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Abstract

Mass spectrometry is used to investigate global changes in protein abundance in cell lysates.
Increasingly powerful methods of data collection have emerged over the past decade, but this has
left researchers with the task of sifting through mountains of data for biologically significant
results. Often, the end result is a list of proteins with no obvious quantitative relationships to
define the larger context of changes in cell behavior. Researchers are often forced to perform a
manual analysis from this list or to fall back on a range of disparate tools, which can hinder the
communication of results and their reproducibility. To address these methodological problems we
developed Annotator, an application that filters validated mass spectrometry data and applies a
battery of standardized heuristic and statistical tests to determine significance. To address systems-
level interpretations we incorporated UniProt and Gene Ontology keywords as statistical units of
analysis, yielding quantitative information about changes in abundance for an entire functional
category. This provides a consistent and quantitative method for formulating conclusions about
cellular behavior, independent of network models or standard enrichment analyses. Annotator
allows for “bottom-up” annotations that are based on experimental data and not inferred by
comparison to external or hypothetical models. Annotator was developed as an independent post-
processing platform that runs on all common operating systems, thereby providing a useful tool
for establishing the inherently dynamic nature of functional annotations, which depend on results
from on-going proteomic experiments. Annotator is available for download at
http://people.cs.uchicago.edu/~tyler/annotator/annotator_desktop_0.1.tar.gz.
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INTRODUCTION

Over the past decade, there has been a significant effort to describe differences among
cellular states by changes in the proteome. Toward this end, technological advances,
especially in the field of mass spectrometry, have allowed increasingly efficient, parallel and
quantitative analyses of protein abundance and modifications. These techniques generate
large amounts of data that require, as a practical necessity, specialized software for
organization, management, and analysis (reviewed by 1). Although existing tools have met
many of the challenges associated with processing large LC-MS/MS data sets,2-11 many of
the tasks involved with assigning biological significance are still performed using an ad hoc
assortment of tools, often requiring manual validation, that leave conclusions subject to the
judgment of the individual researcher (reviewed by 12). Accordingly, the major bottleneck
currently facing proteomic analyses is not the rate at which data is generated but the time
that it takes to interpret data in a biological context.13

Current approaches for deriving biological meaning from proteomic data depend either on
the use of network-based models or enrichment analyses. Network-based approaches use
libraries of protein interaction profiles, provided either by high-throughput monitoring
strategies14 or compiled from pairwise interactions referenced in the literature.15 Software is
available to overlay experimentally identified proteins onto these curated interaction
networks. For example, provided with a short list of proteins, MetaCore from GeneGo, Inc.
will display a hypothetical network built from previously observed interactions.16 The
longer the list of proteins, however, the harder it can be to match the data to a compiled
network. In fact, these interaction networks have not been shown to be universally
applicable and each interaction may not be physiologically significant.17 Finally, the
extensive degree of crosstalk and functional interdependence between signaling pathways
can make it very difficult to extract signatures that are easily associated with observable cell
functions.18

Nevertheless, interaction networks provide a framework for inferring protein dependencies
and have been used successfully to profile essential gene expression19 and to describe
regulatory architectures (reviewed by 20). The challenge arises in generalizing curated
interaction profiles to describe consequences resulting from the differences in protein
abundance that are observed by LC-MS/MS. Ubiquitous signaling mechanisms such as
activation and inhibition, with feed-forward and feedback loops, do not depend on protein
abundance for the modulation of network activity. Therefore, systems approaches that use
circuitry to represent activity are not useful for determining how changes in protein
abundance represent changes in cellular function.

The quantitative alternative to visualization with interaction networks is enrichment
analysis, which determines the extent to which a sample has been enriched for particular
functions. Enrichment algorithms, which are used for example, by DAVID (Database for
Annotation, Visualization, and Integrated Discovery)21 and EASE (Expression Analysis
Systematic Explorer),22 provide a probability that a given sampling of proteins would be
chosen at random from a complete proteome. Similarly, the LC-MS/MS-specific software
Scaffold23 and STRAP (Software Tool for Researching Annotations of Proteins)24 use Gene
Ontology information from NCBI and UniProt to generate pie charts visualizing the relative
representation of functions derived from a list of proteins that were identified in an
experiment. Software for network manipulation, such as Cytoscape25, 26, can also provide
analyses that describe the likelihood that observed interactions have been randomly
selected.27
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Enrichment analyses do not take into account experimentally observed measures of protein
abundance. Both network visualization and enrichment analyses use lists of identified
proteins to generate biologically relevant hypotheses. The reverse approach, where
biological hypotheses generate lists of expected proteins, has been suggested as a targeted
approach to proteome monitoring.28 While this would provide for more efficient data
acquisition, it would not change the essential process by which quantitative proteomic data
is translated into relevant changes in cell behavior.

Our original motivation was to develop a tool that provided for faster quantitative analysis in
a biological context. This final post-processing stage of proteomic analysis required a new
approach that relied less on investigator subjectivity, thereby relieving an automation
bottleneck and supporting experimental reproducibility and the communication of
comprehensive results. It was clear that a common analytical technique for determining
biological significance would facilitate direct comparisons within and between experiments.
To achieve this standardized method of protein selection and address the issue of small
sample sizes inherent in LC-MS/MS data, we investigated the use of common heuristics and
robust, simple statistical measures of significance. Novel examples of this are the use of
population-based standard deviations instead of arbitrary fold-change thresholds as measures
of significance, the use of t-tests to analyze changes in keyword abundance and the inclusion
of explicit normality tests to ascertain the effectiveness of t statistics. Cluster analysis and
heat map visualization were used to demonstrate significant similarities within and between
data sets, an approach that is rarely applied to quantitative proteomic data. We addressed
several details particular to quantitative mass spectrometry, including the quality of the
quantitative LC-MS data, the presence of stable isotope-labeled standards, and the effect of
sample preparations that include separation by gel electrophoresis. The inclusion of optional
filters with user specified parameters provide a high degree of control over the exclusion of
possible errors introduced by upstream software.

Most importantly, in this new approach biological context became an integral component of
the complete quantitative analysis. UniProt and Gene Ontology keywords provide a
consistent language for discussing biological trends that is established, accepted and readily
accessible. We used these keywords to organize observed data at the peptide level, an
approach that differs from existing keyword enrichment analysis algorithms. This provided
us with larger sample sizes, giving more power to statistical analyses, and also provided an
automated means to reveal quantitative signatures that could not be extracted from lists of
protein names. The simplicity of this quantitative approach avoids some of the problems that
emerge from attempting to overlay a hypothetical interaction network onto experimental
data. By investigating observed keyword overlap we were able to highlight shared protein
functions in a biological context.

As an example of our strategy, we monitored changes in the relative abundance of proteins
and keywords in neutrophils activated by lipopolysaccharide (LPS) to induce an
inflammatory response. There are several experimental methods to assist with the global
study of cell response. Selection-based assays, for example using activity-based probes29 or
clonal selection,30 may be the most successful means of associating proteins with functions
and phenotypes. In this work, we used a gallium affinity column to enrich cell lysates for
phosphorylated proteins, thereby focusing our analysis on proteins with the greatest
likelihood of being involved in a coordinated signaling response.
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METHODS

Sample Preparation

To provide a source of data that was rich in content for functional annotation, we prepared a
complex sample of soluble proteins from neutrophils activated by lipopolysaccharide (LPS).
The human promyelocytic HL-60 cell line (ATCC) was differentiated in culture using 1 μM
alltrans retinoic acid (Sigma-Aldrich), 6 pM 1α,25-Dihydroxyvitamin D3 (Sigma-Aldrich),
and 30 ng/mL granulocyte-colony stimulatory factor (Invitrogen) in Iscove's Modified
Dulbecco's medium (Mediatech, Inc.) supplemented with 20% FBS and 4 mM L-
glutamine.31 Cells were activated via treatment with 100 ng/mL of lipopolysaccharide (LPS)
from E. coli O111:B4 (List Biological Laboratories) for 30 minutes. The control was treated
with an equal volume of double-distilled and autoclaved water. Cells were harvested,
washed with 100 mM HEPES, pH 7.4, and lysed in the presence of phosphatase inhibitors.
Lysates were prepared and enriched for phosphorylated proteins using the Pro-Q Diamond
phospho-enrichment kit (Invitrogen).32 Fractions were collected, concentrated, and
exchanged into 0.25% CHAPS in 25 mM Tris, pH 7.5, by centrifugation at 4 °C using 10
kDa-cutoff concentrators (Millipore) for a final volume near 500 μL.

