
 723

ANNOTATION OF JOINT PROJECTS AND INFORMATION

STATES IN HUMAN-NPC DIALOGUES

Núria Bertomeu

Anton Benz

Zentrum für Allgemeine Sprachwissenschaft

Abstract

We present a corpus of human-NPC interactions in a virtual environment. The corpus has

been obtained through a Wizard-of-Oz experiment simulating a scenario where the user

furnishes a room with the help of a virtual interior designer. With the aim of extracting useful

information for the development of a dialogue model, an annotation scheme and

representation format have been designed. The unit of annotation is the minimal joint project.

Minimal joint projects are represented as feature-structures containing information on their

goals, the information state shared by the dialogue participants and the actions composing the

projects. The representation format is suitable for describing dialogues independently of the

task and domain and can serve as representation of dialogue states in dialogue models. A

methodology for the generation of project representations relying on manual and automatic

annotation has also been developed. The annotated corpus allows for the automatic extraction

of dialogue transitions and delivers useful information for the development of the natural

language understanding and generation modules.

Keywords: dialogue, NPC, corpus, information state, joint project

I. INTRODUCTION

In the latter decade, Massive Multiplayer Online Role Playing Games and virtual reality

environments, such as Warcraft and Second Life, are proliferating. In such games players

cohabit a 3D-environment with other players. To populate such 3D-worlds in the early stages

of the game’s existence and to fill roles which humans do not want to play, such as waiter,

shop assistant, etc. non-player-characters (NPC) are created. NPCs are virtual characters, who

can serve different purposes in the game, ranging from providing information to helping the

user to carry out some task. However, the linguistic capabilities of NPCs are currently very

limited. There are very few commercial games which handle linguistic input
1
.

Recently, there has been some research on providing virtual characters in 3D-worlds

with conversational capabilities. The NICE fairy-tale game (Gustafson et al., 2005) and the

Mission Rehearsal Exercise System (Hill et al., 2003) are some of the most sophisticated

resulting prototypes. Still a lot of research needs to be done to provide NPCs with natural

language dialogue capabilities which enhance the naturalness of the dialogue. These

capabilities may include e.g. the understanding of implicatures and the ability of producing

pragmatically adequate responses. Such research requires first of all data to analyze how

humans interact with NPCs. Although there exist some corpora of interactions between

humans, mostly children, and virtual agents, e.g. Narayanan and Potamianos (2002),

Gustafson et al. (2005), data about human-NPC interactions in 3D-environments are still

rather scarce.

In this paper we present a corpus of human-NPC interactions, obtained by means of a

Wizard-of-Oz (WoZ) experiment. The interactions take place in a virtual reality environment,

where both an adult subject and the simulated NPC are present in the same room through their

 724

avatars. The NPC’s role is the one of an interior designer/furniture saleswoman who helps the

subject furnishing a living-room. Her main tasks are to find out about the preferences of the

subject, present adequate objects according to these preferences and place them in the room

according to the instructions of the subject.

Our investigation of the data aims at addressing questions relevant for the

development of dialogue models for NPCs, e.g. which action should an NPC carry out given

a particular context. For this, we need to annotate not only the actions performed by the

dialogue participants (DPs), but also the changes that these actions produce in the information

state shared by them. We will use here the term information state to denote the information

which has been established during the dialogue: concretely, the parameter values already

fixed and the parameter values under discussion and under consideration, similar e.g. to

Ginzburg’s Dialogue Gameboard (Ginzburg, 1995). It should not be confused with the larger

notion of Information State (IS) in the Information State Update (ISU) framework, e.g.

(Larsson & Traum, 2000). An IS represents the information that the DPs have at a particular

point in the dialogue, including not only the content of the dialog conveyed so far, but also the

latest contribution to the dialogue, the immediate actions to carry out by the DPs, as well as

the long term plans motivating these actions. Our information state, since it only represents

the content of the dialogue conveyed so far, corresponds only to a part of an IS representation

of dialogue context.

There exist several coding schemes for the annotation of dialogue acts in task-oriented

dialogues. Some of the most popular are the Dialog Act Mark-up in Several Layers (DAMSL)

(Core & Allen, 1997) and the HCRC (Carletta & Isard, 1996) schemes. DAMSL is a general

multi-dimensional scheme, a sub-set of whose dimensions and functions we have adopted in

our scheme. The HCRC interestingly incorporates the annotation of adjacency pairs (called

games in the scheme), which will also be present in our annotation.

