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Abstract7

Predicting functions for novel amino acid sequences is a long-standing research problem. The8

Uniprot database which contains protein sequences annotated with Gene Ontology (GO) terms,9

is one commonly used training dataset for this problem. Predicting protein functions can then10

be viewed as a multi-label classification problem where the input is an amino acid sequence and11

the output is a set of GO terms. Recently, deep convolutional neural network (CNN) models have12

been introduced to annotate GO terms for protein sequences. However, the CNN architecture13

can only model close-range interactions between amino acids in a sequence. In this paper, first,14

we build a novel GO annotation model based on the Transformer neural network. Unlike the15

CNN architecture, the Transformer models all pairwise interactions for the amino acids within a16

sequence, and so can capture more relevant information from the sequences. Indeed, we show17

that our adaptation of Transformer yields higher classification accuracy when compared to the18

recent CNN-based method DeepGO. Second, we modify our model to take motifs in the protein19

sequences found by BLAST as additional input features. Our strategy is different from other20

ensemble approaches that average the outcomes of BLAST-based and machine learning predictors.21

Third, we integrate into our Transformer the metadata about the protein sequences such as 3D22

structure and protein-protein interaction (PPI) data. We show that such information can greatly23

improve the prediction accuracy, especially for rare GO labels.24

1 Introduction25

Predicting protein functions is an important task in computational biology. With the cost of26

sequencing continuing to decrease, the gap between the numbers of labeled and unlabeled27

sequences continues to grow [18]. Protein functions are described by Gene Ontology (GO)28

terms [16]. Predicting protein functions is a multi-label classification problem where the29

input is an amino acid sequence and the output is a set of GO terms. GO terms are30

organized into a hierarchical tree, where generic terms (e.g. cellular anatomical entity)31

are parents of specific terms (e.g. perforation plate). Due to this tree structure, if a GO32

term is assigned to a protein, then all its ancestors are also assigned to this same protein.33

When analyzing only the amino acid sequence data to predict protein functions, there34

are two major trends. The first trend relies on string-matching models like Basic Local35

Alignment Search Tool (BLAST) to match the unknown sequence with labeled proteins36

in the database [11]. Recently, Zhang et al. [18] combined BLAST with Position-Specific37

Iterative Basic Local Alignment Search Tool (PSI-BLAST) to retrieve even more labeled38
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proteins which are possibly related to the unknown sequence. The key idea behind39

BLAST methods is to retrieve proteins that resemble the unknown sequence; most likely,40

these retrieved proteins will contain similar evolutionarily conserved regions and motifs41

(e.g. kinase domain) that match well with the unknown amino acid sequence. Then, all42

GO labels assigned to these retrieved proteins are assigned to the unknown sequence [18].43

BLAST methods do not explicitly estimate how much a specific motif affects the predicted44

probability for a GO label.45

The second trend transforms the amino acid sequences into features, then applies46

classification methods to these features. For example, DeepGO converts an amino acid47

sequence into a string of k-mers, where each k-mer is represented by a vector so that the48

amino acid sequence is represented as a matrix m [8]. Given m, the next objective is to49

find a function f(m, g) that returns the correct assignment for the label g. Neural network50

models like DeepGO and related work on DNA sequences use the convolutional neural51

network (CNN) as the key component for this function f [8, 19].52

In principle, neural network methods are different from BLAST methods; for a specific53

GO label, a neural network model tries to extract amino acid patterns in the train data that54

are most correlated with label g. When a test sample contains these amino acid patterns,55

then f will return a high predicted probability for g given this test sample. To obtain56

higher accuracy, one may need a very complex neural network model that can extract57

more information from the training samples. However, due to the complex nature of deep58

neural networks, it is difficult to say how such patterns, if found, are being analyzed by59

the models.60

In this paper, first, we introduce a novel method GOAT: GO annotation based on61

the Transformer framework [17]. In the context of protein sequences, the Transformer62

architecture is better than a convolutional neural network, because the Transformer models63

all the pairwise interactions for the amino acids in the same sequence and can possibly64

capture meaningful long-range relationship among these amino acids.65

Second, we reconcile the gap between BLAST and neural network models. As ex-66

plained, BLAST models retrieve sequences with conserved domains and motifs similar67

to the unlabeled protein, but do not apply machine learning techniques on these motifs68

to predict the GO labels. Neural network models want to correlate these motifs and the69

specific labels via the function f , but are not guaranteed to discover such amino acid70

patterns, especially when the annotated datasets are sparse. For this reason, we identify71

motifs in the protein sequences via tools like PROSITE [14], and then use this information72

as extra features for the label classification.73

Third, we evaluate how protein metadata such as 3D structures and protein-protein74

interaction (PPI) network data can affect the prediction. Our work focuses on neural75

network models, whereas previous work such as Zhang et al. [18] focused on BLAST-76

based methods.77

In the following sections, we describe two baseline methods and the Transformer78

architecture in our software GOAT. Next, we introduce three types of metadata as extra79

features for GOAT: Domain (e.g. motifs), 3D-structure, and PPI network information.80

We find that in the absence of metadata, GOAT is better than DeepGO [8], especially for81

rare GO terms. Additionally, GOAT with protein metadata obtains higher recall rates82

than the BLAST-based model in [18]. Our ablation study shows that motif data and 3D83
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folding information are meaningful factors, but PPI network is the most important. We84

hope that our software GOAT will serve as a meaningful baseline for future research on85

neural network models for GO annotations. GOAT is available at https://github.com/86

datduong/GOAnnotationTransformer.87

2 Method88

2.1 BLAST and PSI-BLAST89

We describe our first baseline which is a very competitive BLAST-based method by Zhang90

et al. [18]. Zhang et al. [18] consider several best matched proteins from BLAST and91

additional sequences attained by PSI-BLAST when predicting annotations. The authors92

[18] refer to their BLAST and PSI-BLAST method as the sequence-based module of their93

software MetaGO. Here, we refer to it as MetaGOBLAST , and briefly describe this method.94

