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Abstract

Sialylated human milk oligosaccharides (SHMOs) are important components of human milk
oligosaccharides. Sialic acids are typically found on the nonreducing end and are known binding
sites for pathogens and aid in neonates’ brain development. Due to their negative charge and
hydrophilic nature, they also help modulate cell-cell interactions. It has also been shown that sialic
acids are involved in regulating the immune response and aid in brain development. In this study,
the enriched SHMOs from pooled milk sample were analyzed by HPLC-Chip/QTOF MS. The
instrument employs a microchip-based nano-LC column packed with porous graphitized carbon
(PGC) to provide excellent isomer separation for SHMOs with highly reproducible retention time.
The precursor ions were further examined with collision-induced dissociation (CID). By applying
the proper collision energy, isomers can be readily differentiated by diagnostic peaks and
characteristic fragmentation patterns. A set of 30 SHMO structures with retention times, accurate
masses and MS/MS spectra was deduced and incorporated into an HMO library. When combined
with previously determined neutral components, a library with over 70 structures is obtained
allowing high-throughput oligosaccharide structure identification.
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Introduction

Human milk oligosaccharides (HMOs) have been known to have many biological functions
including as prebiotics for stimulating the growth of beneficial intestinal bacteria, as
receptor analogs to inhibit the binding of pathogens, and as components involved in
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modulating the immune system.1™5 Sialic acids are important components of HMOs and are
often found on the non-reducing termini of HMOs. Sialylated HMOs (SHMOs) constitute
about 20% of all HMOs.6~7 They serve as binding sites for specific pathogens and toxins. 1>
4> 8710 For example, in vitro studies have shown that SHMOs significantly decrease the
binding of leukocyte to endothelial cells while the neutral HMOs had no effect.7 Sialic
acids, due to their negative charge and hydrophilic nature, help modulate the cell-cell
interaction.11 It is also believed that sialic acids serve as ligands for lectin binding involved
in regulating the immune response.12713 In addition, the brain is the organ with the highest
level of sialic acids where it plays an important role in facilitating neuronal sprouting and
plasticity.8> 14715 SHMOs are therefore believed to play a key role in postnatal brain
development.1- 4> 16717

Mass spectrometry provides the most sensitive and rapid method for characterizing SHMOs.
Structure elucidation of SHMOs is generally more difficult than neutrals because sialic acids
readily dissociate under many ionization conditions. A labile glycosidic bond is caused by
the adjacent proton from the carboxylic acid group.18 In addition, the signal of SHMOs can
be strongly suppressed by neutral HMOs.19 Derivatization of the acid group with methyl20™
25 or other groups2629 tended to stabilize the NeuAc moiety and enhance the sensitivity
while decreasing fragmentation. The use of high performance liquid chromatography
(HPLC) coupled to mass spectrometry eliminates many of the difficulties in analyzing
sialylated oligosaccharides (OS). The separation of sialylated OS from the neutral minimizes
the ion suppression. Furthermore, isomer separation with HPLC in conjunction with
electrospray ionization, a soft ionization source, enhances the analysis of SHMO. Reversed
phase column was studied for separating the permethylated OS.22> 30 Normal phase
chromatography was also used for separating derivatized31 or underivatized26> 32 OS. High
pH anion-exchange chromatography (HPAEC) is also an option and provides adequate
separation of OS, although it is generally not amenable for coupling to mass spectrometry
(MS).33735 However, we generally find porous graphitized carbon (PGC) to be the best
stationary phase for separating native OS isomers.6> 3640 LC-MS provides composition
and structural information during OS profiling6> 41 and LC-MS/MS or tandem MS provides
efficient differentiation of isomeric species.26> 38> 42743 Fragmentation methods for
analyzing sialylated OS currently include collision induced dissociation (CID),29> 44747
infrared multiphoton dissociation (IRMPD),28> 48749 ultraviolet photodissociation
(UVPD),50 electron capture dissociation (ECD),51 electron detachment dissociation
(EDD)52 and high energy CID in tandem time-of-flight (TOF/TOF) instruments.23> 53754

This laboratory is in the process of creating an annotated library of HMOs for the rapid
identification of HMO structures. We have already reported a set of neutral HMOs.36 In this
report, we catalog the sialylated oligosaccharides. HPLC-Chip/QTOF MS instrument is used
for analyzing enriched SHMO samples. The instrument employs microchip based nano-LC
column packed with PGC that provides excellent isomer separation for SHMOs with highly
reproducible retention time (RT). The precursor ions were further fragmented with CID. By
applying proper collision energy (CE), isomers can be readily differentiated by diagnostic
peaks and characteristic fragmentation patterns.