Regarding the annotation of information states, Poesio et al. (1999) have carried a

pilot study for the annotation of ISs, concluding that these are not suitable for large-scale

annotation, because the task is time-consuming and difficult. Georgila et al. (2005) have

automatically annotated ISUs in the COMMUNICATOR corpus. However, since the content

of information states is domain and task-specific such a procedure is not easily transferable to

our corpus.

In this paper we present an annotation scheme and representation format for dialogue

states. The main considerations when designing them were that they should be general enough

to describe dialogues in other domains and tasks. A second consideration was that they should

allow for capturing larger phases in the interactions, but be kept flexible to handle

interruptions and the development of topics in parallel. This latter consideration brought us to

take a bottom-up approach to the analysis by choosing as our annotation unit minimal joint

projects (Clark, 1996). Minimal joint projects are adjacency pairs which have a purpose and

carry out an update of the information state. They will be represented in feature-structures

which contain information on their function, goal, information state and the actions building

them up. The actions are further specified according to the act they perform and their role in

the project, among other information. The annotator does not have to annotate the information

states directly, these will be extracted from other information easier to annotate and will be

presented to the annotator for correction. These project representations allow us to extract

useful information for the dialogue model. They can also be used in the dialogue model as

state representations, based on which network transitions can be formulated in finite-state

dialogue models.

Finally, the paper is structured as follows: the next section describes the WoZ-

experiment with which we collected the corpus, and gives an overview of the main

characteristics of the data. Section 3 explains the theoretical background behind the

 725

annotation scheme, presents the scheme and briefly describes the process of annotation.

Section 4 discusses some of the research questions that can be addressed with the annotated

corpus. Finally, section 5 summarizes and concludes.

II. THE CORPUS

In order to gather data on how humans interact with NPCs in the graphical environments of

computer-games and virtual realities, we carried out a WoZ-experiment. In a WoZ-

experiment a person plays the role of the system to be simulated and subjects interact with a

system interface, unaware that there is a human behind it. In the following subsections we

describe our experiment and the data obtained.

II.1. Experimental setting

The experiment took place in the virtual environment Twinity
2
, which provides a virtual

representation of the city of Berlin. In this virtual world people can own apartments and

furnish them as they wish, by purchasing virtual furniture and decoration objects. The

furniture pieces can be chosen from a catalogue and moved around in the apartment, so that

different locations for them can be tried.

Given this possibility of owning and furnishing a virtual apartment, it seemed to us

practicable and desirable to model an NPC with the role of an interior designer/furniture

saleswoman who helps people furnishing their apartments by showing them objects which

match their wishes, trying different locations for these objects and giving advice.

The task of the subjects was, thus, to furnish a living-room with the help of the interior

designer/furniture saleswoman. The subject and the Wizard were sitting spatially separated in

different rooms although they both were present as avatars in the virtual room and could see

the changes made to it in real time. The interaction took place in typed English language

through the chat-interface provided by Twinity. This chat-interface presents the contributions

of each dialogue participant in speech balloons. Figure 1 shows a snapshot of one of the

sessions.

 726

Figure 1: Interaction between the NPC Alexandra and a subject

In the preparation phase of the experiment the Wizard was instructed about decoration

principles, such as colour combinations and styles, and got very well acquainted with the

range of available living-room furniture and decoration. She was told to follow a specific

behaviour protocol, but still to react flexible to the initiative of the subject. The protocol

stated the order in which she should address the different types of objects, as well as the

different steps to be taken within the discussion of a specific type of object. For each step she

had a collection of readymade utterances which she should use if possible. These ready-made

utterances were paired with short codes in a text substitution program, which allowed to

automatically type them in the chat window by typing the codes. This resulted in a reduction

of the typing time and typos and contributed to the impression of machine-likeness.

An important reason for using a behaviour protocol is that we wanted to obtain

comparable data among the subjects. If the Wizard behaves with total freedom there is no way

to know whether the different behaviour of the subjects is due to intrinsic variation among

them or to the different behaviour of the Wizard.

The subjects were given written instructions and a video of a sample interaction. In

order to increase their motivation they were offered an economic incentive: the half of the

best rooms would be awarded with a prize.

Eighteen subjects took part in the experiment. The interactions lasted one hour. They

were all logged and video-recorded. Afterwards, the subjects were asked to fill a form where

we assessed the credibility of the experiment. Sixteen subjects believed to be interacting with

an NPC, although four of them sometimes had the impression of being interacting with a

person. Fifteen subjects found the dialogue useful and easy to carry out.

 727

II.2. Main characteristics of the data

As a result of the WoZ-experiment we obtained a corpus of mixed-initiative human-NPC

interactions consisting of 18 dialogues, 23.015 alpha-numeric strings, 4.313 utterances and

3.171 turns.