The total protein content of eluted fractions was determined by Bradford analysis (Pierce)
using the average of triplicates. Total protein content was also qualitatively compared by the
intensity of Coomassie staining (Pierce) following gel electrophoresis. LPS-treated and
control samples were loaded at approximately 10 μg of total protein per lane for separation
on 4-12% NuPAGE gradient electrophoresis gels (Invitrogen) using MOPS SDS running
buffer. Gels were cut into 11 vertical slices, combining 9 replicate lanes for each vertical
slice to increase the amount of protein in each sample. Gel slices were de-stained, reduced,
acetylated, and dehydrated.32 Proteins were digested in-gel by re-hydrating each gel slice
with 2 μg of trypsin in 60 mM NH4HCO3 with 0.5 mM CaCl for 12 hours at 37 °C. Peptides
were extracted from gel slices in two steps, starting with an aqueous extraction with 5%
formic acid in water for 1 hour and followed with an organic extraction with 5% formic acid
in 50% CH3CN. Extractions from each step were centrifuged under vacuum separately,
combined in water, and lyophilized.

18O Labeling

Isotopic labeling by enzymatic incorporation of 18O was used for relative protein
quantitation between the LPS-treated sample and the control.33 To label peptides at the
carboxyl-terminus with 18O, samples were re-suspended in 97% H 18

2O (Cambridge Isotope
Laboratories, Inc.) and incubated with 30 μL of washed Mag-Trypsin beads (Clontech) for
48 hours at 37 °C. The reaction was monitored by MALDI-TOF MS (4700 Voyager,
Applied Biosystems). Beads were removed by magnetic separation, labeled samples were
lyophilized and re-suspended in 2% CH3CN with 0.2 % formic acid in water (mobile phase
A), and combined 1:1 (v/v) with the unlabeled sample.

Nanoscale LC-MS/MS

11 LC-MS/MS runs were performed per experiment, corresponding to the number of
vertical gel slices. Using an AS1 autosampler and auxiliary isocratic pump (Eksigent
Technologies), 10 μL injections were loaded at 10 μL/minute onto a 2.5-μL Opti-Pak pre-
column (Optimize Technologies) packed with 5 μm, 200 Å Michrom Magic C8 solid phase
(Michrom BioResources) to remove contaminating salts. Peptides were separated at 350 nL/
minute on a 20-cm × 75-μm-inner diameter column packed with 5 μm, 200 Å Michrom
Magic C18 solid phase (Michrom BioResources). A 90 minute two-step chromatographic
gradient was used, starting with a slow separation from 5 - 50 %B over 60 minutes followed
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by a rapid increase from 50 - 95 %B over 10 minutes using 80% CH3CN, 10% n-propyl
alcohol, and 0.2 % formic acid in water (mobile phase B).

Samples were analyzed on an LTQ-Orbitrap Hybrid FT mass spectrometer (Thermo
Scientific). Data were collected in full profile mode from m/z 375 to 1,950 at 60,000
resolving power with internal calibrant lock masses. The five most abundant double- and
triple-charged precursors with a minimum signal of 8,000 between 375 - 1,600 m/z were
subjected to collision-induced dissociation (CID) with 35% normalized collision energy, 30
ms activation time, and activation Q at 0.25. To reduce repeat analyses, dynamic exclusions
were established for 60 seconds with an isolation width of 1.6 m/z units, for low and high
mass exclusion of 0.8 m/z units each per precursor.

Database Searching

Unprocessed MS and MS/MS data in a RAW file format were converted to the mzXML
format using ReAdW (from TPP version 4.1, http://sourceforge.net/projects/sashimi/files/)
and imported into the CPAS organization and analysis application database (version 9.10).34

X! Tandem (version 2.007.01.01.1, http://www.thegpm.org/)4 identified peptides and
proteins from fragment ion spectra of selected precursors using the non-redundant human
international protein index (version 3.53) maintained at the European Bioinformatics
Institute. Parent ions were allowed an error of up to 2.5 Da above and 1 Da below the
monoisotopic mass, while fragment ions were allowed a mass tolerance of 0.5 Da from the
monoisotopic mass. Parent ions required less than 20 ppm mass accuracy and greater than
90% matched molecular weight against expected values based on the PeptideProphet
algorithm (http://peptideprophet.sourceforge.net/).35 Peptide identifications were statistically
validated using PeptideProphet and filtered in CPAS using a PeptideProphet minimum
probability cutoff that generates a false discovery rate of 1%.

Search parameters specified tryptic digestion, with cleavage at arginine or lysine, and
allowed two missed cleavages per peptide. Cysteine alkylation from iodoacetamide
treatment was set as a fixed modification. S-carbamoylmethylcysteine cyclization at the
amino-terminus, pyroglutamic acid formation from glutamine and glutamate, oxidation of
methionine, and single and double isotope label incorporation at lysine and arginine were
considered variable modifications. Peptides were considered distinct if they differed in
sequence or modifications. Although distinct proteins within a family may share identical
peptides, ambiguous assignments were grouped by a single protein identifier based on a
representative group member following the law of parsimony.

Quantitation by Ion Current Integration

The XPRESS software (version 2.1, from TPP version 3.4) was used within CPAS to
reconstruct peptide elution profiles.36 Peptide signal intensity was integrated over the
number of MS scans in which an identified peptide ion was observed, thereby providing
quantitative areas for unlabeled and 18O labeled peptides. The mass tolerance for the
selection of peptide pairs was set to 0.05 Da. XPRESS was not used to calculate protein
abundance ratios from these peptide elution peak areas.

Software Setup

The software described here interacted with a MySQL database that was populated with
reference data used to filter and organize results. Proteins were defined by the 40,788
available gene names from the SwissProt catalog of the Universal Protein Resource
(UniProt). Gene names were associated with IPI identifiers from X! Tandem searches.
Keywords were defined by the total set of 32,378 terms in 13 categories from UniProt and
Gene Ontology catalogs (available at http://www.uniprot.org/docs/keywlist and
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http://www.geneontology.org/GO.downloads.ontology.shtml). The complete human
repository of proteins from the UniProt knowledgebase, including protein-specific accession
numbers, molecular weight information, and keyword associations (available at
http://www.uniprot.org/downloads), was loaded into the MySQL database.

Software Implementation

The software was written in Java to facilitate platform independence. Reference and
experimental data were stored in a MySQL database. The Apache POI library was used to
read and write Excel files. The Apache Commons Math library was used as a standard
resource to compare implemented statistical calculations and to calculate p-values from t-
statistics. The standard analytical software R was also used to compare and validate
implemented statistical calculations, to perform cluster analysis using Pearson correlation
coefficients37 and to generate heat maps. Prism (version 4.0a) was used to calculate
frequency distributions and to produce histograms. The software was run on standard
desktop computers running Linux or Mac OS X but can also be run with Microsoft
Windows.

RESULTS AND DISCUSSION

Activation of Neutrophils with Lipopolysacccharide

Figure 1 illustrates the series of steps taken to generate data for LC-MS/MS analysis. To
control the standardization of experimental variables, HL60 cells were differentiated along
the neutrophil lineage in culture and split into two groups prior to treatment with LPS. The
control group and LPS-treated group were lysed and enriched for phospho-protein
complexes on separate affinity columns. The eluate from each column was loaded with
equal total protein content and separated by gel electrophoresis. Equal protein loading of
each gel was important to ensure accurate relative ratios between samples for quantitative
analysis. 11 slices were excised from each gel lane, and each slice was digested and labeled
with 18O at the peptide COOH-terminus using trypsin.

