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Abstract—Although it has been studied for years by the computer vision and machine learning communities, image annotation is still

far from practical. In this paper, we propose a novel attempt at model-free image annotation, which is a data-driven approach that

annotates images by mining their search results. Some 2.4 million images with their surrounding text are collected from a few photo

forums to support this approach. The entire process is formulated in a divide-and-conquer framework where a query keyword is

provided along with the uncaptioned image to improve both the effectiveness and efficiency. This is helpful when the collected data set

is not dense everywhere. In this sense, our approach contains three steps: 1) the search process to discover visually and semantically

similar search results, 2) the mining process to identify salient terms from textual descriptions of the search results, and 3) the

annotation rejection process to filter out noisy terms yielded by Step 2. To ensure real-time annotation, two key techniques are

leveraged—one is to map the high-dimensional image visual features into hash codes, the other is to implement it as a distributed

system, of which the search and mining processes are provided as Web services. As a typical result, the entire process finishes in less

than 1 second. Since no training data set is required, our approach enables annotating with unlimited vocabulary and is highly scalable

and robust to outliers. Experimental results on both real Web images and a benchmark image data set show the effectiveness and

efficiency of the proposed algorithm. It is also worth noting that, although the entire approach is illustrated within the divide-and-

conquer framework, a query keyword is not crucial to our current implementation. We provide experimental results to prove this.

Index Terms—Clustering, information filtering, object recognition, real-time systems.

Ç

1 INTRODUCTION

THE number of digital images has exploded with the
advent of digital cameras, which requires effective

image search techniques. Although it is an intuitive way of
conducting image search since “a picture isworth a thousand
words,” the Query-By-Example (QBE) scheme (i.e., using
images as queries) is seldom adopted by current commercial
image search engines. The reasons are at least twofold: 1) The
semantic gap problem, which is also the fundamental
problem in the Content-based Image Retrieval (CBIR) field.
This is because current visual feature extraction techniques
are not effective enough in representing the semantics of an
image. 2) Computational expensiveness. It iswell known that
the inverted indexing techniqueensures thepractical usageof
current text search engines, which store the keyword-
document relationship in a so-called inverted index file
whose entries are keywords and whose values are the
documents. The information aboutwhichdocument contains
a certain keyword can thus be obtained in real time. Given a
textual query, the search results are the intersection of the
documents indexed by the query keywords individually (if

no ranking functions applied). However, since images are
2D media and the spatial relationship between pixels is
crucial in conveying the semantics of an image, how to define
image “keywords” is still an open question. This prevents the
inverted indexing technique from being directly applied to
image search,which results in a critical efficiencyproblem for
QBE retrieval.

Due to these reasons, there has been a surge of interest in
image autoannotation and object recognition in recent
years. Researchers have tried to define ways to automati-
cally assign keywords onto images or image regions and
proposed many learning models [1], [2], [4], [9], [15], [17],
[21], [28], [32], [36]. A big problem they encountered is the
lack of training data. It is known that to manually label
images is very expensive [35] and it tends to produce
inconsistent annotations on which many questions should
be addressed beforehand: Which kind of images can be
labeled consistently? How do we define the strategy to
ensure consistency, etc.?

Differently from the previous approaches which adopt
Computer Vision or Machine Learning techniques, we
investigate how effective a data-driven and model-free
approach which leverages commented-upon images on the
Web could be.

Imagine that a large-scale image set is available so that,
for each query image, at least one duplicate can be detected;
what we need to do then is just to annotate the query with
the duplicate’s textual descriptions. A valuable resource
from which we can collect such a data set is the Web; it not
only contains large numbers of images, but these images
generally have human-assigned comments or descriptions.

However, it is too idealistic to require, for each image, a
well-annotated duplicate, but we can leverage a group of
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semantically similar images, or near-duplicates, instead,
and learn from their descriptions to annotate the uncap-
tioned image, with the hope that these near-duplicates will
illustrate the major concepts of this image. An intuitive way
to discover near-duplicates is to search. On the other hand,
since the surrounding text of Web images is generally noisy,
data mining techniques can be adopted to de-noise and
figure out salient terms or phrases from the search results to
annotate the image. These illustrate the key idea of our
approach. It not only investigates to what extent data can
help us recognize images, as the saying “data is the king,”
but also demonstrates how efficient a practical image
annotation system can be.

This approach is supported by newly proposed hash
encoding algorithms [13], [47], which convert an image into
an N-bit bitstream, and based on which, pairwise similarity
can be computed in real time. It partly solves the efficiency
problem and shines a light on combining visual features
into the commercial image search engines, which, in the
current stage, are purely based on textual descriptions.

This paper is organized as follows: Section 2 surveys the
previous work on image annotation, which provides read-
ers with a general sense of the related work. Section 3
demonstrates our insights on this problem, based on which
we proposed our data-driven and model-free approach.
Section 4 presents the approach in detail, with evaluations
in Section 5 and a few discussions in Section 6. To evaluate
how effective our approach is without a query keyword, we
conducted a few experiments, which are discussed in
Section 7. This paper concludes in Section 8 with an outlook
for possible improvements.

2 RELATED WORK

As early work on image annotation, many researchers
resorted to users’ relevance feedback (RF) to assign labels to
a given image. For example, Liu et al. [29] asked the user to
label an image in the RF stage and then propagate these
labels to all of the positive images suggested by the retrieval
system. Shevade and Sundaram [41] improved it by
calculating the propagation likelihood based on WordNet
[16] synonym sets as well as on image low-level features,
and presenting those images that are the most ambiguous to
the user for RF.

As for automatic image annotation, most of the research-
ers worked in two directions: to learn the joint probabilities
between images and words or to learn the conditional
probability.

In the former case, generative models were proposed. For
example, Barnardet al. [2] andDuyguluet al. [12] represented
images in blobs and then adopted a statistical machine
translationmodel to translate the blobs into a set of keywords.
Blei and Jordan proposed a Corr-LDA model [4]. It assumes
that there is a hidden layer of topics, which is a set of latent
factors, such thatwords and image regions are independently
generated by the topics. It used 7,000 Corel photos and a
vocabulary of 168 words for evaluation. Barnard et al. [1]
proposed a hierarchical model in which images and co-
occurring text are generated by nodes arranged in a tree
structure.An image is thus annotated by the text attached to a
path from a leaf to the root which achieves the highest score

given the visual and textual features of this image. Their
model was trained on 16,000 Corel photos with 155 words
and annotated 10,000 test images. Li and Wang [27]
proposed a 2D multiresolution hidden Markov model to
couple images and concepts. They used 60,000 Corel photos
with 600 concepts. In one of their recent works, they
improved this model and built an interesting real-time
annotation system named Alipr, which attracted a great deal
of attention from both academic and industry. Lavrenko
et al. [24] proposed a continuous relevance model which
directly associates continuous features with words and
achieved significant improvement in performance. Jeon and
Manmatha [22] extended this model and built it with 56,000
Yahoo! news images with noisy annotations and a
vocabulary of 4,073 words. This is the largest vocabulary
ever proposed and they discussed noisy annotation filtering
and speeding-up schemes.

