table S3). Moreover, the predicted

features not found in published databases have the high possi-

bility to be novel features that are strongly supported by RNA-

seq data (Supplementary Fig. S7B, S7D). TSSs represent an ex-

ception with lower success rates, and we assume this is mostly

due to the higher sensitivity of the dRNA-seq method in com-

parison to older protocols. To test this assumption and to in-

vestigate the quality of the TSS entries in RegulonDB, we com-

pared the three deposited TSS datasets (Salgado et al. generated

with Illumina RNA-seq as well as Mendoza-Vargas et al. gener-

ated with Roche 454 high-throughput pyrosequencing and gen-

erated with Roche 5’RACE [67,68]) to each other and found very

small overlap (Supplementary Fig. S15). Additionally, the 50 nu-

cleotides upstream of TSSs were extracted and scanned with

MEME [45] for common motifs that are similar to the ones de-

scribed for promoters. Only for a small number, 0% to 7%, of

TSSs such motifs were found (Supplementary Table S4), while

80% of the TSS predictions from ANNOgesic have such a pro-

moter motif located upstream (Supplementary Figure S6C). The

same analysis could not be performed with EcoCyc [28], which

is lacking TSS information and provides only positions but no

strand information for promoters. Because of these results, we

doubt that the data in those databases represent a solid ground

for benchmarking the accuracy of ANNOgesic’s TSS predictions.

Discussion

While RNA-seq has become a powerful method for annotating

genomes, the integration of its data is usually very laborious

and time consuming. It requires bioinformatic expertise and in-

volves the application of different programs to perform the dif-

ferent required steps. Here, we present ANNOgesic, a modular,

user-friendly annotation tool for the analysis of bacterial RNA-

seq data that integrates several tools, optimizes their parame-

ters, and includes novel predictionmethods for several genomic
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8 ANNOgesic - RNA-Seq based genome annotation

Figure 6: sORF detection. (A) An sORF must contain a start codon and stop codon within a transcript and should be inside of a given length range (default 30 -150nt).

Additionally, a ribosomal binding sitemust be detected between the TSS and the start codon. (B)An example fromH. pylori 26695. The coverage of RNA-seq (fragmented

libraries), TEX+, and TEX- (dRNA-seq) are shown as pink, blue, and green coverages, respectively. The TSS, transcript, and sORF are presented as blue, red, and green

bars, respectively.

features.With the help of this command-line tool, RNA-seq data

can be ef�ciently used to generate high-resolution annotations

of bacterial genomeswith very littlemanual effort. In addition to

the annotation �les in standard formats, it also returns numer-

ous statistics and visualizations that help the user to explore

and to evaluate the results. While it ideally integrates conven-

tional RNA-seq (bene�cial for detecting 3’-ends of transcripts) as

well as dRNA-seq (required for the ef�cient detection of internal

TSSs) as input together (see Supplementary Figs. S16 and S17),

it can also perform suf�cient predictions with only one class of

data for the majority of the genomic features (Supplementary

Table S3).

Here, we demonstrated the performance of ANNOgesic by

applying it on two published datasets and comparing the results

to manually conducted annotations. ANNOgesic could detect

90% and 83% of the manually annotated sRNAs H. pylori 26695

and C. jejuni 81116, respectively. The sRNAs missed by ANNO-

gesic can be explained by low coverage, not being associated

with TSSs or lack of expression in the assayed conditions (see

Supplementary Figs. S18 and S19).

In addition to the analyses presented as examples in this

study (H. pylori 26695 and C. jejuni 81116), ANNOgesic was suc-

cessfully applied for detecting transcripts, sRNAs, and TSSs in

additional annotation projects (e.g., Pseudomonas aeruginosa [69]

and Rhodobacter sphaeroides [70]). Despite the fact that the pro-

gram was developed mainly with a focus on bacterial genomes,

it has also been used to annotate archaeal genomes (namely

Methanosarcina mazei [Lutz et al., unpublished]) and eukaryotic

genomes that have no introns (Trypanosoma brucei [Müller et al.,

unpublished]).