Let Nblast and Npsiblast be the number of sequences in the train data retrieved by BLAST95

and PSI-BLAST that best match the unknown protein, and q be a GO label. Next define96

Nblast(q) and Npsiblast(q) as the number of sequences having the label q in Nblast and Npsiblast.97

LetSblast
n (q) andS

psiblast
n (q) be the sequence-similarity scores of the nth retrieved sequence in98

Nblast(q) andNpsiblast(q)which contains the GO label q. The assigned prediction probability99

for label q with respect to the unknown query sequence is100

score(q) = w

∑Nblast(q)
n Sblast

n (q)
∑Nblast

n Sblast
n

+ (1− w)

∑Npsiblast(q)
n S

psiblast
n (q)

∑Npsiblast

n S
psiblast
n

(1)

where w = maxn S
psiblast
n so that BLAST has a stronger weight when very close homologs101

are found [18]. In other words, the prediction scores for the GO labels are scaled by how102

similar the query protein is to the known sequences.103

2.2 Convolutional neural network104

We describe our second baseline DeepGO Kulmanov et al. [8] which is built from the105

convolution neural network (CNN) architecture. We consider the DeepGO version which106

does not correct for consistent predicted probabilities. Consistency is defined as the fact107

that if a GO label is assigned to a protein then all its ancestors must also be assigned108

to the same protein. This consistency is corrected for each GO label, where the final109

prediction is the maximum of its own predicted probability and the probabilities of its110

descendants. In other words, in DeepGO when a descendant of a specific label has high111

predicted probability then this label will also have high predicted probability. There112

are other types of correction [10] which were not compared in DeepGO. We believe this113

research direction requires its own analysis. Moreover, consistency correction relies on114

the per-term prediction accuracy. For this reason, we focus comparing GOAT to only the115

basic DeepGO.116
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DeepGO converts an amino acid sequence, for example p = MARS · · · , into a list of117

overlapping 3-mers, e.g. MAR ARS · · · . Each 3-mer is represented by a vector of in R
128,118

so that p is represented by a matrix Ep ∈ R
128×(L−2) where L is the sequence length. A119

1D-convolution layer, 1D-maxpooling and Flatten are then applied to Ep, so that we have120

vp = flatten(maxpool (conv1d(Ep)) as the vector representing this k-mer sequence. To121

predict a GO label i, DeepGO fits a logistic regression layer sigmoid(B⊺

i vp + bi) with the122

binary cross entropy as the objective loss function.123

To integrate metadata about the protein (e.g. PPI network), DeepGO concatenates124

this information into vp before sending it through the logistic layer. For example, in the125

original paper, Kulmanov et al. [8] convert proteins from a PPI network into vectors. Let126

cp ∈ R
d be the vector representing protein p in this PPI network; then the classification127

layer becomes sigmoid(B⊺

i [vp, cp]+bi) where [vp, cp] is the concatenation of the two vectors.128

We emphasize that the vector cp does not have to be from the PPI network; in the results,129

we evaluate the DeepGO model with vectors representing 3D structures of proteins (the130

outcome of this experiment is not shown in table but explained in result section).131

2.3 GO annotation method with Transformer132

We introduce our novel GO annotation method with Transformer (GOAT), available at133

https://github.com/datduong/GOAnnotationTransformer. GOAT takes as an input a134

sequence of amino acids and GO labels. For illustration purposes, consider the protein135

MAP Kinase-activated Protein Kinase 5 (UniProtKB O54992), which we will refer to by its136

id O54992 for brevity. Let L denote the sequence length, and let g1 · · · gG denote the names137

of the labels to be predicted, where G is the number of labels to be predicted. Our input138

will be the string MSEDS · · ·LPHEPQ g1 · · · gG of total length L+G. Next, define E as139

the embeddings for the amino acids, for example EM and ES are the vectors representing140

the amino acids M and S respectively.141

Let EG be the embeddings for the GO labels, so that EG
g1

and EG
g2

are the vectors142

representing the first and second GO label g1 and g2 respectively. EG is analogous to143

Word2vec embedding; except in this case, instead of having a vector for each word in a144

corpus, we will have a vector for each GO label in the train and test datasets. In this paper,145

we set the vectors represent the amino acids and GO labels to be in the same dimension;146

that is, EM and EG
g1

are vectors of the same size. To reduce the number of parameters,147

for the GO labels, we fix EG as the definition-based GO embeddings from [6] instead of148

setting it as a trainable parameter.149

We add a position vector Pj to the jth amino acid in the sequence; for example, the150

first and second amino acid M and S will have the following two vectors, EM + P1 and151

ES + P2. We observe that the position embedding makes sense for amino acids so that152

the same amino acid appearing at different locations will be treated differently. However,153

position embedding does not apply to GO labels; that is, the ordering of the labels should154

not affect the prediction outcome. For this reason, we do not add position embedding to155

the GO labels.156

Next, we introduce the region-type embeddings R to highlight the fact that some157

amino acids belong to known motifs. Again consider the protein O54992, which is 473158

residues long and contains two key regions: a kinase motif at position 22-304 and a coiled159
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coil domain at position 409-440. In this case the 25th amino acid is T and is inside the160

kinase motif; for this reason, it will have the vector ET + P25 +Rkinase. Likewise, the 410th161

amino acid is N and will have the vector EN + P410 + Rcoiled coil. Amino acids outside any162

key regions will not have region embedding added to them. Motifs can be found by using163

PROSITE; fortunately, many labeled sequences in Uniprot already have this information164