Experimental Section

Reagents and Materials

The OS used in this study are from pooled human milk provided by milk banks in San Jose,
CA and Austin, TX. HMOs were isolated from the milk using a previously described
procedure involving defatting, chloroform/methanol extraction, ethanol precipitation, and
evaporation.6 A sample enrichment step with solid phase extraction (SPE) employing
graphitized carbon cartridge (GCC) was used before the analysis. GCC (150 mg bed weight,
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4mL volume) were purchased from Alltech (Deerfield, IL). Sodium borohydride (98%) and
2, 5-dihydroxybenzoic acid (DHB) were obtained from Sigma—Aldrich (St. Louis, MO).
Standard HMOs were purchased from Dextra Laboratories (Earley Gate, UK). a(1-2)-
Fucosidase was obtained from EMD CALBIOCHEM (La Jolla, CA), f(1-3)-galactosidase
and o(2-3)-neuraminidase from New England Biolab (Beverly, MA), B(1-4)-galactosidase
from ProZyme (San Leandro, CA), and a(1-3,4)-fucosidase from Sigma—Aldrich (St. Louis,
MO). The non-selective sialidase was purified and provided by Prof. David Mills from the
Department of Viticulture and Enology in UC Davis. All reagents are of analytical or HPLC
grade.

Oligosaccharide Reduction and Enrichment

The pooled HMO sample (50 mg in 250 pL nanopure water) was reduced by 250 puL of 1.0
M sodium borohydride in a water bath at 65 °C for 1.5 hours. The resulting product was
desalted and purified by SPE-GCC. The SPE cartridge was first conditioned by 6 mL 80%
acetonitrile (ACN) with 0.1% trifluoroacetic acid (TFA, v/v) and then 6 mL nanopure water.
The desalting was performed by loading 1-mg sample to each cartridge and washed with 30
mL nanopure water. The HMOs were eluted with 6 mL 5% ACN in water (v/v), 6 mL 10%
ACN in water (v/v), 6 mL 20% ACN in water (v/v) and 6 mL 40% ACN with 0.05% TFA.
SHMOs were enriched by collecting the 40% eluent only. The sample was dried in vacuo
and reconstituted with nanopure water before MS analysis.

Separation of SHMOs by HPLC

The enriched SHMOs were separated on an Agilent 1100 series HPLC instrument with
hypercarb PGC column (100 mm x 3.0 mm, 5 pm particle size) and detected with
photodiode array detector at 206 nm and 254 nm. A 20 uL sample (about 0.05 mg/uL) was
injected and eluted by binary solvent (A) 3.0% ACN/water (v/v) with 0.1% formic acid and
(B) 90% ACN/water (v/v) with 0.1% formic acid at the flow rate 0.35 mL/min and with a
gradient of 0.0-1.0 min, 0% B; 1.1-6.0 min, 8% B; 6.0-60 min, 8—18% B; 60-70 min, 18—
100% B; 70-80 min, 100% B. Sialylated HMOs were collected into 80 fractions with one
minute per tube. The samples were dried in vacuo and reconstituted with 25 uLL water before
MALDI MS analysis.

MALDI FTICR MS

The HiRes MALDI FTICR (IonSpec, Irvine, CA) is composed of an external MALDI
source with a pulsed 355 nm Nd:YAG laser, a hexapole ion guide and a FTICR cell with a
7.0 Tesla shielded superconducting magnet. 2, 5-Dihydroxybenzoic acid (DHB) was used as
matrix (8 mg/160 uL in 50% ACN/water (v/v)) in both positive and negative mode. The
HMOs (0.5 uL) were spotted on a 100-sample stainless steel plate with 0.5 pL matrix
solution. In the positive mode, 0.25 uL, 0.01 uM NaCl solution was added as a cation
dopant, while in the negative mode, no NaCl solution was added. The sample plate was
dried in the vacuum chamber before MS analysis.

