
BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 4 2009, pages 533–534
doi:10.1093/bioinformatics/btn657

Genome analysis

AnnotationSketch: a genome annotation drawing library
Sascha Steinbiss∗,†, Gordon Gremme†, Christin Schärfer, Malte Mader and Stefan Kurtz
Center for Bioinformatics, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany

Received on September 25, 2008; revised on December 03, 2008; accepted on December 19, 2008

Advance Access publication December 23, 2008

Associate Editor: John Quackenbush

ABSTRACT

Summary: To analyse the vast amount of genome annotation data
available today, a visual representation of genomic features in a
given sequence range is required. We developed a C library which
provides layout and drawing capabilities for annotation features. It
supports several common input and output formats and can easily
be integrated into custom C applications. To exemplify the use of
AnnotationSketch in other languages, we provide bindings to the
scripting languages Ruby, Python and Lua.
Availability: The software is available under an open-source license
as part of GenomeTools (http://genometools.org/annotationsketch.
html).
Contact: steinbiss@zbh.uni-hamburg.de

1 INTRODUCTION
Genome annotations are often provided in the GFF3 format (Stein,
2007) using the vocabulary of the Sequence Ontology (Eilbeck et al.,
2005). This format defines a directed acyclic graph (annotation
graph) with individual annotated entities (features) as nodes and
edges representing part_of relationships between them. It is not
uncommon for annotations to contain tens of thousands of features.
This makes it difficult to obtain an overview of the structure and
hierarchy of the features in a particular genomic location by looking
at tabular data. For this reason, annotation browsers like the UCSC
Genome Browser (Kent et al., 2002) or GBrowse (Stein et al.,
2002) as well as curation tools like Apollo (Lewis et al., 2002)
provide an intuitive graphical representation of annotated features,
allowing, for example, to jump to a specific feature. However, such
drawing components are often tied to the particular tool’s data
model and programming language, limiting their reusability in other
contexts. While the BioPerl toolkit (Stajich et al., 2002) includes
the Bio::Graphics module as an established reusable and extensible
solution for genome annotation drawing, it has the disadvantage
to be conveniently usable in Perl applications only. Furthermore,
its output is limited to files, which is inefficient in desktop GUI
applications because temporary files must be created. Another
disadvantage is the need for a database backend and the explicit
definition of aggregators to visualize feature relationships.

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

2 DESIGN AND IMPLEMENTATION
AnnotationSketch is designed to be a small and efficient drawing
library for genome annotations with a focus on simplicity,
allowing to draw any given annotation in a wide variety
of application fields while automatically considering feature
relationships. AnnotationSketch directly uses annotation graphs as
its underlying data model. They can be created and manipulated
dynamically by user code (e.g. in custom gene prediction software)
via library functions available in GenomeTools. Alternatively, they
can be imported from GFF3, GTF or BED files by using the
respective GenomeTools parser. The actual drawing process is
divided into following three separate phases.

(1) Feature selection phase. Obtain a collection of features, either
by retrieving, from an efficiently searchable feature index,
all features overlapping the range of sequence positions to
draw, or by supplying an array of features. Based on user
preferences and feature relationships, group single features
into blocks, the smallest units which can be laid out.

(2) Layout phase. Distribute the blocks into a hierarchical
structure representing vertical tracks (containing all blocks
with a common feature, e.g. type) and lines (each containing
non-overlapping blocks) such that the obtained packing in the
2D representation is most compact.

(3) Rendering phase. Use the track and line structure as a
blueprint for drawing to a specific output format.

While some concepts (such as the use of tracks) are shared
with Bio::Graphics, tracks need not be explicitly created by
the programmer but are determined from the feature types
encountered in the input data. This minimizes programming
overhead. Nevertheless, user-defined tracks can be created according
to arbitrary block properties. Each feature can also optionally be
drawn transparently on top of its parent feature (e.g. all exon and
intron features are placed into their parent mRNA or gene track).
Relationships are implicitly given by the annotation graph. This
approach, called collapsing, can significantly improve visual clarity
in renderings of annotations with many levels of hierarchy.

The AnnotationSketch library is implemented using ANSI C in
an object-oriented style. This approach makes it straightforward to
create bindings to other object-oriented languages. Bindings for the
Ruby, Python and Lua scripting languages are included with the
software. We also provide an AnnotationSketch-based command line
tool, allowing to draw GFF3, GTF and BED annotation data.