ANNOgesic is freely available under the OSI-compliant ISCL

open source license (some of the dependencies are available

under other FLOSS licenses), and extensive documentation has

been produced to guide novice and advanced users.

Conclusions

ANNOgesic is a powerful tool for annotating genome features

based on RNA-seq data frommultiple protocols. ANNOgesic not

only integrates several available tools but also improves their

performance by optimizing parameters and removing false pos-

itives. For the genomic features that cannot be detected using

available tools, several novel methods have been developed and

implemented as part of ANNOgesic. Comprehensive documen-

tation and useful statistics as well as visualizations are also pro-

vided by ANNOgesic.

Availability of supporting source code and
requirements
� Project name: ANNNOgesic
� Project home page: GitHub - https://github.com/Sung-Huan

/ANNOgesic.

PyPI - https://pypi.org/project/ANNOgesic/.

DockerHub - https://hub.docker.com/r/silasysh/annogesic/.
� SciCrunch RRID: SCR 016326
� Operating system(s): Linux, Mac OS
� Programming language: Python
� Other requirements: Please check the documentation (http:

//annogesic.readthedocs.io/en/latest/required.html).
� License: ISC (Internet SystemsConsortium license, simpli�ed

BSD license).

Availability of supporting data

Snapshots of the code and data are available in the GigaScience

repository, GigaDB [71]. Code and data are also available via the

Code Ocean reproducibility platform [72]. For information on the

supporting �les, please check the documentation (http://annoge

sic.readthedocs.io/en/latest/subcommands.html).
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Additional �les

Figure S1: Work�ow charts of ANNogesic modules.

Figure S2: Distribution of TSS classes.

Figure S3: Concept and examples for detecting coverage de-

crease of terminators.

Figure S4: Terminator prediction approach based on convergent

genes.

Figure S5: Length distribution of UTRs.

Figure S6: The promoter motifs detected in Helicobacter py-

lori 26695, Campylobacter jejuni 81116, and Escherichia coli K-12

MG1655.

Figure S7: Examples of known and novel intergenic sRNAs that

ANNOgesic can detect.

Figure S8: Examples of detected antisense and UTR derived sR-

NAs.

Figure S9: The coverage plots of the benchmarking sRNA

HPnc4620.

Figure S10: Histograms of ranking number of the sRNA bench-

marking set.

Figure S11: The distributions of GO term.

Figure S12: The distributions of subcellular localizations.

Figure S13: Visualization of protein-protein interactions.

Figure S14: The example of CRISPR in Campylobacter jejuni 81116.

Figure S15: The overlap of three previously published TSS

datasets in RegulonDB.

Figure S16: The predicted sRNA which can be detected only in

data RNA-seq after transcript fragmentation.

Figure S17: The comparison between dRNA-seq and RNA-seq af-

ter transcript fragmentation for detecting transcript

Figure S18: The lowly expressed sRNA - HPnc4610.

Figure S19: An example of known sRNA – CJnc230 – which is not

associated with a TSS.

Equation S1: The ranking system of sRNA prediction.

Table S1: The novelties and improvements of genomic feature

detection in ANNOgesic.

Table S2: The dependencies of the modules of ANNOgesic.

Table S3: The comparison between ANNOgesic predictions and

several databases.

Table S4:Thenumber of TSSs and their associated promotermo-

tifs in RegulonDB.

Table S5: The manually-curated TSS set of Helicobacter pylori

26695 (1-400bp).

Table S6: The manually-curated TSS set of Campylobacter jejuni

81116 (1-400bp).

Table S7: Themanually-curated PS set ofHelicobacter pylori 26695

(1-400bp).

Table S8: The manually-curated PS set of Campylobacter jejuni

81116 (1-400bp).
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phism; TSS: transcriptional start site; UTR: untranslated region.
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