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Abstract

Background: The cichlid fishes in general, and the exceptionally diverse East African

haplochromine cichlids in particular, are famous examples of adaptive radiation and explosive

speciation. Here we report the collection and annotation of more than 12,000 expressed sequence

tags (ESTs) generated from three different cDNA libraries obtained from the East African

haplochromine cichlid species Astatotilapia burtoni and Metriaclima zebra.

Results: We first annotated more than 12,000 newly generated cichlid ESTs using the Gene

Ontology classification system. For evolutionary analyses, we combined these ESTs with all available

sequence data for haplochromine cichlids, which resulted in a total of more than 45,000 ESTs. The

ESTs represent a broad range of molecular functions and biological processes. We compared the

haplochromine ESTs to sequence data from those available for other fish model systems such as

pufferfish (Takifugu rubripes and Tetraodon nigroviridis), trout, and zebrafish. We characterized genes

that show a faster or slower rate of base substitutions in haplochromine cichlids compared to other

fish species, as this is indicative of a relaxed or reinforced selection regime. Four of these genes

showed the signature of positive selection as revealed by calculating Ka/Ks ratios.

Conclusion: About 22% of the surveyed ESTs were found to have cichlid specific rate differences

suggesting that these genes might play a role in lineage specific characteristics of cichlids. We also

conclude that the four genes with a Ka/Ks ratio greater than one appear as good candidate genes

for further work on the genetic basis of evolutionary success of haplochromine cichlid fishes.

Background
The exceptionally diverse species flocks of cichlid fishes in
the East African Great Lakes Tanganyika, Malawi and Vic-
toria are prime examples for adaptive radiations and

explosive speciation [1-3]. More than 2,000 cichlid spe-
cies have evolved in the last few million years in the rivers
and lakes of East Africa [1,4-6]. Together with an addi-
tional ~1,000 species that are found in other parts of
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Africa, in South and Central America, in Madagascar, and
in India, the family Cichlidae represents one of the most
species-rich families of vertebrates. In addition to their
unparalleled species-richness, cichlids are famous for
their ecological, morphological and behavioral diversity
[1,2,7], for their propensity for rapid speciation [5], for
their capacity for sympatric speciation [8,9], and for the
formation of parallel characters in independently evolved
species flocks [10-12]. For these reasons, the cichlid fishes
are an excellent model system to study basic dynamics of
evolution, adaptation and speciation. However, while the
phylogenetic relationships between the main cichlid line-
ages are largely established and some of the cichlids' evo-
lutionary innovations have been identified [1,2,4,7,13],
little is known about the genomic and transcriptional
basis of the evolutionary success of the cichlids.

The cichlid model system provides many advantages for
evolutionary genomic research. The hundreds of closely
related yet morphologically diverse species in East Africa's
cichlid species flocks are even more powerful than a
'mutagenic screen' (to which these species assemblages
have been compared [1,12]) in that they represent combi-
nations of alleles that confer a selective advantage under
various ecological pressures. Because of the possibility to
produce viable crosses between different cichlid species in
the lab [14], these alleles can be tied to particular pheno-
typic traits by means of classical genetic experiments [15-
18]. The close relatedness of the different species allows
the design of primer sets for the amplification of particu-
lar genomic DNA regions such as candidate gene loci,
microsatellites, or SNPs, which are applicable to a wide
range of species [17,19-21]. The same is true for expres-
sion profiling with cDNA microarrays that, once devel-
oped for one species, can be used for any East African
cichlid species [22].

A variety of genomic resources have already been estab-
lished for East African cichlid species. Genetic maps are
available for the Nile tilapia Oreochromis niloticus [23,24]
and the Lake Malawi species Metriaclima zebra [17]. BAC
libraries have been constructed for O. niloticus [25] and M.
zebra (available at the Hubbard Center for Genome Stud-
ies), for the Lake Victoria haplochromine Paralabido-
chromis chilotes [26] and for Astatotilapia burtoni from Lake
Tanganyika and surrounding rivers [27]. cDNA microar-
rays are available for A. burtoni [22] and for Lake Victoria
haplochromines [28,29]. Also, EST sequencing projects
have been initiated [30], and a BLAST server for cichlid
resources has been established [31]. Recently, the
National Institute of Health (NIH) has committed to
sequencing four cichlid genomes. A detailed description
of genomic resources developed for cichlid fishes is avail-
able at [32].

Expressed sequence tags (ESTs) derived from the partial
sequencing of cDNA clones provide an economical
approach to identify large numbers of genes that can be
used for comparative genomic and gene expression stud-
ies as well as for the detection of splice variants [33,34].
Furthermore, EST projects facilitate genome annotation
and are therefore often applied in addition to genome
sequencing projects. Due to the large amount of data
available in public databases, ESTs emerge as important
resources for comparative genome-wide surveys both
among closely and more distantly related taxa [35,36]. A
series of software applications have been developed to
date to perform such EST-based analyses [37-39]. Since
ESTs reflect the coding portions of a genome, they can also
be used to test for different evolutionary rates in particular
genes when comparing different lineages, and to detect
genes that have undergone positive selection [35]. It is
generally assumed that genes with a statistically signifi-
cant increase in substitution rates have experienced
relaxed functional constraints, while genes, which have
not undergone accelerated substitution rates, have experi-
enced purifying selection and, thus, could not accumulate
substitutions at random. Positive Darwinian selection, on
the other hand, is a phenomenon where selective pressure
is favoring change. Natural selection is commonly
thought of as a process of editing genetic change so that
only a small number of mutational events are retained in
natural populations. Under positive selection, the reten-
tion of mutations is much closer to the rate at which
mutations occur.