An image is represented by one class instance per structural
(Element, Block, Line, Track and Diagram) or processing result

© The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 533

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/4/533/249853 by guest on 20 August 2022



S.Steinbiss et al.

Fig. 1. Two images drawn by AnnotationSketch, showing the cnn and cbs gene region from the Ensembl Drosophila melanogaster annotation [release 51,
(a) 2R:9326816–9341000, (b) 2R:9338169–9341000]. At the bottom, the GC content of the respective sequence (calculated on the fly) is drawn via an example
custom track attached to the diagram. Image (a) shows the exon (dark blue), CDS (yellow) and intron type features collapsed into their mRNA type parent
features (medium blue) for a more concise view. Image (b) shows an uncollapsed rendering of the cbs gene.

(Layout). Additionally, custom track objects – instances of special
classes implementing a common interface—can be added to
a Diagram and allow development of user-defined drawing
functionality, e.g. to display arbitrary plots along the annotation
(see Fig. 1 for example output). On user request, the Layout’s sketch
method invokes rendering methods for each component in a drawing
surface abstraction called Canvas, which in turn calls primitive shape
drawing methods of a Graphics object wrapping a graphics back-
end. The currently used Graphics implementation uses the Cairo 2D
graphics library (Worth et al., 2003), currently allowing output to
PNG bitmaps as well as PDF, SVG and PostScript vector formats.
Cairo also facilitates integration into GUI-based applications by
providing native rendering surfaces for windowing systems like the
X Window System or Mac OS X Quartz. Attaching a rendered image
to a user interface is possible by mapping 2D image coordinates to
the respective feature. This enables AnnotationSketch to be used, for
example, in a genome annotation browser or editor.

User preferences are stored in instances of the Style class.
Configuration options (colours, borders, collapsing flags, etc.) can
be set and retrieved both globally and for specific feature types.
Additionally, it is possible to supply callback functions to make
colours or captions dependent on individual feature properties.

To evaluate the performance, 100 random regions of 500 kb length
from the Drosophila melanogaster Ensembl release 50 GTF gene
annotation were drawn to a 800 pixels wide PNG image from a
FeatureIndex held in memory, resulting in an average rendering time
of 0.61 s per image. It has to be noted that the time-consuming part
appeared to be the bitmap rastering process. Using SVG or PDF for
output reduced the time to 0.05 s (SVG) and 0.04 s (PDF) per image.
In contrast, creating a comparable output with a Perl script using
Bio::Graphics took 3.98 s on average per PNG image and 4.58 s
per SVG file. This makes AnnotationSketch favourable in SVG-
based web applications to reduce server load. Memory usage of the

AnnotationSketch-based program peaked at 34.1 MB for a single
run, of which 33.3 MB were occupied by the feature index for the
15.6 MB GFF3 file. The Perl script’s average peak memory usage
for a single run was 15.45 MB. However, the memory usage of the
Perl script did not include the MySQL database storing the features.

3 CONCLUSION
AnnotationSketch provides a fast and easy to use library for drawing
annotations to be used in any application in which a light-weight
visualization of annotation data compatible with an annotation graph
format is desired. By implementing all functionality in C and using
foreign function interfaces to add high-level bindings to a variety
of other languages afterwards, applications can benefit from both
portability and interface consistency across all bindings.

Conflict of Interest: none declared.

REFERENCES
Eilbeck,K. et al. (2005) The sequence ontology: a tool for the unification of genome

annotations. Genome Biol., 6, R44.
Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res., 12,

996–1006.
Lewis,S.E. et al. (2002) Apollo: a sequence annotation editor. Genome Biol., 3,

RESEARCH0082.
Stajich,J.E. et al. (2002) The bioperl toolkit: perl modules for the life sciences. Genome

Res., 12, 1611–1618.
Stein,L.D. (2007) Generic feature format version 3. Available at http://www.

sequenceontology.org/gff3.shtml (Last accessed date August 25, 2008).
Stein,L.D. et al. (2002) The generic genome browser: a building block for a model

organism system database. Genome Res., 12, 1599–1610.
Worth,C.D. et al. (2003) Cairo: cross-device rendering for vector graphics.

Proceedings of the 2003 Linux Symposium. Available at http://cworth.org/~

cworth/papers/xr_ols2003/ (last accessed date August 25, 2008).

534

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/4/533/249853 by guest on 20 August 2022