As a different kind of approach, Pan et al. [37] leveraged
a graph structure. They constructed a two-layer graph
whose nodes are images and their associated captions and
proposed a random-walk-with-restart algorithm to estimate
the correlations between new images and the existing
captions. Then, in another work [36], they extended the
model to a three-layer graph with image regions added.

In contrast, a few researchers have proposed discrimi-
native models. Chang et al. [9] learned an ensemble of
binary classifiers, each for a specific label. Li et al. [25]
proposed a Confidence-based Dynamic Ensemble model,
which is a two-stage classifier. Carneiro and Vasconcelos [6]
attempted to establish a one-to-one mapping between
semantic classes and sets of images with the criterion to
minimize the error rate. Mori et al. [34] uniformly divided
each image into subimages with key words and then
applied vector quantization onto visual features of the
subimages to estimate which words will be assigned to the
new image.

All of the works mentioned above require a supervised
learning stage. Hence, the generalization capability is a
crucial assessment to their effectiveness. Among them, the
online demo of Alipr shows its robustness to outliers,
although the model was trained on Corel images.

Due to space limitations, we are not able to list all of the
previous works. Interested readers can refer to Smeulders et
al.’ comprehensive survey in 2000 [43] and a recent survey
after 2000 by Datta et al. [11] for a better understanding of
the area.

Recently, some researchers began to leverage Web-scale
data for image understanding [48], [54], [19], [45]. Wang
et al. [48] learned an image thesaurus from Web images and
their surrounding text to bridging the semantic gap. Yeh
et al. [54] identified locations by searching the Internet.
Given a picture of an unknown place, they first obtained a
small number of visually relevant Web images using
content-based search, then extracted a few keywords from
the descriptions of these images. A text-based search was
successively performed and the search results were further
filtered by visual features iteratively.

The disadvantages of [54] are that, due to the efficiency
problem, only a few relevant images were retrieved as
seeds, while the semantic gap inevitably biases the final
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results. However, ignoring all of these vulnerabilities, it is

still an important work which pioneers a different kind of

solution to image understanding.
Hays and Efros [19] presented another interesting

application of leveraging Web-scale data—image comple-

tion. Given an image with regions missed, they comple-

mented it by finding similar scenes that contained image

fragments which can seamlessly patch up the holes. This

approach is entirely data driven. Although the reproduced

image may not contain exactly the same content of the

original one, it is semantically valid.
Another important work was done by Torralba et al. [45].

They collected 80 million images and attempted to

investigate how large of a scale of a data set is required

so that the k-nearest neighbor ðkNNÞ metric is enough to

evaluate the visual similarity of two images.

3 BACKGROUND THEORY AND MOTIVATION

This section provides our insights into the image auto-

annotation problem, which illustrates the motivation as

well as the key idea of our model-free image annotation

approach.

3.1 Image Autoannotation Models Revisited

Fundamentally, the aim of image auto-annotation is to find

a group of keywords w
� that maximizes the conditional

distributions pðwjIqÞ, as described in (1a), where Iq is the

uncaptioned query image and w are terms or phrases in the

vocabulary. Applying the Bayesian rule, we obtain (1b),

where Ii denotes the ith image in the database; hence,

pðIijIqÞ investigates the similarity between Ii and Iq, and

pðwjIiÞ evaluates the correlation between Ii and w. This

corresponds to the generative model shown in Fig. 1a, in

which annotations are generated directly given the images.

If we assume that there is a hidden layer of “topics” so that

images are represented as a mixture of them and it is from

these topics that words are generated, then we obtain a

topic model as shown in Fig. 1b, which corresponds to (1c),

where tj represents the jth topic in the topic space:

w
� ¼ argmax

w

pðwjIqÞ ð1aÞ

¼ argmax
w

X

i

pðwjIiÞpðIijIqÞ ð1bÞ

¼ argmax
w

X

i

X

j

pðwjtjÞpðtjjIiÞ

 !

pðIijIqÞ: ð1cÞ

3.2 A Searcher’s Interpretation

Most of the previous generative approaches are covered by
these two formulations. Moreover, since the model of (1c)
investigates the relationships between images and words in
a more exhaustive way, it was generally reported to be
more effective than (1b) [1], [4], [33].

In contrast, we interpret (1) from a different angle,
specifically, in the language of search and data mining.
Intuitively, to a query image, w� appears more probably in
the contexts of relevant images than irrelevant ones. Hence,
we can approach (1b) by generating w from relevant images
instead of the whole data set, while a typical technique to
discover relevant images is to search. Let �q ¼

:
[i I

q
i denote

the set of relevant images fIqi¼1;...;ng to Iq. Equation (1b) is
reformulated as

w
� ¼ argmax

w

pðwj�qÞpð�qjIqÞ; ð2Þ

where pð�qjIqÞ simulates the search process.
pðwj�qÞ, on the other hand, simulates the term generat-

ing process which recognizes the semantics in �q. Various
techniques can be adopted here. However, unlike the
traditional approaches which learn it by training either a
generative or a discriminative model [1], [4], [33], we
interpret it as a data mining process and mine w� from the
textual descriptions of �q. Such a mining process has
attracted interest recently in what which are typically called
label-based clustering techniques [46], [42], [44], [55].

3.2.1 Brief Introduction to Label-Based Clustering

Differently from traditional document-based clustering
methods which measure document distances with the
vector space model (e.g., k-means), label-based approaches
cluster documents by ranking salient phrases and docu-
ments containing a certain salient phrase form a cluster.
Obviously, its challenge is in learning the informative and
classifiable phrases.

A critical prerequisite of label-based clustering is that all
of the documents are relevant in some sense, e.g., they are
search results of a query; this ensures reduced noise and
diversity. Hence, the most important property of the
learned indicative phrases is to detail subsets of the
documents. Therefore, it is typically used for facilitating
users’ browsing [46].