Here we report the collection and annotation of more
than 12,000 ESTs generated from two different cDNA
libraries obtained from the East African cichlid species
Astatotilapia burtoni, as well as a smaller cDNA library from
the Lake Malawi species Metriaclima zebra. Astatotilapia
burtoni has long been used as a model system to study
cichlid spawning behavior [7,40,41], social interactions
[41-44], neural and behavioral plasticity [45,46], endo-
crinology [47], the visual system [48], as well as cichlid
development and embryogenesis [49]. In addition, the
phylogenetic position of A. burtoni makes this species an
ideal model system for comparative genomic research
[27]. Astatotilapia burtoni, which belongs to the most spe-
cies-rich lineage of cichlids, the haplochromines, was
shown to be a sister group to both the Lake Victoria region
superflock (~600 species) and the species flock of Lake
Malawi (~1,000 species) [4,5,50,51]. Three highly special-
ized haplochromine species from two species assem-
blages, Paralabidochromis chilotes and Ptyochromis sp.
"redtail sheller" from Lake Victoria and Metriaclima zebra
from Lake Malawi, have already been established as
genomic models [16,26,28,30]. Important insight into
cichlid (genome) evolution will be afforded by the com-
parison of their genomes to that of A. burtoni, which has a
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more generalist life style and is likely to resemble the
ancestral lineage that seeded the cichlid adaptive radia-
tions in these two lakes [4,7].

For EST sequencing, we utilized a cDNA library from A.
burtoni brain tissue ('brain') that was used for the construc-
tion of a cDNA microarray [22] and a newly generated
normalized cDNA library constructed from different A.
burtoni tissues at different developmental stages ('pinky').
We annotated the ESTs on the basis of similarity searches
with BLAST and using the structured vocabulary provided
by the Gene Ontology Consortium [52], based on molec-
ular studies of gene function in various model organisms
[53]. For evolutionary analyses, we combined our newly
generated ESTs with all available sequence data for haplo-
chromine cichlids [30] and a previously constructed
library from skin tissue of the Lake Malawi species Metria-
clima zebra (W. Salzburger, H. A. Hofmann & A. Meyer;
unpublished data), which resulted in a total of more than
45,000 ESTs. We then compared the haplochromine ESTs
to sequence data from two pufferfish species (Takifugu
rubripes and Tetraodon nigroviridis), trout, and zebrafish,
and identified those ESTs with cichlid specific differences
in evolutionary rates with EverEST [37].

Results
The 14,592 initial sequences were trimmed of vector and
low-quality sequences and filtered for minimum length
(200 bp cut-off), identifying 12,070 high-quality ESTs
(Table 1). More than 11,000 of these ESTs (from 13,056
initial sequences) are derived from two different Astatoti-
lapia burtoni cDNA libraries – one made from brain tissue
('brain'), the other one from different tissues ('pinky')
including brain, muscle, skin and fin. The overall quality
as measured by sequencing success rate and read-length
was better in the 'pinky' library. Also, there was much less
redundancy in the 'pinky' library (16% versus 30%), which
might be the consequence of the normalization step
applied to this library or the use of different source tissues.

A total of 8,636 A. burtoni sequences assembled into EST
contigs have an open reading frame (ORF) of at least 400
bp. Of these, 1,219 (14%) had matches in the Takifugu
database and 7,417 (86%) had no matches when an
expected value threshold (e-value) of < 1 × 10-50 was used.
2,902 (34%) had matches in the Takifugu database with
an expected value threshold of < 1 × 10-15 and 3,460

(40%) had matches with an expected value of < 1 × 10-5.
Similar proportions were retrieved with other databases
(Fig. 1).

Among the 8,363 A. burtoni assembled sequences, 2,977
could be annotated according to Gene Ontology (GO)
terms. Additional files 1, 2 and 3 use the generic GO slim
subset of terms ([54]; Generic GO slim; Mundodi and Ire-
land; downloaded 04/06/2007) that have been developed
to provide a useful summary of GO annotation for com-
parison of genomes, microarrays, or cDNA collections
when a broad overview of the ontology content is
required. 2,692 ESTs could be assigned to genes listed in
the molecular function ontology, 2,532 to genes listed in
the biological process ontology, and 2,293 to genes listed
in the cellular components ontology, when using an e-
value of < 1 × 10-12. Additional files 4, 5, and 6 provide
more detail of the specific fine-grained terms. Because a
single A. burtoni assembled sequence may be annotated in
all three ontologies and according to multiple ontology
terms, a total of 27,451 annotations have been applied
(10,926 among biological process, 9,414 among molecu-
lar function, and 7,111 among cellular component).