[5, 14].165

We now describe how the Transformer architecture in GOAT analyzes the input se-166

quence. The original Transformer has 12 layers of encoders and each layer has 12 in-167

dependent identical units (referred to as heads in the original paper) [17]. To keep our168

software manageable for all users, in this paper, we use only one head and so we will169

exclude description of head. We will use 12 layers. The first layer takes as arguments the170

vectors representing the input string. Here we simplify the notation, let wj be the vector171

representing the jth element in the input string. For protein O54992 of length L = 473172

and G number of GO labels, from the input string MSEDS · · ·LPHEPQ g1 · · · gG, we will173

have for example w25 = ET + P25 +Rkinase, and w474 = Eg1 . At the first layer, we have174

o1j =
∑

k∈{1:(L+G)}

ajkV
1(wk) (2)

ajk = softmax(ejk) (3)

ejk = Q1(wj)
⊺K1(wk) (4)

V 1, Q1, K1 are transformation functions for layer 1. o1j is a weighted sum of the175

transformed vectors representing itself and the other entities in the input string. o1j176

is then transformed as p1j = L1
2(gelu(L1

1o1j)) where L1
1 and L1

2 are two linear transfor-177

mations with the gelu activation function in between. The final output of Layer 1 is178

h1j = LayerNorm(p1j + o1j). Loosely speaking, the first layer computes all pairwise in-179

teractions of wj and wk for all k, where the attention ajk in Eq. 3 indicates how much wk180

contributes toward wj .181

The second layer takes the output of the first layer as its input, so that we have for any182

layer i183

oij =
∑

k∈{1:L+G}

ajkV
i(hi−1,k) (5)

ajk = softmax(ejk) (6)

ejk = Qi(hi−1,j)
⊺Ki(hi−1,k) (7)

where V i, Qi, Ki are transformation functions for layer i. This layer i will have its own184

linear transformationsLi
1 andLi

2 to transform oij . Again, loosely speaking, layer i computes185

all pairwise interaction for the output from the previous layer i− 1.186

At layer 12, we focus only on the output h12,k corresponding to the GO labels. Let187

us denote h12,gi as the final output for the term gi. We use a single linear classifier188

softmax(Ch12,gi) to return the presence and absence probability of gi for the input protein.189

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.01.31.929604doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.929604
http://creativecommons.org/licenses/by-nc-nd/4.0/


The same transformation C is applied to all labels, so that a set S of GO terms having190

similar h12,gi∈S
will have similar predictions.191

At each label gi, the output h12,gi encapsulates all the information from the amino acids192

and from all the other labels, so that values which affect h12,gi will also affect the output193

h12,gj at another label gj . Intuitively, with this fact and the fact that all labels share the194

same classifier C, the prediction at gi and gj are to some degree correlated. We suspect195

that Transformer can model co-occurrences of labels. To validate this, from the T-SNE196

plot of the vectors h12,gi in the result section, we observe that a label and its ancestors will197

be nearby, even when their initial definition embeddings Egi in [6] are dissimilar, as is the198

case when a term and its distant ancestors can have dissimilar definitions.199

When there are metadata for the proteins, such as their embedding cp from a PPI200

network, we can concatenate such embeddings into h12,gi as in DeepGO. Next, we use a201

two-layer fully connected classifier, softmax( C1(relu(C2[cp, h12,gi ]))) to return the presence202

and absence probability of gi, where C1 and C2 are shared for all the labels.203

3 Results204

We present three main results in the following sections. First, when using amino acid205

sequence data alone as input, we show that our adaptation of Transformer in GOAT is206

better than the CNN-based DeepGO at predicting protein functions. We will use the207

name GOATBASE and DeepGOBASE to indicate the base implementation in both models,208

and ignore the subscripts when the context is clear. Second, we show that GOAT obtains209

higher classification accuracy when it takes as extra inputs the motif information from210

the protein sequences. We use the name GOATMOTIF for this version of GOAT. We also211

observe how the Transformer architecture in GOAT analyzes the motif information when212

it predicts GO labels for an amino acid sequence. Third, because motif information is a key213

input of GOAT, we integrate 3D-structure and PPI network metadata about the proteins214

on top of our GOATMOTIF to obtain even better prediction outcome. We use the name215

GOATMOTIF,3D, GOATMOTIF,PPI, GOATMOTIF,3D,PPI to indicate joint inputs in GOAT.216

We use the datasets from the original DeepGO paper, which contain one dataset each217

for the BP, MF, and CC ontologies. We remove proteins without any GO annotations. The218

BP, MF and CC datasets have 27279, 18894, and 26660 train proteins, and 9096, 6305, and219

8886 test proteins, respectively. In the DeepGO datasets, BP, MF and CC labels annotating220

fewer than 250, 50, and 50 proteins are removed. The ancestors of all the terms annotating221

one protein are also added into the ground truth label set. In total, the numbers of BP, MF222

and CC terms in the label sets are 932, 589, and 439 respectively.223

We measure the per-label accuracy using Macro and Micro AUC which are the un-224

weighted and weighted averages of the AUC at each label, respectively. We are more225

interested in the accuracy for rare labels because these labels are closer to the true func-226

tions of the proteins. Rare labels affect Macro AUC more than Micro AUC; however a high227

Macro AUC does not always guarantee that rare labels are correctly classified. For exam-228

ple, the BP term protein glycosylation is more precise to a protein function than its ancestors229

metabolic process and cellular process. However, by design, DeepGO datasets include all the230

ancestors for a label. The label protein glycosylation, metabolic process and cellular process will231
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now occur 254, 12455 and 19232 times in the data, respectively. If metabolic process and232

cellular process are correctly predicted, then Macro AUC is high but does not imply that233

we can properly predict protein glycosylation.234

For this reason, to evaluate the models, we also compute recall-at-k (R@k) which mea-235

sures the per-protein accuracy. In practice, a classifier would return k of most probable236

labels for an unknown sequence, which a curator can then review. These k labels are237

referred to as top-k labels because they are the k labels having the highest predicted proba-238

bilities for an input sequence. For one protein, R@k measures the fraction of correct labels239

retrieved among the top-k labels. We report the final R@k which is the average R@k over240

all test samples evaluated with respect to the label set of interest. We evaluate R@k on the241

entire label set and also on the sets of rare labels.242

3.1 Base GOAT243

To compare the base architectures in GOAT and DeepGO, we fit these two models on244

only amino acid sequences without any extra information such as motifs or PPI network245

data. For DeepGO, we use the same hyperparameters as the original paper [8]. For the246

