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Annotating pathogenic non-coding variants in genic
regions
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Identifying the underlying causes of disease requires accurate interpretation of genetic

variants. Current methods ineffectively capture pathogenic non-coding variants in genic

regions, resulting in overlooking synonymous and intronic variants when searching for

disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses

sequence context alterations to reliably identify non-coding variation that causes disease.

High TraP scores single out extremely rare variants with lower minor allele frequencies than

missense variants. TraP accurately distinguishes known pathogenic and benign variants in

synonymous (AUC= 0.88) and intronic (AUC= 0.83) public datasets, dismissing benign

variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family

trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of

disease from non-coding sequence data. TraP outperforms leading methods in identifying

non-coding variants that are pathogenic and is therefore a valuable tool for use in gene

discovery and the interpretation of personal genomes.
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Major advances in sequencing technologies in recent
years have made next-generation sequencing the
primary tool for identifying causal variants in rare

diseases. Recent studies have reported causal variants in multiple
diseases including epilepsy1, Alzheimer’s disease2, congenital
heart disease3 and ALS4, 5.

With the accessibility of sequence data, the focus now shifts
to accurate data interpretation. Several approaches have been
proposed to identify causative variants from sequence data6–8.
Pinpointing the causative variant requires filtering and
prioritizing gene variants. Sequencing of large populations allows
filtering out common alleles that are much less likely to cause rare
diseases. Large population data sets such as: ExAC9 (60,700
exomes), EVS10 (6,500 exomes) and Kaviar11 (13,200 whole
genomes and 64,000 exomes) allow filtering out the common
alleles, while retaining rare alternative alleles. Rare allelic variants
are then prioritized based on their predicted ability to result in
protein damage. Numerous tools and scores are available for this
purpose, predicting effects based on amino-acid substitutions
(PolyPhen-212, SIFT13, FATHMM14), conservation (GERP++15)
or an ensemble of annotations and scores (CADD16,
MutationTaster17, GWAVA18). These approaches predict
functional coding variants with very high accuracy, in some
measure due to the high conservation of protein sequences.
However, variants that do not change the amino-acid sequence,
such as intronic and synonymous variants, are under lower
evolutionary constraints19, 20, making them much harder to
prioritize using these tools and resulting in these variants being
mostly discarded in genome interpretation analyses. Yet
non-coding variants, while not necessarily under as strong
evolutionary constraint, can potentially have deleterious effects
on a transcript through the regulation of splicing or
transcription in a species-specific manner21. Therefore,
successfully capturing these indirect effects will enable prioritizing

the magnitude of damage a synonymous or intronic variant will
cause.

The Transcript-inferred Pathogenicity (TraP) score, presented
here, is constructed to evaluate a single nucleotide variant’s
ability to cause disease by damaging a gene’s transcripts and
subsequently also its protein products. To ensure that TraP
captures signals unrelated to amino-acid substitutions, the model
was trained only on synonymous variants. TraP was further
evaluated using only variant data sets of either intronic or
synonymous annotations. Through a comprehensive evaluating
scheme, we demonstrate TraP’s negative correlation with allele
frequency using population sequence data, and present TraP’s
extreme specificity when distinguishing known pathogenic and
benign, synonymous and intronic variants. TraP’s application to
sequence data proves successful in identifying known risk
factors of epilepsy from patients’ de novo mutations, as well
as pinpointing a specific disease gene in a family-trio
exome-sequencing study. Considered together, this evaluation
approach exhibits TraP’s ability to correctly prioritize
pathogenicity of non-coding variants when interpreting human
genomes.

Results
Construction of the TraP score and model evaluation. The
TraP score was constructed using three main components: (1)
Information acquisition—details of the harboring gene and its
transcripts are gathered for each variant (Fig.1a–1). The GERP++
Rejected Substitutions score15 (GERP++ score) is also obtained
for measuring evolutionary constraints acting on a specific
coordinate. (2) Feature calculation—possible changes to sequence
motifs are evaluated, including changes to exon–intron
boundaries (Fig.1a–2), creation of cryptic splice sites (Fig.1a–3),
creations and disruptions of cis-acting binding sites for splicing
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Fig. 1 TraP model construction and evaluation. a TraP construction workflow and main features calculated for TraP: (1) Information acquisition from all
genes and transcripts that harbor by the variant, (2) changes to splice site motif that affect it’s binding affinity to the splicing machinery, (3) creations of
new splice junctions that might interact with the splicing machinery, (4) creations and disruptions of cis-acting binding sites to splicing regulatory proteins
(SRP), (5) interactions between features, such as a stronger effect of a new splice site on an exon with a weak original splice site (red representing a new
splice site). Model is trained using synonymous variants that are either known pathogenic variants (blue box, left) or DNMs from healthy individuals (red
box, right). b A receiver-operating characteristic curve showing the results of 10 rounds of 10-fold cross-validations with an average AUC of 0.86. c Model
predictions of the training-set show a clear separation of pathogenic variants (blue) versus control DNMs (red). TraP (y-axis) exhibits a minimum threshold
for pathogenic variants of 0.459, below, which reside all control DNMs. GERP++ score (x-axis) considers 49.5% of benign variants as conserved

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00141-2

2 NATURE COMMUNICATIONS |8:  236 |DOI: 10.1038/s41467-017-00141-2 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


regulatory proteins (Fig. 1a–4), interactions between selected
features such as original and new splice site scores (Fig.1a–5) and
others (Supplementary Data 1). Overall, 42 features and 14
general properties (chromosome, strand, coordinate, and so on)
are collected for each variant. (3) Modeling—the last component
of the score construction is the incorporation of selected features into
a random forest model. The model is then trained on a set of
pathogenic and benign variants and its performance is evaluated.

To train the TraP model we constructed a data set of 75
pathogenic synonymous variants and 402 benign variants (the
‘training-set’, Fig. 1a). Pathogenic variants were carefully curated
from published studies where each variant is strongly associated
with rare disease (Supplementary Data 2). We used 402 de novo
mutations identified among healthy individuals (control DNMs)
as benign variants22. Healthy DNMs were used as negative
controls as a preventative measure to assure the model did not
train to select features that are specific only to rare variants. Using

a set of benign population variants as controls might have trained
TraP against more common variants.