HPLC-Chip/TOF MS Analysis

The SHMOs samples were analyzed using the Agilent 6200 HPLC-Chip/TOF MS
instrument (Agilent Technologies, Santa Clara, CA) with Agilent 1200 nano-LC and 6210
TOF MS. A detailed procedure was described in our previous paper.36 The nano-LC was
equipped with a capillary pump as the loading pump for sample enrichment, a nano-pump as
the analytical pump for sample separation, a microwell-plate autosampler maintained at 6 °C
by a thermostat, an Agilent HPLC-Chip cube interface and Agilent 6210 TOF MS. The
micro-Chip consisted of an enrichment column with a volume of 40 nL and an analytical
column 43 x 0.075 mm i.d., which were both packed with PGC having 5 um pore size. Both
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pumps use binary solvent: A 3.0% ACN/water (v/v) with 0.1% formic acid and B 90%
ACN/water (v/v) with 0.1% formic acid. A 4 uL/min flow rate of solvent A was used for
sample loading with 1 uL injection volume. A 45 minute gradient delivered by a nanoflow
pump with a flow rate of 0.3 uL/min was used for separation: 2.5-20.0 min, 0-16% B;
20.0-30.0 min, 16-44% B; 30.0-35.0 min, 44-100% B; 35.0-45.0 min, 100% B and a 20
minute equilibration time at 0% B.

Data analysis was performed with the Agilent MassHunter Qualitative Analysis software.
The deconvoluted data file was calculated by an in-house software — “Oligosaccharide
Calculator,” written in Igor Pro (Wavemetrics, Inc.). The output file included measured
mass, calculated mass with mass error, and composition of each oligosaccharide sorted
based on retention times and abundances. (Supplementary Table 1)

Twelve commercial OS standards were reduced and introduced into Chip/TOF under the
identical condition in order to match the retention times and accurate masses with the
corresponding OS in SHMO sample.36

HPLC-Chip/QTOF MS Analysis

The Agilent HPLC-Chip/QTOF MS instrument (Agilent Technologies, Palo Alto, CA) is
equipped with an Agilent 1200 series nano-LC system and Agilent 6520 QTOF coupled
with a chip cube interface. The nano-LC system and the PGC chip used has been described
above. Using the same injection volume, binary solvent and gradient, the resulting LC
chromatograms in the Chip/QTOF were nearly identical to those of the Chip/TOF with
minor variations of retention times. For both instruments, the same internal calibration
technique was used to yield < 5 ppm mass accuracy for MS and < 20 ppm for MS/MS
experiments.

In the positive ion mode, the data stored during the QTOF run included both centroid and
profile. The instrument settings were adjusted during auto-tune and set to: fragmentor
voltage 175 V, skimmer 65 V, and the octopole 1 RF voltage 750 V. The drying gas was
heated at 325 °C with a flow rate of 5 L/min. The data acquisition was set to auto MS/MS
with 2 spectra/s for MS scan and 1 spectra/s for MS/MS scan. The precursor ion was
selected based on abundances with doubly-charged ion being given the first priority
followed by singly-charged ion, triply-charged, and then other multiply-charged ions. A 4-
m/z isolation window was used. All the calibrant ions were excluded from the isolation. The
collision energy applied was based on the mass-to-charge (m/z) ratio of the ion with higher
energy for larger ions. For this instrument, the collision energy was varied according to the
equation:

(m/z) 3-35

. .
CEV)= 100 =

where 1.3 is the slope and —3.5 is the y-intercept of the equation, both of which can be
adjusted by the users, m/z is the mass-to-charge ratio of the precursor ion, CE is the collision
energy. The equation was empirically determined by the manufacturer. In this study, the
value of the slope and y-intercept were optimized to yield fragmentation that produced the
most distinguishing features for each HMO isomer. The optimal collision energy for singly-
and doubly-charged ions are expectedly different. For example, the collision energy applied
to singly-charged ion of FS-LNH isomers (m/z 1512.6) is 16.2V, while 6.3V is used for the
doubly-charged ion (m/z 756.8(+2)).
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Exoglycosidase Digestion