3.2.2 Brief Introduction to SRC [42], [55]

Asa typical label-basedclustering technique, theSearchResult
Clustering (SRC) approach proposed by Zeng et al. [55] can
generate clusters with highly readable names. Concretely,
givena set ofdocuments, it learns the clusters in three steps: 1)
document parsing and phrase property calculation, 2) salient
phrase ranking, and 3) postprocessing.

First, it generates a number of valid phrases (n-grams,
n � 3) from the documents. Stop words are kept so that
they can be shown when they are adjacent to meaningful
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Fig. 1. Generative models for image autoannotation. (a) The two-layer

model. Words are directly generated from visual features. (b) The three-

layer model. Words are generated from a hidden layer of “topics.”



keywords in cluster names. Five properties are calculated
for each phrase, namely, phrase-TFIDF (TFIDF, which is the
product of the phrase frequency and the log ratio of
inverted document frequency), Phrase Length (which
counts the terms in a phrase), Intracluster Similarity (which
measures the content compactness of documents indexed
by a specific phrase), Cluster Entropy (which identifies the
distinctness of a phrase), and Phrase Independence (which
measures the independence of a phrase by the entropy of its
context).

Second, a linear regression model learned beforehand is
utilized to combine these properties into a single salience
score and the phrases are ranked in descending order of
their scores. The top-ranked phrases are the salient ones.
Then, documents containing the same salient phrases are
grouped together, which constituted clusters, with the
phrases as cluster names. Obviously, a document can be
assigned to multiple clusters, a typical characteristic of
label-based clustering in which clusters can overlap.

Third, in the postprocessing step, the phrases that
contain only stop words or query words are filtered out.
Then, clusters are merged to reduce duplicates. The merge
strategy is that if two clusters have more than 75 percent
documents in common, they will be merged into one
cluster; meanwhile, the cluster names are adjusted accord-
ingly and the topmost clusters are output.

The typical advantages of SRC are the following, which
make it much more suitable than traditional document-
based clustering in tackling our online annotation problem:

1. It emphasizes the efficiency of clustering, which
makes it promising in online clustering.

2. It is soft clustering and an image can belong to
multiple clusters and can be tagged by multiple
salient phrases. This is appealing as images gener-
ally have complicated subjects.

3. Each cluster has a name, i.e., salient terms or
phrases, which summarizes the common concepts
shared by its images. This is a typical advantage,
which suggests annotations directly from the textual
descriptions.

The SRC technique is currently released online [40].
Based on the analysis above, we propose a novel solution

of data-driven image annotation by first retrieving a set of
similar images �q with the query (i.e., pð�qjIqÞ) and then
mining annotations from it (i.e., pðwj�qÞ) with SRC, which
solves (2). In particular, learning pðwj�qÞ with SRC is to
discover topics t such that

pðwj�qÞ ¼ max
t

pðwjtÞpðtj�qÞ; ð3Þ

where t is approximated by the “cluster names” output
by SRC.

Equation (3) is ensured by SRC’s setup of model training.
Three human evaluators were asked to label ground truth
data for queries which were selected from a Microsoft Live
Search query log. These queries are ambiguous queries,
entity names, or general terms which tend to contain
multiple subtopics. For each query, the evaluators first
browsed through all returned pages, then selected from
about 200 candidate phrases—which are all meaningful

n-grams ðn � 3Þ in search results—10 “good phrases” and
10 “medium phrases” and scored them with 100 and 50,
respectively. The rest of the candidate phrases are “no-
interest” ones and were scored zero. The regression model
was thus trained based on these scores as well as the
aforementioned properties of the n-grams. Obviously, the
top-ranked outputs of the model reflect human judgments
on good phrases which best represent the topics shared
among documents.

In all, we have

w
� ¼ argmax

w

pðwjIqÞ

¼ argmax
w

pðwj�qÞpð�qjIqÞ
ð4aÞ

¼ argmax
w

max
t

pðwjtÞpðtj�qÞ

� �

pð�qjIqÞ: ð4bÞ

It suggests three critical factors that affect the effectiveness
of the approach, namely, the retrieval process pð�qjIqÞ, the
mining process pðtj�qÞ, and the ranking process pðwjtÞ.

4 THE MODEL-FREE ANNOTATION APPROACH

4.1 Divide-and-Conquer the Semantic Gap Problem

As mentioned before, the semantic gap problem is crucial
for image annotation [20]. However, many researchers
found that although, individually, the visual features and
textual descriptions of images are ambiguous,1 they tend to
not be so when combined together [3], [4], [27], [28].

Thus, we suggest dividing and conquering the annota-
tion problem in two steps: 1) Given a query image, find one
correct2 term (or phrase) and 2) given the image and the
keyword, find more complementary terms or phrases that
interpret the content of the image. The second step is easy to
comprehend—with an initial keyword, the ambiguity of the
query example is reduced and it is sure to find visually and
semantically similar images, at least to some extent.

The requirement in the first step, however, is not as
lacking in subtlety as it may first seem. For example, for
desktop images, users usually name the folders by locations
or event names and, for Web images, generally there are
textual descriptions from which the initial keyword can be
chosen. On the other hand, the importance of a query
keyword’s availability decreases as the data set which
supports a data-driven approach expands. This intuition is
actually proved by Torralba et al. [45]. They found that,
when the data set contains 80 million images, simply
applying the k-nearest neighbor (kNN) metric to visual
features finds satisfying relevant images. Therefore, when
the data set is large enough, dividing and conquering the
annotation problem may be unnecessary. However, how
large is “large enough” is still an open question since it is
very difficult, if not impossible, to figure out the data
distribution which ensures the effectiveness of kNN in
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1. Text ambiguity resulted from synonyms, polysemes, and incorrect
parsing. For example, both images labeled as “tiger lily” and “white tiger”
are relevant to the query keyword “tiger.”

2. Note that we do not require it to be perfect but just “correct,” e.g.,
given an image about the Eiffel Tower, we do not require the word to be
“Eiffel” but just “France.”



visual space. Hence, the divide-and-conquer proposal is
still competitive, which we believe will help push image
understanding a step forward.

We will not discuss the solution to the first step in this
paper, leaving it as future work, and tackle the problem of
the second step.3 Thus, the problem is reformulated as

w
� ¼ argmax

w

pðwjIq; wqÞ

¼ argmax
w

pðwj�qÞpð�qjIq; wqÞ

¼ argmax
w

max
t

pðwjtÞpðtj�qÞ

� �

pð�qjIq; wqÞ;

ð5Þ

where both a query keyword wq and a query image Iq are
provided to trigger the search process.