The final TraP score produced by the model is in a range
between zero and one (0–1) and represents the fraction of
decision trees that classify a variant as pathogenic.

The model was tested with different sets of features and
re-evaluated for the ability to distinguish training-set pathogenic
and benign variants. The final model that has the best
performance is using 20 selected features (Supplementary Data 1)
and the importance measurements of each feature’s contribution
were measured (Supplementary Data 3 and Supplementary
Information). This model has an accuracy of 91.82% (8.18%
out-of-bag error rate). To further test the robustness of the
prediction model, we also followed with an elaborate scheme of
ten 10% cross-validations by which an average Area Under the
Curve (AUC) of 0.86 was achieved, supporting the model
accuracy measurement (Fig. 1b).
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Fig. 2 TraP and allele frequency of synonymous and intronic variants. a TraP density plots for training-set pathogenic variants (red), control DNMs (blue)
and 1.46M ExAC synonymous variants (green). b Correlation between TraP and MAF for 29,985 synonymous variants that create strong cryptic
splice sites. The data set was binned into 20 groups by taking 5% score intervals and examining the correlation of the 20 points with the average MAF
for each group. c Correlation between GERP++ score and MAF for 29,985 synonymous variants that create strong cryptic splice sites. The data set was
binned 20 groups as in (b). d MAF distributions for different types of variants. MAF distribution for synonymous variants is presented with no Trap
threshold (yellow), minimum pathogenic TraP (≥ 0.459, orange) and high TraP (≥ 0.93, red). Synonymous variants with high TraP (red), have significantly
lower average MAF than NS variants (bright blue). MAF distribution of CADD top scoring synonymous variants (97.84th percentile) is also presented
(green). e MAF distributions based on a non-GERP++TraP model for 1.46M ExAC synonymous variants. Thresholds used differ from the final TraP model:
minimum pathogenic TraP threshold used is the 25th percentile score (≥ 0.66, orange) and high TraP threshold is the 75th percentile score (≥ 0.955, red).
f MAF distributions for 1.5M intronic variants from 776 sequenced whole genomes. MAF distribution is presented for variants with no Trap threshold
(yellow), minimum pathogenic TraP (≥ 0.459, orange) and high TraP (≥ 0.93, red). The whiskers of the boxplots extend to the most extreme data point,
which is no more than 1.5 times the interquartile range away from the box
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TraP presents a clear-cut discrimination of pathogenic from
benign training variants, scoring all pathogenic variants ≥ 0.459
with an average TraP of 0.8. On the other hand, 99% of benign
variants are scored below 0.18, and all benign variants fall below
0.37, with an average TraP of 0.034 (Fig. 1c). While TraP shows a
clear separation, GERP++ shows ambiguous values: almost
half (49.5%) of the control DNMs are considered conserved
and almost 20% of the pathogenic variants are located in
non-conserved positions (i.e., GERP++ score lower than zero).
Thus, while conservation helps TraP identify some pathogenic
variants, TraP also identifies the transcript-damaging potential of
nucleotide substitutions where the position itself is not under
evolutionary constraint.

TraP properties of variants in the general population. To assess
the general properties of TraP prediction, it was tested using large
datasets of synonymous and intronic variants. As a synonymous
dataset we used the information from 60,706 exomes (ExAC
database)9. The ExAC database represents a human population
reference cohort that also includes samples from various common
disorder studies such as type-2 diabetes, schizophrenia and
myocardial infarction. However, individuals affected by severe
pediatric disease were removed from the dataset so that it should
serve as a useful control set of allele frequencies for severe disease
studies. We retrieved all the synonymous variants from ExAC,
identifying 1.46 million variants. The average TraP for ExAC
synonymous variants is 0.087, which is dramatically lower than
the 0.8 average score for the training-set pathogenic variants

(MW-test, P-value= 6.4 × 10−50), and slightly higher than the
0.034 average TraP for the training-set control DNMs (MW-test,
P-value= 9.4 × 10−35, Fig. 2a). Only 2.16% of ExAC variants
(31,520 variants) rank equal to or higher than the minimum
0.459 score threshold for pathogenic variants, suggesting 97.84%
are benign. We can expect that this small subset of 2.16% ExAC
pathogenic classified variants will be a mixture of clinically
relevant variants that reside among ExAC population and also
false positives arising from some background noise that can occur
due to biological/technical reasons within the ExAC sample.
Thus, the ExAC reference cohort sample adopted here informs us
that in a large human population sample the expected rate of
TraP-based pathogenic-classified synonymous variants is ~ 2%.

We next evaluated TraP for variants that reside only within
introns. For this purpose, we analyzed whole genome sequencing
data from 776 genomes that are available for control use. These
control genomes produced 18,377,624 intronic variants with high
mapping quality. We randomly selected 1.5 M variants for further
analysis. The average TraP for intronic variants is 0.069,
significantly lower than the score for 1.46M synonymous variants
(MW-test, P-value< 1 × 10−100). Furthermore, only 0.6% (8,644
out of 1.5 M) intronic variants pass the minimum 0.459
pathogenic TraP (data not shown), highlighting that the expected
rate from large human population samples of TraP-based
pathogenic-classified intronic variants is ~ 0.6%. Importantly,
the median GERP++ score for Trap-considered pathogenic
intronic variants is 0.12, suggesting that half of them are not
under evolutionary constraints (Supplementary Fig. 1).

These results suggest that TraP is very selective in introns and
further supports that variants considered as highly deleterious by
TraP might not be under strong evolutionary constraints.

High TraP scores correlate with lower allele frequencies.
Among the most sensitive tests of whether a class of variants is
under negative selection is the comparison of allele frequencies to
variants that are presumed neutral or under less selection.
To evaluate the relationship between TraP and minor allele
frequency (MAF), we first tested the full set of 1.46 M ExAC
synonymous variants. Since both TraP and MAF distributions
are highly positively skewed with most values clustered around
zero (Supplementary Fig. 2), we binned the dataset into 20 groups
by taking 5% score intervals and examining the correlation of the
20 points with the average MAF for each group. We repeated this
analysis also for the GERP++ score. We find that GERP++
correlation with MAF is − 0.82 (P-value= 4.7 × 10−06) and TraP’s
correlation with MAF is − 0.52 (P-value= 0.021).