Two technical replicates were performed. In one case, the LPS-treated sample was labeled
with 18O, while the control remained unlabeled. In the other case, the labeled state of the
treated cells was switched so that the control was labeled with 18O while the LPS-treated
sample remained unlabeled. This strategy was intended to provide validation for peptide
quantitation, independent from any bias in labeling efficiency with different peptide
sequences.38 For each gel slice, the differentially labeled samples were combined in equal
volumes and analyzed by LCMS/MS.

Initial LC-MS/MS Data Processing

The CPAS platform34 was used to manage the variety of tasks involved in processing
LCMS/MS data to generate validated peptide identities and measures of relative abundance.
In CPAS, X! Tandem4 was used to identify peptide sequences and assign peptides to
proteins by gene name. Also in CPAS, XPRESS36 was used to calculate peptide elution
peak areas by integrating the intensity of each peptide parent ion over chromatographic time.

Annotator Input

Data were exported from CPAS as Microsoft Excel files and loaded into a MySQL database.
Each excel file combined the 11 LC-MS/MS runs from a single experiment and contained
all of the information available from CPAS analyses, including columns for peptide
sequence, gene name, LC-MS/MS run/fraction name, Peptide Prophet score, protein
accession number, scan number, retention time, and quantitative analysis fields. Additional
descriptions of these fields are available in the CPAS documentation
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(https://www.labkey.org/wiki/home/Documentation/page.view?
name=pickPeptideColumns). An example of program input, generated directly by CPAS, is
provided in Supplementary Table 1.

In addition to this experimental input, the human protein repository was downloaded from
UniProt and Gene Ontology catalogs as a reference. Every protein that was identified in an
experiment was queried against this reference.

The program input was filtered to ensure quality, then grouped by gene name. For each
group, descriptive and normality statistics were calculated and one-sample t-tests were
performed. The data was regrouped by keyword and a separate set of descriptive statistics,
normality statistics and t-tests were calculated for all keyword groupings. Finally, the
program compared all pairs of keywords to determine the degree of overlap, thereby
highlighting shared functions. The details of these steps and their theoretical underpinnings
are discussed below.

Data Filtering Strategy

Each file contained over 15,000 peptide identifications per experiment. Manual searches of
the data highlighted several key aspects that were misinterpreted, thereby introducing
significant errors in the final evaluation. For example, in the Excel file generated by CPAS
using X! Tandem and XPRESS, identical peptide sequences appeared multiple times
(Supplementary Table 1, rows 5 – 6, 7 – 8, 15 – 16). Whether XPRESS used an identical
set of MS scans or a slightly different range of MS scans to quantify the same peptide
multiple times, the effect was to bias the calculated average toward the abundance of that
particular peptide. For example, suppose that the relative abundance of protein X was
calculated from peptides a, b and c with relative abundances of 2, 2 and 5, respectively. It is
our opinion that the abundance of protein X should be 3 because (2+2+5)/3 = 3. If peptide c
is counted twice, because it was sampled twice, then the abundance of protein X is 3.5
because (2+2+5+5)/4 = 3.5. This problem is exaggerated if peptide c has a value of 10
instead of 5, or if peptide c is counted more than twice. We realized that to calculate an
accurate average for protein abundance, we would have to filter the data so that each unique
peptide sequence was considered only once.

The protein myosin heavy chain 9 (MYH9) provides a prime example for illustrating the
utility of considering the contribution of repetitive measurements from a single peptide
sequence during protein quantitation. A highly abundant intracellular protein, MYH9 was
initially represented in the dataset by 778 unique measurements. Each measurement
represented a unique instance where a peptide parent ion was fragmented for identification
by MSMS and the ratio of the labeled parent ions in MS was calculated from integrated MS
peak intensities over the time of chromatographic elution. Many of these measurements
were redundant; for instance, the peptide sequence TDLLLEPYNK was quantified 8 times
over its total elution period. These 8 unique measurements for TDLLLEPYNK were
distinguished by independent fragmentation spectra with PeptideProphet scores ranging
from 0.9150 to 0.9968 (Supplementary Table 1, rows 568, 1861, 1865, 1894, 1898, 10472,
10473 and 13176). In an effort to reduce the number of times that any one peptide was
sampled by MSMS, dynamic exclusions were set during data acquisition for 60 seconds
with an isolation width of 1.6 m/z units for each parent peptide ion. Nevertheless, for high-
abundance peptides that elute over a duration longer than 1 min. this dynamic exclusion
setting is not sufficient and the peptide is sampled repeatedly by the spectrometer. Setting
the dynamic exclusion window to a longer duration risks missing separate and unique
peptides that may be identified within that mass range. Therefore, to differentiate among
these eight independent measurements of the same peptide we established a set of
postprocessing filters that could be used to describe the quality of each measurement; these
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filters will be discussed in detail in sections to follow. For the peptide TDLLLEPYNK, 4 of
the 8 independent measurements were considered valid because the peptides had been
identified in fractions from gel slices that corresponded to the high molecular weight of
MYH9. These 4 independent measurements reported a relative abundance for
TDLLLEPYNK that ranged from (0.66 to 0.71), where 0.5 represents equal relative
abundance of the peptide in the unlabeled and heavy-labeled samples. The measurement for
TDLLLEPYNK with the highest PeptideProphet score (0.98) generated a ratio of 0.71,
which was very close to the average ratio for all 4 valid measurements (0.68).
TDLLLEPYNK is just one peptide from the MYH9 protein and each peptide that was
observed from the total MYH9 protein sequence was analyzed in this way to calculate the
relative protein abundance for MYH9.

The main point to note is that two strategies are possible in calculating a protein average: all
4 independent measurements for the single peptide TDLLLEPYNK can be used in a
weighted average for the protein MYH9 or it is possible to choose only 1 of the
measurements for TDLLLEPYNK in the calculation of a simple protein average. We chose
the latter strategy, using the PeptideProphet score to select one relative abundance ratio for
the peptide TDLLLEPYNK. Our concern was that a weighted average, representing multiple
independent samplings of TDLLLEPYNK, could skew the calculated protein abundance
toward this one peptide. This peptide sequence appears only once in the protein MYH9, so it
seemed sensible to let each unique peptide sequence within the protein make an equal
contribution toward the calculated average. Indeed, in the case of MYH9, although 778
unique measurements were recorded for MYH9 we found that only 140 unique peptide
sequences from MYH9 were observed (Supplementary Table 2). Therefore, to calculate the
relative abundance of MYH9 we used the average of 140 unique peptide sequences, rather
than the average of all 778 redundant measurements.

In the exported data, we also noticed that often only one peptide from a labeled pair was
fragmented for identification. Pairs were defined by a difference in molecular weight of
either 2.004 or 4.008 Daltons for singly- or doubly-labeled COOH-termini. Search
parameters in X! Tandem were not able to differentiate between COOH-terminal residues
that were modified by enzymatic transfer of 18O and internal residues resulting from missed
tryptic cleavages that could not have been modified. As a result, pairs were assigned with
differences of 4.008, 8.016, and 12.024 Da, although a difference of only 2.004 or 4.008 Da
between heavy and light pairs was feasible with this labeling scheme. As a third example of
a common problem in data handling, several peptides were quantified as having a relative
abundance ratio exceeding 1:100. Manual inspection of the RAW data confirmed that these
values were calculated based on the inappropriate assignment of peptide pairs.

Several techniques have been developed that make use of the fragmentation properties
of 18O labeled peptides to validate peptide identification.33, 39-42 Instead, our strategy was to
use a set of post-processing filters to remove peptides that were not members of a well-
defined pair. During the subsequent development of Annotator we included additional filters
to improve the quality of data used for protein quantitation.