As mentioned above, the main goal of the dialogues is to choose and place instances of

certain types of objects, such as a sofa, a coffee-table, an arm-chair, etc. Hence, progress in

the task fulfilment is achieved by addressing the following parameters:

(1)

• family of objects (furniture, accessories, electro, decoration),

• object type (e.g. sofa, sideboard, plant, TV),

• property-value pairs of the object (e.g. colour: red, material: leather, size:

large),

• object (e.g. “Sofa Consuelo”, “Sofa Isadora”, “Chair Beverly”),

• location of the object (e.g. “in front of the sofa”, “between the windows”, “on

the top of the shelf”),

• quantity of instances of the object for certain types of objects (e.g. “4 chairs”,

“2 arm-chairs”).

The main proceeding of the Wizard was to find out whether the customer wants a

certain type of object in the room and if it is so, to choose the corresponding object and its

location, and eventually decide on the quantity of instances of the object. A number of sub-

goals serve these main purposes. Below we find a list of main goals and sub-goals linearly

and hierarchically represented
3
.

(2)

• introduce family of objects

• introduce object type (find out whether the user wants it)

• choose object

o determine consideration set

 determine value for property

o examine alternative proposed

o select alternative

• choose location

o determine location

o examine location

o select location

• choose quantity

o determine quantity

o examine quantity

o select quantity

• close discussion about object type

• close discussion about family of object types

However, not all of these sub-goals need always to be carried out. Goals are

sometimes carried out just implicitly. A single utterance may address several goals and there

is only a partial order in which the goals need to be pursued.

Since the task is to build up an arrangement of furniture and decoration, the choice of

an object and its location has to fit with the other objects and their locations. A consequence

of this is that the different types of objects are often not dealt with one after the other in an

orderly fashion. The discussion of an object type may be interrupted and another object type

 728

may be addressed, several object types may be addressed in parallel and closed object types

may be raised again.

The following dialogue gives a glimpse of the data:

(3) USR.1: And do we have a little side table for the TV?

NPC.1: I could offer you another small table or a sideboard.

USR.2: Then I’ll take a sideboard that’s similar to my shelf.

NPC.2: Let me check if we have something like that.

NPC.3: What about this one?

USR.3: No, that doesn’t fit in here.

NPC.4: Do you want me to show you another one?

USR.4: Yes, I’d like to.

NPC.5: Do you like it?

USR.5: Is there a black or white sideboard?

NPC.6: No I’m afraid not, they are all of light or dark wood.

USR.6: Ok, then I’ll take this one.

NPC.7: All right.

In this example the user takes the initiative by requesting to address a certain object

type, a side table. The NPC initiates a side-sequence by requesting information on which

object type the user concretely wants to address, whether a sideboard or a small table. The

user replies that she wants a sideboard and requests that this be similar to her shelf,

restricting, thus, the consideration set. The NPC offers an alternative, which is simply rejected

by the user. The NPC reacts by proposing to show another alternative, which the user accepts.

The alternative is shown, but the NPC does not accept or reject it immediately. She initiates a

side-sequence by requesting a sideboard in black or white, addressing, thus, the consideration

set again. The NPC rejects the request, since there are no sideboards with such characteristics

and she proposes light or dark wooden sideboards. This information helps the user to make a

decision, which she communicates by accepting the last alternative presented. Finally, the

NPC acknowledges the decision.

This example shows that, though the limited nature of the simulated scenario and the

concrete behaviour pattern followed by the Wizard, the interactions exhibit quite a high

degree of freedom and contain many complex phenomena.

III. CORPUS ANNOTATION AND REPRESENTATION

In this section we present an annotation scheme and representation format. Since our main

goal when investigating the data is to address questions relevant for the development of a

dialogue model, such as which decisions are made in which contexts, we need to annotate

both the actions carried out in the interactions and the changes that these actions make to the

shared information state of the DPs. A second consideration is that the scheme and

representation should be portable to other tasks and domains, which can be achieved by

describing the data with general attributes, which may take task or domain-specific values.

Finally, the scheme and representation should be able to capture how higher goals are

pursued, but still be flexible enough to cover the parallel handling of issues, interruptions, etc.

III.1. Theoretical background

Keeping in mind these considerations we have taken a bottom-up approach to analyzing the

data by annotating the minimal units that carry out an update of the information state of the

 729

DPs. This minimal unit is the project, as in Clark (1996). A minimal joint project has a

purpose and is usually realized by an adjacency pair. An adjacency pair consists of two

ordered actions carried out by different agents. The first action initiates the joint project, by

raising an issue, and the second action completes it.

