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ABSTRACT

Tables are a universal idiom to present relational data. Bil-
lions of tables on Web pages express entity references, at-
tributes and relationships. This representation of relational
world knowledge is usually considerably better than com-
pletely unstructured, free-format text. At the same time,
unlike manually-created knowledge bases, relational infor-
mation mined from “organic” Web tables need not be con-
strained by availability of precious editorial time. Unfortu-
nately, in the absence of any formal, uniform schema im-
posed on Web tables, Web search cannot take advantage
of these high-quality sources of relational information. In
this paper we propose new machine learning techniques to
annotate table cells with entities that they likely mention,
table columns with types from which entities are drawn for
cells in the column, and relations that pairs of table columns
seek to express. We propose a new graphical model for mak-
ing all these labeling decisions for each table simultaneously,
rather than make separate local decisions for entities, types
and relations. Experiments using the YAGO catalog, DB-
Pedia, tables from Wikipedia, and over 25 million HTML
tables from a 500 million page Web crawl uniformly show
the superiority of our approach. We also evaluate the im-
pact of better annotations on a prototype relational Web
search tool. We demonstrate clear benefits of our annota-
tions beyond indexing tables in a purely textual manner.

1. INTRODUCTION
Relational data is almost universally presented as tables

for human consumption. In a recent 500 million page Web
crawl, we conservatively estimated [12] that over 25 mil-
lion tables express relational information, as against imple-
menting visual layout. A given entity may be mentioned in
dozens to thousands of such tables, in syntactically different
forms (e.g., “Albert Einstein” vs. “Einstein”). Each table
contributes valuable facts about entities, their types, and
relationships between them, and does so in a manner that
is considerably less diverse and less noisy, compared to how
facts are expressed in free-format text.
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Unfortunately, these “organic Web tables” do not adhere
to any uniform schema. Captions, contexts, row and column
headers, if present, do not use controlled vocabulary. Text in
table cells often mention entities, but, being free-form text,
the mentions are potentially ambiguous. In particular, there
is no direct way to know that two cells in two different tables
refer to the same entity, or to associate an attribute with
an entity. These limitations lead to under-exploitation of a
rich source of structured information on the Web. At best,
keywords in queries can match text inside tables, indexed as
an undifferentiated blobs of text.

In recent years, information retrieval (IR) tasks have been
enhanced to exploit named entities and types, e.g., in en-
tity ranking tasks. Such queries seek entities of a specified
type that are mentioned significantly often near specified
words [7]. This has been further extended [8] to ad-hoc
retrieval of multiple entities that appear to form a logi-
cal record, e.g., name, affiliation and email of database re-
searchers. However, the data source remained completely
unstructured text.

Suppose we want to compile a table of footballers (soccer
players) and clubs they play for. To extract and reconcile
this information from many Web tables, we need to deter-
mine that specific columns of these tables mention (subsets
of) footballers and clubs. Determining that specific cells
mention specific footballers or clubs is also generally useful.
Finally, it usually helps to determine that two columns in
a table are related in the desired manner. Cell and column
annotations of these forms can also boost precision in select
queries, e.g., list movies directed by (as against featuring as
actor) George Clooney.

1.1 Goal
We are given a catalog comprising a type hierarchy with

subtype relations, and entities that are instances of types.
We are also given a corpus of tables that are not used for
formatting and presentation purposes. (Effective heuristics
exist [6] for screening out formatting tables.) Our goal is to
annotate each table in the following ways:

• Associate one or more types with each column of the
table. If a column is deemed not to have any type in
our catalog, determine that as well.

• Annotate pairs of columns with a binary relation in
the catalog. If two columns are not involved in any
binary relation in our catalog, determine that as well.

• Annotate table cells with entity IDs in the catalog,
when there is reason to believe that the cell makes a
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Figure 1: Illustration of cell entity, column type, and relationship labeling.

mention or reference to said entity.

These annotation tasks are challenging. When annotating
entity mentions in free-form text [14], the textual context
provides clues for disambiguation. In contrast, table cells
referring to entities have negligible amounts of additional
text. Given each table cell can map to several entities (or
none), it is nontrivial to propose one or few types1 for a
column that “explain” (most of) the cells in the column.
Finally, there may be no intrinsic clue in a table as to how
entities therein are related.

Figure 1 shows a typical scenario. Note that the column
header ‘Title’ can refer to books, movies, or music albums,
and “written by” has no word overlap with ‘author’. Note
also that text similarity is a noisy signal (book title contain-
ing ‘Albert’). Despite these potential pitfalls, it is possible
to explain cells in the first column as mentions of book titles
and cells in the second column as elements of ‘Person’ type
based on collective signals.

1.2 Contributions
In this paper we propose machine learning techniques to

annotate table cells with entity, type and relation informa-
tion. We propose a new probabilistic graphical model for
simultaneously choosing entities for cells, types for columns
and relations for column pairs. We draw the standard types,
relations and entities from the YAGO [21] catalog, which has
about 250,000 types, two million entities and 99 relations.
We train our system and evaluate the accuracy of our an-
notations using ground truth synthesized from Wikipedia,
DBPedia and YAGO. Experiments show that attacking the
three subproblems collectively and in a unified graphical in-
ference framework give clear accuracy benefits compared to
making local decisions. We also use the trained system to
annotate tables in a 500 million page Web crawl. The seed
tuples we start with in our catalog are only a small frac-
tion of all the tuples we find and annotate in over 25 million
Web tables. We then evaluate the impact of table annota-
tions on a prototype relational Web search tool designed to
complete one or more missing fields in a binary relationship.

1More than one types are allowed, e.g., German Physicist
and Nobel Laureate.