For the comparative evolutionary analyses, we combined
our newly generated ESTs with previously published data
from Paralabidochromis chilotes and P. sp. "redtail shel-
ler" [30] and about 1,000 sequences obtained from a
Metriaclima zebra skin cDNA library (W. Salzburger, H. A.
Hofmann & A. Meyer; unpublished data). When using
this set of haplochromine cichlid ESTs as reference, we
identified 759 open reading frames that are present in all
six databases used for comparative analyses (haplo-
chromine cichlids, Danio rerio, Homo sapiens, Onco-
rhynchus mykiss, Takifugu rubripes, and Tetraodon
nigroviridis).

In order to identify sequences that evolve significantly
more rapidly or more slowly in the haplochromine cich-
lid, we applied the triangle method implemented in Ever-
EST [37] to calculate the p-distance for each of these 759
ORFs in all fish species relative to the human ortholog.
There were 22 cases in which more than one haplo-
chromine sequence was found. In these cases, we used the
longest sequence for further analyses. The relative p-dis-
tances for three fish species were then mapped in ternary
diagrams. An example of such a ternary diagram is shown

Table 1: Expressed sequence tag (EST) summary

Total sequences 13,056

High quality sequences 12,070 (between 200 and 1,564 bp)

Brain library (A. burtoni) ('brain') 4,570

Mixed tissue library (A. burtoni) ('pinky') 6,541

Skin library (P. zebra) 959
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in Fig. 2a, in this case showing the relative p-distances of
cichlid, Takifugu rubripes, and Danio rerio amino acid
sequences with respect to the homologous Homo sapiens
genes. Figure 2b depicts a diagram with Oncorhynchus
mykiss amino acid sequence divergence instead of haplo-
chromine cichlid. The ternary diagrams show that in all
combinations most genes are clustered around the center
of the respective triangle, which indicates that, in general,
the p-distances relative to the human outgroup are similar
in all fish species.

When compared to the green-spotted pufferfish (Tetrao-
don nigroviridis) and fugu (Takifugu rubripes) (always with
human as outgroup), 49 gene fragments appeared to have
a significantly faster rate of evolution in haplochromine
cichlids, and 213 had a slower rate. In the comparison
including zebrafish and fugu, 52 genes were found to have
evolved faster and 185 genes slower in cichlids. When
trout and zebrafish were used, 69 genes were faster and
139 genes evolved slower. In a comparison including
trout and fugu, 68 genes appeared to have a faster rate in
haplochromines, and 132 had a slower rate. In total 69
genes were found to have evolved faster, and 213 genes
appeared to have evolved with a significantly slower

mutation rate in haplochromines compared to other fish
species. Altogether, about 22% of the surveyed ESTs were
found to have haplochromine specific rate differences in
at least one of the comparisons suggesting that these genes
might play a role in lineage specific features of haplo-
chromine cichlids. A set of 170 cichlid genes appeared in
all comparisons. Forty-eight cichlid genes were found to
have a higher rate of amino-acid substitution compared to
the other fish species included in this study, while 122
cichlid genes were found to have a slower rate. Cichlid
sequences that match Danio rerio, Takifugu rubripes, Tetrao-
don nigroviridis, and Oncorhynchus mykiss genes and have a
significantly higher or lower p-distance compared to the
other fish genes relative to the human outgroup are listed
in Additional files 7 and 8, respectively.

A histogram of the abundance of amino acid sequence
divergences of all five fish species with respect to homol-
ogous human genes is depicted in Fig. 3. The p-distances
appear normally distributed. With 0.211, cichlids show
the lowest average distance followed by Oncorhynchus
mykiss (0.216), Danio rerio (0.239), Takifugu rubripes
(0.242), and Tetraodon nigroviridis (0.258). The average
distance of all five fish species to Homo sapiens is 0.233.

The proportion of assembled haplochromine cichlid sequences with and without BLAST matches compared to three databases (Takifugu rubripes, Danio rerio, and Oncorhynchus mykiss)Figure 1
The proportion of assembled haplochromine cichlid sequences with and without BLAST matches compared 
to three databases (Takifugu rubripes, Danio rerio, and Oncorhynchus mykiss). The pie charts indicate the relative 
number of BLAST hits (blue) versus the percentage fraction, for which no BLAST hit was retrieved (red) for three different e-
values (< 10-50, < 10-15, and <10-5, respectively).
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Ternary representation of relative distances of ORFs of three fish species compared to their human orthologsFigure 2
Ternary representation of relative distances of ORFs of three fish species compared to their human orthologs. 
(a) Haplochromine cichlid, Danio rerio, and Takifugu rubripes, (b) Danio rerio, Oncorhynchus mykiss, and Takifugu rubripes. Each dot 
represents a single ORF, the position of the dot within the ternary diagram indicates the relative distance of this ORF in each 
of the three fish species compared to the orthologous ORF in human. We were interested in identifying those ORFs that show 
a faster or slower rate of molecular evolution in the haplochromine cichlids.
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We also used the 482 redundant sequences that were
found in all three large haplochromine cichlid EST data-
sets (P. chilotes and P. sp. "redtail sheller" [30]; Astatotilapia
burtoni, this study) to calculate mean pairwise p-distances.
Within these three cichlid species, we found a mean p-dis-
tance of 0.14 between A. burtoni and P. chilotes, 0.17
between A. burtoni and P. sp. "redtail sheller", and 0.08
between the two Lake Victoria species P. chilotes and P. sp.
"redtail sheller".