According to Clark (1996), minimal projects can be related with each other in different

ways. One of them is chaining. In chaining the completing act of the project initiates itself

another project which is then completed by a third act. This is the case for question-answer

pairs, where the answer raises a new issue, which needs to be accepted. Here follows an

example:

(4) NPC: Which colour do you want for the walls?

 USR: I want them slightly off white.

 NPC: Ok.

Joint projects can also be embedded in other projects. Embedded projects can be

concerned with dialogue-management, as in the following example:

(5) NPC.1: Would you like to see a footstool?

USR.1: What is a footstool?

NPC.2: A footstool is a support for the feet.

USR.2: No, thank you. I want to see an arm-chair.

They can also build up side-sequences exchanging some information necessary for

completing the embedding project. Here follows another example:

(6) NPC.1: Which colour would you like the walls to be?

USR.1: Are they white now?

NPC.2: Yes.

USR.2: Then I’ll leave them like this.

Projects can also be preceded by other projects which prepare them. These

introductory projects are called pre-sequences or preliminary projects. The main project in (7)

is headed by a preliminary, which addresses the addressing of a particular issue.

(7) NPC.1: Let us start with considering what you would like to do in this room.

USR.1: Ok.

NPC.2: Is it going to double as a dining-room or just used to relax and enter-

tain your friends?

Joint projects have a function in dialogue. They can be concerned with bringing the

task forward, with managing the dialogue, with meta-talk, etc. As we already mentioned,

projects serve some purpose, so both the initiating and completing acts contribute to the

achievement of this purpose. In (4), for example, the purpose is to determine the value for the

property colour of the walls.

Task-related projects fix certain pieces of information, or parameters. This information

fixed during the dialogue is shared by the DPs. In our dialogues fixed information can have

different qualities: it can be part of what is established in the dialogue to hold of the room (a

set of beliefs about the room as the dialogue proceeds), it can belong to the set of alternative

objects under consideration (alternatives accepted, but about which no final decision has been

made), and it can be the object type and family of object types currently under discussion.

These three components build up an information state. According to this, task-related joint

projects are initiated in a given information state and after their completion the information

state is updated, so we can speak of a unique information state for the joint project. For

example, for the project in (4) the information state is such that it is not known which colour

the customer wants the walls to be. After the project, it is fixed that the colour should be

white.

 730

III.2. Project description and representation

We describe a task-related project by means of its function, goal and information state. If the

project contains an embedded project or is introduced by a pre-sequence we also include the

embedded project or the pre-sequence in the description of the project. Instances of chaining

will not be annotated as embedded projects, but as projects consisting of three actions. The

individual actions which constitute the project are further described by means of the speaker

contributing them, the act performed, their role in the project (initiating vs. completing), their

status as linguistic or physical action, their status as implicit or explicit action, the time when

they were contributed and the set of parameters they raise and discuss.

Since the information we want to code is sometimes quite complex, we have decided

to code the project as a complex feature-structure. Feature-structures are objects described by

means of attribute-value pairs, for which the values can be themselves complex feature-

structures. A feature-structure representation allows for a clear visualization of how the

different parts of the project hang together. For the coding of feature-structures in XML

format we have followed the guidelines of the Text Encoding Initiative (TEI)
4
.

Figure 2 shows the feature-structure representation of the project in (8):

 731

Figure 2: Project representation

(8) NPC: Would you like some shelves on the opposite wall?

 USR: Yes.

 732

Let us now look in detail at the features which require an explanation:

• FUNCTION: The project can carry out one of the following functions: task, dialogue

management, preliminary, side-sequence, greet, farewell and other.

As we explained, task-related projects update the information state. Projects with any of

the other functions do not. The project in (8) is an example of a project with a task-related

function. Projects with a dialogue-management function are concerned with the grounding

of a previous utterance. They ask or provide clarification for the intended meaning of the

previous utterance, ask about its understanding or acknowledge this. An example of a

project concerned with dialogue management is provided in (5). Projects with a side-

sequence function carry out an exchange of information relevant for completing the

project embedding them, as illustrated by the example in (6). Preliminary projects are

concerned with announcing or requesting the initiation of a task-related project, as in (7).

Projects concerned with meta-talk are about the processing carried out by the system.

Typical examples are requests by the system for the user to wait. Projects may also have a

greeting or farewell function if they are concerned with greeting and the presentation of

the DPs, or with saying goodbye, respectively. Finally, projects not carrying out any of the

above mentioned functions, e.g. comments, will be annotated as pursuing a function other.