We demonstrate clear benefits of our annotations beyond
modeling tables in a purely textual manner.

Outline. In Section 2 we survey related work. In Section 3
we give formal models for the catalog and the source table
corpus. Section 4 is the central section that proposes the new
model, its associated optimization problem, and its solution.
In Section 5 we present a search application to motivate the
role of table annotations for improved search results. In
Section 6 we describe our experimental testbed and results,
and conclude in Section 7.

2. RELATED WORK
Recent years have witnessed active research on bridging

the gap between unstructured, semistructured and struc-
tured data on the Web. Here we review recent ideas that
lead up to our work.

2.1 Web tables and lists
WebTables [6, 5] pioneered the study of tables on the

Web as a source of high-quality relational data. A key con-
tribution of WebTables is the collection of attribute co-
occurrence statistics, which is used to implement a column
thesaurus and propose column auto-completion in queries.
The unit of answer in WebTables is a single source ta-
ble, and the focus is on the ranking of whole source tables.
WebTables has no mechanism for annotating cells with
entities and columns with types from a catalog. Column
names are derived from source tables alone, in the form of
text, which is partly why a column name suggestion engine
is valuable.

Our system differs in a few fundamental ways. First, our
primary goal during preprocessing is to annotate columns
with standard type identifiers, and not depend on free-text
descriptions of columns.

Second, our goal is to allow more structure in queries,
such as the relational expressions R1(e1 ∈ T1, E2 ∈ T2) (i.e.,
select-project) and R1(e1 ∈ T1, e2 ∈ T2) ∧ R2(e2 ∈ T2, E3 ∈
T3) (i.e., join) where R1, R2 are standard relation names,
T1, T2, T3 are type literals, E2, E3 are entity literals, and
e1, e2 are entity variables that can be instantiated to literals.
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Third, unlike WebTables, our goal is to return a single
synthesized tables with rows ranked by confidence. Beyond
the above queries, note that tagging tables with entities and
types lets us express precise join queries without depending
on fuzzy text matches. This is left for future work.

A related idea is to curate other Web artifacts like HTML
lists into tabular data [12]. No annotation to a standard
type or entity catalog was involved in that work. However,
our work can further benefit from such additional sources of
information.

2.2 Collective entity disambiguation
Another thread of research leading to our work involves

annotation of free-form text with references to entities in a
catalog. Among the earliest such effort was SemTag [10],
which tagged Web documents with references to entities
in the TAP catalog [11]. Early work [10, 15, 3] disam-
biguated each potential entity mention independent of oth-
ers. Cucerzan [9] and Milne et al. [17] were among the first
to recognize and exploit the observation that entities men-
tioned from a single document are likely to be semantically
related. Kulkarni et al. [14] proposed a precise entity label-
ing optimization problem that captured local compatibility
between mention and entity as well as pairwise similarity
between entity labels. Tables with heterogeneous columns
violate the basic assumption in all these approaches [9, 17,
14], that entities mentioned on a page are topically homo-
geneous. This assumption clearly does not apply to tabular
data with diverse column types. Our work addresses this
important genre of source data.

2.3 Relation extraction
Another common task is to extract instances of relations

between named entities from free-form text, e.g., “company
A acquired company B for amount M” (see [19] for a sur-
vey). Early systems focused on extracting fixed relation
types from limited source formats such as news articles.
Recently, these have been extended to identify more open-
ended relations over the entire Web, based on patterns learned
from seed examples or specified manually. A prototypical
example is the application of path kernels to dependency
parses of sentences [4].

Our data source is very different. On one hand, we seem
to have a cleaner source where relations are more explicit,
whereas on the other hand, we have little contextual clue.

3. SOURCE MODELS
We are given two input artifacts: a catalog of entities,

types and relations, and a corpus of tables. Here we formally
define their representation as used in the rest of the work.

3.1 Catalog
The catalog comprises types, entities and relations.
The set of types is T . T ∈ T is a type, e.g., English-

language films. We will often use canonical strings from
Wikipedia or synset names from WordNet [16] to denote
types. But a type can be described by more than one such
string, which we will call lemmas describing the type, L(T ).
In general, a lemma can have multiple tokens. Internally,
each type has a distinct integer ID.

Types are related by a subtype relation T1 ⊆ T2. This
induces a directed acyclic graph where nodes are types and
directed edge T2 → T1 denotes T1 ⊆ T2. We write T1 ⊆∗ T2

(respectively, T1 ⊆+ T2) if there is a directed path with zero
(respectively, one) or more edges from T2 down to T1. If not
already present, we can create a root type that reaches all
other types.

The set of entities is E . Entity E ∈ E may be an instance
of one or more types T , written as E ∈ T , if there is no
other E ∈ T ′ ⊆ T . This can also be shown as an edge from
(the node representing) T to (a node representing) E. If
T is transitively reachable from E we write E ∈+ T . It
is adequate if the raw catalog attaches entities to the most
specific types needed; we can always include all ancestor
types before starting out.

Let E(T ) = {E ∈ E : E ∈+ T} be the subset of entities
reachable from type T . Likewise, let T (E) be the subset of
types that are ancestors of entity E.

Each entity E has a set of associated lemmas L(E). E.g.,
the city of New York has lemmas New York, New York City

and Big Apple. A lemma is a (typically short) sequence of
tokens. Lemmas of different entities may be the same (e.g.
the state of New York is also called New York) or overlap-
ping (e.g. the maker of iPods is called Apple Computers).

The set of binary relation names is B. B ∈ B is one
relation name. We will want to label pairs of source table
columns with these canonical relation names. The schema
of B is written as B(T1, T2). A row or tuple of B is written
as B(E1, E2), where E1 ∈ T1, E2 ∈ T2. Extending to larger
arity is left for future work.