Transformer parameters in GOAT, we set input embedding at size 256 (that isEG
∈ R

932×256
247

for MF), and intermediate vectors at size 512. To keep our software GOAT manageable for248

all users, we implement Transformer with only one head and 12 layers. We initialize the249

GO embedding EG as the pre-trained embedding BERTLAYER12 in [6] which transforms the250

GO definitions into vectors, where GOs having related definitions will have comparable251

vectors. Using pre-trained GO embeddings reduces the number of parameters in the252

Transformer, which can also reduce overfitting, use less GPU memory, and decrease run253

time. We train Transformer on a single GTX 1080 Ti with 11GB memory for all three254

datasets.255

In BP, MF and CC data, GOATBASE exceeds DeepGOBASE in Macro and Micro AUC,256

indicating that the base implementation of GOAT attains better per-label accuracy (Table257

1 row 3 and 5). To estimate per-protein accuracy, we select R@50, R@30, and R@30 for the258

BP, MF and CC data, respectively (approximately 5% of total label size). On the whole259

data, GOAT increases recall by a small amount. Recall for the entire label set can be260

affected by common GO terms which are often easier to classify compared to rare labels.261

As discussed in the previous section, accurately predicting rare terms is more important262

for the proteins, because rarer labels describe more detailed biological events which reflect263

the true properties of the unknown proteins.264

Table 2 shows the R@k for 232 BP, 143 MF, and 110 CC rare labels which appear below265

the 25th quantile occurrence frequency in the label sets. For recall rates to make sense in266

this case, we compute recall rates for the proteins annotated by at least one of these rare267

labels. In the test data, GOAT now has a noticeable improvement over DeepGO, especially268

for larger sets of top-k labels (Table 2 row 3 and 5). This evaluation indicates that our269

adaptation of the Transformer framework in GOAT can extract more useful information270

from the amino acid sequences, and thus obtain higher prediction accuracy.271

We next evaluate whether our adaptation of Transformer can learn the co-occurrences272

of labels. Duong et al. [6] noticed in their GO embedding that when one of the child-273

parent GO labels describes very broad biological events (e.g. low IC), then their vector274
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representations may be far apart. This fact implies that for Transformer to work well,275

to some degree it must learn the co-occurrences of labels and adjust EG so that any two276

related GO labels (regardless of their frequencies in the train data, IC values and distance277

to roots) will have comparable vectors. To observe that Transformer can implicitly learn278

label co-occurrences, we compare the T-SNE plots of the input GO embedding EG and its279

output h12,gi from the Transformer layer 12 which is directly passed into the classification280

layer.281

For every input protein, we have a different value of h12,gi for the same label gi be-282

cause h12,gi is function of the vector representing the amino acids. We apply our trained283

Transformer on the test set, and take the average h12,gi over each input proteins in test data284

(denoted as h̄12,gi ). We compute h̄12,gi from the test data because these proteins are not285

seen in training and provide a more realistic evidence. We use h̄G
12 to denote the set of286

h̄12,gi for all gi.287

Figure 1 shows the T-SNE plot ofEG for the MF labels in DeepGO dataset; we highlight288

two terms GO:0008376 (red) and GO:0030291 (blue) and their ancestors. The dot size is289

scaled by IC values, where smaller size implies lower IC (so the label is more common).290

Smaller dots tend to cluster well together but large dots do not. For example, consider the291

term GO:0016740 and its parent GO:0003824 (top right and far left red nodes) which should292

often co-occur because in our dataset ancestors of an assigned GO label are included as the293

ground truth labels. For Transformer to work well, it should reposition the h12,gi vectors294

representing GO:0016740 and GO:0003824 closer together.295

The T-SNE plot of h̄G
12 from Transformer shows that the red and blue nodes have296

clustered more closely compared to EG. The blue dots now gather at the bottom of Fig,297

as compared to being two separated groups in Fig. The two example cases GO:0016740298

and GO:0003824 are now near one another, bottom of Fig . However, the lowest level299

red node GO:0008376 remains far from its ancestors. The red and blue dots are not yet300

tightly compacted into two dense clusters, and so there is room for further development.301

In conclusion, Transformer weakly models the co-occurrences of labels even when such a302

constraint is not explicitly enforced.303

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.01.31.929604doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.929604
http://creativecommons.org/licenses/by-nc-nd/4.0/


GO:0003824

GO:0004672
GO:0004674

GO:0004857

GO:0004860

GO:0005515

GO:0008194GO:0008376

GO:0016301

GO:0016740GO:0016757

GO:0016758

GO:0016772

GO:0016773

GO:0019207

GO:0019210

GO:0019887

GO:0019899

GO:0019900

GO:0019901

GO:0030234

GO:0030291

GO:0098772

−20

−10

0

10

−20 −10 0 10 20

Dim 1

D
im

 2
MF GO Vector Input

(a) Input GO embedding

GO0003824

GO0004672

GO0004674

GO0004857

GO0004860

GO0005515

GO0008194

GO0008376

GO0016301

GO0016740

GO0016757

GO0016758

GO0016772

GO0016773

GO0019207
GO0019210

GO0019887

GO0019899

GO0019900
GO0019901

GO0030234

GO0030291

GO0098772

−20

−10

0

10

20

−20 −10 0 10

Dim 1

D
im

 2

MF GO Vector Hidden Layer

(b) Transformer output for GO vectors

Figure 1: T-SNE of input GO embeddings and their transformed values created by
Transformer layer 12.

304

Table 1: Macro AUC, Micro AUC and Recall-at-k (R@k) are evaluated on the entire 932
BP, 589 MF, and 439 CC labels in the original DeepGO data. k value in R@k corresponds
to about 5% of total label size in each dataset.