• PROJECT GOAL: Only task-related projects will be specified for a project goal. From a

first observation of the data we have identified the abstract goals in (2). The goals are

composed by an action and a type of parameter. Each project carries out one or several

minimal goals, that is, those goals at the lowest level of nesting in (2). In (8), for example,

the goals are introduce object type and determine location.

• EMBEDDED PROJECTS: Projects embedding other project(s) or being introduced by

preliminaries will have as value for this feature a set containing the embedded or

preliminary project(s). Embedded and preliminary projects are represented as feature-

structure objects similar to normal projects but with a reduced set of features. For

example, they are not specified for an information state, since they are not supposed to

update it and the information state of the embedding project holds for the embedded or

preliminary project as well.

• INFORMATION STATE: As already mentioned, the information state will consist of

three blocks of information, which differ in their status between: fixed, under

consideration and under discussion. The information state represents the values for the

parameters presented in (1) which are valid when the project takes place. The completing

act changes this information state. However, the change is first represented in the

information state of the subsequent project. This leads to a less verbose annotation. If we

annotated an information state after the initiating act and then after the completing act, we

would have to annotate the same information state twice. Annotating only the information

state previous to the completion of a project still allows us to recover the updated

information state, since it is the information state of the subsequent project.

Let us look now at the different components of the information state:

o FIXED-INFORMATION: Fixed parameters are represented within a feature-

structure representation of the room being arranged. This room representation

is analogous to the room specification in the ontology underlying a potential

dialogue system. It functions as a template with slots for all the possible

furniture and decoration pieces which can be placed in the room and is being

filled as changes in the room are being made. It serves both as memory for

what has been achieved and as a guide for what still needs to be done.

Expressed preferences in terms of property-value pairs about objects for which

no instance has been found yet, will also be placed in the room representation

 733

and will provide, thus, an underspecified representation of the object, which

will be fully specified once an instance is found.

Following the TEI guidelines, to avoid verbosity in the annotation, objects

which are not currently under discussion, whether instantiated or empty, will

be represented with a reference. Their full representation will be stored in a

library. The reference can be unfolded and, hence, the full representation can

be visible in the annotation when necessary.

o TOPICS-UNDER-DISCUSSION: This feature corresponds to a stack of open

topics currently under discussion, where the topic corresponds to the family of

object types and the sub-topic to the object type. The top of the stack is not

represented here, but in the individual actions, since each action may update it.

o ALTERNATIVES-UNDER-CONSIDERATION: This feature has as value a

set of parameters of the same type for cases in which alternatives are accepted

by the customer, but he nevertheless requests to see further alternatives and

postpones a decision.

To illustrate the information state let us look at Figure 2. Before the completion of the

project in (8), the feature FIXED-INFORMATION has as value a template of the

room being arranged in which no cover for the ceiling or the floor has been chosen
5
.

No objects of the families accessories, electro and decoration have been chosen either,

but a cover for the walls has. The topic of the dialogue is currently the set of furniture

pieces, which we can see by the coindexation of the TOPIC feature with the

Furniture-Set in the room representation. Within the Furniture-Set we see that a sofa,

an armchair and a coffee-table have been chosen, but a chair and other pieces of other

types have not. The coffee-table is still the sub-topic under discussion, as shown by the

coindexation, since the new sub-topic proposed in the initiating act has not yet been

accepted for discussion. The feature-structure representation of the new sub-topic,

however, is already unfolded. As we will see shortly, the parameters under discussion

of the initiating and completing acts correspond to certain aspects of this new object.

An object-type is represented by a feature-structure of type Set, in this case, the

Shelves-Set. This feature-structure is specified for a quantity, in this case the quantity

of shelves in the room, and a set of items, in this case, all the individual shelves in the

room. An item is further described as having a location and an instance, that is, a

concrete piece of furniture. Note that at this point the quantity of instances is

underspecified between 0 and 10, which means that it is still not known whether the

customer wants some shelves. The value of the feature INST is the general abstract

type Shelves, of which all the shelf models are sub-types and the individual shelves

instances.

Figure 3 shows the updated information state after the completion of the project. This

information state is part of the following project. As you can see, the shelves have

become the sub-topic of the interaction, the quantity of shelves has been fixed to 1 and

the location to the location proposed in the preceding project, l1 (on the opposite wall).

 734

Figure 3: Updated information state

• ACTIONS: This feature has as value the set of actions building up the project.