The specific catalog we use is YAGO [21], but many others
can be modeled in the same way.

3.2 Tables
We preprocess and discard formatting tables as in recent

work [6, 5, 12]. We discard tables that use merged rows,
columns or cells. I.e., we consider very regular tables where
the number of cells is exactly the product of the number
of rows and columns. Each row (and each column) may or
may not have a header; this is usually clear from HTML
formatting. We also capture some amount of textual con-
text around tables. At the end of this process, a table is
abstractly represented as:

• The table context, modeled as a short text segment.

• Header cells, if any, denoted by row/column number
and cell contents as text segments.

• Number of non-header rows and columns.

• Data cells, each with row+column coordinates, and
cell contents represented as a short text segment.

The set of source tables is S and S ∈ S is one source table,
with m rows and n columns. By convention we will assume
that rows are relation instances and columns are relation
attributes, which is the case for all but the smallest tables.
We will use 1 ≤ r ≤ m to index rows and 1 ≤ c ≤ n to
index columns. The text in cell (r, c) will be called Drc.
The header text in column c will be called Hc.

4. ALGORITHMS
We model the table annotation problem using a number

of interrelated random variables following a suitable joint
distribution, represented by a probabilistic graphical model
[13]; for a quick primer see Appendix B. The task of annota-
tion then amounts to searching for an assignment of values
to the variables that maximizes the joint probability.
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4.1 Variables
For a given table S ∈ S, we associate random variables tc

to denote the type of a column c, erc to denote the entity
label for a cell in row r and column c, and bcc′ to denote
the relation between column pairs c and c′. Each tc can
be bound to a specific type T ∈ T or na (“no annotation”).
Similary, each erc can be either tied to a specific value E ∈ E
or na, and each bcc′ can be tied to a specific relation B ∈ B
or na denoting no discernible relation between columns c, c′.

4.2 Features and potentials
Intuitively, while assigning values to the variables erc, tc

and bcc′ , we need to take into consideration several signals.
Following the framework of graphical models, we represent
these signals as features, and train models that learn how to
combine these signals with suitable weights. These features
and weights are used to define potential functions over sub-
sets of variables, and the product of these potentials gives
us the joint distribution over all variables. Thus, our main
design problem is choosing a useful set of features.

In the following subsections we will describe different fam-
ilies of features, each measuring some notion of association
between source tables and catalogs. Note that no feature is
fired if label na is involved.

4.2.1 Cell text and entity label

Suppose cell (r, c) with cell text Drc is labeled with entity
E. How good is this label assignment? Recall that E is
known by lemmas in L(E). If any of the lemmas is very
similar to Drc then the match is good. Accordingly, we
can define a feature maxℓ∈L(E) sim(Drc, ℓ), where sim is the
standard TFIDF cosine similarity [18]. We can also use
a number of other similarity measures, such as Jaccard or
a soft cosine measure [2]. These similarities can be made
elements in a vector f1(r, c, E).

To balance between the elements of the feature vector,
we will use a weight or model vector w1, and compute
w⊤

1 f1(r, c, erc), which is a scalar score. The score can, in
principle, be negative. These are then combined to declare
a potential over an entity variable erc attached to cell (r, c):

φ1(r, c, erc) = exp
“

w
⊤
1 f1(r, c, erc)

”

.

4.2.2 Column header and type label

Similar to the previous section, assigning type T to col-
umn c is favored if the column header text Hc is similar
to one of the lemmas describing T . Again, we can use
the standard TFIDF cosine similarity, maxℓ∈L(T ) sim(Hc, ℓ),
and other similarity measures. Let f2(c, tc) be the feature
vector, w2 be the corresponding weights, and

φ2(c, tc) = exp
“

w
⊤
2 f2(c, tc)

”

be the corresponding potential. φ2 tends to be a weaker
signal than φ1, because column headers may be omitted, or
not match type lemmas as well.

4.2.3 Column type and cell entity

How compatible is it to label a column c with type T and
a cell (r, c) in that column with entity E? We wish to create
a potential function φ3(T, E) to measure this via features

f3(tc, erc) as

φ3(tc, erc) = exp
“

w
⊤
3 f3(tc, erc)

”

To get started, we can insist that, unless E ∈+ T , f3(· · · )
must be zero. How about types that do reach E? Should
they all get the same feature value? Suppose for a moment
that all cells in a table column have been disambiguated with
perfect accuracy to entities. One might argue that the type
of the column should be the most specific type ancestor of
all the entities. We can choose the least common ancestor
(LCA). In reality, however, entity labels are uncertain, so
insisting on a brittle choice like LCA may be damaging. We
will see evidence of this in Section 6. Instead, we will use
features to encourage specific column types.

The first feature is inspired by the inverse document fre-
quency (IDF) in IR systems [18]. The specificity of a type T
can be modeled as |E|/|E(T )|. If this is large, T is specific.
This feature does not depend on the specific cell or entity
involved.

The second feature expresses specificity as the distance
between E and T . Let dist(E, T ) be the number of edges
(∈ followed by ⊆∗) on the shortest path between E and T .
We want dist(erc, tc) to be generally small. We can there-
fore use 1/dist(erc, tc) as a feature, so that a larger feature
value indicates greater favor for tc, similar to the previous
categories of features. There is nothing special in the form
1/dist(erc, tc). In information retrieval, damping functions
like log or square-root are often used. So we also tried
1/

p

dist(erc, tc). This style of feature has one limitation,
which we address next.