Six optional filters with adjustable parameters were implemented (Table 1). Together these
filters were used to ensure that a protein was defined by peptides that were properly paired
and adequately sampled. Proteins and peptides that passed all six filters were used for
quantitative analysis. Every unique peptide sequence was analyzed once; repetitive
quantitation of peptides was removed by including only the measurement with the highest
PeptideProphet score.35 Whether data passed or failed a filter, all data were clearly listed in
the final reports. This transparency allowed comparisons between reports using different
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threshold values. Thresholds for each filter were manipulated during the analysis of the
datasets, and the results are summarized in the proceeding sections.

Four of these optional filters were designed to accommodate stable isotope labeling and gel
excision and may not be suitable for all experimental approaches. We encourage all users to
consider the conditions used in sample preparation to guide the selection of appropriate data
filters.

Filters 1 and 2: Chromatographic Elution Profile

The chromatographic elution profile of peptides provides two characteristics that can be
used to enforce accurate quantitative analysis: the duration of elution and co-elution of
peptide pairs.

The Scan Cutoff filter limits the minimum number of scans over which a peptide must be
observed to ensure a reliable elution profile. Exploratory studies have determined that higher
smoothness of a peptide elution profile increases the accuracy of measurements of peptide
abundance.43 By requiring a minimum duration for which a peptide is observed in MS, ions
with very short and sporadic appearances can be filtered out. Maximizing the duration of
peptide elution was used as a proxy for continuous peptide elution, an important
characteristic of peptide chromatography and one that is used by many proteomic tools,
including the Trans-Proteomic Pipeline (TPP).5 Even very low limiting thresholds for the
duration of peptide elution were successful at removing input from sporadic ions (Table 2,
columns 1 and 2, rows 2 - 5). This had the effect of reducing the number of ion peaks that
were inappropriately paired and improving the quality of data that were included in the final
analysis.

The Light-Heavy Scan Cutoff filter limits the number of scans in which either the light or
heavy isotope-labeled peptide is absent, thereby requiring co-elution. The co-elution of
isotope-labeled heavy and light peptides by liquid chromatography is one confirmation that
they share identical peptide sequences. Co-elution and subsequent analysis in a shared set of
MS scans is also a requirement for the accurate comparison of relative ion abundance. To
act as a true internal reference that minimizes the influence of variability in ion intensity
between MS scans, peptide pairs should be present in the same MS scan. This user-defined
threshold limits the number of MS scans that are not shared between peptide pairs, thereby
maximizing the duration of co-elution. By this method, peptides without a co-eluting mate
are not considered for quantitative analysis; they require special treatment since no relative
ratio exists. Therefore, our strategy fails to identify cases of “present/absent” that may be
very informative from a biological perspective. In these cases, a focused manual
investigation of the data would be warranted.

This approach to filtering data was not computationally intensive and allowed end-user
control over the filter parameters; however, there were disadvantages to using filters at the
level of post-processing data analysis. For example, the number of scans reported by
XPRESS for heavy and light peptides in a pair were always identical. Therefore, the Light-
Heavy Scan Cutoff filter that we designed to confirm co-elution was not useful because data
generated upstream by XPRESS did not differentiate between unique start and end scans for
light versus heavy peptides in a pair. Inspection of the unprocessed RAW files clearly
showed different start and end scans for each peptide in every pair. This highlights the
importance of transparency in processing software and presents a case for permissive and
information-rich analyses during early processing steps followed by more stringent analyses
based on user-defined parameters in later steps.
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Filters 3 and 4: Relative Quantitative Analysis From Labeled Pairs

Peptide pairs were defined by the difference in mass between unlabeled and 18O-labeled
samples. The Delta Mass Cutoff filter was used to limit the difference in mass between
heavy- and light-labeled peptide pairs to either 2 or 4 Da for incomplete or complete
labeling. Incomplete labeling with 18O can lead to several challenges for accurate peptide
quantitation and requires the use of a specialized application for data processing.44 To test
for incomplete labeling in these experiments, we imposed a maximum threshold value of 2
Da. This excluded all paired peptide sequences from the analysis and confirmed the
inclusion of only completely labeled peptides from both experiments (Table 2, columns 3
and 4, row 2). A threshold value of 4 Da resulted in the exclusion of several hundred
peptides (Table 2, columns 3 and 4, rows 3 - 7). This confirmed that internal lysine and
arginine residues from missed proteolytic cleavages were allowed labeling modifications
under the search parameters used in upstream processing software. This Delta Mass Cutoff
filter was useful for defining peptide pairs by the difference in mass between heavy- and
light-labeled peptides. It can also be considered a second independent validation of
chromatographic co-elution. It confirms that both peptides are present in the same set of
spectra, which is a result of chromatographic co-elution and shared peptide sequence
identity.

To accommodate use with any labeling scheme, the user inputs any list of possible values to
define peptide pairs. Although the data used in these experiments were generated with high
mass accuracy so that an input threshold of 4.008 Da would be appropriate, the software was
also designed for use with data from instruments that provide less confidence. Therefore,
any difference in mass that was within 0.1 Da of the input value was retained. Because much
of the work toward the identification and quantitation of peptide pairs was performed by
upstream software, a strict threshold did not provide any additional benefit in this analysis.

A fourth filter, Ratio Cutoff, was imposed to limit inaccuracy in the relative quantitation of
peptide pairs. During initial analysis, the relative areas of heavy and light peptide ions
occasionally reached values nearing 1:100 and 1:1000. These outliers significantly
broadened the standard deviation of relative peptide ratios for each protein, reducing
confidence in the quantitative analysis. To exclude these values from the analysis, the user
provides a minimum relative ratio between the treated and control peptide elution peak
areas. Algebraically this implies that all ratios must be less than the reciprocal of the
threshold value, thereby also providing a limit on the maximum value for peptide fold-
change ratios.

This Ratio Cutoff filter removed several hundred peptide sequences in our data sets that
demonstrated a greater than 20-fold difference in relative elution peak areas (Table 2,
columns 5 and 6, row 4). Interestingly, around half of the total peptide sequences
demonstrated a greater than 2-fold difference in relative elution peak areas. This filter was
valuable for investigating the distribution of relative differences in peptide abundance across
the entire experiment. The removal of outliers with extreme values increased the precision
and accuracy of relative peptide ion quantitation and subsequent protein quantitation;45

however, caution should be exercised to select against only the most extreme outliers, which
are generally caused by inaccurate peak selection.

Filters 5 and 6: Protein Assignments

Peptide sequences were organized by the gene name of proteins to which they were assigned
by X! Tandem. Organization by gene name provided the basis for two additional filters
limiting the inclusion of peptides in quantitative analyses. The first of these filters,
Molecular Weight Cutoff, took advantage of the range of molecular weights defined by the
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gel slice from which a protein was excised. This filter was intended to limit the analysis to
peptides that were digested by trypsin and were not the result of protein degradation. It was
also intended to prevent oversampling of contaminating proteins that were present in every
gel slice.

Identified proteins were referenced against the UniProt database, and molecular weight
information was matched against fraction definitions provided by the user. The Molecular
Weight Cutoff filter established a percentage of error that would be tolerated for the protein
molecular weight, as determined by UniProt. Peptides from proteins that were identified in
appropriate fractions, with added or subtracted error, were retained. The limitation of this
filter was that the molecular weight noted by UniProt pertains to the protein precursor and
not to the active form of expressed and modified proteins. Despite this limitation, a broad
error allowing two times, or 100% difference above and below, the expected protein
molecular weight removed over six hundred peptides from the total analysis (Table 2,
columns 7 and 8, row 4). Indeed, intracellular protein processing and frequent post-
translational modifications were not expected to affect expected molecular weights by more
than 100%. Therefore, for the quantitative analysis of biological significance in this study, a
filter threshold of 50% error above and below the reported molecular weight was used.

The sixth and final filter, Peptide Sequence Count Cutoff, removed proteins whose total
number of peptide sequences was less than or equal to the cutoff value. This filter ensured
that each protein was characterized by a minimum number of peptides. For example, the
quantitative analysis of a protein from the relative ratio of one peptide between samples
cannot be counted with confidence, and that protein should be excluded. The advantage of
this filter was that it could be used to limit the analysis to proteins that were sampled
frequently and therefore identified and analyzed with high confidence.