We then calculated Ka/Ks ratios for all genes with a higher
or slower rate of base substitution in cichlids. Ka/Ks ratios
greater than one, which are indicative of positive selection
in that gene, were found in four genes that evolve more
slowly in cichlids compared to the other fish species. The
highest Ka/Ks ratio (3.77) was found in the neuroendo-
crine convertase subtilisin/kexin type 1 that is responsible for
processing large precursor proteins into mature peptide
hormones [55,56]. In claudin 3, a member of the claudin
family involved in the formation of tight junctions in var-
ious tissues [57], the Ka/Ks ratio was 1.55. A Ka/Ks ratio of
1.30 was observed in the catalyzing enzyme glutathione
peroxidase 3, and a ratio of 1.19 was found in ménage a trois
1 (MNAT1), which is a member of the CDK7-cyclin H
complex that functions in cell cycle progression [58],
basal transcription, and DNA repair.

Discussion
Expressed sequence tags are important genomic resources
and their numbers in public databases such as GenBank
are rapidly increasing. Full-length cDNA and EST sequenc-
ing projects typically accompany genome sequencing
projects, as these data are essential for the recognition and
annotation of genes, the characterization of the transcrip-
tome, the identification of intron-exon boundaries and
the detection of splice variants in eukaryotes,
etc.[33,34,59-61]. In addition, the standardized proce-
dure of cDNA library construction and normalization,
and the comparably low costs of large-scale DNA sequenc-
ing facilitate EST projects in organisms for which the
whole genome sequencing has not (yet) been completed.
Thus, EST sequencing projects outnumber genome-
sequencing projects – particularly in groups with larger
genome sizes such as plants and vertebrates – leading to a
large body of sequence data available for comparative
analyses. Large-scale EST analyses have been used in many
other contexts, such as primary gene expression assays
[62,63], the estimation of the total number of genes in an
organism [64], cDNA microarray annotations [65], or the
construction of genetic linkage maps [66-68]. Expressed
sequence tags can further be used for phylogenomics
[36,69], and for the identification of microRNAs [70].

Histogram of the abundance of amino acid sequence divergences of all five fish species (haplochromine cichlid, Danio rerio, Tak-ifugu rubripes, Tetraodon nigroviridis, and Oncorhynchus mykiss) with respect to human genesFigure 3
Histogram of the abundance of amino acid sequence divergences of all five fish species (haplochromine cichlid, 
Danio rerio, Takifugu rubripes, Tetraodon nigroviridis, and Oncorhynchus mykiss) with respect to human genes. P-
distances have been calculated for a set of 759 ORFs found in all five fish species and plotted in categories of 0.1.
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Despite their many advantages, there are also some prob-
lems associated with ESTs. For example, EST sequences
typically cover only parts of a gene, so that two sequences
of the same gene might not necessarily overlap. That only
fragments of a gene are available also leads to problems
with homology-based analyses such as BLAST. Then, EST
sequences often contain the untranslated regions (UTRs)
that are present in mRNAs but do not translate into amino
acids. Finally, it is often difficult to figure out the proper
reading frame, particularly in shorter ESTs, which impedes
certain analyses. A combination of multiple EST projects
(as we have done here) helps to alleviate some of the
shortcomings inherent in EST data.

We have sequenced, annotated and conducted evolution-
ary analysis of ESTs of haplochromine cichlids for several
reasons. First, this large set of sequence data for cichlid
ORFs provides insight into the genome of a representative
of haplochromine cichlids, which are a main model sys-
tem for the study of adaptive evolution and explosive spe-
ciation [1-3]. Second, we wanted to extend the existing
genomic resources for Astatotilapia burtoni such as a
genomic BAC library [27] by establishing cDNA libraries
from different tissues. Furthermore, these cDNA libraries
provide the basis for annotated cDNA microarrays that are
being used for expression analyses in a variety of cichlid
species [22,28,71]. Finally, we were interested in identify-
ing genes with a different evolutionary rate in the rapidly
radiating cichlid lineage compared to other fish species, as
well as in identifying genes that show the signature of
adaptive evolution in cichlids.

Of the two A. burtoni cDNA libraries that were used for
EST sequencing, the normalized mixed tissue library
('pinky') was of better quality. Not only were there much
fewer redundant sequences as compared to the brain
library, which was mainly due to the normalization step,
but also the average insert size was larger and the average
read length was longer. Altogether, about 85% of the
sequenced cDNA clones led to high-quality ESTs of a
length of >200 bp (86% in pinky, and 85% in brain). In the
BLAST searches against Takifugu rubripes, Tetraodon nigro-
viridis, and Danio rerio, between 14% (when compared to
T. rubripes; e-value ≤ 10-50) and 43% (when compared to
D. rerio; e-value ≤ 10-5) of the A. burtoni ESTs led to hits
(Fig. 1). This lies well within the range of other EST
sequencing projects [63,65,72].