BP MF CC

Macro Micro R@50 Macro Micro R@30 Macro Micro R@30

BLAST Psi-BLAST
1 Evalue10 65.99 81.34 48.02 76.51 87.12 69.75 64.17 89.36 77.24
2 Evalue100 66.61 84.41 48.84 78.67 90.34 68.06 65.62 92.54 80.23

DeepGO
3 BASE 62.60 82.17 46.13 73.90 87.49 59.63 67.12 93.07 81.47
4 +PPI 82.16 90.31 56.97 84.97 92.40 70.19 87.51 96.76 87.98

GOAT
5 BASE 67.69 84.46 47.40 78.67 89.43 60.46 74.94 93.95 82.98
6 +MOTIF 71.04 85.64 48.65 82.53 91.12 66.19 77.62 94.51 83.01
7 +MOTIF+3D 72.62 86.09 50.76 85.38 92.72 69.23 79.57 94.95 84.22
8 +MOTIF+PPI 83.68 90.49 57.81 88.92 93.98 72.16 90.76 97.23 87.95
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Table 2: Recall-at-k (R@k) are evaluated on the most uncommon 232 BP, 143 MF, and
110 CC labels from the entire set of size 932 BP, 589 MF, and 439 CC labels in the
original DeepGO data.

BP MF CC

R@10 R@20 R@50 R@5 R@10 R@30 R@5 R@10 R@30

BLAST Psi-BLAST
1 Evalue10 25.13 32.59 47.33 44.87 51.11 57.51 25.09 30.91 49.27
2 Evalue100 21.79 29.88 46.29 42.31 48.37 60.98 21.91 29.72 50.47

DeepGO
3 BASE 11.88 20.21 39.75 17.42 27.07 50.47 13.28 24.57 48.56
4 +PPI 45.62 57.78 74.55 41.96 52.85 71.98 53.14 64.85 82.58

GOAT
5 BASE 13.49 23.32 44.54 18.80 30.95 58.87 17.89 26.47 51.21
6 +MOTIF 17.27 27.75 48.11 30.45 41.72 64.76 19.06 31.03 58.94
7 +MOTIF+3D 23.66 34.27 55.06 36.19 47.90 72.23 27.36 39.72 67.69
8 +MOTIF+PPI 42.84 56.01 74.78 45.35 59.49 82.67 48.04 62.14 84.42

3.2 Domains and motifs in amino acid sequences as features305

Before the introduction of neural network models, earlier methods often integrated BLAST306

as a key component. BLAST retrieves annotated proteins in the database that share the307

same conserved domains or motifs with the unknown sequence, and then assigns the GO308

labels of these retrieved proteins to the unknown query. Loosely speaking, key domains309

or motifs shared by the training sequences can then be considered as the key factors in310

BLAST-based methods. In this section, we evaluate whether neural network models can311

automatically learn these key patterns from the training sequences, and explain how to312

introduce these patterns as input features to GOAT.313

For fair comparison, we select a very strong BLAST baseline MetaGOBLAST [18] and314

apply it to the same DeepGO datasets. We emphasize that MetaGOBLAST in [18], which315

matches multiple related sequences to the query, has much stronger performance than316

the BLAST baseline used in DeepGO where the authors select only a single best matching317

sequence [8]. We build the BLAST database from the DeepGO train data. For BLAST and318

PSI-BLAST, we perform the experiments using both e-value at 10 and 100. Lower e-values319

leave too many unmatched testing sequences; for example, in the CC dataset at e-value 1,320

only 7236 out of 8886 test samples match to some sequences in the train data. Moreover,321

in the context of finding possible protein functions, a higher e-value can allow for higher322

recall rates.323

In BP and MF data, MetaGOBLAST is better than the base DeepGO and GOAT; for324

example, MetaGOBLAST yields better recall rates on rare labels (Table 1 and 2 row 1–3 and325

5). We emphasize that MetaGOBLAST and GOATBASE have comparable recall on rare MF326

labels for larger top-k label sets. Arguably, MetaGOBLAST and GOAT retrieve the same327

number of correct labels, but GOAT makes more spurious predictions. DeepGO however328

does not come close to MetaGOBLAST on recall rates. The convolutional network in DeepGO329

is likely not complex enough to learn motifs shared among the sequences with related330
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functions, which BLAST or PSI-BLAST can detect.331

When evaluated on the entire CC data, the base DeepGO and Transformer outperform332

MetaGOBLAST. However, for rare CC labels, when compared to MetaGOBLAST, Transformer333

has higher R@30 but lower R@5 and R@10. To some degree, our current GOAT is not yet334

better than MetaGOBLAST.335

We had hoped that the complex Transformer architecture in GOAT would have learned336

key motifs missed by the simpler convolutional neural network in DeepGO, but this is not337

the case. There are information about the amino acid sequence that we must explicitly338

specify for GOAT to function better. For this reason, we use the motifs extracted by string-339

matching methods as inputs to our method GOAT. For example, we can apply PROSITE340

to scan the protein database for known motifs in a given input sequence [14]. Loosely341

speaking, we are combining motif-based methods and the Transformer architecture into342

one pipeline by taking the output of motif-based models and passing them as inputs to343

our Transformer. Our strategy is different from an ensemble approach that would average344

the prediction of independent predictors.345

In the manually reviewed Uniprot database, each protein already has a Family & Do-346

mains section describing its key regions [16]. We then add these region types of the amino347

acids as input features into our method GOAT. We emphasize that not all domains are348

meaningful at predicting labels in a certain ontology. For example, Serine/threonine-349

protein kinase TBK1 (UniProtKB number Q9UHD2) has a kinase domain at position 9-310350

(PROSITE annotation rule PRU00159). However, kinase domain involves in a wide range351

of biological processing at various locations in the cell like metabolism, transcription,352

cytoskeletal rearrangement and movement, and cell apoptosis and differentiation [7, 13].353