Statistics And Heuristics To Guide The Selection Of Biologically Significant Proteins

Peptides were included for quantitative analysis using the following filter parameters:

1. A peptide ion was observed for a minimum of 20 scans (Scan Cutoff),

2. Heavy and light pairs were defined by a 4 Da difference in molecular weight (Delta
Mass),

3. Heavy and light pairs were present at a maximum direct ratio of their areas of 100:1
(Ratio Cutoff),

4. The protein from which a peptide was derived was identified in a gel slice within
50% error from the reported molecular weight (Molecular Weight Cutoff), and

5. More than one peptide was observed per protein (Peptide Sequence Count).

Of the 15,000 peptides originally identified for quantitation from one experiment, 50% were
thrown out for redundancy and 17% were excluded using these filtration parameters. This
left an average of 5000 unique peptides per experiment for quantitative analysis.

The control flow for quantitative analysis is summarized in Figure 2. Populations of
peptides were analyzed in three major groupings: at the Experiment Level, the Keyword
Level, and the Protein Level. Each group was examined to get a global view of abundance
distributions. The average abundance for peptide heavy and light ratios was close to equal at
the Experiment Level, confirming equal total protein abundance between the two
differentially labeled samples. Nevertheless, each peptide ratio was normalized by the
median of all labeled peptide ratios to ensure that abundance comparisons were based on a
stable baseline.
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The total population of labeled peptide ratios at the Experiment Level was used to describe
patterns and trends in the data at the Protein and Keyword Levels. For example, the standard
deviation and standard error of labeled peptide ratios at the Experiment Level was used to
highlight individual proteins that showed a change in abundance relative to the whole
population. Therefore, proteins that changed in abundance following LPS treatment were
selected in both experiments using a standardized threshold established by the distribution of
the observed population.

A one-sample t-test was also incorporated to compare the means of peptide ratios at the
Protein and Keyword Levels against the mean at the Experiment Level. The number of
peptides in each group determined the degrees of freedom for the t-test. In this way, we
selected for proteins and keywords that were most affected by LPS treatment by identifying
those whose means were significantly different from the mean at the Experiment Level.

The complementary analytical approach of using heuristic thresholds and statistical t-tests to
select for relevant data is summarized in Figure 3. This statistic- and heuristic-based
approach for selecting proteins that are functionally significant from proteomic data is
unique. Our goal was to implement a set of rules that could be applied uniformly across data
sets to determine significance for changes in abundance using measurements from the total
population in an experiment.

Software solutions have been developed to determine which identified proteins merit further
investigation. For example, ASAPRatio uses a log-transformed fitted normal, justified by
the central limit theorem for large sample sizes, and an error function to generate p-values.5

Meanwhile, GOMiner uses Fisher's exact test and q-values to manage small sample sizes.46

In general, existing software encourages the heuristic use of statistical tests because small
sample sizes are the most common condition for proteomic data that is organized by protein
identity. Therefore, additional conditions, such as the assurance of normality, limit the
applicability of rigorous statistical tests of significance.

This application uses the basic t-test for measurement confidence because it is easy to
understand and therefore has more practical value and transparency for use as a common
metric. It can be used heuristically but the inclusion of sample size and normality data also
allows for a more rigorous test of significance. T-tests are performed for every group of
peptides at the Protein and Keyword Levels. This multiple testing may result in an inflated
number of false positives at the Experiment Level. To compensate for this, the format of the
software output easily allows for the calculation of a Bonferroni correction using a
significance threshold calculated from the total number of proteins or keywords identified in
each experiment.47 Alternatively, the user can extract a column of p-values for every protein
or keyword, and calculate corresponding q-values using an external program. The current
version of the software was used in an exploratory manner; however, future versions of the
software will incorporate more explicit features for family-wise error-rates and false-
discovery rates.

Data Management to Support Statistics and Heuristics

The t-test is widely used to show significance within data sets but relies on normality
assumptions. Previous use of the t-test for proteomic data obtained by mass spectrometry is
associated with several challenges, in particular low power due to small sample sizes47 and
the need to satisfy normality assumptions.48

To enable a more rigorous use of the t-test for identifying proteins and keywords that are
significantly different from the majority of the population, we implemented a set of statistics
related to descriptions of normality. Normality was described heuristically by values
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calculated for skewness and kurtosis. As a more formal test for normality, we implemented
D'Agostino-Pearson Omnibus K2 scores and p-values.49

Relative peptide abundance was calculated from the direct ratio of integrated heavy- to light-

labeled peptide elution peak areas:  The frequency distribution of
these fold-change ratios at the Experiment Level is truncated at 0 with an arbitrarily long
right tail, which introduces skewness. Fold-change ratios have been log-transformed to
correct for this skewness; however, the application of these normality statistics showed that
applying a log-transformation to fold-change ratios does not imply normality (Figure 4).

Log-transformations facilitate an intuitive understanding of fold-change ratios by centering
them at 0 and providing the same absolute value for an increase or decrease in abundance.
Nevertheless, several complications are related to the log-transformation of proteomic data.
After performing a log-transformation of the original data points, it becomes difficult to
make statistical statements in terms of the original data. For example, the arithmetic mean of
log-transformed data becomes the geometric mean under the reverse transformation, and
more complex statistics become even less straightforward under reverse transformations.

An alternative formulation to fold-change was adopted, resulting in better normality
statistics and a clearer understanding of system-wide calculations. This metric calculates the
ratio of heavy- or light-labeled peptides in relation to the total sum of both peptide elution

peak areas:  By this formulation, the
relative ratio is always between 0 and 1 for every peptide pair, and a value of 0.5 represents
equal abundance. This simplifies computation and facilitates comparisons within and
between peptide pairs and among experiments. It is a correction often used to avoid sloping
baselines, which prevent accurate comparisons and severely affect the precision of every
measurement. This correction establishes an internally normalized scale and is particularly
suited to mass spectrometry where comparative measurements between peaks is less precise
for ratios that are far from 1:1.45

This method for calculating relative peptide abundance is convenient for comparing treated
and control samples because abundance ratios for each share the same denominator and are
defined by their inter-dependence (Figure 4A). Whether an experiment emphasizes the
light- or the heavy-labeled set of peptides, the relative ratio of the control versus the treated
sample is consistent. On the other hand, the mean of ratios calculated by a direct fold-change
comparison does not have an obvious relationship to the mean of the reciprocal ratios
(Figure 4B). Although a direct ratio of heavy- and light-labeled peptides is consistent with
the reciprocal at the Peptide Level, the reciprocal ratios are not interchangeable at the
Protein Level.

Using fold-change ratios that define a consistent relationship between a treated sample and
its control resulted in data with a higher tendency toward normality (Supplementary Figure

1) and a lower degree of estimated error (Figures 4C, 4D, 4E, 4F). Using this method to
calculate relative peptide ratios, the frequency distribution at the Experiment Level was
constrained at both the right and left tail, thereby minimizing the standard deviation of the
total population. This constraint also had the effect of producing low kurtosis scores that
increased the power of one-sample t-tests.50

Using relative peptide ratios calculated from the total area of the peptide pair, we imposed
requirements for normality and for statistic and heuristic significance (Table 3). Per
experiment, roughly 5,000 labeled peptide pairs were used to calculate the relative
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abundance of just over 700 proteins. Of these, 85% of the proteins failed normality, and
65% of those remaining did not significantly change in abundance when compared to the
total population of proteins sampled (p ≤ 0.01). This left less than 5% of the proteins as
statistically significant indicators of LPS activation in differentiated HL60 cells. Using a less
stringent threshold, 15% of the proteins originally identified were at least 1 standard
deviation from the mean at the Experiment Level. Quantitative validation required that
proteins were selected as significant in both technical replicates. Only 7 proteins were
statistically significant in both experiments and 26 proteins were heuristically significant in
both. The proteins that passed these tests for having significantly changed in abundance in
response to LPS are presented in Figure 5A.