About 8,600 A. burtoni ORFs (or 75% of the high quality
ESTs) were longer than 400 bp, and about 3,000
sequences could unambiguously be annotated and classi-
fied following the vocabulary provided by the Gene
Ontology Consortium [Additional files 1, 2, 3, 4, 5, 6].
According to the Gene Ontology classification, it appears
that a broad range of genes involved in functions, proc-

esses and compartments are represented in our EST set.
This cichlid specific GO slim offers several advantages.
First, it offers a rapid visual interpretation of gene subsets.
Second, because the cichlid specific slim is built from
those sequences used to build a cDNA microarray, it offers
maximal power when testing for over- or under-represen-
tation of gene lists while reducing the need for correction
for multiple hypothesis testing. Finally, it allows for a less
experimenter-biased interpretation of microarray results,
or other genomics analyses in a manner that can be easily
compared between experiments.

One of our main goals was to characterize genes in haplo-
chromine cichlids that show a faster or slower rate of base
substitutions in cichlids compared to other fish species, as
this is indicative of a relaxed or reinforced selection
regime, respectively [35]. To this end, we combined our
newly generated ESTs with previously published
sequences for Lake Victoria haplochromine cichlids [30]
and about 1,000 sequences obtained from a Metriaclima
zebra skin cDNA library, which resulted in a total of about
45,000 ORFs. By means of homology searches against
human, the two pufferfishes, trout, and zebrafish using
local BLAST, we identified a set of 759 ORFs that are
present in all species and that show a sufficient degree of
homology (e-value ≤ 10-50) for further analyses with Ever-
EST [37]. The number of genes with a cichlid-specific
faster or slower rate of molecular evolution (always with
human as outgroup) varied when different fish taxa were
used in addition to the cichlid ORFs. However, we found
a set of 170 genes (48 "faster" and 122 "slower"; Addi-
tional files 7, 8) that appeared in all comparisons and are,
thus, good candidates for playing an important role in the
evolution of (haplochromine) cichlid fishes.

When characterizing these genes further, by means of cal-
culating Ka/Ks ratios, we found that four genes (or 2.35%
of all deviating genes) showed the signature of adaptive
evolution in the haplochromine lineage. The highest Ka/
Ks ratio (3.77) was found in the neuroendocrine convertase
subtilisin/kexin type 1, followed by claudin 3, (1.55), glu-
tathione peroxidase 3 (1.50), and ménage a trois 1 (1.19). All
gene fragments that show a Ka/Ks > 1 are found among the
more slowly evolving genes. These genes are now candi-
date genes for further investigations. The gene with the
highest Ka/Ks ratio appears particularly interesting. It is
known that neuroendocrine factors, such as gonadotropin
releasing hormone (GnRH), are involved in regulation of
reproduction and behavior in A. burtoni [56,73].

In order to generate hypotheses regarding possible mech-
anisms by which the rapidly or slowly evolving cichlid
genes might contribute to the process of adaptive radia-
tion, we made use of the GO term annotations and cichlid
specific slim. Over- and under-represented terms were
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identified among the annotations for the rapidly and
slowly evolving cichlid genes (Table 2). Among the 759
ORFs for which p-distances were calculated, over 6,000
total annotations were applied to 647, 675, and 619 ORFs

according to biological process, molecular function, and
cellular component respectively. Therefore the majority of
the 122 slowly evolving and 48 rapidly evolving genes
could be classified bioinformatically.

Table 2: Gene Ontology terms which are over- or under-represented among the rapidly or slowly evolving cichlid ORFs. 

Hypergeometic p-values are reported uncorrected for multiple testing. The number of ORFs of deviating evolutionary rate (#) relative 

to the number of core set ORFs (total) is given.

Representation GO-ID p-value # total Description

biological process 42 with higher p-distance (647 annotated)

over none

under GO:0050896 0.0161 1 86 response to stimulus

GO:0009987 0.0439 12 273 cellular process

molecular function 44 with higher p-distance (675 annotated)

none

Cellular component 40 with higher p-distance (619 annotated)

over GO:0015629 0.0327 6 39 actin cytoskeleton

under none

biological process 103 with lower p-distance (647 annotated)

over GO:0009987 0.0024 57 273 cellular process

over GO:0007243 0.0052 8 19 protein kinase cascade

over GO:0007155 0.0205 7 19 cell adhesion

over GO:0040007 0.0208 6 15 growth

over GO:0007154 0.0230 25 109 cell communication

over GO:0007267 0.0071 7 16 cell-cell signaling

over GO:0016477 0.0290 5 12 cell migration

over GO:0040008 0.0290 5 12 regulation of growth

over GO:0007409 0.0308 3 5 axonogenesis

over GO:0007610 0.0308 3 5 behavior

over GO:0015674 0.0308 3 5 di-, tri-valent inorganic cation transport

over GO:0019752 0.0376 10 35 carboxylic acid metabolic process

over GO:0007067 0.0402 4 9 mitosis

over GO:0007417 0.0402 4 9 central nervous system development

under GO:0008152 0.0016 63 477 metabolic process

under GO:0046907 0.0180 2 44 intracellular transport

under GO:0045045 0.0295 0 20 secretory pathway

under GO:0009117 0.0421 0 18 nucleotide metabolic process

molecular function 110 with lower p-distance (675 annotated)