Results

Reaction buffer solutions were prepared with glacial acetic acid and 0.1 M ammonium
acetate solution to the desired pH.55756 Enzymes were used without further purification. In
a 0.2 mL PCR tube, 3 uL buffer solution was added followed by 1 uL OS sample and 1 pL
enzyme solution (mole ratio of protein to OS is about 1:100-200). The reaction mixture was
incubated at 37 °C in a water bath. The reaction time used for each enzyme is tabulated in
Supplementary Table 2.

Enrichment and MALDI MS Profile of Sialylated OS from Human Milk

Sialylated OS make up about 20% of the total OS in human milk.6~7 To enrich the
sialylated species, HMO mixtures where fractionated by SPE - GCC. Sialylated OS tend to
elute with higher ratio of organic solvent, specifically 40% aqueous acetonitrile. Negative
MALDI profile of the enriched mixture showed deprotonated ions and their monosaccharide
compositions (Supplementary Figure 1). The compositions listed in the spectrum were
assigned using an in-house software “Oligosaccharide Calculator” written in Igor (based on
a mass accuracy < 5 ppm). The information provided by accurate mass showed that most of
the SHMOs are monosialylated while only a small percentage is disialylated. The majority
of the OS are also fucosylated with the number of fucoses (Fuc) ranging from one to four.

Chip/TOF MS Profile of Sialylated Components

Chip/TOF MS provides the online LC separation and MS detection with high mass
accuracy. The PGC stationary phase is packed in a nanoflow column incorporated into a
microchip with the electrospray tip integrated to minimize dead volume. The chip has been
shown to yield excellent separation of OS isomers with highly reproducible retention times.
6° 36 Since the separation is highly effective, a- and -anomers at the reducing end have
distinct retention times. To eliminate this complexity, the SHMOs were reduced to the
alditol. 6> 36

Figure 1a is the base peak chromatogram (BPC) of the enriched SHMOs from a sample of
pooled milk. Supplementary Table 1 shows the 70 SHMOs found along with their
compositions and retention times. Most of the SHMOs are monosialylated and eluted after
20 minutes. SHMOs are generally eluted later than the neutral HMO. That isomers are
effectively separated is illustrated in Figure 1b, which shows the extracted ion
chromatogram (EIC) for the neutral mass 1511.6 (m/z 756.8 (+2), MS inset). For the
convenience of this discussion, doubly-charged ions will be marked as +2 after the m/z,
while the charge state for singly-charged ions will not be annotated. Supplementary Table 1
contains six different species (# 18 to 23) found by Chip/TOF with their monosaccharide
compositions. Also included are the respective abundances sorted by RT. The neutral mass
1511.6 corresponds to one Fuc and one NeuAc on a lacto-N-hexaose core (FS-LNH). The
composition belongs to seven isomers that are also the most abundant components.

The detailed procedure for elucidating their structures follows. To simplify the analysis, the
mixture was separated using a standard HPLC into smaller pools of glycans, which were
further analyzed individually. The HPLC column (100.0 mm x 3.0 mm) employed an 80-
min gradient (experimental section) allowing separation of components that were not
resolved in the conditions for the Chip/TOF MS. Each HPLC fraction was analyzed further
to perform the complete structural elucidation.