Quantitative Analysis of Keywords Selects for Unique Sets of Proteins

Traditionally, peptides are grouped under the gene names of the proteins from which they
were derived. Gene names provide a natural classification system for proteomic data;
however, they also create challenges for statistical validation and biological inference. For
example, in one experiment 55.3% of the proteins used for quantitative analysis were
identified by less than 10 unique peptides and 88.3% were identified by less than 20
peptides (Supplementary Figure 2). Sample sizes this small make it difficult to reach valid
statistical conclusions. Whether the final list contains 10 or 100 proteins, it can be time
consuming and difficult to derive a central trend that describes changes in cellular function.
Keyword categories, which encompass multiple gene names, can be used to generate sample
sizes that are more conductive to hypothesis testing.

Peptides were grouped by keyword term and the mean of their relative abundance ratios was
used to determine which biologically functional categories were influenced by LPS to the
greatest extent. The richness of the UniProt and Gene Ontology keywords, which included
categories such as molecular function, cellular compartment, post-translational modification
and associated ligand, provided a strong set of categories and terms to work with “out of the
box.” All 13 keyword categories were used, containing a total of 32,378 terms that describe
various properties and functional characteristics of identified proteins.

Our original hypothesis was that groupings by keyword would allow for loose comparisons
between experiments. For example, instead of requiring the same protein to be sampled in
each experiment, proteins within the same keyword term could be observed and grouped for
a summary effect. Contrary to our expectations, significant keywords emphasized proteins
that, when analyzed independently, were not selected as significant. Significance at the
Protein Level did not determine quantitative significance at the Keyword Level.

Out of 32,000 possible keyword terms, only 1% were represented by peptides in this
analysis (Table 3). Of those represented in these experiments, 70% failed normality and
only 20% significantly changed in abundance (p ≤ 0.01). Using a more permissive threshold
for heuristic significance, an average of 15% of the sampled keywords changed in
abundance in response to LPS. For validation, we required significant keywords to be
selected in both technical replicates. Only 14 keywords were statistically significant in both
experiments and 12 keywords were heuristically significant in both. These are presented in
Figure 5B.

Quantitative Analysis of Keyword Overlap Demonstrates Functional Signatures

To overcome the fact that proteins rarely perform a discrete function, we also measured the
degree of observed overlap between functional categories that were identified in the
experiment. The degree of overlap between keywords was calculated by the number of
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proteins that are shared between terms:  where Pab is the number of proteins
shared between keywords a and b, Pa is the number of proteins associated with keyword a,
and Pb is the number of proteins associated with keyword b. The formula describes the
number of proteins that are common between any two terms divided by the total number of
distinct proteins in both terms. Described in the language of set theory, the percentage of
overlap between keyword terms is defined as the cardinality of the intersection between
terms divided by the cardinality of the union. The resulting score is a number between 0 and
1, where 1 represents complete overlap.

Keyword overlap provided an intuitive means for detecting proteins and protein associations
that serve multiple functions. For example, there was 100% overlap between the keyword
terms LDL, Chylomicron and Atherosclorosis because the protein APOB48R was associated
with all three keywords in both experiments. Similarly, CLIC1 was associated with the
terms Chloride, Chloride Channel, and Ionic Channel, resulting in 100% overlap between
those terms. Meanwhile, the term Prenylation shared 6% overlap with Cardiomyopathy, 4%
overlap with Cell Adhesion, and 5% overlap with Chaperone (Figure 6). Similarly, Integrin
shared 30% overlap with Cell Adhesion and 33% overlap with Epidermolysis bullosa. In
this way, by taking into consideration the overlap between keyword terms, the inherent
hierarchical grouping of gene ontology keywords does not negatively affect quanitation.
During quantitative analysis, these hierarchical terms flatten out if every member of a
specific term is contained within the parent term. On the other hand, if the parent term
contains a more inclusive grouping of proteins than a specific term, there may be significant
differences in the quantitative signature.

It is particularly important to note, that several of the proteins shared between functional
terms were not selected as statistically or heuristically significant at the Protein Level.
Instead, these statistically significant keywords were selected based on the observed
distribution of all keywords in the total population of peptides. By selecting a few keyword
terms of personal interest from the total population of keywords found in this experiment,
we were able to generate a signature of protein activity (Figure 7). This limited signature
demonstrates that functional categories can be used to quantitatively monitor changes in cell
behavior, thereby providing a complete description of cell responses and how they change
with specific stimuli.

Comparative Evaluation Analysis

To evaluate the effectiveness of our approach in selecting proteins of significance, we also
analyzed our data using the conventional method of analysis for proteomic data sets. In the
following section we investigate the consequences of this conventional approach in terms of:

1. the proteins that were selected by quantitative analysis, and

2. the holistic biological context that could be derived from functional groups to
which these proteins belong.

A conventional quantitative analysis consists of calculating the average fold-change in
protein abundance from a log-transformed ratio of heavy and light peptides. To select for
proteins that increased or decreased in abundance relative to an experimental control, an
arbitrary threshold value for the average fold-change is selected. Therefore, for this
comparative evaluation, each peptide was quantified by the relative fold-change between the

LPS-treated sample and the un-treated control:  where AreaLPS is the
integrated peptide elution peak area of the LPS-treated sample, AreaControl is the integrated
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peptide elution peak area of the untreated control sample and n is the median of all 
ratios in an experiment, included as a normalization factor.

Then, the relative abundance of each protein was calculated from the average fold-change of
its constituent peptides (Supplementary Table 5). A list was generated of all the proteins
that passed the arbitrary threshold of an average fold-change greater than or equal to 1.0 or
less than or equal to -1.0. To ensure correct data management using this conventional
method of anlaysis, we used two basic filters prior to the quantitative analysis of peptides
and proteins:

1. We removed duplicate peptide sequences associated with the same protein, keeping
unique peptide sequences with the highest PeptideProphet score.

2. After grouping peptide sequences by gene name, we removed proteins that were
identified by only one peptide sequence.

In Table 4 we compare the results from this conventional analysis to results obtained using
the filters and data management methods developed in Annotator and described in previous
sections. We found that the more robust results of the conventional analysis were
corroborated by results obtained using Annotator (Table 4, column 2: Validated by the
Conventional Method). Annotator also selected six additional proteins of quantitative
significance that were missed in the conventional analysis (Table 4, column 1: False
negatives), and screened out thirteen proteins that did not significantly change in abundance
(Table 4, columns 3 and 4: False positives).

In this comparison, false positives fell into one of two categories (Table 4, columns 3 and
4). Proteins in the first category (Table 4, column 3: Quantitative significance) were
selected by the conventional method because their relative abundance was greater than the
arbitrarily set fold-change cutoff (greater than 1.0 or less than -1.0). Annotator rejected these
proteins because, when viewed from the perspective of the total population of observed
proteins in the experiment, their relative abundance was less than one standard deviation
from the population mean. That is to say that although the fold-change of these proteins was
greater than the cutoff, it did not accurately describe the quantitative significance of the
proteins within the observed population. In general, the use of standard deviations from the
mean instead of fold-change thresholds offers a subtle but distinct advantage for making
comparisons between experiments. If data points within an experiment are modeled as a
normal curve, the standard deviations will always fall on consistent points of that curve.
This is not true for arbitrary fold-change thresholds, where a given threshold may capture
more or fewer data points depending on the overall spread of the data.

False positives that fell in the second category (Table 4, column 4) were rejected by
Annotator using the Delta Mass Cutoff Filter (Filter 3, refer to Table 1) and the Molecular
Weight Cutoff Filter (Filter 5, refer to Table 1). These filters confirmed the accurate
selection of peptides used for protein quantitation; the Delta Mass Cutoff filter required that
the difference in mass between 18O-labeled and unlabeled peptides was equal to 4 Da., while
the Molecular Weight Cutoff Filter excluded peptides that were identified in gel slices
greater or less than 50% of the reported protein molecular weight.