over GO:0004930 0.0157 4 7 G-protein

over GO:0003774 0.0233 6 15 motor activity

over GO:0005262 0.0264 2 2 calcium channel

over GO:0008047 0.0324 6 16 enzyme activator activity

over GO:0005509 0.0333 12 43 calcium ion binding

over GO:0019899 0.0435 4 9 enzyme binding

under GO:0005525 0.0116 1 36 GTP binding

under GO:0005198 0.0407 8 85 structural molecule activity

under GO:0051082 0.0467 0 17 unfolded protein binding

under GO:0003743 0.0467 0 17 translation initiation factor activity

under GO:0003924 0.0481 1 27 GTPase activity

under GO:0003676 0.0483 17 147 nucleic acid binding

cellular component 97 with lower p-distance (619 annotated)

over GO:0016021 0.0096 22 88 integral to membrane

over GO:0015630 0.0388 5 13 microtubule cytoskeleton

over GO:0005625 0.0479 6 18 soluble fraction

over GO:0005615 0.0479 6 18 extracellular space

under GO:0032991 0.0001 19 222 macromolecular complex

under GO:0043234 0.0015 18 195 protein complex

under GO:0043226 0.0089 56 425 organelle

under GO:0030529 0.0139 4 65 ribonucleoprotein complex

under GO:0005829 0.0267 3 51 cytosol

under GO:0005739 0.0311 6 75 mitochondrion
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There was a relatively even distribution of rapidly evolving
genes across all GO categories. Only three terms,
"response to stimulus", "cellular process" and "actin
cytoskeleton" deviated significantly from the distribution
expected by chance alone. The most significant dispropor-
tionate under-representation for the rapidly evolving
genes was the category of response to stimulus for which
only 1 of the 86 possible annotated ORFs was included on
the list.

The distribution across GO categories was highly non-uni-
form for the slowly evolving genes. Many categories from
each ontology were represented by significantly more or
fewer ORFs than would be expected by chance. Among
those terms over-represented we found several relating to
cellular processes such as protein kinase cascade, mitosis,
and cell signaling as well as growth and cell adhesion,
while metabolic process was under-represented along
with the secretory pathway category.

The GO analysis highlights the possible categories of
genes that may play an important role in the evolution of
the haplochromine cichlid fishes. This analysis presents
hypotheses to be tested through focused experimental or
sequence analysis. An interesting contrast in GO analysis
results was observed between the rapidly evolving genes
that showed little tendency to derive from a particular
class and slowly evolving genes that were more structured
in their distribution. The lack of structure to the distribu-
tion of rapidly evolving genes may reflect the possibility
that specialization among cichlids occurs along diverse
biological pathways rather than a repeated divergence of a
given biological process or molecular function. The GO
categories that are over-represented among slowly evolv-
ing genes could represent genes whose functions are
important for phenotypic plasticity or other traits linked
to the successful adaptive radiation, while those categories
that are under-represented by slowly evolving genes repre-
sent categories that are not as tightly constrained.

Our p-distance comparisons between the five fish species
and human (as outgroup) also revealed that cichlids show
the lowest average p-distance compared to Homo sapiens
(Fig. 3). This might be an artifact that is due to the use of
the haplochromine cichlid sequence as query for all
BLAST searches. Alternatively, as we also found 122
slowly evolving genes in haplochromine cichlids, there
might be a tendency in haplochromines to retain ancestral
forms and functions. The pairwise average p-distance
comparisons between the three cichlid species Paralabido-
chromis chilotes, Ptyochromis sp. "redtail sheller", and Asta-
totilapia burtoni revealed that the coalescence time
between the two Lake Victoria species (0.08) is about half
compared to their coalescence time with A. burtoni (0.14

and 0.17, respectively), which is in concordance to the
phylogenetic relationships between these three taxa [4].

Conclusion
Here we report the sequencing and annotation of more
than 11,000 ESTs from the East African haplochromine
cichlid Astatotilapia burtoni. Our EST set comprises a broad
range of genes involved in functions, processes and com-
partments. By combining the A. burtoni ESTs with publicly
available ORFs from two Lake Victoria haplochromines
and subsequent comparisons to other fish model systems,
we identify a set of 170 genes with haplochromine-spe-
cific differences in evolutionary rates. These genes appear
as good candidates for playing an important role in the
evolution of the exceptional diversity found in (haplo-
chromine) cichlids. Interestingly, genes that were more
slowly evolving in the cichlid lineage were not evenly dis-
tributed across Gene Ontology categories; classes that are
over-represented could represent genes whose functions
are important for successful adaptive radiation. We also
identify four genes with a Ka/Ks ratio greater than one,
which are, hence, likely to have undergone positive selec-
tion in haplochromines. The A. burtoni ESTs provide novel
insights into the genome of haplochromine cichlids and
will serve as valuable resource for researchers working in
the field of (cichlid) evolutionary genomics, particularly
in the light of the forthcoming sequencing of four cichlid
genomes.