4.2 Sketch of the Model-Free Annotation Approach

Fig. 2 shows the flowchart of the proposed approach. As a
prerequisite of data-driven approaches, 2.4 million photos
(mostly natural scenes) were crawled from the Web, the
details of which will be given in Section 4.2.1, and then the
corresponding visual and textual index files were built to
realize the real-time process, for which we give the details
in Section 4.2.2.

A natural way to retrieve visually similar images is
Query-By-Example (QBE). However, when the image
database contains millions or billions of images, image
retrieval based on pairwise euclidean distance computation
is too time consuming and is thus impractical. We solve this
problem in this way: First, Query-By-Keyword (QBK)
retrieval is conducted ahead of QBE, which filters out
“semantically” dissimilar images in real time. Intuitively, it
reduces the image space and, hence, dramatically saves
time for the successive QBE retrieval. Second, instead of
measuring euclidean distances, we encode image visual
features into hash codes which are binary bitwise and
efficient distance measures such as Hamming distance can

thus be leveraged. We detail this step in Section 4.2.3. These
constitute the search stage (labeled by “1” in Fig. 2) and
visually and semantically similar images are thus obtained.

The next step is to mine a few terms or phrases from the
textual descriptions of these images, which is the mining
stage (labeled by “2” in Fig. 2). As described in Section 3.2,
we adopt SRC [55] for this task. The cluster names output
by SRC are assumed as the topics t in (5).

Then, in the ranking stage, we propose a simple but
effective relevance ranking and annotation rejection approach
to select and rank the mined cluster names and use the top
ones as the output annotations, which simulates pðwjtÞ.
This step is necessary since: 1) SRC [55] is purely based on
textual features while it ignores visual features, so the
learned cluster names may contain incorrect annotation
words (we will investigate this problem in our future work)
and 2) the released SRC tool generates about 20 clusters,
which is too large a number to promise high precision in
our scenario.4 We detail this step in Section 4.2.3.

This step corresponds to a soft annotation approach since
the cluster names generated by SRC vary in length. Thus,
even if we fix the number of top clusters, the number of
phrases is not fixed.

The user interface is shown in Fig. 3. It supports various
query submission schemes—the user can either upload a
query image or submit a query term and select an image
from its QBK results or click on the “Random” button to
randomly choose an image from the database.

The gray block highlights the query image and, when the
label “annotate” is clicked, the annotation process starts.
Statistics such as time cost and the number of similar
images returned are highlighted by the blue bar beneath the
query image. As for the real example shown in Fig. 3,
500 images are retrieved from the 2.4 million Web images
and the time cost of the search and mining process is 15 and
563 ms, respectively, which is real time. The terms in blue
are the predicted annotations, which are cluster names
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3. Although we illustrate our approach by assuming that a query
keyword is given, in Section 7, we show that, without query keywords, i.e.,
adopting the traditional image annotation framework in which only query
images are given, our method still achieves satisfying performance.

4. Although SRC accepts user-assigned numbers to indicate how many
categories are preferred, 20 is a suggested number that statistically
produces the highest performance.

Fig. 2. The flowchart of the model-free process. It contains three steps:

1) search, 2) mining, and 3) ranking. An image and a query keyword

(“sunset” here) are inputs. The yellow block highlights the predicted

annotations.

Fig. 3. UI of the annotation system. The gray block highlights the query

image. Statistics and predicted annotations are shown below it. The tab

form contains image search results which are used for annotation

mining.



yielded by SRC [55] and are separated with the sign “j”. In
Fig. 3, three terms passed the annotation rejection step. The
tab below the form displays a subset of the 500 relevant
images whose textual descriptions were part of SRC.

In the following sections, we illustrate the technical
details as well as the engineering design which ensures
effective annotation in real time.

4.2.1 Crawling a Large, High-Quality Data Set to Ensure

an Effective Data-Driven Approach

Since Web images are of various quality and their
surrounding text is generally noisy, not just any Web
images will help [22] and, hence, a postprocessing step is
often required [26], [51]. However, the main purpose of this
paper is not data set collection, so we did not put our effort
into collecting a high-quality data set as [26] does.

Hence, we simply crawled 2.4 million images from a few
photo forums. The advantages are that

1. photos on these forums generally have high resolu-
tion since they are taken by photographers,

2. when uploading their work, the photographers will
provide comments which more or less describe the
semantics of these photos,

3. most of the photos are natural scene images which
have simpler semantics compared to artificial ones
or portraits like the Corbis data set, and

4. there are lots of images sharing the same semantics
but with diverse appearance, which ensures a higher
generalization capability of the annotation model
than when trained with Corel images.

Three examples from the 2.4 million photos are shown in
Fig. 4. We can see that, although the descriptions are noisy,
they more or less hit some content in the corresponding
images (e.g., “tiger” in the first example) or suggest terms
(e.g., “forest”) that statistically co-occur with the main
objects.

Table 1 provides a few statistics on the 2.4 million
photos. The dictionary contains 362,669 words and each
photo is commented with 19.6 words on average; to our
knowledge, it is to date the largest database used for image
annotation, especially for real-time annotation.

4.2.2 The Promise of Real Time

The obstacles to real-time annotation in our case include the
content-based retrieval process and handling of the
2.4 million images. We solve the first problem by mapping

image visual feature vectors into hash codes and the second
one by setting up a distributed system.

Accelerating search through hash encoding. Typically,
the similarity of two images is measured in euclidean space.
However, since visual features are generally of high
dimension, measuring pairwise euclidean distance becomes
a bottleneck even if the search space is greatly reduced by
text-based search given the query keyword. An effective
way to accelerate the content-based search process is to
compress the images. Some previous work proposed vector
quantization techniques, for example, [56] segments an
image into regions and quantizes the regions to obtain a few
keyblocks. The inverted index technique is thus naturally
applied onto such keyblock-based discrete representations
and, thereby, the content-based retrieval problem is con-
verted seamlessly into a text-based one which greatly
improves the retrieval efficiency.

In this paper, we adopt another technique, named image
hash code generation (HCG) [13], [47], since it is more
scalable than vector quantization methods [56] and, hence,
is a better fit for large-scale databases.