Figure 2 is the EIC for FS-LNH isomers found in several HPLC fractions (Figure 2a—g). For
reference, Figure 1b is duplicated in the first panel of Figure 2. The figure illustrates the
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general approach for elucidating the glycome as well as the efficacy of the methods for
separation and structural elucidation. Figures 2a—g show each component as separated by
standard HPLC with the HPLC fractions examined by Chip/TOF MS. The inset structures
were determined by one of the two methods. (1) For compounds where standards were
available retention times and tandem MS were compared with the standards. (2) For the
remainder, which was the vast majority, structures were determined by a combination of
tandem MS and targeted exoglycosidase digestion. From the group in Figure 2a—g, two
compounds were determined by standards obtained commercially, FS-LNH (Figure 2d) and
FS-LNnH I (Figure 2f). Among all sialylated OS, 12 standards were identified in this
manner. Two new structures were obtained in this group, 4121a (Figure 2a) and 4121b
(Figure 2b). The nomenclature is based on the number of hexose (Hex), Fuc, GlcNAc, and
NeuAc, respectively. Three structures were elucidated and found to correspond to published
structures (Figure 2c, 2e, and 2g) with the names previously assigned.

With PGC as stationary phase, the chip based nano-LC column (43 mm) is generally
sufficient to separate isomers using the 45 min gradient. However, under the chosen
conditions some isomers such as 4121b and FS-LNH III have similar retention times with
23.9 and 24.0 min, respectively. In this situation, the off-line HPLC column (100 mm) with
an 80-min gradient allowed separation of the isomers into different fractions. The isomers in
the fractions were injected into Chip/QTOF, which showed two distinct structures based on
tandem MS.

Tandem MS Analysis of Sialylated OS

Figure 3a and 3b are MS/MS spectra of a commercial standard FS-LNH. The singly-charged
ion m/z 1512.6 yields the tandem MS spectrum in Figure 3a, The doubly-charged ion m/z
756.8 yields the spectrum in Figure 3b. As seen clearly, the doubly-charged species
generally provides more structurally informative fragment ions. The following discussions
of all the FS-LNH isomers will therefore focus on the MS/MS of the doubly-charged ions.
Fragmentation for this ion starts from both non-reducing termini when the HMO has two
antennae at the lactose core. In Figure 3b, m/z 756.8 (+2) loses a Fuc to generate m/z 683.8
(+2) and a galactose to generate m/z 602.7 (+2). The subsequent loss of GIcNAc generates
m/z 1001.4. This product ion further loses the lactose core to generate m/z 657.2. An
alternative fragmentation pathway starts with the loss of NeuAc to generate m/z 1221.5,
which is weakly abundant. The further loss of a lactosamine unit [Gal+GIcNAc] from m/z
1221.5 generates m/z 856.3. The following loss of the lactose core generates m/z 512.2.
Figure 3c is the tandem spectrum of FS-LNH in HPLC fraction 36 from the milk sample.
The FS-LNH from two different sources, with different amounts, yielded nearly identical
spectra. Figure 3b and 3c show that even though the total ion intensities (or concentrations)
for the two samples are different, the overall features of the tandem MS are nearly identical.
In general, when the same collision energy is applied, the resulting tandem MS spectra are
highly reproducible.

Structure Elucidation

Elucidation of individual structures begins with the tandem MS. Figure 4 shows the MS/MS
spectra for three of FS-LNH isomers, a new glycan 4121a, and two structures that were
elucidated and found to correspond to previously published ones, FS-LNH I and FS-LNH II.
In Figure 4a, the precursor ion of 4121a m/z 756.8 (+2) loses lactose to yield m/z 1168.4.
The fragment ion m/z 1168.4 readily loses a Fuc to generate m/z 1022.4. In Figure 4b and c,
the precursor ions of the two other isomers did not yield the analogous fragment ions. Based
on this information, it is believed that the new compound 4121a has a linear core structure
while the other two both have branched cores, which cannot lose lactose from the
quasimolecular ion. In contrast, both structures FS-LNH I and FS-LNH 1I loses Fuc and a
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Gal to generate m/z 602.7 (+2) (weakly abundant in Figure 4c) from the precursor ion,
consistent with the presence of Lewis a and x epitopes at one terminus of each compound.
The loss of these residues further confirms the position of NeuAc as being on the other
terminus (Figure 4b and c). The same fragment ion is not observed in Figure 4a since 4121a
has a linear core and NeuAc at the non-reducing end must fragment before Gal. The
differences between FS-LNH I and FS-LNH II are readily determined by several other
diagnostic peaks. The fragment peak m/z 495.2 is only found in FS-LNH I, and in none of
the other isomers, because sialylation is directly on the GlcNAc (Figure 4b). The Y type
ion57 m/z 1059.4 in FS-LNH II is generated by losing NeuAc (m/z 1221.5) and then Gal.
The corresponding B ion m/z 454.2 also indicates the differences in connectivity of NeuAc
in both FS-LNH II and FS-LNH I (Figure 4c).