Based on the TraP model importance table, a ‘Cryptic 5’ Splice
Site Score’ (feature F7) has a high contribution in predicting
pathogenicity. This class of variants represents variants expected
to be particularly sensitive to TraP but not necessarily to
conservation. Focusing on the subset of 29,985 synonymous
variants that are classed as creating a new, strong cryptic 5’ss
(PSSM score> 84), we find that the TraP correlation with MAF is
stronger r= − 0.84 (P-value< 2.2 × 10−16) compared to the
correlation between GERP++ and MAF of r= − 0.59 (P-value=
0.0069, Fig. 2b, c). When Sub-selecting cryptic splice site variants
that are predicted as pathogenic (TraP≥ 0.459, 6,328 variants),
TraP correlation is − 0.51 (P-value= 0.025) while GERP+
+correlation is − 0.15 (P-value= 0.53, Supplementary Fig. 3).
These results exhibit how TraP can help identify potential
variants that are deleterious to the transcript (thus, strongly
selected against in the human lineage), but do not necessarily
have a strong conservation signature.

We next compared allele frequencies between synonymous
variants that TraP considers as pathogenic against several types of
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coding variants retrieved from the ExAC database: all
Non-Synonymous (NS) variants, a subset of only Stop-Gain
(SG) variants and a subset of missense variants with high (95th
percentile) Polyphen-2 scores (sizes of datasets are depicted in
Supplementary Data 5). We observe that synonymous variants
with higher than minimum pathogenic TraP (≥ 0.459, 31,520
variants) and NS variants have a significantly lower MAF than the
remaining TraP predicted benign synonymous variants (Fig. 2d,
yellow, orange and bright blue columns, multiple MW-tests,
P-value< 8.6 × 10−93). We also find that a higher TraP threshold
results in significantly lower MAF. Strikingly, we find that a TraP
threshold of 0.93 and above (5,402 variants) identifies synon-
ymous variants with significantly lower allele frequencies than NS
variants (Fig. 2d, red and bright blue columns, MW-test, P-value
= 0.046). The lower MAF distributions of high TraP (≥ 0.93)
synonymous variants than NS variants highlight that this
sub-group of synonymous variants appears to be under similar
levels of negative selection as the NS class of variants and might
be as deleterious to the protein product.

As observed in Fig. 2b, c, TraP adds significant information to
conservation for specific classes of variants. We next examined
whether TraP can identify rare variants without conservation
information. We constructed a TraP model without the GERP++
score as a feature. The model without GERP++ as a feature
achieved an accuracy of 90.5% (compared to the original 91.8%

accuracy). We next tested this model using the 1.46 M ExAC
synonymous variants. When comparing MAF of high and low
TraP variants in the GERP-less model, the results exhibit a similar
strong decrease in MAF distribution as seen with the original
TraP (Fig. 2e). We find a significant decrease in MAF distribution
between all the synonymous variants and higher TraP
variants (Fig. 2e, yellow and orange bars, MW-test, P-value
= 4.68 × 10−09). In this analysis, a TraP threshold of 0.66 was
used to classify minimum pathogenic TraP scores, which
corresponds to the 25th percentile of the GERP-less training-
set. When further increasing the threshold (TraP> 0.955, i.e., the
75th percentile among the GERP-less training-set), the MAF
distribution further decreases, and is significantly below the MAF
of synonymous variants with intermediate TraP (≥ 0.66 and
< 0.955, orange and red bars, MW-test, P-value = 2.05 × 10−10).
These results highlight that the GERP-less TraP captures the
relevant signals among possible variants to help identify this class
of variants that damage the transcript and are selected against in
the human population.

The CADD score, a widely used annotation ensemble score,
incorporates many different features such as conservation and
regulatory annotations and is used to evaluate coding and
non-coding variants16. In order to determine how TraP performs
in comparison to CADD, we examined CADD scores using the
same ExAC synonymous dataset. Specifically, we tested CADD’s

0.0 0.2 0.4 0.6 0.8 1.0

Epi4K DNMs TraP

Epi4K DNMs GERP++

C
lin

V
ar

 b
en

ig
n 

G
E

R
P

+
+

C
lin

V
ar

 b
en

ig
n 

C
A

D
D

C
lin

V
ar

 b
en

ig
n 

T
ra

P

0.0

0.2

0.4

0.6

0.8

1.0

10 5 0 5

10

5

0

5

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Epi4k DNMs CADD

Epi4K DNMs
n = 103

ClinVar benign
n = 4,352

Control DNMs
n = 402

Epi4K DNMs
n = 103

ClinVar benign
n = 4,352

Control DNMs
n = 402

Epi4K DNMs
n = 103

ClinVar benign
n = 4,352

Control DNMs
n = 402

0.00 0.10 0.20 0.30

TraP

–10 –5 0 5

GERP++

0 5 10 15 20

CADD

a b

c d

e f

Fig. 4 Epilepsy synonymous DNMs vs. ClinVar benign controls. A quantile–quantile plot for 103 Epi4K DNMs and 4,352 benign ClinVar synonymous
variants is calculated for a TraP scores, c GERP++ scores and e CADD scores. Score distributions for training-set control DNMs, ClinVar benign variants
and Epi4K DNMs are scored using b TraP, d GERP++ and f CADD.The whiskers of the boxplots extend to the most extreme data point, which is no more
than 1.5 times the interquartile range away from the box

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00141-2 ARTICLE

NATURE COMMUNICATIONS |8:  236 |DOI: 10.1038/s41467-017-00141-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


relationship with MAF by comparing the MAF of the top 2.16%
CADD scored variants (Fig. 2d, green column) to the rest (lower
97.84%) of the variants. Surprisingly, the synonymous variants
with highest CADD scores have a higher MAF than the
remaining ~98% of the variants with lower CADD scores. CADD
identifies the more common synonymous variants as more
damaging (P-value= 2.28 × 10−112). Allele frequencies for top
CADD variants are also significantly higher than NS mutations
and variants with a TraP score≥ 0.459 (multiple MW-tests,
P-value< 1.8 × 10−214). In addition, CADD considers the known
pathogenic variants from the training-set (CADD 12.88± 4.95) as
significantly less damaging than NS variants (CADD 18.67± 9.84,
MW-test, P-value= 9.4 × 10−11, Supplementary Fig. 4).