Related work on hash encoding. The HCG algorithms [13],
[47] were originally proposed to detect visually identical
images. The basic idea is: Suppose that visual features are
mapped into bitstreams, with higher bits representing the
more important content of an image and lower bits the less
important content. Obviously, duplicates should have equal
hash codes measured efficiently by the Hamming distance
(i.e., the “AND” operation); as for near-duplicates, the
“more” highest bits in common, the more probably two
images are alike.

The HCG algorithm proposed in [13] is shown in Fig. 5.
First, it transforms a color image into gray scale and divides
it evenly into 8 � 8 blocks. Each block is represented by its
average intensity so that we obtain an 8 � 8 matrix with
each element Iij defined as

Iij ¼

Pw�1
x¼0

Ph�1
y¼0 Intðx; yÞ

w� h
; ð6Þ
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Fig. 4. Three examples of the 2.4 million photos which are generally of

high quality and have comments.

TABLE 1
Statistics on the 2.4 Million Data Set

Fig. 5. Hash code generation [13].



where Intðx; yÞ is the intensity of the ðx; yÞth pixel and w
and h denote the block width and height, respectively.

Two-dimensional DCT transformation [38] is then
applied to M. The DC coefficient, which is the average of
M, is omitted to eliminate the effect of luminance. The
remaining AC coefficients are zigzagged into a sequence
and the first 48 coefficients in lower frequencies are
collected as the feature vector Xm of the original image,
which is further mapped to an n-dimensional vector Yn by a
PCA [23] model PT trained on 5,500 Web images, shown as

Yn ¼ P TXm: ð7Þ

The hash code is then generated from Yn using the
encoding algorithm shown in Fig. 6. The intuition behind
PCA-based dimension reduction is that the PCA space is
essentially a rotated version of the original feature space. If
all of the feature dimensions are kept, it draws the same
conclusion on data points’ distances as measured in the
euclidean space. Moreover, since dimension reduction
using PCA is achieved by cutting off the low variance
dimensions, the information loss is small and can be
ignored, while, on the other hand, the hash code-based
matching can be significantly speeded up.

Wang et al. [47] proposed a similar idea, but it is more
efficient, as shown in Fig. 7. Images are hierarchically
divided into blocks and average luminance is used as
features. The transformation model is still PCA, but it was
trained on 11 million iFind [8] images.

Mapping visual features to hash codes. The same technique
can be applied to accelerate the search process with low
information loss. Recall that the higher bits represent the
more important content in an image, so, if two hash codes
have equal n highest bits, they can be indexed by the same
key. Henceforth, we can significantly speed up the search
process in visual space by creating inverted indices based
on the hash codes.

In our approach, we use 36-bin color Correlogram [20]
instead of intensity or luminance [13], [47] as the original
visual features. The reasons are twofold: 1) The aim of [13],
[47] is to find duplicate images which are identical both in
layout and in content; hence, the luminance of gray-scale
images is an effective feature. However, our goal is to find
relevant images—images that may not have the same layout
and content but share similar concepts. Hence, to keep the
color, texture, and shape, etc., properties is important in our
case. 2) Correlogram is also a widely used feature in CBIR
[40], [7], [10] which simultaneously takes into account color
and shape.

Since 3-channel (e.g., RGB) instead of 1-channel [13]
features are used in our case, 2D DCT transformation is
inapplicable here. Hence, we adopted Wang’s approach [7]
and mapped the 144-dimensional Correlogram features of
all of the 2.4 million photos into 32-bit hash codes, with

their higher bits representing more informative content.
This is an offline approach.

Hash code-based image retrieval. We designed four distance
measures as below, considering the retrieval precision and
practicality for an online approach. The results are given in
Section 5:

. Hash code filtering plus euclidean distance (HD-EuD). If
the highest n bits of an image exactly match those of
the query image, we keep this image and rank it
according to its euclidean distance on Correlograms
to the query. Hash encoding here is leveraged as a
fuzzy filtering method. The intuition is that hash
encoding may introduce error, so we use it as a
preprocessing step and rely on the original features
to obtain and rank search results. In our experi-
ments, n ¼ 20.

. Hamming distance (HD). This is the most efficient
measure which counts the number of different bits of
two hash codes.

. Weighted Hamming distance (WHD). HD assumes that
all bits have equal weights. However, it is intuitively
beneficial to encode the importance of a bit into the
distance metric and to give the higher bits larger
weights. We propose the weighting function as
below: We evenly divide the 32 bits into eight bins5

and weight the Hamming distance on the ith bin by
28�i, 1 � i � 8. Obviously, such a weight magnifies
the difference on the higher bits, which coincides
with the hash encoding scheme. It is simple but
effective, as proven in our experiments.

. Euclidean distance (Corr-EuD). We also compute
euclidean distance on Correlograms as a baseline
to evaluate the performance of hash codes.

We rank the images in the ascending order of their
distances to the query and return the topN as search results.

Efficiently handling the large-scale database with
distributed computing. Hash encoding is not enough for
real-time annotation when the database contains millions
or, especially, billions of images. In this section, we describe
our design of a distributed system, which, as shown as an
example in Fig. 3, finishes the search process in 15 ms and
the mining process in 563 ms on 2.4 million images.

The system architecture is shown in Fig. 8. The key is that
the content-based search engine, text search engine, and
SRC clustering engine are provided as Web services using
the C# Remoting technique. Each service registers a distinct
TCP port and is listening to it; when there is a service
request, the services accept input variables, perform their
own work, and send back the outputs. Besides, by building
up this distributed system, both visual and textual features
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Fig. 6. Hash encoding algorithm [13]. Fig. 7. Hash code generation [47].

5. “8” is an experiential value giving the best performance in our
experiments.



can be kept in server machines’ memories so that no disk I/
O is requested, which obviously is quite efficient and is easy
to scale up.

4.2.3 The Control of SRC Outputs

As mentioned in Section 4.1, we use the SRC [42], [55] to
learn the topics t in (3) given the visually and semantically
similar search results.

A problem is that SRC requires users to determine the

number of clusters jnsrcj, which is difficult without
observing the data. We use an experiential algorithm as
(8) to select jnsrcj:

jnsrcj ¼ max j��j=200; 4ð Þ; ð8Þ

where j��j is the number of search results. An empirical
value of cluster size suggested by SRC is 200 to ensure the
saliency of learned cluster names. If j��j is too small, SRC
tends to group all images into one or two clusters and,
hence, the clusters may be too diverse to produce mean-
ingful cluster names. To avoid this, we force the algorithm
to output at least four clusters, while 4 is another
empirically selected parameter.