Missing links. The above feature “fires” only if erc ∈+

tc, otherwise it is 0. We can rationalize this via the rea-
sonable convention that if erc 6∈+ tc, then dist(erc, tc) =
∞. One problem with this policy is that catalogs, espe-
cially socially-maintained catalogs like Wikipedia (and by
inheritance, YAGO) are rarely complete or perfect. In par-
ticular, many ∈ links are missing. For example, at the
time of writing, the ∈ link from Entity Satyajit Ray to
type Indian film directors, and the ⊆ link from Universi-
ties in Toronto to Universities in Ontario, are missing.

Therefore, we need positive potentials in selected cases
where “E ∈+ T” is not known from the catalog but is likely
from indirect evidence. Suppose T ′ is the (only) immediate
type ancestor of E. Mining work involving social catalogs of-
ten use a relatedness measure between two types [9, 17, 14].
We will use a suitable definition of relatedness to potentially
fire a nonzero feature for (E, T ) even if E 6∈+ T .

As defined before, E(T ′) is the set of entities reachable

from T ′. Consider the quantity |E(T ′)∩E(T )|
|E(T ′)|

. A large value

suggests that the link E ∈+ T may have been missed, be-
cause most elements in E(T ′) are also in E(T ). Note that we
are not modeling this as any kind of probability, but just a
hint to the collective annotator. When E has multiple im-
mediate parents types T ′, we modify the above quantity to

minE∈T ′

|E(T ′)∩E(T )|
|E(T ′)|

. Finally, we use this quantity to modify

the reciprocal distance feature for entities E not reachable
by T to

min
E∈T ′

|E(T ′) ∩ E(T )|
|E(T ′)|

1

minE′∈E(T ) dist(E′, T )
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4.2.4 Relation and pair of column types

These features model compatibility between pairs of types
T, T ′ and binary relations B in the catalog. Thus, between
every pair of columns c, c′ which are likely to be related
we get a feature vector f4(bcc′ , tc, tc′) and the corresponding
potential φ4(bcc′ , tc, tc′) The first feature element in f4 is
set to 1 if there is a schema bcc′(tc, tc′) in the catalog, and
0 otherwise. The second feature measures the fraction of
entities under tc (or tc′) that appear in relationship bcc′ with
an entity in tc′ (or tc).

4.2.5 Relation and entity pairs

If we annotate a relationship bcc′ between columns c and
c′, the entity annotations erc and erc′ corresponding to dif-
ferent rows can vote for or against it in various ways. This
gives rise to another potential φ5(bcc′ , erc, erc′) defined through
features f5. The first feature in f5(bcc′ , erc, erc′) is 1 if the
catalog contains a tuple bcc′(erc, erc′). The second feature
is 1 if relation bcc′ is one-to-one or many-to-one and the cat-
alog contains bcc′(erc, E

′) for E′ 6= erc′ , and symmetrically
for a one-to-many relation.

For example, in Figure 1 the first feature is 1 if the label of
the cell “A. Einstein” is P22, the label of the cell “Relativity:
The Special . . . ” is B96, and author(B96,P22) exists in the
catalog, and the column pair is labeled with relation name
author.

Example. We present an example of the resultant graphi-
cal model created using the above five kind of potentials in
Figure 10.

4.3 Collective objectives
Summarizing, we have variable sets t = {tc}, e = {erc},b =
{bcc′}, and potentials φ1, φ2, φ3, φ4, φ5 defined on suitable
subsets of these variables. For the moment, we assume that
all system parameters w1,w2,w3,w4,w5 have been tuned
or trained in advance, and we have to assign values to the
above variables so as to maximize our objective:

max
e,t,b

Y

c,c′

φ4(bcc′ , tc, tc′)
Y

r

φ5(bcc′ , erc, erc′)

| {z }

relation
Y

c

φ2(c, tc)

| {z }

columns

Y

r

φ1(r, c, erc) φ3(tc, erc)

| {z }

cells

. (1)

The above optimization is called “inference”.
The space of values over which the variables range is de-

termined as follows: First, for each cell (r, c) we use a text
index to collect candidate entities Erc based on overlap be-
tween cell and lemma tokens. Let T (E) is the set of all
type ancestors of entity E. The space of column labels
Tc is

S

E∈Erc
T (E). The space of relation labels Bcc′ is

S

r{B : B(E, E′) exists , E ∈ Erc, E
′ ∈ Erc′}. In all cases,

we add an additional value “na” denoting the no annotation
option.

We train the various parameters w1, . . . ,w5 using the
structured learning framework of [22], that generalize Sup-
port Vector Machine classifiers to the case when we need
to predict multiple variables collectively. The details are
skipped because we follow standard machine learning pro-
cedures for this training.

4.4 Inference

4.4.1 Special case: no bcc′ , φ4, φ5

We first discuss a simplication of optimization (1) where
we exclude variables {bcc′} and potentials φ4, φ5. Then our
objective is

max
e,t

Y

c

φ2(c, tc)
Y

r,c

φ1(r, c, erc) φ3(tc, erc). (2)

This objective can be solved in polynomial time because the
best label for each column can be settled completely inde-
pendently of other columns. Moreover, once a column label
has been fixed, each cell label can be set independent of
other cell labels. The pseudocode is shown in Figure 2. Pri-
mary key or unique constraints on a column can be handled
using a min cost flow formulation [1]. We omit the details,
because our real focus is the general case.

1: for each column c do

2: for each type T ∈ Tc do

3: AT ← φ2(c, T )
4: for each cell r, c in column c do

5: use a text index to collect candidate entities Erc

based on overlap between cell and lemma tokens
6: choose e∗rc = arg maxE∈Erc

φ1(r, c, E)φ3(T, E)
7: AT ← AT · φ1(r, c, e

∗
rc) · φ3(T, e∗rc)

8: finalize t∗c = arg maxT AT

9: recall and finalize cell assignments e∗rc

10: return t∗, e∗

Figure 2: Simplified inference without binary rela-

tion variables bcc′ .