When examining intronic variants’ correlation with MAF, the
1.5 M intronic control variants exhibit the same decreasing MAF
with increasing TraP scores as observed for synonymous variants
(Fig. 2f, yellow to red columns). Contrary to its results with
synonymous variants, high CADD variants exhibit the expected
lower median allele frequency in intronic regions (Fig. 2f, green
column). Taken together, these results show that TraP selects both
intronic and synonymous variants that have lower MAF and are
under stronger negative selection.

TraP identification of pathogenic and benign variants.
The relationship between TraP and MAF confirms that TraP
reliably identifies variants that are selected against in the
population. We next tested how TraP performs in determining
variant pathogenicity. For this purpose, we used curated benign and
pathogenic datasets obtained from the ClinVar database23, which is
a public archive of the relationships between gene
variants and phenotypes. ClinVar sets a clinical significance value to
each variant as recommended by the American College of Medical
Genetics and Genomics (ACMG)24. We obtained two ClinVar
datasets for intronic and synonymous variants. For each dataset, we
selected only variants that are considered as either ‘benign’ or
‘pathogenic’ by ClinVar and scored all variants using TraP.

The dataset of synonymous variants from ClinVar consists of
4,418 variants, 66 are ‘pathogenic’ that do not overlap with the
75-pathogenic training-set variants; the rest (4,352) are classified
as ‘benign’. The average difference in TraP scores between the
groups is highly significant (0.62 vs. 0.078, pathogenic versus
benign variants, respectively, MW-test, P-value= 7.1 × 10−27).
We next tested the specificity and sensitivity of different
TraP score thresholds. When plotting a Receiver Operating
Characteristic (ROC) curve using TraP predictions for pathogenic
and benign variants, the AUC is 0.88. Using the minimum TraP
for pathogenic training variants (≥ 0.459) as a cutoff, specificity is
a very high 98.4% and sensitivity reaches 63.6% (filled area in
Fig. 3a). With TraP above 0.75, specificity reaches 99.7% while
achieving sensitivity of 59%. These results exhibit a strong

capability for TraP to identify true negatives, while still
pinpointing a large proportion of the pathogenic variants (Fig. 3a,
red line).

In comparison with TraP, the GERP++ score alone also
separates both groups with a significant difference (MW-test,
P-value< 6.85 × 10−24), and with a similar AUC of 0.866
(Fig. 3a, green line). However, to achieve a specificity of 98.4%
(as achieved by a minimum pathogenic TraP) a very high
GERP++ score is required (>5.6) that misses most pathogenic
variants with a very low sensitivity of 12%. These results
demonstrate that GERP++ alone cannot be used to identify the
pathogenicity of synonymous variants.

CADD scores for pathogenic variants are also significantly
higher than benign variants (Fig. 3a, blue line, MW-test P-value
= 2.8 × 10−08, AUC is 0.69). To reach the minimum pathogenic
TraP specificity of 98.4%, CADD also misses most pathogenic
variants with a true positive rate of 6% above a 19.6 CADD
threshold.

The ClinVar data set of intronic variants consists of 3,266
variants, 452 are considered ‘pathogenic’ and 2,814 are ‘benign’.
Average TraP scores are highly significant between the groups:
0.52 vs. 0.11, pathogenic versus benign, respectively (MW-test,
P-value< 8.32 × 10−114), and the AUC is 0.83, suggesting a
successful identification of pathogenicity (Fig. 3b, red line). The
minimum pathogenic TraP score specificity is 97.1%, almost as
high as synonymous classification, while sensitivity reaches a
comparable 56.6% (filled area in Fig. 3b).

When interpreting a patient’s genome in search for pathogenic
variants, especially within intronic regions, ruling-out false
positives is of utmost priority. We therefore tested specificity
using a higher TraP threshold. We find that a TraP score above
0.75 provides very high specificity (99.4%) while managing a
sensitivity of 35.8%.

Testing the GERP++ score of intronic variants, we find that
pathogenic and benign variants are significantly different
(MW-test, P-value< 3.3 × 10−94) with an AUC of 0.8 (Fig. 3b,
green line). To achieve a specificity of 97.1%, as achieved by a
minimum pathogenic TraP, a very high intronic GERP++ score is
required (>4.65) with a sensitivity of 38% (compared TraP’s
56.6%). Reaching 99.4% specificity, as gained by 0.75 TraP
thresholds, drops the GERP++ sensitivity to 11.7%.

When comparing CADD’s ability to differentiate pathogenic
and benign intronic variants, AUC is 0.76 and groups are
significantly different (Fig. 3b, blue line, MW-test, P-value< 5.8 ×
10−71). However, to reach a high specificity of 97.1% as with
minimum pathogenic TraP, the CADD score has to be higher
than 16.85. This score has a sensitivity of 18.8%, missing two
thirds of the variants caught using TraP and half the variants
caught using GERP++. A 99.4% specificity, as achieved by a 0.75
TraP, drops CADD sensitivity to 8.2%.

A) Construct design
    (626 bp)

B) WT splicing
    (339 bp)

C) Δexon10
    (235 bp)

pI-12 exon 1

pI-12 exon 1

pI-12 exon 1

MFSD8 – exon 10

MFSD8 – exon 10

pI-12 exon 2

pI-12 exon 2

pI-12 exon 2

Proband

GAPDH

Parent
81 bp

104 bp
K333

206 bp

a b

Fig. 5Mini-gene design and quantification. aMinigene design. (A) Exon 10 and flanking genomic sequence was amplified from patient and parent DNA and
cloned into the pI-12 splicing reporter vector. (B) Predicted splicing effect if splice site mutation has no effect on WT splicing. (C) Predicted skipping of
exon 10 if splice site is disrupted by K333. b Semi-quantitative PCR gel of splicing isoforms of parent harboring the W97C variant and proband harboring
both the W97C and K333 variants
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Taken together, these results demonstrate the strength of TraP
in identifying both intronic and synonymous pathogenic variants.
Indeed, when requiring high specificity, TraP identifies three to
four times as many pathogenic variants as CADD or GERP++.
The reason that high conservation misses many of the pathogenic
variants might once again lie in variants that reside in
un-constrained non-coding positions (see Discussion).