On the other hand, because SRC extracts all n-grams
ðn � 3Þ as its candidate key phrases, if j��j is too large, the
time cost of SRC will become too expensive for an online

service. Hence, we require max j��j ¼ 2;000.
The final step is annotation rejection. As discussed in

Section 4.2, it is improper to output all cluster names
yielded by SRC as predicted annotations, so annotation
rejection is necessary to control the outputs. Two criteria are
analyzed in our current implementation:

. Maximum cluster size criterion (MaxCS). This criterion
uses the number of images in a cluster to score the
corresponding cluster name. The highest scored ones
are assigned to the query image as the final
annotations. This is equivalent to the Maximum-a-
Posteriori (MAP) estimation which assumes that
“the majority votes for the truth,” and, since the
cluster names are learned from relevant images,
intuitively, the larger cluster covers the more
important content of the query image.

. Maximum average member image score criterion
(MaxIS). This criterion uses the average similarity

of the images inside a cluster to score it. The idea is
that the smaller the intravariance of a cluster, the
more probable it is that it illustrates the content of
the query image.

We merge the names of the top ranked clusters by
removing the duplicate words and output the results,6

which closes the entire system process.

5 EVALUATION

To evaluate the effectiveness (i.e., high annotation preci-
sion) and efficiency (i.e., low time cost) of our approach, we
conducted a series of experiments based on two data sets.
One is an open data set, of which 30 images from
15 categories (as shown in Table 27) are randomly collected
from the Google image search engine [18]. To give a more
objective evaluation of the effectiveness, we deliberately
selected a few vague query keywords, e.g., “Paris” for
“Sacre Coeur” images. Because no ground truth labeling is
available, we manually evaluated the retrieval performance
on this data set.

The other testing data set is a benchmark CBIR database
provided by the University of Washington (UW).8 It
contains 1,109 images and each has about five tags on
average and we use the UW folder names as query
keywords (see Table 3). A problem of this data set is that
not all contents are annotated. Therefore, we also provide
the manually revised results to accept synonyms and
correct annotations omitted in UW labels for a fair
evaluation.

5.1 Experiments on Google Images

5.1.1 Performance Measure

Evaluation of image autoannotation approaches is still an
open problem. Many different approaches have been
proposed, e.g., Blei and Jordan [4] use annotation perplexity
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Fig. 8. Distributed system architecture. The search and clustering

engines are implemented as Web services.

TABLE 2
Queries from Google

TABLE 3
Queries from the University of Washington

6. Note that it is actually soft annotating, i.e., the set w is not fixed in size.
The reasons are twofold: First, jnsrcj depends on the number of search
results, as given in (8), and, second, SRC cluster names are not of fixed
length. As shown in Fig. 3, there are three cluster names (separated by “j”),
with the first and the third containing only one word, respectively, and the
second containing two words separated by “,”.

7. Since most of the photos in this database are natural images and very
few, if any, are artificial images, the testing data set shown in Table 2 mainly
contains queries related to “nature.” However, it does not mean that the
proposed technique is ineffective for artificial images. We show this with
the query “Apple.” As shown in Fig. 11, the painting of an apple is
reasonably annotated with “studio, kitchen, fruit, color.”

8. http://www.cs.washington.edu/research/imagedatabase/ground
truth/.



to measure the quality of the models, which is equivalent
algebraically to the inverse of the geometric mean per-word
likelihood. A few researchers use retrieval precision and
recall [4], [6], [21], [29]. In particular, the entire data set is
separated into two subsets, one for training and the other
for testing, such that images in these two subsets share
almost the same vocabularies and data distributions. In the
testing stage, a few keywords are selected from the
vocabulary to query the annotated testing data set. For a
word w, let G be the ground truth relevant images and L be
the system outputs; retrieval precision and recall are
defined as

Precision ¼
jL \Gj

jLj
; Recall ¼

jL \Gj

jGj
; ð9Þ

i.e., precision evaluates the proportion of relevant images in
the retrieval results, while recall calculates that of the
relevant images in all of the relevant images contained in
the database.

Barnard et al. [1] directly evaluate the annotation
accuracy. Moreover, they propose taking into account
incorrect tags and adding an explicit penalty on them.
Also, they suggest normalizing the correct and incorrect
outputs, which results in a so-called normalized score (NS)
measure:

ENS ¼ r=n� !=ðN � nÞ; ð10Þ

where N is the vocabulary size, n is the total number of
tags, and r and ! are the number of correct and incorrect
tags, respectively. We have �1 � ENS � 1.

All of the criteria described above require ground truth
labels, which is impractical for Web image-based ap-
proaches. In the latter case, manual assessment is generally
adopted [28], [54].

Since no ground truth is available in our approach, we
use the modified NS measure

E ¼ ðr� !Þ=m; ð11Þ

where m denotes the number of predictions. Obviously, we
still have �1 � E � 1.

5.1.2 System Effectiveness

Fig. 9 shows the trend of E as the similarity weight changes.
The similarity weight, multiplied by the average visual

similarity of image search results, serves as a threshold to
filter out irrelevant images in the content-based search stage
and the rest will be transferred to SRC mining. Since this
parameter determines �� in (8), it directly affects the
predicted annotations.

The intuition of this threshold is that, since image
similarities vary greatly, a hard threshold cannot promise
high performance on any queries. In contrast, our soft
threshold is query-dependent and on-demand.

The green square curve in Fig. 9 corresponds to the
baseline method, which uses only text-based search to
retrieve images so that the search results are not necessarily
visually similar. Its performance is, hence, greatly biased by
ambiguous and sparse textual descriptions. Meanwhile,
since no visual features are available, only MaxCS criterion
(see Section 4.2.3) is supported. Figs. 9a and 9b show the

trends of E with the MaxCS criterion and the MaxIS
criterion, respectively. All four distance measures, i.e., HD,
WHD, HD-EuD, and Corr-EuD, were compared.

From Fig. 9a, we can see that WHD (purple dot)
performs the best. This is reasonable since it emphasizes
the important content in an image while it deemphasizes
the unimportant ones.

It is interesting that HD (blue diamond) is comparable to
Corr-EuD (cyan cross). This suggests that the information
loss of hash encoding has little effect on this data set or, say,
it is effective.

Another interesting result is that HD-EuD (orange
triangle) performs badly. It may be due to the fact that
using the highest 20 bits is too coarse to distinguish relevant
images from irrelevant ones.

All of the distance measures are superior to the baseline
method, which means that visual features are also
important for image understanding.