Two isomers with similar retention times, the new OS 4121b and FS-LNH III are readily
distinguished based on their tandem MS (Figure 5). The linear compound 4121b yields the
fragment ion m/z 1168.4 (and m/z 584.7 (+2)) due to the loss of the lactose. The subsequent
loss of a Fuc produces m/z 1022.4 (and m/z 511.7 (+2)) (Figure 5a). An alternative pathway
further yields the intense peak m/z 665.7 (+2) due to the loss of the reducing end glucose
(Glc) from the quasimolecular ion — also indicating that the Fuc is not on the reducing end.
The lack of the diagnostic ion m/z 495.2 (NeuAc-GIcNAc), as shown with FS-LNH 1, is
indicative that the NeuAc is attached to Gal.

The fragmentation behavior of FS-LNH III also follows several pathways due to its
branched core structure (Figure 5b). One of the fragmentation pathways begins with the loss
of NeuAc to generate m/z 1221.5. The subsequent loss of a lactosamine unit yielded m/z
856.3. The fragment ion m/z 856.3 further loses lactose to produce m/z 512.2. An alternate
pathway starting with the loss of a Fuc yielded m/z 683.7 (+2), followed by a Gal loss to
form the product ion m/z 602.7 (+2). The subsequent fragmentation generates m/z 1001.4 by
losing a GalNAc and lactose loss to yield m/z 657.2. The complementary information from
these two fragmentation pathways also confirm that NeuAc and Fuc are on different
branches. However, the generation of m/z 675.8 (+2) and m/z 1147.4 is not consistent with
the structure. These ions are the results of the rearrangement of the Fuc within the
protonated species.58 The exact linkages between the monosaccharides were confirmed with
exoglycosidase digestion.

Linkage Elucidation with Exoglycosidase Digestion

The detailed procedure for performing the exoglycosidase digestions is described in
previous publications.55756 The conditions in this study for the specific enzyme have been
modified and summarized in Supplementary table 2. For convenience the reaction was
monitored by MALDI MS. In so doing, the full structure is elucidated by combining MS,
tandem MS and the exoglycosidase digestion.

Compounds where no standard is available, the vast majority of the structures, need to be
fully elucidated even if the structures have been previously published. The digestion of FS-
LNH III (in HPLC fraction 35) is described to provide a more complicated example than
4121b, as the linkages need to be confirmed for both antennae. The results of the digestion
for fraction 35 are summarized in Figure 6. Figure 6a is the MALDI MS of HPLC fraction
35 in the positive ion mode before enzyme digestion. As can be seen, the spectrum of FS-
LNH III yielded the quasimolecular ion m/z 1556.5 [M+2Na-H]* and a fragment ion, m/z
1243.4 from the loss of NeuAc. The incubation with a(2-3)-neuraminidase for 1h showed
that the presence of a2-6 linkage of NeuAc in this isomer because m/z 1556.5 was not
digested (Figure 6b). Figure 6c¢ is the result from the reaction with a non-specific sialidase.
After cleaving off the NeuAc from the Gal, a second digestion step with B(1-4)-
galactosidase generated a new peak, m/z 1081.4, that confirmed the $1-4 linkage of Gal
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bound to GIcNAc (Figure 6e). The result from this step also indicated that Fuc is present on
the other branch. The digestion from the other branch started with o(1-3,4)-fucosidase that
generated a new [M+2Na-H]* ion with m/z 1410.5 (Figure 6d). The result from this step
showed that Fuc has a1-3,4 linkage attached to the GlcNAc and not the Gal. In addition, the
disappearance of m/z 1243.4 in Figure 6d confirmed that it was a fragment peak from m/z
1556.5 in Figure 6a. The further digestion of m/z 1410.5 by P(1-3)-galactosidase generated a
new peak m/z 1248.4, which is still a sialylated species (Figure 6f). The result proved a
Lewis a epitope on the fucosylated antenna. This method was applied to all the other
structures.