4.4.2 The general case

Inference in the general case (1) is NP-hard, even for a
single table; see Appendix C. We resort to an approximate
algorithm by drawing on well-known techniques from prob-
abilistic graphical models, specifically, message-passing or
belief propagation in factor graphs [13]. A factor graph has
two kinds of nodes: (1) variable nodes which in our case
correspond to the union of types tc, entities erc, and rela-
tions bcc′ variables, and (2) factor nodes which correspond
to potentials coupling multiple variables. In our case, these
are φ3(tc, erc), φ4(bcc′ , tc, tc′), and φ5(bcc′ , erc, erc′).

Inference proceeds by sending messages back and forth be-
tween factor nodes and variable nodes according to a given
schedule. A message M(i → f) from a variable i to a fac-
tor f is calculated by multiplying its own potential with all
incoming messages from factors other than f . For example,
we compute message from an entity variable erc to φ3 as

M(erc → φ3) = φ1(r, c, erc)
Y

c′

M(φ5(bcc′ , erc, erc′)→ erc)

A message from a factor f to a variable i is obtained by
multiplying f ’s potential with incoming messages from vari-
ables other than i and marginalizing the result on i. For
example, a message from φ3 to erc is computed as:

M(φ3 → erc) = max
tc

φ3(tc, erc)M(tc → φ3).

Intuitively, this message conveys the belief that factor φ3

has about the label that variable erc should be assigned.
We schedule these messages from entities to φ3 to types and
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back first. Next, we schedule messages from entities to φ5 to
relations and back. Finally, from types to φ4 to relations and
back. We repeat this schedule until message values converge
from one iteration to the next. In practice we found that
convergence was achieved within three iterations. (In the
special case of no bcc′ variables, this schedule reduces to the
direct optimal algorithm shown in Figure 2.) The full set of
messages and the overall algorithm appear in Appendix D.

4.5 Baseline annotation algorithms
We will compare our algorithms against two reasonable

baseline approaches.

4.5.1 Least common ancestor (LCA)

Let Erc be the candidate entities to which the cell at (r, c)
may be assigned. Recall that T (E) is the set of all type
ancestors of entity E. Consider

S

E∈Erc
T (E). In words,

this is the set of all types that may possibly be ancestors
of the entity mentioned in cell (r, c), whatever that might
be. Therefore, any type that is an ancestor of all cells in the
given column must be in

T

r

S

E∈Erc
T (E). Any type in this

set that that does not have a descendant also in this set is a
candidate for labeling the given column. We report all these
types, and evaluate using the F1 score (harmonic mean of
recall and precision). Once a type is assigned to a column,
a locally optimal cell entity assignment can be completed
using the idea in Figure 2.

4.5.2 Majority

Suppose a cell (r, c) can be assigned entities from set Erc.
As before, the cell can potentially belong to any type in
S

E∈Erc
T (E). Let the vote for type T be

˛

˛

˛

n

E : T ∈
S

E∈Erc
T (E)

o

˛

˛

˛

We pick types that have more than a threshold F% vote.
When F is 50% we get the Majority method and when
F = 100% we get LCA. We also report numbers with F
in between these two values. In the Majority method we
perform entity assignment independently for each cell.

5. A SEARCH APPLICATION
A key motivation behind annotating tables with entities,

types, and relations is to be able to ask structured, metadata-
cognizant, relational queries over a less structured source. In
this section we discuss how our annotation system can assist
this process and enhance the quality of responses.

A common form of query one would like to ask of Web
tables is:

Given inputs R, T1, T2, E2 ∈+ T2 where R(T1, T2)
is in the catalog, return all E1 ∈+ T1 such that
R(E1, E2) holds.

This query form is a natural extension of entity search [7, 8]
to Web table sources. A common special case of the above
query form is to look for entities that have a given value of
an attribute.

Figure 3 shows informally how such a query would be
processed by a system that does not perform any entity, type
or relation annotations. Unlike WebTables, this baseline
returns cell contents, not ranked whole tables.

In contrast, in our system, columns have been associated
with standard types during preprocessing and indexing, and

1: inputs: R, T1, T2, E2 ∈+ T2

2: interpret all inputs as strings
3: look for tables with column headers matching T1, T2 and

table context matching R
4: for each qualifying table do

5: look for E2 in the column of T2

6: for each qualifying row do

7: collect the cell contents in the T1 column of the row
8: cluster, dedup, rank and present collected cell contents

Figure 3: Responding to select-project queries with-

out type annotations.

1: inputs: R, T1, T2, E2 ∈+ T2; R, T1, T2 are interpreted
using catalog IDs, E2 if present in catalog

2: locate all tables that have at least one column c1 labeled
T1 and a column c2 labeled T2, related by R

3: for each qualifying table do

4: if E2 is in the catalog then

5: look for cell in column c2 annotated with E2

6: else

7: look for cell in column c2 with high text similarity
to the string form of E2

8: collect cell in column c1 in this row
9: aggregate evidence in favor of known entities

10: cluster, dedup, rank and present unannotated cells

Figure 4: Responding to select-project queries after

type and entity annotations.

this information can be used (typically, interactively [20])
to “harden” the query to a more precise form. Specifically,
R, T1 and T2 can now refer to precise IDs rather than strings.
Figure 4 shows informal pseudocode for how this type infor-
mation can be exploited.

We will compare these schemes in Section 6.2.

6. EXPERIMENTS
We report on two kinds of experiments: annotation accu-

racy and the impact of annotation on the search application
of Section 5.