EIF5A was identified as a false positive in the conventional analysis (Table 4, column 3)
and provides an interesting example of the how peptide selection can influence quantitative
significance. Annotator did not select EIF5A as quantitatively significant because its
average abundance was less than one standard deviation from the mean. It was borderline,
however, with an ; however, it was very close with an average abundance that was 0.97
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standard deviations from the mean. It is interesting to note that EIF5A was selected as
significant in the conventional analysis based, in part, on the inclusion of one peptide with
an extreme direct ratio between labeled pairs of -4.7 but with a difference in mass of 12.1
Da. between peptides in the pair. According to the stable isotope-labeling scheme used in
this study, a peptide pair could not be defined by a difference in mass greater than 4.0 and
this peptide was filtered out of the analysis using Annotator, thereby reducing the average
abundance of the protein below the cutoff. This demonstrates the effectiveness of filters
used to remove errors from upstream handling techniques and consequences for the
selection of proteins in the final analysis.

We used DAVID (http://david.abcc.ncifcrf.gov) to determine which functional trends were
overrepresented in the list of proteins that were selected as quantitatively significant by
conventional fold-change analysis. From a list of 16 proteins that increased in abundance,
DAVID identified 50 keyword terms that were significantly overrepresented (p ≤ 0.01).
Many of the terms were redundant, such as RNA splicing via transesterification reactions,
RNA splicing via transesterification reaction with bulged adenosine as nucleophile, nuclear
mRNA splicing via spliceosome, mRNA processing and RNA processing. On the whole, the
trend seemed to point toward spliceosome activity and the general process of translation but
an easy summary was elusive and the only option for presentation of results was a list. The
responsibility of identifying trends from this list rests with the user.

Given a smaller list of only 7 proteins that decreased in abundance, DAVID identified 8
keyword terms that were significantly overrepresented (p ≤ 0.01). There was no identifiable
trend among the enriched groups, which ranged from the generation of precursor metabolites
and energy, to non-membrane bounded organelle, cytosol, phosphoprotein, and acetylation.

One clear disadvantage of this approach is that a shorter input list decreased sensitivity and
skewed the results toward very general terms. This comparative analysis demonstrates that
more often than not inaccurate quantitation obscures biologically interesting proteins from
being selected. DAVID uses a variant of Fisher's exact test to determine if proteins of a
particular keyword category are disproportionately represented in a given list.51 DAVID
does not take into account the calculated relative abundance of each protein. Instead, each
protein in a list is counted as a member of a keyword group and group membership is scored
based on expected frequency. From lists of only 16 or 7 proteins, the statistical power of
enrichment analysis is very weak. In contrast to DAVID's enrichment analysis approach,
Annotator calculates the average relative abundance of all peptides grouped by a common
keyword term. Therefore, keyword abundance is based on observed measurements.

There was little meaningful overlap between the keyword analysis performed by Annotator
and the enrichment analysis performed by DAVID. A few of the keywords that Annotator
selected as having changed most in abundance (Chloride Channel, Inflammatory Response,
Plasminogen Activation, Hypusine modification) were not identified by DAVID. By
comparing DAVID's enrichment analysis to keyword quantitation performed by Annotator,
we were able to highlight Annotator's ability to identify meaningful keywords from the
entire proteomic population, rather than by comparisons using a small group of significant
proteins.

CONCLUSIONS

With an average run time of less than 1 minute, Annotator allows users to efficiently analyze
large sets of LC-MS/MS data for quantitative significance in a biological context. The
defining feature of this analysis is that relative peptide abundance was used to calculate the
observed relative abundance and degree of similarity between functional categories. The

Sylvester et al. Page 17

J Proteome Res. Author manuscript; available in PMC 2013 March 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://david.abcc.ncifcrf.gov


approach is fundamentally different from enrichment analyses or network overlays because
relative abundance was calculated from direct measurements of peptide abundance, which is
the basic observable unit in LC-MS/MS studies.52 Similarly, statistical and biological
significance were based only on the observed population in a given experiment. Based on
our direct comparison using a traditional enrichment analysis, we show that results using
Annotator differ dramatically from having a statistically significant quantitative proteomics
dataset, obtained using Census53 or MaxQuant10, that is then subjected to GO analysis. We
show that an enrichment analysis using a list of less than 100 proteins is no more than a
qualitative listing of functions; the results from Annotator are not a mere list of enriched GO
terms with measures of confidence. Our major aim was to avoid the selective reporting of
changes to only a few proteins of interest, a process that can introduce personal bias and
overlook previously unreported results. In developing a method to carry out this aim, we
revealed major weaknesses in the current determination of cellular function from short lists
of gene names. This reiterates the particularity of proteomic analyses using LC-MSMS as
providing fundamentally different qualities and quantities of data compared to genome-wide
sequencing efforts.

Using Annotator, quantitation by keyword terms provided access to biologically relevant
signatures that could be statistically validated.54, 55 These functional categories may be
thought of as annotated subsystems of proteins that share a common biological role.56

Annotator presents these subsystems without a direct connection to network models;
however, by exploring observed relationships among keywords Annotator may provide
evidence that supports current network models.57, 58

In comparative genome analysis, the function-based subsystem approach is very efficient for
highlighting promising drug targets and is especially robust in cases where therapies are
directed at the whole organism, such as during infection.59 Our results show that by using
function-based signatures in large-scale proteomic studies we may be able to infer
essentiality, vulnerability, and conservation. Our analysis shows that the key to applying the
approach successfully is to base functional signatures on quantitative measurements and use
statistics to standardize the selection of significant categories.
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Refer to Web version on PubMed Central for supplementary material.
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IPI International Protein Index

MALDI-TOF MS Matrix-assisted laser-desorption ionization time-of-flight mass
spectrometry

LC liquid chromatography

MS mass spectrometry

MS/MS tandem mass spectrometry

LC-MS/MS liquid chromatography tandem mass spectrometry

ppm parts per million
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Figure 1. Technical replicates, in which the state of 18O labeling for the sample and the control
are switched

Differentiated HL60 cells were treated in culture with LPS or water for 30 minutes. Cell
lysates from each population were enriched for phosphorylated protein complexes, which
were separated by gel electrophoresis and divided into 11 fractions. Proteins in each fraction
were digested with trypsin in-gel. Peptides were extracted and labeled with 18O at the
COOH-terminus, using trypsin immobilized on beads, or left unlabeled in water. Labeled
samples were combined with the equivalent fractions from the unlabeled sample for equal
relative abundance. To confirm complete 18O labeling and validate relative peptide
abundance, a technical replicate was performed with duplicate gel electrophoresis and
digestion but a switched 18O labeling state.
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Figure 2. Computation control flow

Experimental data were loaded into a MySQL database and compared against proteins and
keywords referenced in the UniProt and Gene Ontology catalogues. Five filters based on
observations relating to the chromatographic elution profile, the relative quantitation of
labeled peptide pairs, and the expected protein molecular weight excluded peptide sequences
from the analysis. Only unique peptide sequences with the highest PeptideProphet score
were retained. Peptides were grouped by gene name or keyword term, and only those with
more than one peptide were used for quantitative analysis. Initial statistics were calculated
and the median of all peptide ratios was used to normalize for equal relative abundance at
the Experiment Level. Statistics were re-calculated for all relative peptide ratios and for
proteins and keywords. These statistics made up the Details Report, which listed peptide
sequences under the appropriate gene name or keyword term. Proteins were also evaluated
for multiple functional roles by calculating the percentage of overlap between all keyword
terms. Proteins that were shared and excluded by each keyword pair were listed in the
Keyword Overlap Report or presented in a tubular format in the Keyword Overlap Table.
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Figure 3. Schematic for the systematic use of statistics and heuristics to guide the selection of
proteins and keywords that significantly change in abundance