Negative Mode MS/MS Analysis

In some occasions, it had been necessary to supplement the positive ion MS/MS with
negative ion analysis. In the positive ion mode, the fragmentation of the collision activated
ions generated primarily B, Y type ions.57 In certain cases, such as FS-LNH and FS-LNnH I,
MS/MS yielded the same fragments albeit with great variation in intensities. In this way,
tandem MS in the positive mode can be used to identify specific oligosaccharides but not
elucidating similar structures (Supplementary Figure 2). However, the fragmentation in the
negative ion mode using the Chip/QTOF MS was useful for producing different pathways.
In the negative ion mode, our solvent system generated primarily deprotonated ions and
formylated ions.59 For all FS-LNH isomers, m/z 754.8(—2) [M-2H]%™ and m/z 777.8(—2)
[M-H+HCOO]%~ were both seen in the negative ion mode. The precursor ion m/z 777.8(—2)
readily loses formic acid (HCOOH) to generate m/z 754.8(—2) and subsequent fragment ions
(Figure 7). In Figure 7a, m/z 754.8(—2) first loses a Fuc to generate a Zy, ion with m/z
1346.5. The subsequent loss of Gal yields Z3, with m/z 1184.4. While in Figure 7b, m/z
754.8(—2) loses a Fuc to produce Z3p~ then a following Gal loss yielded Z3p-/3p~. Since Fuc
and Gal both link to GalNAc, the Gal loss may occur before Fuc loss to generate the Zgﬁ’,
which is not found in Figure 7a since Fuc links to Gal at the reducing end in FS-LNH. In
this case, the fragmentation in the negative ion mode provides a better way to resolve the
connectivity between the two isomers. The structure information from the negative mode
MS/MS was therefore, at times, a necessary compliment to the positive ion mode.

Discussion

30 SHMO structures with retention time and mass are listed in Table 2. This table along
with the tandem MS is valuable for rapidly identifying known structures. Comparison of the
retention time and the tandem MS provides a highly specific method for identifying
oligosaccharides. When combined with previously determined neutral HMOs,36 a library
with over 70 structures is constructed which incorporates nano-LC retention time, accurate
mass, and MS/MS spectra.

Based on the structures, we find a few general observations regarding sialylation in HMOs.
Note that these observations are based on a pool of samples from five mothers.

1. The majority of the SHMOs are mono-sialylated (90.9 %) with the smaller fraction
being di-sialylated (9.1 %). (Supplementary Figure 3)

2. The more abundant linkage corresponds to a2-6 (56.9%), while only 4.8% SHMOs
were found with 02-3 NeuAc by far. (Supplementary Figure 3)

3. The 02-3 NeuAc is usually bound to a 1-3 galactose, except for sialyl lactose.
4. The 02-6 NeuAc is usually bound to f1-4 galactose.
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5. Sialylation on the GlcNAc is only found as 02-6 linkage as previously reported.2-
35 However, this arrangement is even more specifically found only on the f1-3
branch from the core lactose.

The method for elucidating structure employing tandem MS and exoglycosidase is generally
successful with a caveat. Examination of the different fragmentation pathways from various
protonated isomers showed rearrangements that can affect the interpretation. For example,
the compound FS-LNH generates fragment ion m/z 675.8(+2) by losing a Gal, which is not
consistent with the structure (Figure 3b and 3c). This rearrangement is caused by the long-
range migration of the Fuc, most likely to a hydroxyl group of the reducing end residue.58:
70771 Similar rearrangements are not observed for sodiated ions in MALDI FTICR when
performing CID or IRMPD experiments as noted previously.36> 58 In order to confirm the
connectivity and linkages of monosaccharides, exoglycosidase digestion was necessary to
validate the structural information obtained from tandem MS.