Actions are the minimal units contributing to the achievement of a purpose. They

are further specified as follows:

o ROLE IN PROJECT: An action can be the initiative if it is the first action

of the project, which raises an issue. The second action of the project is the

completion.

o (SPEECH) ACT: Only the actions in projects with a task, dialogue-

management, preliminary, side-sequence and meta-talk function will be

specified for the attribute ACT. Considering the kind of reaction that they

require from the other dialogue participant in our particular task, i.e. the

perlocutionary act, we have come up with a reduced set of acts, which

nevertheless are sufficient to classify all actions that we have encountered:

a. propose: Proposals are mostly performed by the NPC, since she

proposes topics, values for properties, objects, which are subject to

acceptance or rejection by the customer. Here follows an example:

 (9) NPC: Maybe you would like to see a black leather arm-chair.

b. request: Requests are mostly performed by the customer, since he wants

the designer to do something for him, such as addressing a certain topic at

a certain time, showing him objects with certain features, placing objects at

certain places, etc. Here follows an example:

(10) USR: I’d like a black shelf if you have one.

c. request info: Requests for information are mostly, but not only,

performed by the NPC in order to find out about the features of the objects

that the customer would like to add to the consideration set, or to find out

about the location or quantity of the objects. These are usually alternative

questions or wh-questions. Here follows an example:

(11) NPC: Where do you want me to put it?

d. accept: In order to being pursued, both requests and proposals first need

to be explicitly or implicitly accepted by the other dialogue participant.

 735

While the customer is free to accept or reject an NPC’s proposal, the NPC

always will accept the customer’s requests if these can be fulfilled.

Answers to open questions or answers to alternative questions which

deviate from the alternatives proposed also have to be accepted. Here

follows an example:

(12) NPC: Would you like to make your sofa the focal point of the room

by choosing some bright colour like red?

propose

USR: Yes.

accept

e. reject: Requests and proposals can also be rejected. Sometimes this

happens only implicitly. Again, requests by the customer are not likely to

be rejected if it is not the case that they cannot be fulfilled. Here follow

some examples:

(13) NPC: Do you like this one?

 propose

 USR: No.

 reject

f. provide info: Mostly only the customer provides information about his

preferences upon request by the NPC. Here follows an example:

(14) NPC: Would you like a plain lamp or an eye-catcher?

 request info

 USR: An eye-catcher.

 provide info

g. acknowledgement: Actions carrying out acknowledgement build up

projects only concerned with dialogue management. They communicate

that the dialogue participant has understood and grounded the content of

some previous statement. They usually appear in the same form as

acceptances (“Ok”, “I see”, ...), but in different contexts. Here follows an

example:

(15) NPC: Will you take it?

 propose

 USR: Yes. / No.

 accept, reject

 NPC: Ok.

 acknowledgement.

o MOOD: The value for this feature is the sentence mood of the utterance

performing the action. Possible sentence moods are: declarative,

interrogative and imperative. As you can see in the following examples,

illocutionary act and sentence mood are independent from each other and

the same illocutionary act can be performed with utterances in different

moods:

(16) USR: Do you have a green sofa?

 act: request, mood: interrogative

 USR: I would like a green sofa.

 act: request, mood: declarative

 USR: Show me a green sofa.

 act: request, mood: imperative

o LINGUISTIC: This is a binary attribute which can have as values “+” or

 736

“-“, depending on whether the action has been carried out by an utterance,

that is, it performs an illocutionary act, or whether it has been carried out

physically, e.g. by showing or placing an object. Here follows as an

example a project where the initiating act is performed physically and the

completing act is an illocutionary act. Of course, physical actions will not

be specified for sentence mood, span and utterance.

(17) the NPC places a sofa

 act: propose, linguistic: -

 USR: Wonderful!

 act: accept, linguistic: +

o IMPLICIT: This is a binary attribute which can have as values + or -,

depending on whether the action has been carried out implicitly or

explicitly. Implicit actions are carried out by utterances which also carry

out another action. The first action will be annotated as implicit. Implicit

actions are usually acceptances and rejections. Here follows an example:

(18) NPC: Do you like it?

 USR: Don’t you have something smaller?

 act: reject, implicit: +

 act: request, implicit: -

o PARAMETERS UNDER DISCUSSION: This feature has as value the set

of parameters under discussion: the issues that the action concretely

addresses, i.e. the objects with which the project goals are concerned. From

the attentional point of view, it corresponds to the top of the stack of topics

under discussion. The different types of parameters (e.g. type of object,

location, ...) have been presented in (1). The parameters are coindexed with

certain objects in the room representation. With this coindexation it is clear

which place they occupy in the room or to which objects they relate.

However, this coindexation does not mean that the parameter values under

discussion are fixed in the representation of the room. As long as they are

under discussion they are not fixed. Only information in the representation

of the room which is not under discussion is fixed.