Methods
Fishes

Astatotilapia burtoni were kept at Stanford, and at the Tier-
forschungsanlage of the University of Konstanz under
standard conditions (12 h light, 12 h dark; 26°C). For
RNA isolation, fishes were sacrificed after anesthetization
with MS 222 (Sigma).

Pinky cDNA Library Construction

For the preparation of the pinky cDNA library, total RNA
was isolated from the following tissues of adult A. burtoni:
brain, caudal fin, anal fin (male), lips, muscle, ovary
(female), and skin. Additionally, we isolated total RNA
from a juvenile individual (about 30 days after fertiliza-
tion). Total RNA was isolated by guanidine thiocyanate/
phenol-chlorophorm-isoamyl alcohol extraction and lith-
ium-chloride precipitation. The different RNA samples
were pooled and cDNA was synthesized using the SMART
PCR cDNA Synthesis Kit (Clontech) following the manu-
facturer's protocol. Amplified cDNA was purified using
the QIAquick PCR Purification Kit (Qiagen) and concen-
trated by ethanol precipitation. The pellet was dissolved
in 10 µl H2O. For normalization, three microliters of puri-
fied cDNA were mixed with 1 µl hybridization buffer (200
mM HEPES-HCl, pH 8.0; 2 M NaCl) and incubated at
95°C for 5 minutes and at 70°C overnight. Then, 1 µl of
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DNAse buffer (500 mM Tris-HCl, pH 8.0; 50 mM MgCl2,
10 mM DTT) and 0.5 µl of DSN enzyme (duplex-specific
nuclease; Evrogen, Russia) were added, and the mix was
incubated at 65°C for 20 minutes. The normalization
reaction was terminated by adding 1 µl 50 mM EDTA and
incubation at 95°C for 7 minutes. Normalized cDNA was
PCR amplified (20 cycles) and cloned into pAL 16 vectors.

Brain cDNA Library Construction

A full-length, directional (EcoRI – XhoI) cDNA library was
constructed in Lambda ZapII phage vector (Stratagene)
with mRNA from A. burtoni brains (both sexes at all stages
of development and social condition were included).
Construction of this library has previously been described
in [22]. For cDNA sequencing, we used 2 µl of purified
PCR products, which were also used for the construction
of a cDNA microarray [22].

DNA-sequencing and Sequence Analysis

For sequencing of the normalized pinky cDNA library we
used purified plasmid DNA from 1 ml colonies that were
grown overnight. Plasmid DNA was directly sequenced
using T7 primers and the BigDye Termination Reaction
Kit v3.0 (Applied Biosystems) on ABI 3730 and ABI 3100
automated capillary DNA sequencers (Applied Biosys-
tems). Sequences of the brain cDNA library were deter-
mined on an ABI 3100 DNA sequencer after cycle
sequencing reactions from purified PCR products that
were available from the construction of a cDNA microar-
ray [22] using the primer CSVP3 (5'-AAGCGCGCAAT-
TAACCCTCACTA-3') and the BigDye Termination
Reaction Kit v3.0 (Applied Biosystems).

Base-calling and quality trimming were performed with
phred [74] using a quality score > 20. Vectors were
trimmed with Sequencher 4.2.2 (Genecodes). Those ESTs
having a total length of >200 bp after quality and vector
trimming were considered "high-quality ESTs". Screens
for possible contaminations were conducted by blastn
searches against the E. coli genome, and the EST_human,
EST_mouse and EST_others databases (downloaded in
March 2005). Sequences have been deposited in GenBank
under accession numbers CN468542 – CN472211 (brain
library) and DY625779 – DY632420 (pinky library).

Annotation of A. burtoni ESTs

High quality A. burtoni ESTs were screened by tblastx
searches against protein data from Danio rerio (Zebrafish
Sequencing Group at the Sanger Institute), Homo sapiens
(GenBank) and Takifugu rubripes (JGI Fugu v3.0) as well as
ESTs from Oncorhynchus mykiss and Tetraodon nigroviridis
(GenBank) using the standard vertebrate code for transla-
tion into amino acids. The expected value thresholds (e-
values) were set to < 1 × 10-5, < 1 × 10-15, and < 1 × 10-50.
The proper open reading frame for A. burtoni ESTs was

determined with EverEST [37], based on the results from
these BLAST searches.

For functional annotation of A. burtoni ESTs, we followed
the vocabulary provided by the Gene Ontology Consor-
tium using the GO database [75]. Gene Ontology terms
were applied to the cichlid assembled sequences by BLAST
comparison to the Gene Ontology database (release
200704), which represents protein sequence for all con-
tributed genes for which at least one GO annotation has
been applied based on experimental evidence rather than
only inferred electronic annotation of sequence. All GO
annotations at any confidence level were then transferred
from the single best-hit gene using e-value < 10-12 as a
threshold. The collection of GO terms used was
"slimmed" in order to produce useful summaries of the
annotations.