Thus, this kinase domain in Q9UHD2 tells us which Molecular Functions are more likely354

to be assigned, but this domain cannot tell which Biological Processes or Cellular Com-355

ponents Q9UHD2 will have.356

For each protein in the original DeepGO datasets, we download its sequence annotation357

rule (e.g. PROSITE rule) from the 2019 data at https://www.uniprot.org/. We do not358

consider region types for sequences that have changed in length; otherwise, we consider359

region types only for portions that have not changed in amino acids composition. Uniprot360

data divides region types into subgroups. Some subgroups require curated comments and361

are not truly applicable for analyzing new proteins; for example, the subgroup Domain362

Non-positional Annotation is not determined by sequence analysis.363

We use the following six subgroups which can be found by sequence analysis: Zinc364

finger (e.g. C2H2-type), Repeat (e.g. AA tandem repeat), Motif (e.g. LXXLL motifs),365

Compositional bias (e.g. Asp/Glu-rich), Coiled coil (e.g. Leucine-zippers), Domain (e.g.366

Ser/Thr kinase domain). In the original DeepGO datasets, we found 1629, 1450 and 1655367

amino acid region types for the BP, MF and CC train data, respectively. Region types368

found in test sequences but not seen in the train data are set as zero; effectively we treat369

these cases as if the region types do not exist. To model the region types in the amino acid370

sequence, we apply the region-type embedding R explained in section ; for example, in371

BP ontology we will have a embedding R ∈ R
1629×256. We will use the name MOTIF to372

denote all types of Domain information in these six subgroups reported by The UniProt373

Consortium [16].374

When evaluated on the entire data, GOATMOTIF obtains better AUCs and comparable375
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recall rates to MetaGOBLAST (Table 1 row 6). When evaluated on rare labels, our GOAT376

has subpar recalls when the top-k label set is small; however, for larger top-k label set,377

especially in MF and CC data, GOAT retrieves more correct labels (Table 2 row 6). This378

result implies that GOATMOTIF is a better classifier when the top-k label set is larger. Our379

result also highlights an important point. Ideally, a neural network should teach itself the380

patterns associated with certain key protein functions. However, a neural network may381

fail to learn such key information, and needs these inputs to be explicitly provided. These382

key domains within a sequence are often easily obtained, and in fact already available in383

Uniprot.384

To observe how the MOTIFS are analyzed by the Transformer architecture in GOAT, we385

select the human protein Serine/threonine-protein kinase TBK1 (UniProtKB Q9UHD2) in386

DeepGO test data. As described in section 3.2, we concatenate the amino acid sequence387

and GO labels into one single input into GOAT. Q9UHD2 is 729 amino acids long, and388

when predicting MF labels, the input into GOAT is then a string of amino acids and GO389

labels of length 1318 (from 729 + 589 MF labels). We [...something about region-type emb]390

integrate into the Transformer framework the three key domains in Q9UHD2 derived from391

sequence analysis methods; these are Protein Kinase at 9-310, Ubiquitin-like at 309-385,392

and Coiled coil at 407-713. The vertical and horizontal red lines indicate these regions in393

the attention heatmap (Figure 2).394

We plot the attention heatmap of αjk in each layer (Figure 2). αjk measures how much395

position k contributes toward position j (Eq. 3). Each row in the heatmap adds to 1. The396

heatmap is divided into four quadrants. The first quadrant shows the interactions of GO397

labels among themselves (e.g. αjk for j, k ∈ [730, 1318]), the second shows contribution398

of amino acids toward the GO labels, the third shows interactions of amino acids among399

themselves (e.g. αjk for j, k ∈ [1, 729]), and the fourth shows contribution of GO labels400

toward the amino acids.401

Transformer without region-type embedding has a noisy attention heatmap (Appendix402

Fig. 3). Transformer with region-type embedding displays meaningful patterns (Fig. 2).403

For example, layer 1 illustrates the cross interactions between Protein Kinase and Coiled404

coil domain (black boxes quadrant 3); whereas layer 4 and 8 show interactions within the405

Protein Kinase and Coiled coil themselves. In layer 12, the final vectors representing GO406

labels receive more attention from the Protein Kinase than the other regions (top right box407

quadrant 2). Because these final output vectors are sent to the classification layer, we can408

assume that the Protein Kinase region contributes more to the label annotation compared409

the other domains. This observation is consistent with the true molecular functions of410

Q9UHD2 which are: phosphoprotein binding, protein kinase activity, protein phosphatase411

binding, and protein serine/threonine kinase activity.412
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Figure 2: Heatmap of the attention values αjk in each layer when analyzing the protein
kinase TBK1 (UniProtKB Q9UHD2). The three key regions of this sequence (separated
by red lines) are explicitly given as inputs to the Transformer model. The first quad-
rant shows the interactions among the GO labels, the second shows contribution of
amino acids toward the GO labels, the third shows interactions of amino acids among
themselves, and the fourth shows contribution of GO labels toward the amino acids.

3.3 Protein vectors as features413

Zhang et al. [18] evaluates how PPI network and 3D structure data affect the annotation414

accuracy for methods built from BLAST. In this paper, we assess the contributions of415

these components in the context of a neural network classifier. The amino acid sequences416

have already been used in neural network models, as described in DeepGO and our417

GOAT. Any other information about protein must come from some external resources418

such as the STRING database [15]. For example, one can train a neural network on the419

STRING database to transform interacting proteins into similar vectors [1, 4]. Integrating420

these protein vector representations into annotation methods is motivated by the fact421

that interacting proteins (ideally encoded into similar vectors) should have closely related422

functions (e.g. found in the same biological processes and cellular locations).423

It is only recently that proteins in knowledge graph have been transformed into vectors424

via neural network models. In this paper, we will not build new models to encode425

proteins from knowledge graph, and reserve this topic for future work. We will focus on426
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evaluating how much can protein vectors built from external data sources increase the427

prediction accuracy.428

3.3.1 Vectors representing protein 3D structure429

We evaluate protein vectors that capture high-level 3D shapes of the proteins (e.g. α-430

helices and β-sheets) [3]. [3] applied a 3-layer Bidirectional Long-Short Term Memory431