TraP identifies risk factors of epilepsy. As demonstrated above,
TraP can identify pathogenic synonymous and intronic
variants that are mostly overlooked in exome interpretations.
Theoretically, the addition of TraP-defined deleterious variants
that were previously dismissed in genetic analyses might
implicate a gene as a risk factor where it was previously
unnoticed. We therefore used TraP to search for risk candidates
of synonymous origins. For this purpose, we used de novo
variants collected from exome sequence data encompassing 281
epilepsy family trios sequenced by the Epi4K consortium25, 26.
Overall, 103 synonymous de novo mutations (Epi4K DNMs)
were collected using stringent criteria (Supplementary Data 6,
see Methods). TraP scores were calculated for the 103 Epi4K
DNMs and were compared to the 4,352 synonymous benign
variants already obtained from ClinVar (used for AUC
calculations in Fig. 3a). We reasoned that it is plausible Epi4K
DNMs might not have any damaging effects or epilepsy
association, while on the other hand ClinVar benign variants
might harbor a small fraction of damaging variants not yet
associated with disease. Thus, TraP scores for the two datasets are
expected to overlap to an extent. However, a tendency towards
high TraP scores in epilepsy cases could point to genes that might
be implicated as risk factors in epilepsy.

We compared the two datasets using a non-parametric
quantile–quantile plot approach while interpolating the values
of the larger data set to fit the size of the smaller one. Comparing
TraP of Epi4K DNMs to ClinVar benign variants shows a shift
toward higher scores in the epilepsy cohort, specifically for TraP
scores that are higher than 0.3 (Fig. 4a, dashed red line).
Furthermore, TraP scores for Epi4K DNMs (Fig. 4b, red box) are
significantly higher than ClinVar benign variants (Fig. 4b, orange
and red boxes, MW-test, P-value= 0.015).

Surprisingly, Epi4K DNMs have higher GERP++ scores mostly
in the lower, not conserved percentiles (Fig. 4c), rendering high
GERP++ scores uninformative for identifying risk candidates in
the Epi4K dataset. Moreover, GERP++ score distribution is
similar between Epi4K DNMs and the training-set control DNMs
(Fig. 4d, yellow and red boxes).

CADD exhibits the opposite trend, providing higher scores for
ClinVar benign variants than the Epi4K DNMs dataset (Fig. 4f,
MW-test, P-value= 0.0072), suggesting the Epi4K DNMs dataset
is less damaging than population benign variants.

The fact that de novo mutations identified in patients with
epilepsy have higher TraP scores than those seen in individuals
without such a diagnosis suggests that these variants might
influence disease risk via effects on the transcript. We therefore
examined all the Epi4K DNMs that pass a threshold score of 0.35,
which is within the score shift region observed in Fig. 4a, and
almost five times higher than a benign average score. There are
7 DNMs that pass the threshold score (Table 1). Two of these
variants reside in the NIPA1 and CHD2 genes. The latter is a
known risk factor for epilepsy27. NIPA1 is not considered a
definitive epilepsy gene, yet has accumulating recent evidence for
its association with epilepsy28–30. This analysis implicates these
variants as strong epilepsy candidates. Of the remaining 5 genes
with high TraP, two more are associated with other neurological
diseases through synaptic signaling and neurodegeneration
(RIT231, 32 and EPHA433).

The total number of human genes that are associated with
epilepsy differs between reports, ranging from 73 strongly
associated34 to 270 that are implicated to some extent in the
literature35. When considering even a lenient measure for
epilepsy association: 270 epilepsy genes out of 20,686 human
protein coding genes (1.3%), we find the gene list in Table 1 (2/7
or 28.6%) to be significantly enriched for epilepsy associated
genes (Fisher’s exact test, P-value= 0.0035) demonstrating that
TraP identified epilepsy risk factors within the Epi4K DNMs. It
further suggests that other genes from Table 1 might also harbor
risk for epilepsy and should be further examined using burden
analyses and tested for existence in other epilepsy cohorts.

Application of TraP in a single case study. Here we report a
specific case- and unaffected parents-trio analysis that, by
application of TraP, allowed the identification of a causal
synonymous variant.

The patient reported is a 15-year-old female of Caucasian
ancestry. The patient presented with progressive vision loss with
decreased color and night vision, and retinal dystrophy at 11
years old. Exome sequencing of proband and parents was done
when she was 13 years old and revealed compound heterozygous
variants in the Major Facilitator Superfamily Domain Containing
8 (MFSD8) gene (OMIM, 611124), which include a novel
non-synonymous mutation W97C (NM_152778.2:c.291-G> C)
and a novel synonymous mutation K333 (c.999 G>A) at the first
nucleotide of exon 10 (position 1 of the 3′ splice site). Mutations
in MFSD8 are associated with Neuronal Ceroid Lipofuscinosis
(NCL), a progressive neurodegenerative disorder characterized by
the intracellular accumulation of auto-fluorescent lipo-pigment
storage material in the brain. Phenotypes include progressive
dementia, seizures and progressive visual failure. Because of
the patient’s overlapping ophthalmologic symptoms, and the
autosomal recessive mode of inheritance of NCL, MFSD8 was
suspected to be the causal gene for the patient’s symptoms.