The MaxIS criterion generally performs worse than the
MaxCS criterion, as illustrated in Fig. 9. A possible reason is
that SRC clusters images purely based on their surrounding
text and, hence, images in one cluster may vary greatly in
their visual appearances. Obviously, this does not affect
MaxCS criterion but MaxIS, as the latter one uses visual
similarity to score the clusters.

5.1.3 A More Comprehensive Performance Measure

We believe that, in the scenario of Web image-based
annotation without a vocabulary, to simply differentiate
“correct” tags from “incorrect” ones is not enough to
evaluate the effectiveness of an annotation system. Speci-
fically, it is better to distinguish “perfect” predictions (those
hit specific objects in an image) from “good” ones (correct
ones but not perfect, e.g., hypernyms of a “perfect”
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Fig. 9. Annotation precision measured by (11). The WHD measure

performs the best. (a) Precision with respect to maximum cluster size

criterion. (b) Precision with respect to average member image score

criterion.



prediction). An example of perfect annotation is “tiger” for
the first image in Fig. 4 and “France,” in contrast, is a good
one for an image of the Eiffel tower. The “bad” annotations
are those which are irrelevant to the content of the query
image. Taking all of these types of predictions into
consideration, we propose (12) as a strict and comprehen-
sive measure:

Em ¼ ðpþ 0:5� r� !Þ=m; ð12Þ

where m denotes the number of annotations predicted. p, r,
and ! indicate the number of “perfect,” “good,” and “bad”
annotations, respectively. Note that, to emphasize our
preference for “perfect” annotations, we punish the “good”
ones with a lower weight 0.5. Obviously, when all
predictions are “perfect,” Em ¼ 1, while, if all are wrong,
Em ¼ �1.

5.1.4 System Effectiveness with the New Performance

Measure

Intuitively, Em will be smaller than E with the same
experimental settings, as shown in Fig. 10. They resemble
similar trends, but the best performances were achieved
with different parameters. Besides, from the difference
between Em and E, we can figure out that, for WHD,
30 percent correct predictions are “good” ones.

Fig. 11 provides a few examples of the annotation results.
The boldfaced keywords are the queries. Obviously, our
approach detected correct annotations and, most of the
time, perfect ones.

5.1.5 System Efficiency

We have provided the readers with a first sense of the
efficiency in Fig. 3; here, we conducted one more experiment

to evaluate the efficiency statistically. For all of the queries,
we collected their search results, which are about 24,000
images on average, and tested the efficiency of the four
distance measures: HD, WHD, HD-EuD, and Corr-EuD.
The hardware environment is a computer with one Dual
Intel Pentium 4 Xeon hyper-threaded CPU and 2 Gbyte
memory. The time cost for computing the distance between
each of the 24,000 images and the query image, as well as
ranking them accordingly, is shown in Fig. 12, which cost is
0.034, 0.072, 0.051, and 0.122 s, respectively. That is, Corr-
EuD is nearly four times slower than HD.

HD-EuD is the second efficient. It is because most of the
images are filtered out by hash code matching, which has
O(1) computation complexity. Time cost for this measure is
consumed by the euclidean distance calculation afterward.

5.2 Experiments on UW Data Set

We show the experimental results on the benchmark UW
database in this section. All of the 1,109 images are used as
queries.

Because ground truth is available, we use precision and
recall in (9) as the evaluation criteria. However, differently
from the previous image retrieval-based evaluationmethods
[4], [6], [21], [29],we directly compute the precision and recall
on the predictions, i.e., G in (9) represents ground truth tags
and L denotes predictions. The effect of the two annotation
rejection criteria, MaxCS and MaxIS, as well as the four
distance measures on the average performance of all the
queries is shown in Fig. 13. Again, WHD performs the best.

An interesting point is that the MaxIS criterion now
works better. This is because few images in our 2.4 million
photograph database are visually similar to the UW images
and the UW images of the same category share similar
visual appearance, while MaxIS strategy helps to rank the
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Fig. 10. Annotation precision measured by (12). WHD measure

performs the best. (a) Precision with respect to maximum cluster size

criterion. (b) Precision with respect to average member image score

criterion.

Fig. 11. A few examples of the predicted annotations.

Fig. 12. Search efficiency evaluated on pairwise distances on 24,000

images.



clusters whose images are visually more relevant to the
query higher and thus is less biased by the irrelevant textual
descriptions.

It is worth mentioning that the real performance of our
system is actually much better than is shown in Fig. 13
since the evaluation shown in Fig. 13 did not regard
synonyms, e.g., “beach” and “coast,” and semantically
relevant keywords, e.g., “Geneva” and “Switzerland,” as
correct answers. Moreover, the UW ground truth annota-
tions are incomplete, i.e., for most of the images, some
content is ignored; however, the above evaluation regards
the corresponding predictions as incorrect even if they
correctly describe content just because they do not appear
in the ground truth. To correct this, we manually
examined the results of 100 randomly selected queries.
The corrected precision and recall are 38.14 percent and
22.95 percent, respectively, nearly 12 percent precision
improvement, with WHD measure, MaxIS criterion, and
the similarity weight 1.2.

Fig. 14 shows four examples which hit no UW ground
truth tags and, hence, were assumed incorrect but are
indeed correct answers.

Note that we adopt no supervised learning stage, while
UW images are “outliers” to our database from which few
relevant images could be found; the task is thus much
tougher for us than for the previous approaches. Moreover,
most previous work selects training and testing data from
the same data set and the training data set is generally
much larger than the testing one, e.g., Barnard et al. [1] and
Blei and Jordan [4] use 4,500 Corel images for training and
500 images for testing, and the performance is still around
20 percent to 30 percent. This suggests that our system is
more effective and robust.

6 DISCUSSION

Compared to traditional computer vision and machine
learningapproacheswhichbuildgenerativeordiscriminative

annotation models, we propose a novel model-free ap-

proach which investigates how effective a data-driven

technique can be and suggest automatically annotating an

uncaptioned image by mining its search results. It has at

least three advantages:

1. no training data set and supervised learning are
required and, hence, the lack-of-training-data pro-
blem is avoided;

2. it requires no predefined vocabularies, while vocabu-
lary construction is still an open research topic [35];

3. the Web provides us diverse images sharing the
same semantics, which ensures a high generalization
capability or the practical usage of the proposed
approach; this is noticeably superior to using Corel
images, which has very low intraclass variation and
incomplete descriptions; and

4. our approach is highly scalable and very robust to
outlier queries.