(BiLSTM) to encode an amino acid sequence into a matrix. [3] trained their model on the432

SCOP database and residue-residue contact prediction. The SCOP database describes the433

major classes of 3D-structures often seen in proteins. Their model was trained on SCOPe434

ASTRAL 2.06 dataset with 22,408 amino acid sequences, and each training epoch has435

100,000 pairs sampled from these 22,408 sequences [3]. From SCOP, Bepler and Berger [3]436

predict whether two protein sequences have no relationship, class-level relationship, fold-437

level relationship, superfamily-levelrelationship, or family-level relationship (e.g. label438

y = 0, 1, 2, 3, 4) [3]. For example, two proteins with the same Rossmann-fold structural439

motif have a class-level relationship (y = 1 in this case). Residue-residue contact prediction440

is applied within the same protein sequence; the objective is to predict whether each pair441

of positions i, j within the same protein are close by (distance less than 8 angstroms) in442

the 3D structure. Bepler and Berger [3] provide the pre-trained encoder which can return443

a matrix for any amino acid sequence, even those not used in training. In this paper, we444

take the mean-pool of this matrix to represent the entire sequence.445

Because motif information is a key input of GOAT, we integrate 3D-structure data on446

top of our GOATMOTIF. We emphasize that 3D-structures and motifs are targeting two447

different kinds of information; for example, a kinase domain does not strictly entail a448

specific folding pattern. For this reason, GOATMOTIF,3D improves upon GOATMOTIF (Table449

1 row 7). More importantly, for a larger top-k label set, GOAT is much better than450

MetaGOBLAST, where our recall rates increase by about 9%, 12%, and 17% in BP, MF and451

CC data respectively (Table 2 row 7). Our results indicate that GOAT find fewer correct452

labels when the set of top-k labels is small; however, GOAT will retrieve more correct453

labels than MetaGOBLAST for larger set of top-k labels.454

When we replace the PPI network in DeepGO with the vectors from SCOP in [3], the455

performance significantly decreases. Macro AUC in DeepGO drops from 82.16 to 66.54456

in BP, from 84.97 to 77.78 in MF, and from 87.51 to 68.93 in CC data. This decrement is457

anticipated as we will argue in the next section, that protein interaction network has more458

impact than 3D-structure information.459

3.3.2 Vectors representing proteins in interaction network460

We evaluate protein vectors that capture their relatedness in a protein-protein interaction461

network. To be consistent with DeepGO, we use the same protein vectors in their paper462

as input features for our GOAT. These vectors are created following the method in [1]. In463

brief, DeepGO uses vectors representing the protein names in a protein-protein interaction464

(PPI) network that has 8,478,935 proteins, and 11,586,695,610 edges total (derived from465

STRING database). Following [1], DeepGO uses DeepWalk [? ] to generate sentences from466
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the network, and apply Word2Vec [9] to these sentences to create the vector embedding467

for the protein names. Effectively, interacting proteins will have similar vectors.468

Because Domain information is a key input of GOAT, we integrate PPI network data469

on top of our GOATMOTIF. GOATMOTIF,PPI exceeds the other Transformer models by large470

margins (Table 1 row 8). On the entire label sets, in the presence of PPI network information471

GOAT and DeepGO perform similarly, despite the fact that GOAT can better extract472

information from the amino acid sequence (Table 1 row 4 and 8). Only for rare MF labels473

does GOAT exceed DeepGO at every R@k by noticeable margins (Table 2 row 4 and 8).474

Intuitively, it is reasonable that PPI network dominates the information from amino475

acid sequences at classifying BP and CC labels, but not for MF labels. For example, two476

interacting proteins can have distinct 3D structures and sequences (and thus motifs); yet,477

they involve in the same biological process and sometimes found at the same cellular478

components. The same two interacting proteins however can have dissimilar molecular479

functions because they can induce very different chemical reactions.480

We emphasize that vectors of PPI network in DeepGO does not need amino acid481

sequence to retrieve vectors representing the proteins. However, this method will not482

return vector representations for novel proteins not yet existed in the database. In practice,483

for proteins not yet well studied, we may need a different approach and other metadata484

for such proteins. We reserve this topic for future research work.485

3.4 Evaluation on sparse GO labels486

Many GO terms annotate only a few proteins because protein functions can be very487

unique. In practice, parametric predictors must handle sparse labels to predict terms that488

closely resemble the true protein functions. Yet, parametric models can fail when the489

train data has too many sparse labels. In such cases, GOAT and DeepGO accuracy will490

drop, because we need a label to have enough samples to reliably train the parameters in491

a neural network model. It is then important to evaluate GOAT and DeepGO against the492

nonparametric MetaGOBLAST which does not have trainable parameters.493

We evaluate GOAT and DeepGO on datasets that contain more rare labels. We reuse494

the same proteins in the original DeepGO data but include labels with at least 50, 10, and495

10 occurrences in the BP, MF and CC train data, whereas the same criteria in the original496

DeepGO are 250, 50 and 50. Our larger datasets now have 2980 BP, 1697 MF and 989 CC497

labels, respectively (versus the original 932 BP, 589 MF, and 439 CC labels). For each added498

term, we include its ancestors as the gold-standard labels, so that most of the labels in the499

original data now have higher occurrence frequencies.500

We train the models on the entire larger dataset. In this experiment, we also include a501

GOATPPI to evaluate the contribution of the PPI network data alone, and a GOATMOTIF,3D,PPI502

to evaluate the most complete model. In this experiment, we are less interested in the503

common labels, and evaluate R@k for the extra 2048 BP, 1108 MF and 550 CC labels which504

are sparse compared to the labels in the original DeepGO data; for example, 95% of the505

extra labels occur below 252, 34, and 68 times in the BP, MF and CC train data, respectively.506