YAGO [21] provided the catalog of types (a kind of merger
between WordNet synsets and Wikipedia categories), en-
tities, and relations. We used version 2008-w40-2 of YAGO,
having 1,941,426 entities, 248,992 types, and 99 relations.
We regarded the entity set and their type and relation in-
volvements as sound but potentially incomplete ground truth.
Other resources included Wikipedia article text, and a 500-
million-page Web crawl. We first extracted over 25 million
tables from the crawled corpus, and indexed these tables
(including nearby text) using Lucene. The typical number
of tables we found per page, and the fraction of those that
are relational in nature, are in broad agreement with the
experience reported in WebTables [6]. We will call these
“Web tables”.

6.1 Annotation performance
We collected four table sets with ground truth annota-

tions. A summary of our table sources is shown in Figure 5.

Wiki Manual: We chose 36 (non-Infobox) tables from Wiki-
pedia article text, based on large content overlap with
many Web tables, and manually annotated them with
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entities, types, and inter-column relations. Description
of a few representative tables appears in Appendix E.

Web Manual: Using the tables from Wiki Manual as queries,
we fetched 371 Web tables similar to them [12]. These
were then manually annotated. The main difference
between Wiki Manual and Web Manual is that the
cell, header, and context texts in the latter are more
noisy.

Web Relations: The above two datasets provided only 54
relations. We collected 36 more relations, by using
Wiki Manual to fetch more Web tables, and manually
annotated only the relations between column pairs.
Cell entities or column types were not labeled.

Wiki Link: To specifically test the cell entity annotation
accuracy at large scale without laborious human judg-
ment, we selected (non-Infobox) tables from Wikipedia
text that had more than 90% of their cells linked inter-
nally to entities in Wikipedia. This yielded 131 thou-
sand cells with entity annotations spanning 6 thousand
tables. No column type or relation annotations were
made.

#Tables Average Total annotations
#rows Entity Type Rel

Wiki Manual 36 37 1691 73 10
Web Manual 371 35 9239 674 44

Web Relations 30 51 - - 36
Wiki Link 6085 20 131807 - -

Figure 5: Summary of data sets.

6.1.1 Annotation Quality

We measure 0/1 loss, i.e., we lose a point if we get a
cell wrong, including choosing na when ground truth was
not na. For column type and relation annotations, we report
F1 score (harmonic mean of recall and precision). If ground
truth is missing for a entity, type, or relation, we drop it
from the labeling task.

Figure 6 shows the three annotation tasks: entity, type
and relation annotation. For each task and each dataset, we
show the accuracy (as a percent) of three algorithms: the
baseline approaches LCA and Majority, and our algorithm
performing collective inference in the full model (1).

Entity annotation accuracy

Dataset LCA Majority Collective

Wiki Manual 59.75 74.24 83.92

Web Manual 59.68 75.87 81.37

Wiki Link 67.92 77.63 84.28

Type annotation accuracy

Dataset LCA Majority Collective

Wiki Manual 8.63 44.60 56.12

Web Manual 15.16 31.45 43.23

Relation annotation accuracy

Dataset LCA Majority Collective

Wiki Manual - 62.50 68.97

Web Relations - 60.87 63.64

Web Manual - 50.30 51.50

Figure 6: Accuracy of entity, type, and relation an-

notations.

It is immediately evident that Collective gives substan-
tially better accuracy at all tasks. In the entity disambigua-
tion task, the typical number of entities between which the

algorithms had to choose for each cell was around 7-8. In the
column type assignment task, the typical number of types
between which the algorithms had to choose for each column
was in the hundreds. The accuracies shown in Figure 6 thus
represent substantial lift beyond random choice, especially
in the challenging open Web domain.

Also note that the accuracy of Collective on column
types annotation is better for Wiki Manual compared to
Web Manual, reflecting the more noisy nature of text in
Web tables compared to Wikipedia. Further failure analysis
(see Appendix F for some anecdotes) revealed that LCA

performs particularly poorly at the job because it over-

generalizes and Majority suffers because of ambiguities in
entities. We hunted for thresholds in-between LCA’s 100%
and Majority’s 50% and obtained the best type accuracy
of 46% with a 60% threshold. However, even these numbers
are worse than 56% accuracy that Collective offers.

6.1.2 Annotation time

Figure 7 shows time spent in annotating a snapshot of
250,000 tables from our corpus. The average time per ta-
ble annotation is 0.7 seconds but there is considerable vari-
ation depending on the number of rows, the number of
non-numerical columns, and the amount of text in a cell.
Further drill-down showed that roughly 80% of the time is
spent in probing the lemma index and computing various
textual similarity measures between candidate lemmas and
cell strings. The inference algorithm accounts for less than
1% of the total time.
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Figure 7: Time spent in annotating tables.

6.1.3 Training

For training model parameters w1 through w5, we used
the Wiki Manual data using our implementation of a Java-
based structured learner [22]. Testing was done on the
Wiki Manual dataset and the Web Manual datasets. Al-
though our training and test data are not disjoint, we did
not observe overfitting issues because the number of features
was not too large. We trained our model parameters using
the manually collected ground truth and for three different
settings of measuring type entity compatibility: 1/

√
dist,

1/dist, and IDF, as discussed in Section 4.2.3. The results

appear in Figure 8. 1/
√

dist appears robust, and IDF on its
own performs poorly for type labeling.

6.2 Search
We evaluated entity search queries of the kind described

in Section 5 under three settings: a baseline that does no
annotations, with only type annotations, and with type and
relation annotations.
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Entity annotation accuracy

Dataset 1/
√

dist 1/dist IDF
Wiki Manual 83.92 84.30 85.44
Web Manual 81.37 80.52 80.06

Type annotation accuracy

Dataset 1/
√

dist 1/dist IDF
Wiki Manual 56.12 50.36 40.29
Web Manual 43.23 42.10 25.97

Figure 8: Type-entity compatibility features.