The t-test forstatistical significance at the Protein and Keyword Levels requires that those
groups of peptides display normal distributions. Three tests were used to confirm normality
before the t-test was applied. Only populations with skewness and kurtosis scores between
-1 and 1, and with a D'Agostino's p-value greater than 0.05, were analyzed for statistical
significance (p ≤ 0.01) against the mean of relative peptide ratios at the Experiment Level. A
more permissive scale was also used to compare proteins and keywords to the total sampled
population. Proteins and keywords whose mean was greater than one standard deviation
above or below the mean of relative peptide ratios at the Experiment Level were considered
heuristically significant. In this evaluation, the only requirement was that the standard
deviation of proteins and keywords did not exceed this threshold cutoff. For both measures
of significance, only proteins and keywords that were selected as significant in both
technical replicates were considered valid.
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Figure 4. The estimation of error is influenced by the calculation of relative protein abundance

A consistent relationship defines heavy and light peptide pairs analyzed in the context of the
total sum of both peptide elution peak areas (A). Although the direct ratio of heavy and light
peptide elution peak areas is clearly related to the reciprocal ratio at the peptide level, the
mean of the direct ratio and the mean of the reciprocal ratio are not related in an obvious
way (B). Therefore, it can be difficult to compare relative protein abundance between
experiments using the direct ratio of heavy to light peptide elution peak areas. Ratios
calculated from the relationship between heavy or light peptide elution peak areas to the
total area of the pair are constrained between 0 and 1. The standard error of the mean of
these ratios is small (C, D). By comparison, the direct ratio of heavy and light peptide
elution peak areas is not bounded. The error associated with the mean of heavy to light ratios
and the mean of the reciprocal ratios are relatively large and vary considerably according to
the ratio calculated (E, F).
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Figure 5. Proteins and Keywords that significantly changed in abundance in response to LPS

Cluster analysis and heat maps provide a rapid and intuitive method for defining
relationships between observed proteins, functional categories, and samples. Columns
highlight consistency between technical replicates. Rows emphasize similarities in response
patterns between groups of proteins and keywords. Only proteins and keywords that were
statistically (p ≤ 0.01) or heuristically (greater than 1 standard deviation from the
Experiment Level mean) significant in both technical replicates are shown here. A mean
ratio of 0.5 (white) represents equal relative abundance between the LPS-treated sample and
the control. An increase in abundance in response to LPS is highlighted in red, while a
decrease in abundance is highlighted in blue. Proteins and keywords are hierarchically
clustered by Pearson correlation values to reveal similar response patterns. A) The proteins
in Group 1 decreased in abundance, while the proteins in Group 3 increased in abundance
in response to LPS. The proteins in Group 2 are characterized by values that did not agree
between technical replicates and these proteins are considered contaminants from sample
processing. B) The keywords in Group 2 decreased in abundance in response to LPS, while
the keywords in Group 3 increased in abundance. The keywords in Group 1 are shown to
be poor groupings for quantitative analyses in these data sets because differences in protein
membership between technical replicates may have diverse functional effects. These
groupings provide clues regarding the interdependence of protein and cellular functions,
suggesting possible avenues of further research.

Sylvester et al. Page 27

J Proteome Res. Author manuscript; available in PMC 2013 March 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6. A Quantitative Signature of Protein Function in the Cell

A selective subset of functional categories was used to generate a quantitative protein
activity signature for a human neutrophil stimulated with lipopolysaccharide from E.coli.
Peptides were grouped into functional categories and relative abundance was calculated
directly from quantitative LCMS/MS measurements. This signatures demonstrates that of
the 40 antimicrobial peptides observed, 7 peptides had a dual-function as fungicidal
peptides, and 17 were also antiviral. Peptides with multiple functionalities may be
particularly interesting drug targets for infection. The quantitative signature, however,
demonstrates specificity toward an antimicrobial response because the antimicrobial
category increased in abundance to a greater extent than the fungicidal and antiviral
categories. The signature also reveals that one of the predominant responses to bacterial
infection is a significant increase in chemotaxis.

Sylvester et al. Page 28

J Proteome Res. Author manuscript; available in PMC 2013 March 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 7. Percentage of overlap between significant keyword terms

Specific keyword categories are selected to determine co-relationships, as an indication of
shared function. The matrix lists the same keywords on the X- and Y- axes, and the number
of proteins that overlap between categories is shown as a percentage on the vertical Z-axis.
The terms shown here were selected as significant, according to tests for normality and
statistical significance at p ≤ 0.01, or according to a mean peptide ratio greater than one
standard deviation from the mean at the Experiment Level. This figure shows that Cell
Adhesion and Integrin share 30% functional overlap. Also, 70% of the Kinases identified
were S/T Kinases, and 50% of the Transferases were classified as Kinases.
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Table 1

Six optional post-processing filters control the quality of data used for quantitative analysis.

Filter Name Description

1 Scan Cutoff Minimum number of scans per peptide

2 Light/Heavy Scan Cutoff Maximum number of scans in which the light and heavy peptides from a pair are not both present

3 Delta Mass Cutoff Difference in Daltons between heavy and light peptide molecular weights

4 Ratio Cutoff Minimum ratio of integrated ion current areas between light and heavy peptide pairs

5 Molecular Weight Cutoff Maximum percentage of error outside of the defined molecular weight range

6 Peptide Sequence Count Cutoff Minimum number of unique peptides per gene
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Table 3

The effect of significance filters on protein and keyword counts.

Experiment 1 Experiment 2

Total Peptides Used 4976 5046

Total Proteins 720 750

    Fail skewness 444 476

    Fail kurtosis 150 179

    Fail D'Agostino's p-value 37 31

    Fail p-value 59 38

        Statistically significant proteins 29 26

        Heuristically significant proteins 114 130

Total Keywords 340 349

    Fail skewness 104 108

    Fail kurtosis 84 82

    Fail D'Agostino's p-value 49 33

    Fail p-value 21 73

        Statistically significant keywords 83 53

        Heuristically significant keywords 72 28

Peptides were grouped by gene name and keyword term. This table provides the number of proteins and keywords that failed a series of tests for
normality, where it was required that skewness and kurtosis scores were between -1 and 1 and D'Agostino's p-value was above 0.05. Proteins and
keywords whose peptide populations passed these normality tests were evaluated for statistical significance based on a one-sample t-test (p ≤ 0.01).
Using a more permissive threshold for heuristic significance, proteins and keywords were selected based on whether their abundance had changed
by more than one standard deviation from the mean of the total population of peptides in an experiment.
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Table 4

A comparison of results obtained by Annotator versus a conventional method of quantitative analysis.

False Negatives from the
Conventional Method

Validated in the
Conventional Method

False Positives from the Conventional Method

Selected by Annotator
with Statistical significance

at p ≤ 0.01

Selected by both methods No heuristic significance
σMean > 1

Inaccurate
selection of

peptides

Increased in Abundance EFTUD2
SSB

ASCC3L1
BAT1

DDOST
INPP5D
OGFR
PNN
PRPF

ACBD3
BCAP31
CDC37
DAP3
EIF3G
RAN

TUBA1A

RPL3
RTN3

Decreased in Abundance ACTN1
ENO1
KTN1
PDIA3

CIRBP
TXNDC12

VCL

EIF5A
EZR

ITGB1

ENO2

A conventional quantitative analysis calculates average protein abundance from a log-transformation of the direct ratio of heavy and light peptide
elution peak areas. Then, an arbitrary cutoff of fold-change ≥ 1 was used to select for proteins that significantly increased or decreased in
abundance. In contrast, the analysis using Annotator was performed using filters to exclude peptides that were introduced in error by upstream
software. Then, the average protein abundance was calculated from the ratio of heavy- or light-labeled peptides in relation to the sum of both
peptide elution peak areas in a labeled pair. In Annotator, proteins were selected as having significantly changed in abundance if they were found to
be statistically significant (p ≤ 0.01) or the average abundance was greater than one standard deviation from the mean of all peptides in an
Experiment (heuristic significance, σMean > 1). This comparison between the two methods demonstrates the effectiveness of Annotator in

removing false positives and recognizing the statistical significance of false negatives in the conventional method.
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