Table 3 shows the R@k for these sparse labels.507

In Table 3, the base GOAT and DeepGO perform worst than MetaGOBLAST. We em-508

phasize that in this case, GOAT is still has better performance than DeepGO for MF and509
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CC data, but not for BP data (row 3 and 5). The PPI network data appears to be the most510

important factor; for example, GOATMOTIF,3D is about the same as MetaGOBLAST, whereas511

all the models with PPI network achieve higher R@k than MetaGOBLAST (Table 3).512

When predicting biological processes, in the presence of PPI network embedding, the513

other protein metadata and the types of neural network model for amino acid sequences514

are not as important (Table 3 row 4, and 7–9). This result is an empirical evidence515

supporting our earlier hypothesis that PPI network can dominate sequence information;516

that is, two interacting proteins should be involved in the same biological processes even517

when their sequences display dissimilar motifs, 3D structures, or any other types of hidden518

information to be extracted by neural network models.519

For MF and CC labels, integrating just PPI network embedding into DeepGO is not520

enough to raise recall rates; in this case, our GOAT model, Domain information and SCOP521

data are important complementary factors to the PPI network embedding. Indeed, for522

MF labels, in the presence of PPI network embedding, GOAT also benefits when having523

Domain and 3D-structure information as extra features (Table 3 row 7 and 9). For CC524

labels, the same observation holds true, except that Domain information now has more525

impact than 3D-structure data (Table 3 row 8 and 9).526

Table 3: We increase the label size in the original DeepGO data from 932 BP, 589 MF,
and 439 CC labels to 2980 BP, 1697 MF and 989 CC labels. Models are trained on the
entire label sets, but R@k are evaluated only for the added 2048 BP, 1108 MF and 550
CC labels which are sparse. R@k are computed with respect to only proteins having
these labels; there are 7850, 2671, and 1848 such proteins out of 9095, 6294, and 8886
samples in BP, MF and CC test data.

BP MF CC

R@40 R@70 R@100 R@40 R@70 R@100 R@10 R@30 R@50

BLAST Psi-BLAST
1 Evalue10 30.30 34.84 37.88 38.67 41.09 43.42 20.80 29.15 33.13
2 Evalue100 29.53 34.57 38.02 38.58 43.32 45.81 23.47 35.23 39.78

DeepGO
3 BASE 23.14 27.98 32.01 16.62 23.83 29.60 22.49 31.53 37.96
4 +PPI 48.06 55.86 61.02 41.61 48.61 53.39 47.89 60.77 66.48

GOAT
5 BASE 23.78 28.82 32.69 19.41 27.88 34.19 25.22 35.98 42.53
6 +MOTIF+3D 27.70 33.50 38.03 30.52 38.74 45.44 25.73 37.82 44.42
7 +PPI 43.51 52.52 58.54 41.77 52.46 58.51 41.98 60.02 68.70
8 +MOTIF+PPI 46.22 55.06 61.08 45.69 55.32 61.11 50.08 67.15 73.89
9 +MOTIF+3D+PPI 46.78 56.24 62.49 50.92 60.77 66.64 47.96 65.30 74.36

4 Discussion527

In this paper, we introduce the novel GO annotation method with Transformer (GOAT).528

We show that for predicting protein annotations, our Transformer architecture in GOAT529

is better than the convolutional neural network in DeepGO. We then provide GOAT three530

types of extra features: Domain information, 3D-structure and PPI network data. These531
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features further increase the accuracy of GOAT, but PPI network information has the most532

impact.533

Previous software MetaGO of Zhang et al. [18] has also combined sequence data,534

3D-structure and PPI network information to annotate GO labels. We emphasize that535

in MetaGO, each type of metadata is used to build its own classifier, and then these536

independent classifiers are then combined to produce the final prediction for a GO label537

and an input sequence. For example, Zhang et al. [18] built their MetaGOBLAST as an538

independent unit from the their two classifiers that uses PPI network and 3D-structure539

data. The reason for their strategy is that BLAST algorithm, which is similar to Smith-540

Waterman, does not need the interacting partners and 3D-structure of the input sequences541

[2]. Unlike BLAST-based methods, DeepGO and GOAT can jointly analyze the amino acid542

sequences, PPI network and 3D-structure information. In the future work, we wish to543

integrate components of MetaGO into GOAT, and vice versa.544

We discuss a key property of our Transformer in the context of GO embeddings.545

This Transformer learns the co-occurrences among the labels; for example, the last layer546

in Transformer returns comparable vectors for a child and parent GO label (Fig. 1). GO547

embeddings produced by our Transformer are not equivalent to the embeddings produced548

by factorizing the co-occurrence matrix of GO labels, because GO embeddings from our549

Transformer are also affected by information from the amino acid sequence (Fig. 2). For550

our future work, we will integrate embedding learned from co-occurrence frequencies551

into our Transformer framework.552

We outline a two key limitations of our adaptation of Transformer. First, in this paper, to553

make our software GOAT accessible to many users, we have reduced the standard number554

of parameters that Transformer often assume in other machine learning applications; for555

example, Rives et al. [12] trained a language model on protein sequences using a 36-layer556

Transformer. We expect that our GO annotation accuracy to increase if we train our model557

with more parameters and on more samples from the Uniprot database.558

Second, we do not pre-train our Transformer. For example, before predicting GO559

labels, Transformer can be trained only on protein sequences with the following objective.560

We can remove amino acids from a sequence, and then use Transformer to retrieve these561

missing amino acids. Pre-training helps the parameters in Transformer to converge better562

for the latter tasks; however pre-training requires a lot of data, for example Rives et al. [12]563

pre-trained their model on 250 million sequences. For our future work, we will consider564

training a large-scale Transformer model to predict GO labels for protein sequences.565
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5 Appendix566

Figure 3: Heatmap of the attention values αjk in each layer. Motifs of the sequences
are not explicitly given as inputs to this Transformer model.
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