7 ANNOTATING WITH VISUAL QUERIES ONLY

We would like to investigate in this section how effective

the model-free approach is without a query keyword. In

this case, image search results are obtained purely based on

QBE retrieval. Three series of experiments on Google, UW,

and Corel images are conducted.

7.1 Experiments on Google Images

We used the same queries as in Fig. 11 and the results are

shown in Fig. 15. We can see that, although the semantic

gap problem degrades the performance, satisfying results

were still achieved. Moreover, the average time cost is 0.28 s

to annotate an image. Note that the absence of textual

filtering process results in slower speed and degraded

performance.

7.2 Experiments on UW Data Set

To have a comprehensive comparison with the previous

approach which is initialized by a query keyword, we

evaluate the performance on UW images using the same

precision and recall criteria as in Section 5.2. Fig. 16 shows

the best performance against the number of images j��j.

AE-Web and AE-UW use all of the 1,109 images as query

and adopt automatic evaluations, i.e., a prediction is correct

only if it hits a ground truth tag. HC-Web and HC-UW are

based on 50 randomly selected UW queries and manual

assessment was applied. Moreover, AE-Web and HC-Web

adopt unlimited vocabulary suggested by the 2.4 million
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Fig. 13. Precision and recall of the two annotation rejection criteria versus the four distance measures with all images in UW data set as queries.

Fig. 14. Four examples from the UW database and their predicted

annotations, which hit no UW ground truth tags but are indeed correct

answers.



Web images, while AE-UW and HC-UW restrict SRC to
select words from the UW vocabulary.

A sharp precision degradation was obtained for the AE-
Web method. The reasons are that, in addition to the outlier
problem and strict evaluation, it was also greatly affected by
the semantic gap problem since no query keyword was
provided to filter out those semantically irrelevant images.

To reduce the cost of manual labeling, 50 images were
randomly selected. Human check shows that the real
precision and recall of the annotation system (i.e., HC-
Web) are 0.18 and 0.22, which are 157.1 percent and
100 percent improvements, respectively. Moreover, by
limiting the vocabulary (i.e., HC-UW), both precision and
recall were significantly improved (p ¼ 0:26, r ¼ 0:18). This
implies that higher performance is more easily achieved in a
closed data set with a fixed vocabulary. Among all of these
results, HC-Web has the highest recall, which benefited
from the large-scale data, and, meanwhile, precision drops
a little due to the increased probability of incorrect
predictions.

The 50 images are associated with 73 unique words in
the UW vocabulary, while our approach detected nine
correct new words for them, such as city, summer, and rose.
It further shows the strength of the annotation system, i.e.,
higher recall and larger vocabulary. Fig. 17 shows four
illustrative examples.

7.3 Experiments on Corel Images

Since it coincides with the traditional annotation strategy
that only one query image is given, we are able to compare

this approach (SBIA) with previous work. The baseline
methods are the machine translation model (MT) [12], the
multi-instance learning model (MIL) [53], and the cross-
media relevance model (CMRM) [21].

To get a fair and objective evaluation, we base our
experiment on 5,000 Corel images9 with 371 keywords and
500 blobs overall. Instead of using the 2.4 million Web
images as our database, we indexed 4,500 of the Corel
images and set aside the other 500 for testing. The same
settings were applied to train and test the MT, MIL, and
CMRM models.

The same features as in [12], [53], [21] were used so that
the four algorithms had the same input. Search results were
obtained through blob-based retrieval and the ranking
function was BM25 [39].

The average per-word precision and recall of the four
methods are illustrated in Fig. 18 for the best 49 keywords
[53], [21]. Clearly, our approach outperforms MT and MIL
and is comparable to CMRM; however, note that we have
no supervised learning while the other three models do.

7.4 Discussions on Closed Data Set and
Open Data Set

We can see that the performance of our approach on Corel
data set (p ¼ 0:39, r ¼ 0:49) is much better than that on the
UW data set (p ¼ 0:18, r ¼ 0:22). A key reason is that the
experimental setup is totally different, which suggests that
annotating with a fixed vocabulary generally achieves
higher precision than with an open one. Specifically, the
Corel-based experiment was conducted on a closed data set
which labeled the 10 percent testing images with 90 percent
close-set images and the strong correlation between these
two sets led to good performances. However, intuitively,
this is impractical.

In contrast, for the UW data set, we treated it as a black
box in the system and annotated the images with the
2.4 million photo forum data, which obviously are weakly
correlated to this data set. This is a much closer setting to a
real scenario, and annotating an open data set without any
prior knowledge is obviously a very challenging problem.

8 CONCLUSION

Compared to the previous annotation approaches, which
built up generative or discriminative annotation models, we
proposed a novel attempt of model-free image annotation.
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9. http://www.cs.arizona.edu/people/kobus/research/data/
eccv_2002/.

Fig. 15. A few examples of the annotation results yielded by the model-

free and data-driven image annotation approach.

Fig. 16. Performance of UW images without a query keyword. “HC-”

methods use 50 randomly selected images.

Fig. 17. Four UW examples and our predictions, most of which are not in

the UW vocabulary.



It not only evaluates how much data can help us in image

understanding, but also illustrates that search, as an

important technique itself, can help us in various applica-

tions. We collected 2.4 million photo forum images with

their textual descriptions for this task.
The entire process contains three steps: 1) the search

stage, which retrieves visually and semantically similar

images given the uncaptioned images as queries, 2) the

mining stage, which applies a label-based clustering

technique called SRC to mine key phrases from the search

results as candidate annotations, and 3) the annotation

rejection stage, which postprocesses the candidate annota-

tions to ensure the preciseness of the final outputs.
Compared with the previous work in this research area,

our method saves labor in both training data collection and

vocabulary construction and is highly scalable and robust to

outliers. Moreover, to our knowledge, it is the real-time

approach that handles the largest data set to date.
To ensure real-time annotation, two key techniques are

leveraged—one is to map the high-dimensional image

visual features into hash codes; the other is to implement

it as a distributed system, of which the search and mining

processes are provided as Web services. As a typical result,

the entire process finishes in less than 1 s.
Experiments conducted on both an open data set (Google

images) and a benchmark data set (UW CBIR database)

show that our approach is effective in annotation precision

and is practical as not only being vocabulary-free but also

tagging images in real time.
There is much room to improve the approach, e.g., as

mentioned in Section 4.2, it is necessary and important to

propose a data mining technique which simultaneously

takes visual features into consideration. Also, we would like

to investigate how much performance gain we can obtain

by embedding learning approaches into our current

implementation.
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