As an example, look at Figure 2. Here, there are two parameters under

discussion: the object type and the location of the object. As value for the

parameter object type Shelves is proposed, and as value for location on the

opposite wall is proposed.

Projects initiated by proposals and requests will have the same parameters

under discussion in the initiating and completing acts. However, projects

concerned with the exchange of information will have different sets of

parameters under discussion in the initiating and completing acts, since the

completing act provides a value for the abstract parameter raised in the

initiating act.

III.3. The annotation

In order to simplify the complex annotation task at hand, we have come up with a

methodology for the annotation of projects in different phases. In the first phase thematic

blocks about a single object type have been annotated by creating a single markable

containing all the utterances around the object type and choosing the topic and the sub-topic

 737

from the different families of object types and object types presented in (1). This annotation

has been carried out with MMAX2
6
 (Müller & Strube, 2006). The second part of the

annotation is also being carried out with MMAX2. Previous to it, markables corresponding to

actions have been automatically created according to punctuation. The annotator, however,

can choose to keep these markables as they are, to modify them or to create new ones. The

sentence mood has also been automatically annotated according to punctuation, giving the

annotator the possibility of correcting it latter. The task of the annotator is then to group the

actions in projects and annotate the nesting relations. The function and goal of the project as

well as the different illocutionary acts carried out by the actions are also being annotated in

this phase. Concrete values for the different parameters under discussion, except for object

type and family of object type, which have been annotated in the first phase, are being

annotated as well. With all this information almost complete feature-structures are being

automatically constructed. Information about the speaker, time stamp and span are also

automatically added. In a third phase, the automatically constructed information states are

being revised. A reason for this is that sometimes fixed preferences in terms of property-value

pairs are implicitly overridden. For all the phases of the annotation carefully written

guidelines have been handed to the annotator.

IV. ANALYSIS OF THE DATA

In this section, we briefly discuss several questions which we are planning to address and

about which the annotation can give us valuable insights. We are mostly concerned with

extracting information useful for developing a finite-state based dialogue model for an NPC

playing the role of an interior designer. We are attempting to extract transitions from one

dialogue state to another at the most abstract level. Concretely, we want to see what is the

context, both at the task and dialogue structure level, in which the NPC chooses to carry out a

certain action.

At the task level, for example, we may find out that, when the user has accepted a

certain amount of objects for consideration, the NPC should bring him to take a decision by

requesting information about which one he likes most. Another transition could be to address

the location of the object if this slot is empty and the process of choosing an instance has not

started yet or the instance has already been found. Also identifying pairings of information

states and input utterances and the sub-sequent information states can help us to formulate

information state updates and to restrict the possibilities of interpretation of the input

utterance.

From the structural point of view, we want to find out how the pairing of illocutionary

acts and sentence moods constrain the generation of responses. For example, a request

requires an acceptance or a rejection, however the sentence mood in which the request has

been expressed restricts the way in which the acceptance or rejection can be expressed. Here

follows an example:

(19) USR: I would like a green sofa.

NPC: Ok. / Here you have. / *Yes. /We don’t have any sofa in green. / *No,

sorry. / *I’m afraid not.

USR: Do you have a green sofa?

NPC: *Ok. / Here you have. / Yes. / We don’t have any sofa in green. / No, sorry.

/ I’m afraid not.

Further, we want to investigate when projects are chained, that is, the same utterance

expresses the completion of the first project (usually implicitly) and the initiative of the

following. For example, we find pairs of propose-request, request-propose, request-request

 738

information, etc. It is important that the NPC recognizes the two actions carried out by such

utterances, since they both update the information state and request a perlocutionary action

from her. It is also important that the NPC is able to generate them, since they contribute to a

more natural and less verbose dialogue. Here follows an example:

(20) USR: I would like a green sofa.

 request

 NPC: What about this one?

 accept, propose

 USR: I like it.

 accept

We also want to identify the different structural realizations of a project with a

particular goal, that is, all the possible combinations of initiators and acts, with which the

same purpose can be pursued. At present, we have the impression that not all goals can be

pursued with the same project internal configurations. For example, while for determining the

value of a property all possible combinations of actions and actors are possible, for examining

an alternative it seems that the only possibility is that the NPC proposes the object to the

customer, who can accept or reject it. This information is important for the dialogue model,

since it restricts the possible acts according to the goal to be pursued. It also means that the

goals given by the task have an influence on the lowest-level structure of the dialogue, i.e. the

internal structure of the project.