Table 1 Epi4K DNMs with high TraP scores

Variant ID TraP Gene ID Phenotype associated with Gene Ref

15-23062273-T-G 0.949 NIPA1 Hereditary spastic paraplegia and association to Epilepsy 29

18-40695437-G-A 0.812 RIT2 Schizophrenia, synaptic signaling; weak PD 31, 32

2-222428815-G-A 0.438 EPHA4 ALS, neurogenesis; strong interaction with ARHGEF15 (a known epilepsy gene) 33

14-23858626-T-C 0.430 MYH6 Cardiomyopathy
3-42700087-G-A 0.383 ZBTB47 Unknown
15-93472268-C-T 0.358 CHD2 Epileptic encephalopathy 27

13-52249316-A-G 0.352 WDFY2 Unknown

Genes associated with epilepsy are in bold and genes associated with other neurological disorders are underlined.
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The missense variant W97C is putatively damaging to the
protein because 1) it is not found in >60 thousand individuals in
the ExAC database, and therefore is considered extremely rare,
and 2) it is predicted as ‘deleterious’ and ‘possibly damaging’ to
the protein by both the SIFT and Polyphen-2 scores, respectively.

TraP score of the K333 synonymous variant was calculated as
0.58, well into the range of having a pathogenic effect. We
therefore evaluated K333’s effect on splicing of the MFSD8
transcript. Exon 10 of MFSD8 and flanking intronic sequences
were amplified from genomic DNA isolated from the patient and
the parent lacking the synonymous mutation. The region was
cloned into the pI-12 splicing reporter vector and over-expressed
in HEK293T cells (Fig. 5a). Semi-quantitative PCR demonstrates
that the K333 mutation results in aberrant splicing of the MFSD8
transcript—inducing the full exclusion of exon 10 (Fig. 5b).
Sanger sequencing confirmed full skipping of exon 10 in all
replicates with the K333 mutation. The wild-type construct also
exhibits a small amount of the skipping isoform; however, the
wild-type isoform predominates (Fig. 5b). These results present
strong evidence for K333 resulting in damage to MFSD8. Taken
together, both variants (missense and synonymous) have
deleterious effects on both copies of MFSD8, thus fitting the
autosomal recessive mode of inheritance of NCL, which requires
two aberrations to both copies of the gene in order for the disease
to develop. At age 15 years, after diagnosis using exome
sequencing, the patient began having generalized tonic-clonic
seizures and was found to have moderate cerebellar atrophy on
brain MRI, likely consistent with the attenuated clinical course
reported in juvenile-onset NCL36.

Discussion
The standard approach in exome sequencing studies is to
consider rare non-synonymous variants as disease candidates.
This mainly includes missense, nonsense and canonical splice
variants while other variant types are mostly ignored6. The ability
to interrogate non-amino-acid changing variants within coding
genes (either synonymous or intronic) is currently very limited,
owing to several reasons: (1) the reduced evolutionary constraints
in those regions19, which makes it harder to infer their
functionality, (2) the huge numbers of potential variants that arise
from these regions, (3) the large sample sizes required to cover
those regions with WGS7 and (4) the lack of appropriate methods
to account for 1 and 2. Thus, one of the missing building blocks
in exome analyses is the lack of reliable methods to infer potential
damaging effects, much less pathogenicity, of synonymous
variants. This is becoming more of an issue whenWGS data are
concerned due to the vast non-coding intronic variants that need
to be assessed.

While existing methods are able to prioritize synonymous and
intronic variants, they lack the specificity required for detection of
causal variants. Several hundreds of sequenced whole genomes
can produce millions of intronic variants and low specificity
scores will leave researchers chasing hundreds of thousands of
suspected variants. TraP was designed to handle exactly this issue.
While we aimed at developing a successful predictor, maintaining
the highest specificity was a top priority in TraP design.
Discarding 99.4% of intronic variants as benign, while still
maintaining a good evaluation of pathogenic variants, finally
enables working with the vast numbers of variants arising from
intronic regions.

TraP is not an ensemble of annotations but a simplistic model,
taking into consideration mostly sequence and transcript
information. Due to TraP being attentive to indirect splicing
regulatory effects, it finds pathogenicity where scores searching
for conservation, such as GERP++ and also CADD to an extent,

are blinded. In support of this statement, TraP identifies
pathogenic variants that are not conserved, yet still have rare
population frequencies. Doing this without prior population
frequency information, and in contrast to conservation, suggests
that TraP identifies pathogenic events that were not selected
against during vertebrate evolution, but are selected against in
human populations. This conclusion is supported by the fact that
the highest complexity of alternative splicing is found in primates
and by the species-specific nature of splicing regulation, that is
directed mostly by cis-acting elements21. While identification of
protein coding causal variants is made clearer because of their
high evolutionary conservation, regulatory elements and highly
skipped exons have much higher evolutionary turnover rate37, 38,
again, suggesting that conservation is a weaker marker for those
regions.

While the above non-conserved and potentially pathogenic
variants account for TraP’s advantage over GERP++, the
advantage over CADD might be due to the nature of ensemble
annotation tools vs. more specifically aimed solutions. The
CADD model incorporates many features, including
conservation, epigenetic modifications and more. While the
multitude of features is an advantage for the generic use of CADD
and the ability to apply it over the whole genome, it is a
disadvantage when applied to a region that may be weakly
affected by many of these features. The focus of TraP on
transcript affecting features renders it more useful when
considering intronic and synonymous variants inside the gene
region.

To facilitate usability among the general user community we
hereby describe the three recommended thresholds based on the
allele frequency tests that were introduced in the Results section
(Fig. 2d). We consider a TraP score below 0.459 to, in general, be
enriched for benign variants. We consider scores≥ 0.459 and
< 0.93 as the intermediate pathogenic range, akin to possibly
damaging classifications. These ranges are enriched for cryptic
slice sites, effects of cis-acting regulatory sequences and weak to
intermediate splice region changes. TraP scores≥ 0.93 are most
likely to damage the final transcript and are considered as
probably damaging. These variants are enriched for strong splice
region changes and strong cryptic splice site creations.

Finally, we would like to note that by construction, TraP is
specifically trained on pathogenic variants causing severe
Mendelian disorders. It is therefore expected that TraP will
perform optimally on severe and highly-penetrant Mendelian
disorders. The application of the TraP scoring framework to more
common and complex disorder risk allele predictions should
be considered more carefully since TraP was not customized
to catalogues of variants contributing to risk in these more
genetically complex settings.

We conclude that TraP offers a substantial advance over
available methods in the identification of intronic and
synonymous variation that cause disease by affecting the
constellation of transcripts that a gene produces. For this reason,
TraP should find immediate application in a broad range of
human genetics studies including diagnostic sequencing,
which seeks to identify pathogenic mutations in large-scale gene
discovery efforts using collapsing and related analyses.