The future work will be imputing all the retention times and MS/MS spectra with all the
elucidated structures into Agilent Masshunter software. Auto MS/MS search will be
performed by the software for the unknown HMO samples and compared with the spectra in
the database. An output of the compound list will include all the identified structures with
the matching scores. This library will eventually provide a high-throughput method for
oligosaccharide analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

(a) Base peak chromatogram (BPC) of enriched sialylated human milk oligosaccharides
(SHMOs). (b) Extracted ion chromatogram (EIC) of isomers with neutral mass 1511.6 (with
MS inset).

J Proteome Res. Author manuscript; available in PMC 2012 February 4.



1duosnuey Joyiny Vd-HIN 1duosnuey Joyiny Vd-HIN

1duosnuepy Joyiny Vd-HIN

Wu et al. Page 15

6x10" —
4 =
2 o
0= —
25x10° —a) LT
j'g : 4121a
0.5 —
O’O " B Y R Y
1.5x10* - b) S
1.0 — 4121b
—— 0.5 —
o | 09
4x10° —
o #1% o s
() 2 — FS-LNHIII
O 1 —
c 0 e
4] F
S 1.2x10° 3 d) );}
% 0.8 —] FS-LNH
e 0.4 -
< 00-
3.0x10" — €) ?‘“
2.0 — gs.LnHI
1.0 —
0.0 —
1.5x10° —{ ) ,*}‘
1.0 — FS-LNnHI
0.5 —
0.0
ax10° | 9) P
2— FS-LNHII
g ] /N\/'k"\ A .
I [ T [ [ A I IRT(min)
18 20 22 24 26 28 30 32
Figure 2.

FS-LNH isomers in human milk. The isomers were separated into different fractions using
standard HPLC. The selected fractions were then analyzed by Chip/TOF MS (a—g). The
structures (inset) were determined as described in the text.
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Figure 3.

m/z

(a) MS/MS of a commercial standard FS-LNH from singly-charged precursor ion (m/z
1512.6). (b) MS/MS of doubly-charged precursor ion (m/z 756.8). (c¢) MS/MS of FS-LNH
obtained from human milk by HPLC fractionation.

J Proteome Res. Author manuscript; available in PMC 2012 February 4.




1duosnuey Joyiny Vd-HIN 1duosnuey Joyiny Vd-HIN

1duosnuepy Joyiny Vd-HIN

Wu et al.

x10 3

>
pry
[=]

- N W e U w O

w O

Abundance (cps)

o N AR O

Page 17
b
¥z
a) toje
) ¥, %O—' B
Y
Y, B?ﬁ Y o Eip Q?. By
183.086 292.101 VA SR Bs/sa - b
! e B ' i ; ~—B
74 a1 Yz 912 ﬁ I'.a-‘?sﬂ.: e Y4 Y 0
ST 4s.139 2 B 877.326
Yag
b) 366,133 51281250 65?2;28 Oj;. Yo
By *} i 22 Yo 2
292,09 9)756.784 205 (@
1 Yiniinn v 2 Yoi Vi B,
l saa.?g 856.‘|327 | B FS-LNH |
I O 1221.457
204.083 : 1Y,
274.086 Y
B B B'au Yapg 3By,
c) 202 181 366.137 it in 657.234 A 0—e
1 1 /- P o 1 You ol
N 856.331 y v ',{ Ba
@ % ‘ > f B
¥ 710,267 . FSLLNH Il
204 ,3862”'09| 611.238 1 756783 1221465
4. 2 (Ve 2903294 gy535 W

200 250 300 350 400 450 500 550 600 650 700 750 @800 &850 900 950 1000 1050 1100 1150 1200 1250

m/z

Figure 4.

Three isomers - 4121a, FS-LNH I, and FS-LNH II, were differentiated by MS/MS under the
identical collision energy. Diagnostic peaks (circled) belong only to the specific isomer.
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Figure 5.

MS/MS spectra serve to distinguish the two isomers —4121b and FS-LNH III, with nearly
identical retention time. Different fragmentation pathways elucidate linear from branched
core structures.
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Exoglycosidase digestion to determine the structure of FS-LNH III found in HPLC fraction
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Figure 7.

MS/MS spectra of FS-LNH and FS-LNnH I in the negative ion mode. Z type ions can be
used to elucidate the different connectivity within the two isomers.
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