We generated a workload from five relations listed in Ap-
pendix G and for each relation randomly selected forty E2

values in YAGO that participate in the relation. The query
was posed on the Web table corpus described above. The
answer is a ranked list of entities.

To assess relevance, we used the RDF triples in DBPedia
(http://dbpedia.org/About) as ground truth. DBpedia’s
RDF triples are extracted from Wikipedia’s Infoboxes but
not ‘organic’ tables in Wikipedia page text, so this source is
different from Wiki Manual and Wiki Link. We score a re-
sponse using mean average precision (MAP), which is stan-
dard in information retrieval (http://en.wikipedia.org/w
iki/Information retrieval#Mean Average precision).
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Figure 9: Mean Average Precision (MAP) for attribute-

value queries without any annotation (Baseline), with

only column type annotations (Type), and with both col-

umn type and relation annotations (Type+Rel).

The results are shown in Figure 9: adding type labels
is better than baseline, and adding both type and relation
labels is best. It might be argued that this comparison is
not fair on the baseline, because it does not have the bene-
fit of a structured query language. There are two counter-
arguments. First, our goal is not to offer better responses
to keyword queries, but to raise the level of interaction and
bring it closer to querying structured data, but without the
luxury of a clean data source. Second, the gains from our
system are also attributable to corpus annotations, not just
query structuring. Separating the two effects would be in-
teresting future work.

7. CONCLUSION
We have presented a new system that annotates open-

domain tables on the Web with entity, type and relation
information. Thereby, it can harness the power of ‘organic’
Web tables to answer simple relational queries, even though
the source tables do not have any uniform or identifiable
schema. We gave a precise model for the annotation task,
balancing local compatibility between entities and their po-
tential mentions in table cells, and global constraints be-

tween relations, types and columns. The Web will never
have a complete ‘schema’. Socially maintained catalogs will
always be incomplete. Our work paves the way to augment
catalogs with dynamic relational information. We demon-
strate that this approach can lead to better responses to
relational queries on the unstructured Web.
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APPENDIX

A. NOTATION
T Set of all type labels

T ∈ T One type label
T1 ⊆ T2 Subtype relation
⊆∗,⊆+ Transitive closure of ⊆
E Set of all entities known in catalog

E ∈ E One entity label
E ∈ T E is a direct instance of T

E ∈+ T E is transitively an instance of T
E(T ) Entities that are transitive instances of T
T (E) All type ancestors of E
B All relation names in catalog

B ∈ B One relation name (label)
r, c Row, column of a table
Drc Text in cell r, c
erc Variable representing entity label of cell r, c
Hc Header text in column c of table
tc Variable representing type label of column c

bcc′ Variable representing relation label of cols c, c′

na special label, “no annotation”

B. GRAPHICAL MODEL FRAMEWORK
A probabilistic graphical model provides a convenient and

efficient framework for expressing the joint distribution Pr(x)
over N variables x = (x1, . . . , xN ). Variables are indexed as
xi, xj , etc. For simplicity, assume each xi takes label val-
ues in [1, M ], whereas in general each xi can take values
from its own space. Label values will be denoted k, ℓ, etc.
A probabilistic graphical model [13] captures the dependen-
cies between elements of X, each a node in the graph, with
a sparse set of edges as follows:

We first identify small subsets of variables, called cliques,
that are highly dependent on each other. We will be choos-
ing single nodes xi and node pairs xi, xj as cliques.

Next, we design node potentials φi : [1, M ]→ R+. This is
a kind of un-normalized measure of compatibility between
the variable and each value. We also design edge potentials

φi,j : [1, M ]× [1, M ]→ R+. This is a kind of un-normalized
measure of compatibility between the labels of variables be-
lieved to be correlated. Pr(x) is modeled as

Pr(x1, . . . , xn) =
1

Z

Q

i φi(xi)
Q

i,j φi,j(xi, xj)

where Z =
X

x∈[1,M ]N

Q

i φi(xi)
Q

i,j φi,j(xi, xj),

called the partition function, serves to normalize the product
of clique potentials to a proper probability.

A common method to define potentials is as a dot prod-
uct between a model vector and a feature vector. In case
of node potential, we might write φi(xi) = exp

`

w⊤
1 f(xi)

´

,

where f : [1, M ] → R
k is the feature vector and w1 ∈ R

k is
the model vector where k is the number of features. Sim-
ilarly, an edge potential would be defined as φi,j(xi, xj) =
exp

`

w⊤
2 f(xi, xj)

´

. The feature vector are designed by the
user whereas the model vectors w1,w2 are trained from la-
beled data.

Once Pr(x) is defined and the model vectors are trained,
the inference problem is to find arg maxx Pr(x).

In our case, the variables x are a union of tc, erc, bcc′ vari-
ables. The cliques are defined over pairs of variables (tc, erc)
and triples (bcc′ , tc, tc′) (bcc′ , erc, erc′). The feature vectors
used to define the node potentials, edge potentials and triple
potentials are explained in Section 4.2.

In Figure 10 we show an example graphical model that
arises in annotating a table with three rows and three columns.
The variables are represented as circles and potentials are
shown as φ node. φ1 and φ2 are node potentials respec-
tively on the tc and erc variables. φ3(tc, erc) represents an
edge potential between tc and erc variables and φ4 and φ5

are clique potentials among three variables at a time.