Methods
Datasets. Synonymous variants training-set: the list of synonymous pathogenic
variants were obtained by combining previously reported variants taken from three
sources: Chamary et al.39, Buske et al.40 and the OMIM online database41 (accessed
on May 2015). Upon merging these lists, we identified 93 variants including eight
overlapping variants. Next, the 85 distinct variants were curated by going over the
literature of each variant and validating that these previously reported variants
were indeed linked to a rare disease and were unambiguously synonymous by
ensuring the variant has no other non-synonymous annotation across any other
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overlapping transcript at that variant site. We did not filter based on current
reference cohort minor allele frequency of the reported pathogenic variant among
databases like ExAC. As a result of this curation we were left with 75 pathogenic-
assigned training variants (Supplementary Data 2).

The list of benign variants was obtained from control trios published by
Iossifov et al.22. All 402 de novo synonymous variants resided within the consensus
coding sequence (CCDS) and were identified from individuals not ascertained for
any specific disorder. De novo variants were used because they represent novel
variants in the gene pool and thus we can be assured that the model does not train
against population variants, and thus (critically) does not train against population
allele frequency (Supplementary Data 2).

ExAC synonymous variants: 1.46 million synonymous variants were
downloaded from the ExAC database9 along with their ExAC global allele
frequencies. Variants were filtered based on having a ‘synonymous-coding’ impact
using the Ensembl Variant Effect Prediction impact table42; any variant having
another consequence of higher impact than synonymous-coding was removed
from analysis.

Whole genome sequence intronic variants: 776 whole-genome controls
available at the Institute for Genomic Medicine at Columbia University Medical
Center were analyzed for SNP detection. We applied the following filters for
mapping quality: (1) minimum read depth of 10, (2) phred scale probability that
the alternative allele is incorrectly specified (QUAL) greater than or equal to 40, (3)
mapping quality (MQ) greater than or equal to 30 and (4) quality by depth (QD)
greater than or equal to 2. Variants were filtered based on having an ‘intronic’
impact using the Ensembl Variant Effect Prediction impact table42; any variant
having another consequence of higher impact than ‘intronic’ was removed from
analysis. The final intronic dataset consisted of 1.5 million variants that were
randomly selected from 18,377,624 intronic variants that passed the above filters.

ClinVar pathogenic and benign datasets: 4,418 synonymous variants were
obtained from the ClinVar database23 that had a clinical significance of either
‘pathogenic’ or ‘benign’ and had CADD values. The clinical significance impact was
decided in ClinVar based on the recommended rules by the ACMG24. Of the 4,418
variants, 66 marked as ‘pathogenic’ and 4,352 as ‘benign’.

3,266 intronic variants, were obtained from ClinVar23 that had a clinical
significance of either ‘pathogenic’ or ‘benign’ and had CADD values. 452 are
marked as ‘pathogenic’ by ACMG standards and 2,814 as ‘benign’.

Epi4K dataset: the Epi4K consortium exome database consists of 281 epilepsy
family trios25, 26.103 de novo synonymous variants (Supplementary Data 6) were
extracted based on the following criteria:

(1) The read depth in both parents and proband should be greater than or equal
to 10, (2) phred scale probability that the alternative allele is incorrectly specified
(QUAL) greater than 50, (3) genotype quality (GQ) greater than 20, (4) alternative
allele quality by depth (QD) greater than 2, (5) mapping quality (MQ) greater than
40, (6) no reads in either parent or 1,631 internal controls should carry the
alternate allele, (7) at least 20% of the reads in the child should carry the alternate
allele, (8) at least three variant alleles must be observed in the proband, (9) quality
control for the allele status in the EVS database10 should not be missing or fail and
(10) the alternative allele should be missing from the ExAC and EVS databases9, 10.

Model construction: information acquisition. Each variant is first identified
within the Genome Reference Consortium Human Genome build 37. Next, the
following annotations are gathered: (a) All the transcripts that the variant resides
in, or all the transcripts in the nearest gene, if gene ids are not provided. (b) All the
exon/intron coordinates in which the variant resides, and (c) distances from both
splice sites in each case (Supplementary Data 1).

The GERP++ Rejected Substitutions score is added as a measure of evolutionary
conservation15. The GERP++ score measures evolutionary constraints acting on a
specific coordinate and is the only external score not calculated by TraP.

Model construction: feature extraction. Once variant annotation information is
gathered, all sequence effects that are caused by the variant are then calculated and
the features are extracted. Below is a high-level description of the extracted features.
The equations used for computing each of the 20 features used in the TraP model
are also depicted (Supplementary Methods).

Splice site changes: any change to the splice site motif is calculated using a
Position Specific Scoring Matrix (PSSM) based on all human exons. Splice site
strength before the substitution is calculated for both the 3′ splice site (3′ss) and
5′ splice site (5′ss) of the harboring exon (or nearest exon in case variant is in an
intron). Next, if the variant is within the splice site region, the splice site is scored
again after the substitution. 3’ss is regarded as 20 nt upstream to the exon-intron
junction and the first 3 nt of the exon. The 5′ss is regarded as the last 3 nt of the
exon and the first 6 nt of the downstream intron.

Cryptic splice site creation/disruption: if the variant creates or disrupts a
canonical sequence (AG/GT), the flanking sequence will be calculated for its
similarity to a splice site motif. The cryptic splice site PSSM score will be calculated
both with and without the variant.

Interactions between splice sites: differences between existing and new splice
sites are also calculated. These differences are later used as splicing effect weight
factors to calculate more complex features such as the Splice Site Overall Score and
the Variant Splice Score (F11 and F20 in Supplementary Methods and

Supplementary Data 1). This follows the logic that an exon with a weak splice site
will be highly affected by a variant creating a strong splice site, while a strong
existing splice site will have no such effect.

Splicing regulatory binding sites: TraP construction pipeline loads four datasets
of major splicing regulatory proteins: SRSF143, SRSF244, SRSF543 and SRSF643, and
one set of splicing silencer sequences calculated in silico45. The variant is then
tested for disruptions or creations of binding site sequences for any and all of the
above regulatory sets.