Finally, we want to look at how the smallest joint projects that we are annotating build

up larger projects around higher-level goals, such as determine consideration set, choose an

object. Our intuition is that it is not always possible to isolate such phases and that phases are

sometimes interrupted and sometimes mix with each other in a natural manner. This would

support the bottom-up approach that we have taken to analyzing the data, since it provides the

necessary flexibility to handle the simultaneous pursuit of several goals, interruptions, etc.

V. SUMMARY AND CONCLUSIONS

We have presented a corpus of human-NPC interactions and its annotation. We have

chosen the minimal joint project as our annotation unit, since it is the minimal unit which

brings the task a step forward. We have come up with a project representation format in terms

of a feature-structure, which allows to easily visualizing the dependencies among the different

pieces of information describing the project. The features describing the projects are general,

so that the project skeleton can be reused when annotating dialogues with different tasks. We

have developed a methodology for coding project representations, based on manual

annotation and automatic generation. The obtained project representations are suited for the

extraction of dialogue transitions to build up a dialogue model and as dialogue state

representations in the dialogue model.

To conclude let us briefly compare our project representations with ISs (Larsson &

Traum, 2000). ISs represent the dialogue context of individual moves, while the project

represents the context of adjacency pairs. Since much of the information is the same for the

whole project, coding projects results in a less verbose corpus annotation. However, the

extraction of dialogue states for individual moves from the project representations is

straightforward. Project representations only contain information about the preceding

dialogue and about what the current actions do. ISs also include information about what is to

come in terms of plans and agendas. Coding such information is not straightforward, but by

extracting dialogue transitions, concretely, finding out which goals are pursued in which

contexts, agendas can be automatically constructed from the project annotations.

 739

Acknowledgements

The research reported in this paper has been conducted as part of the project KomPARSE,

carried out in cooperation by the Zentrum für Allgemeine Sprachwissenschaft (ZAS) and the

Deutsches Zentrum für Künstliche Intelligenz (DFKI) from June 2008 until June 2011. The

project is funded by the ProFIT program of the Investmentbank Berlin and the European

Regional Development Fund.

Notes

1
 Lifeline, released by SCEI and Konami, is an example of a game which allows for spoken

commands.
2
 See http://www.twinity.com/.

3
 Goals in bold are the main goals, which may include sub-goals.

4
 See http://www.tei-c.org/release/doc/tei-p5-doc/en/html/FS.html.

5
 E in the references stands for empty object, while S stands for set object. These labels refer

to complete feature-structures stored in libraries.
6
 See http://mmax2.sourceforge.net/.

References

Carletta, J. & Isard, A. (1996). HCRC dialogue structure coding manual. Technical report,

 Human Communication Research Centre, University of Edinburgh.

Clark, H. H. (1996). Using language. Cambridge University Press, Cambridge.

Core, M. G. & Allen, J. F. (1997). Coding dialogues with the DAMSL annotation scheme. In

 D. Traum (Ed.), Working Notes: AAAI Fall Symposium on Communicative Action in

Humans and Machines, pages 28–35, Menlo Park, California. American Association

for Artificial Intelligence.

Georgila, K., Lemon, O. & Henderson, J. (2005). Automatic annotation of

COMMUNICATOR dialogue data for learning dialogue strategies and user

simulations. In Ninth Workshop on the Semantics and Pragmatics of Dialogue

(SEMDIAL: DIALOR).

Ginzburg, J. (1995). Resolving questions. Linguistics and Philosophy, 18:5, 459–527.

Gustafson, J., Boye, J., Fredriksson, M., Johannesson, L. & Knigsmann, J. (2005). Providing

computer game characters with conversational abilities. In Proceedings of Intelligent

Virtual Agent (IVA05), Kos, Greece.

Hill, A. W., Gratch, J., Marsella, S., Rickel, J., Swartout, W. & Traum, D. (2003). Virtual

humans in the mission rehearsal exercise system. KI Embodied Conversational

Agents, 17, 32–38.

Larsson, S. & Traum, D. (2000). Information state and dialogue management in the TRINDI

 dialogue move engine toolkit. Natural Language Engineering, 6, 323–340.

Müller, C. & Strube, M. (2006). Multi-level annotation of linguistic data with MMAX2. In S.

 740

Braun, K. Kohn, and J. Mukherjee (Eds.), Corpus Technology and Language

Pedagogy. New Resources, New Tools, New Methods., volume 3 of English Corpus

Linguistics. Peter Lang, Frankfurt.

Narayanan, S. & Potamianos, A. (2002). Creating conversational interfaces for children.

IEEE Transactions on Speech and Audio Processing, 10, 65–78.

Poesio, M., Cooper, R., Matheson, C. & Traum, D. (1999). Annotating conversations for

 Information State Update. In Dialogue. Amsterdam University.