This cichlid specific slim [Additional files 4, 5, 6] is based
upon statistical consideration for analysis of microarray
results. The leaf most nodes have been selected for which
20 or more A. burtoni assembled sequences were anno-
tated with this term. Parent nodes were retained only
when an additional 20 A. burtoni assembled sequences
were included. To assess the enrichment of particular
classes of genes among the genes showing deviating rate
of molecular evolution, Gene Ontology annotation terms
were tested for significant over- and under-representation
in either the higher or lower p-distance list using a hyper-
geometric test implemented in the BINGO plugin [76] for
Cytoscape [77]. Due to the exploratory nature of this anal-
ysis and controversial application of correction tech-
niques [78], reported p-values are not corrected for
multiple testing. Only the representation for the leaf most
node is reported except in cases when a larger, parent
node showed increased significance. The directed acyclic
graphs (DAGs) were created using hierarchical visualiza-
tion in Cytoscape and manually adjusted to facilitate
comprehension.

Evolutionary Analyses

For evolutionary analyses of ESTs from haplochromine
cichlids, we combined our newly generated high-quality
ESTs from A. burtoni with previously published ESTs from
Paralabidochromis chilotes and Ptyochromis sp. "redtail shel-
ler" [30] and with about 1,000 ESTs obtained from a
cDNA library made from Metriaclima zebra skin tissue (W.
Salzburger, H. A. Hofmann & A. Meyer, unpublished).
The combined dataset, including more than 45,000 ESTs,
was BLASTed against protein data from Danio rerio, Homo
sapiens and Takifugu rubripes as well as ESTs from Onco-
rhynchus mykiss and Tetraodon nigroviridis (see above for
source of data) using the translated BLAST routine and the
standard vertebrate code. This was done to identify a set of
ORFs present in all datasets under study. BLAST searches

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN468542
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN472211
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DY625779
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DY632420
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were performed with an e-value of < 1 × 10-50 in order to
achieve high levels of confidence in the similarity
searches. The cichlid query sequences and the best hits
from every single BLAST search against the different data-
bases were imported into EverEST [37].

In order to identify coding sequences showing a deviating
rate of molecular evolution in haplochromine cichlids
compared to other fish lineages we applied the triangle
method implemented in EverEST. In this approach, the
query sequences are aligned to their best BLAST hits in two
ingroup and one outgroup taxa using the T-Coffee algo-
rithm [79] as implemented in EverEST [37]. This reveals
multiple sequence alignments consisting of four taxa.
Then, uncorrected pairwise p-distances are calculated for
all taxon pairs in each alignment, which are used to con-
struct neighbor-joining trees and, after rooting with the
outgroup sequences, for a global ternary representation. A
relative rate test was applied to each of the orthologous
groups. We applied the nonparametric rate test developed
by Tajima [80], and compared the genes with their human
and their fish orthologs in order to identify higher or
lower substitution rates.

For these analyses, we used the human sequences as out-
group since tetrapods are valid outgroup taxa for teleost
fish and the human genome is the most complete and
best annotated genome among those. In addition to our
haplochromine cichlid query sequences, we used different
sets of ingroup taxa in order to minimize biasing effects
due to sparse taxon sampling. We used the following com-
binations of taxa for our evolutionary rate analyses using
759 ORFs that have been found in all datasets: (human,
(haplochromine cichlid, Danio rerio, Takifugu rubripes))
(Fig. 2a), (human, (haplochromine cichlid, Danio rerio,
Tetraodon nigroviridis)) (not shown), (human, (haplo-
chromine cichlid, Danio rerio, Oncorhynchus mykiss)) (not
shown). As a control, we also analyzed a data set without
the cichlid-query sequences for the same set of ORFs
(human, (Danio rerio, Oncorhynchus mykiss, Takifugu
rubripes)) (Fig. 2b). We note that this approach might lead
to an underestimation of the number of faster evolving
genes, as genes that accumulated too many mutations are
likely not to be chosen in the stringent initial BLAST
searches. We would also like to point out that some of the
observed rate differences might have accumulated on the
evolutionary lineage leading to the cichlids but before the
cichlids have evolved as a group.

For orthologous groups, where the p-distance in the hap-
lochromine cichlids were significantly (p < 0.05) higher
or lower compared to other fish, the ratio of the number
of nonsynonymous substitutions per nonsynonymous
site (Ka) to the number of synonymous substitutions per
synonymous site (Ks) was calculated based on a likeli-

hood approach [81] to evaluate the selective forces acting
on those proteins. The Ka/Ks ratio is an indicator of the
form of sequence evolution, with Ka/Ks >> 1 providing
strong evidence that positive selection has acted to change
the protein sequence.

We also constructed a histogram of amino acid sequence
divergence of all five fish datasets with respect to homol-
ogous human sequences. We finally used the redundant
sequences in the three datasets P. chilotes, P. sp. "redtail
sheller", and A. burtoni to calculate pairwise average p-dis-
tances.
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