CpG effects: DNA methylation changes can occur if the variant creates or
disrupts a CpG di-nucleotide. Recent studies show that DNA-methylation affects
the processes of transcription by changing the rate of RNA-polymerase II and also
affect exon recognition, thus might contribute to the damaging effect of a variant46.
This feature was eventually not incorporated into the final model since it did not
add to the model’s ability to distinguish pathogenic variants.

Overall, 14 general properties of the variant (such as coordinate, gene name,
etc.) and 32 features are either collected in the information acquisition process or
calculated by the feature extraction pipeline for each variant, of which 20 features
are used in the TraP model (Supplementary Data 1).

Each of the 20 selected features’ independent ability to differentiate between
TraP-predicted pathogenic and benign variants in the ExAC 1.46 M synonymous
variants dataset was also examined using frequency distributions (Supplementary
Figs. 5–24). This was done separately for TraP-predicted pathogenic variants
(TraP ≥ 0.459) and TraP-predicted benign variants (TraP < 0.459). As the values of
the TraP features are not always normally distributed in the ExAC dataset, we used
a non-parametric Mann–Whitney U-test to test the null hypothesis that the
distribution of the values of each feature for TraP-predicted pathogenic variants is
equal to the distribution for TraP-predicted benign variants (Supplementary
Figs. 5–24, bottom line). 18 of the 20 TraP features have a significant difference (i.e.,
ability to discriminate) between high and low TraP variants (P-value < 2.2 × 10−16).
Of interest, the two remaining features are related to splicing regulatory functions:
the ‘combined ESR Score’ and ‘Negated ESR Score’ features achieve a
P-value of 0.06 and 0.09, respectively. This suggests that contribution to TraP
originating from cis-acting elements of regulatory proteins are not as
straightforward as that of the other features. We also provide a Spearman
correlation matrix for the 20 features and the TraP score itself, using the same
ExAC 1.46 M variants dataset, to help highlight the independent information that
each feature provides to the TraP model (Supplementary Fig. 25).

Model construction: random forest model training and cross-validation. The
random forest is an ensemble-learning algorithm designed to perform classification
that uses a collection of decision trees, each tree is made of a random selection of
features47.

We used the randomForest package in R48 to classify variants as either
pathogenic (1) or benign (0). The model uses 1,000 decision trees, each with square
(N) random set of features, N being the overall number of features used. A
probability is calculated as the fraction of tree ‘votes’ classifying a variant as
damaging. Thus, a TraP score of 0.45 means that 450 trees considered a variant as
pathogenic.

The model was trained using the entire variant dataset (75 pathogenic
variants and 402 controls) and accuracy of 91.82% was evaluated based on the
8.18% out-of-bag estimation of error. As another way to assess the accuracy of
the model, we also performed the following cross-validation scheme: 10%
cross-validation (CV) was performed on the full dataset, each time building the
model using 90% of the data and using it to score the rest 10%. When all samples
were scored, an AUC was calculated using the true and false positive rates. The
dataset was then shuffled and basic 10%-CV scheme was repeated again to calculate
a second AUC. Dataset shuffling was repeated ten times and ten calculated AUCs
were eventually averaged into an overall AUC of 0.86. The feature importance table
was also calculated using the randomForest package and it corresponds to the
mean decrease in Gini coefficient of each feature.

All scripts and tools were developed using the perl script language and the R
statistical computing program49, the latter was also used for both statistical analysis
and graphical display.

Computing a PSSM Score. The algorithms used to score splice site PSSMs have
been previously published19. In summary, to score the splice sites, it is necessary to
obtain the genome’s PSSMs of the 3′ and 5′ splice sites incorporating all human
exons. The 3’ss was defined as the 20 intronic nucleotides upstream of exons and
the first three exonic nucleotides, whereas the 5’ss was defined as the three terminal
exonic nucleotides and the first six intronic nucleotides of the downstream intron.
Only G[T/C]-AG exons were used for this analysis. Subsequently, every splice site
was scored based on its adherence to the human PSSM, as follows:

score ¼
XK

i¼1

log2ðfi;Ai Þ

Where A is the sequence motif to be scored, K is the motif length and fi;Ai , is the
PSSM frequency at character Ai that is found in the i-th nucleotide in the motif, as
in Shapiro and Senepathy50. Next, the score was normalized between 0 and 100 as
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follows:

score ¼ 100 ´ ðscore�MinÞ=ðMax�MinÞ

Where Min and Max are the minimum and maximum splice site scores overall
motifs in that genome.

Minigene construction. Exon 10 and flanking intronic sequence was
amplified from genomic DNA from the patient and parent using primers
MFSD8-splice-XbaI-F: ATCATCTTCTAGATCTACTTTTTGTGTCCCAGAC
and MFSD8-splice-Xho1-R3: GAGACTCGAGCAAAACCATTGCAGTGCATTA
CTTGTTG. Forward and reverse primers introduced the Xba1 and Xho1
restriction sites used in standard cloning. The amplified mutant and WT products
were digested and cloned into the pI-12 plasmid (pI-12 was a gift from Shelton
Bradrick Ph.D and Mariano Garcia-Blanco Ph.D: Addgene # 2427351). Sanger
sequencing confirmed insert of WT (minigene MFSD8-splice10-WT) and mutant
(minigene MFSD8-splice10-mut) exon 10 and flanking intronic regions.

Overexpression and splice isoform analysis. HEK293T cells were transfected in
triplicate with 1.5 µg of either mini gene and 0.5 µg of pCMV-AC-GFP vector to
assess transfection efficiency. Total RNA was isolated 24 h after transfection and
used for reverse transcription using Superscript III (ThermoFisher, 18080).
The cDNA was amplified using the following primers to investigate effect of
mutation on splicing (T7 promoter primer: TAATACGACTCACTATAGG and
Sp6 promoter primer: ATTTAGGTGACACTATAGAA). PCR products were
run on a 1% agarose gel. ImageJ software was used to quantify band intensity.
Intensities were normalized to GAPDH.

Data availability. TraP is pre-computed for all human protein coding genes
and is available at http://trap-score.org/
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