Figure 10: A Graphical model representing type,

entity, and relationship variables on a table with

three columns and three rows. Accordingly, there

are three type variables t1, t2, t3, nine entity variables

erc, and three relation variables bcc′ .

C. HARDNESS OF INFERENCE
Inference in the general case (1) is NP-hard, even in case

of a single table, via a reduction from graph coloring. We
give a rough sketch. The graph coloring instance consists of
an undirected graph G = (V, A) and a number K, and asks
if G is colorable with at most K colors. We build a single
table with |V | columns, each column c corresponding to one
node, also called c. We create |V |K types in the catalog: K
types Tuk for each node u. Column u can be assigned only
one of the k types Tu·. For each arc (u, v) ∈ A, we introduce
`

k

2

´

relation schema with a suitably large potential π into
the catalog: Buv(Tuk, Tvk′), for k 6= k′. All other potentials
are zero or one as needed. If there is a K-coloring of G, then
the objective for the corresponding graph is π|A|, and the
converse also holds.

D. MESSAGE PASSING ALGORITHM
Please see Figure 11. Training follows a very similar mes-

sage passing scheme that is standard [13] and is omitted
from this version.

E. SAMPLE TABLES FROM Wiki Manual
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1: Get candidate entities, types, and relations as described in Section 4.3
2: Initialize all messages to 1.
3: for Iterations=1 to Max-iterations do

4: for each column c do

5: for each row r do

6: M(erc → φ3(tc, erc)) = φ1(r, c, erc)
Q

c′ M(φ5(bcc′ , erc, erc′)→ erc)
7: M(φ3(tc, erc)→ tc) = maxerc

φ3(tc, erc)M(erc → φ3)
8: for each row r do

9: M(tc → φ3(tc, erc)) = φ2(c, tc)
Q

c′ M(φ4(bcc′ , tc, tc′)→ erc)
Q

r′ 6=r M(φ3(tc, er′c)→ tc)

10: M(φ3(tc, erc)→ erc) = maxtc
φ3(tc, erc)M(tc → φ3).

11: for each column pair c, c′ with candidate relations do

12: for each row r do

13: M(erc → φ5(bcc′ , erc, erc′)) = φ1(r, c, erc)
Q

c′′ 6=c′ M(φ5(bcc′′ , erc, tc′′)→ erc)
Q

r M(φ3(tc, er′c)→ erc)

14: M(erc′ → φ5(bcc′ , erc, erc′)) = similar to above.
15: M(φ5(bcc′ , erc, erc′)→ bcc′) = M(erc → φ5(bcc′ , erc, erc′))M(erc′ → φ5(bcc′ , erc, erc′))
16: for each row r do

17: M(bcc′ → φ5(bcc′ , erc, erc′)) =
Q

r 6=r′ M(φ5(bcc′ , er′c, er′c′)→ bcc′)M(φ4(bcc′ , tc, tc′)→ bcc′)

18: M(φ5(bcc′ , erc, erc′)→ erc) = maxe
rc′

,b
cc′

φ5(bcc′ , erc, erc′)M(erc′ → φ5(bcc′ , erc, erc′))M(bcc′ → φ5(bcc′ , erc, erc′))
19: M(φ5(bcc′ , erc, erc′ → erc′) = similar to above.
20: M(tc → φ4(bcc′ , tc, tc′)) = φ2(c, tc)

Q

c′′ 6=c′ M(φ4(bcc′′ , tc, tc′′)→ erc)
Q

r M(φ3(tc, er′c)→ tc)

21: M(tc′ → φ4(bcc′ , tc, tc′)) = similar to above.
22: M(φ4(bcc′ , tc, tc′)→ bcc′) = M(tc → φ4(bcc′ , tc, tc′))M(tc′ → φ4(bcc′ , tc, tc′))
23: M(bcc′ → φ4(bcc′ , tc, tc′)) =

Q

r M(φ5(bcc′ , erc, erc′)→ bcc′)
24: M(φ4(bcc′ , tc, tc′)→ tc) = maxt

c′
,b

cc′
φ4(bcc′ , tc, tc′)M(tc′ → φ4(bcc′ , tc, tc′))M(bcc′ → φ4(bcc′ , tc, tc′))

25: M(φ4(bcc′ , tc, tc′ → tc′) = similar to above.
26: Exit if converged
27: Recall and finalize labels of variables from messages.

Figure 11: Message passing algorithm to get collective entity, type, and relation assignments.

• List of Simpsons episodes with fields episode, director
and writer

• List of Presidential libraries with fields president, li-
brary and location

• List of nuclear research reactors with fields operator,
location and reactor

• List of Newbery medal winners and their respective
novels

• List of actors in West Wing and names of their fictional
characters

F. LCA OVER-GENERALIZES
LCA over-generalizes because of noise in cell-to-entity an-

notations and missing links in the catalog. We illustrate
this with a real example. Figure 12 shows a Web table with
the first column containing titles of Nancy Drew novels. All
of these novels appear in YAGO and are correctly labeled
with their entity labels. However, the ∈ link from one of the
entities, The Clue of the Black Keys to the type Nancy Dr

ew books is missing. The two immediate parents of this en-
tity are 1951 novels and Children’s novels. Furthermore,
the ⊆ link from Nancy Drew books to Children’s novels is
missing. This makes the LCA choose the root type, Entity
for the first column.

G. RELATIONS USED FOR SEARCH QUERY

EXPERIMENTS
Figure 13 lists the five relations on which we reported our

Search experiments in Section 6.2.

Figure 12: Example table where LCA over-

generalizes.

Relation name Type 1 Type 2
acted in movie actor
directed movie director
wrote novel novelist
official language country language
produced movie producer

Figure 13: List of relations and their types used in

experiments of Section 6.2
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