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ABSTRACT

Content and services which are offered for free on the Internet are
primarily monetized through online advertisement. This business
model relies on the implicit agreement between content providers
and users where viewing ads is the price for the “free” content.
This status quo is not acceptable to all users, however, as mani-
fested by the rise of ad-blocking plugins which are available for
all popular Web browsers. Indeed, ad-blockers have the potential
to substantially disrupt the widely established business model of
“free” content—currently one of the core elements on which the
Web is built.

In this work, we shed light on how users interact with ads. We
show how to leverage the functionality of AdBlock Plus, one of the
most popular ad-blockers to identify ad traffic from passive net-
work measurements. We complement previous work, which fo-
cuses on active measurements, by characterizing ad-traffic in the
wild, i.e., as seen in a residential broadband network of a major
European ISP. Finally, we assess the prevalence of ad-blockers in
this particular network and discuss possible implications for con-
tent providers and ISPs.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; H.5.4 [Information Interfaces and Presentation]: Hyper-
text/Hypermedia

Keywords

Web; Advertising; AdBlock Plus; Residential Broadband Traffic

1. INTRODUCTION
The World Wide Web has fueled an unprecedented commercial-

ization of the Internet by turning a system designed for academic
data exchange into a widely used social medium. The economic
foundation of many services in this medium is online advertise-
ments (ads) which allow content and services to be offered free of
charge to users.
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The history of this business model goes back to the first click-
able Web ads, which emerged around 1993 with the first commer-
cial Web sites. HotWired was among the first to sell banner ads to
companies such as AT&T and Coors. The first central ad servers
emerged in 1995 to enable the management, targeting, and track-
ing of users and online ads. This started the proliferation of Web
ads, which brought with it an increasingly complex infrastructure
to serve these advertisements. DoubleClick introduced the process
of online behavioral advertising in the late 1990s which used 3rd
party cookies to track users across sites and present ads based on the
users’ browsing patterns. Today, online advertisement has become
a large and complex industry where entire exchanges trade user-
specific information for the purpose of better ad placements [58].

This user specific profiling has raised many privacy and secu-
rity concerns in particular among privacy and consumer advocacy
groups. The debate has, for instance, led to agreements about the
expiration dates of cookies as well as clear statements regarding the
collection of user information [8]. While the Federal Trade Com-
mission (FTC) identifies problems with online behavioral adver-
tisement, it allows advertisers to continue this practice with some
safeguards such as greater transparency, provisions for consumers
to opt out, and special handling of sensitive data, e.g., those related
to health and financial information [13]. The motivation underlying
the FTC’s position is that the FTC views online advertisements as
the key enabler for “free” content on the Web.

However, to Web users, online advertisements can be perceived
as being not only invasive to privacy, but also annoying, since they
can distract them from the primary content they wish to consume.
This situation has resulted in a proliferation of tools to evade or
block the ads. We refer to these tools as ad-blockers. Among the
most convenient and popular ad-blockers are extensions for Web
browsers like Adblock Plus and Ghostery. According to Google
and Mozilla usage statistics of browser add-ons, Adblock Plus is
among the most popular. More than 30M users surf the Web daily
using a browser with this extension enabled [18, 15].

The use of ad-blockers is, however, perceived by the advertise-
ment industry and content publishers as a growing threat to their
business model [6, 19]. Their rationale is that ad-blockers provide
users a way to “evade paying” for the content they consume. Thus,
some players try to put pressure on the developers of ad blocking
browser extensions in order to be excluded from the blocking. This
exclusion is envisioned to be implemented by i) removing them
from the filter lists, or ii) by adding them to a whitelist [6]. Others
also try to detect ad-blockers and explicitly appeal these users to
either whitelist their site or completely disable the ad-blocker.

Another claim regarding the rise of ad-blockers is that “as more
end users adopt them, revenues decline and the number of obnox-
ious advertisements increases” [3]. To break this vicious cycle
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some players in this domain encourage advertisers to adopt “ac-
ceptable ads” as a compromise. The most important implication
of this initiative is that advertisements that conform to these guide-
lines are by default whitelisted by Adblock Plus [5], a setting that
end users can still override.

Moreover, the ad-blocking debate is not uniquely centered on ad-
blockers like Adblock Plus. In fact, some Internet Service Providers
(ISPs) have already stated their intention to block advertising on
their networks and thereby, force some companies in the advertis-
ing business to share their revenues [12]. In light of this tussle be-
tween users, advertisers, publishers, and ISPs, we inform the ongo-
ing debate with a passive measurement study about the “ad-scape”
and how end users interact with it.

Our work: We complement previous work with a passive mea-
surement study on advertisements. Namely, we collect traces from
a residential broadband network (RBN) of a major European ISP to
i) elaborate on the prevalence of ad-blockers in this vantage point,
and ii) characterize ad traffic in the wild. The contributions of this
paper are as follows:

• We present a methodology to extract structural Web site in-
formation from packet header traces. With this methodology
at hand, we can use the Adblock Plus functionality to classify
ad traffic in passive measurements. We validate the effective-
ness of this methodology with an active measurement study
based on different configurations of an instrumented browser,
e.g., running Adblock Plus.

• We leverage two indicators to infer Adblock Plus usage: i)

low ratio of ad requests, and ii) connections to the Adblock

Plus servers. Based on these metrics we estimate that 22% of
the most active users likely use this extension. Moreover, we
have indications that, perhaps, most Adblock Plus users do
neither subscribe to EasyPrivacy (the list that protects them
from trackers), nor opt out from the list of non-intrusive ads.

• We find that advertisement traffic contributes to a significant
percentage of requests, roughly 18% in both of the studied
traces. We dissect ad requests by type and find that 11% of
them match the list of non-intrusive ads, while the rest is
distributed among advertisers and trackers. Given the preva-
lence of this traffic in terms of requests, we also characterize
various aspects thereof, including object types, server-side
infrastructure as well as back-end functionality, i.e., real-
time bidding.

The remainder of this paper is structured as follows: we first dis-
cuss the basic functionality of Adblock Plus and the corresponding
filter lists in §2. We then describe in §3 our measurement method-
ology and its subsequent evaluation in §4. Section §5 summarizes
the two data sets as well as the involved vantage points. We present
our first results about Adblock Plus usage in §6. We then elabo-
rate on traffic- and infrastructure-centric aspects of advertisements
in §7 and §8. Section §9 presents the related work. We discuss the
limitations of our methodology in §10 and present our conclusions
in §11.

2. AD BLOCKERS – A SHORT REVIEW
There is a wide range of browser extensions available to end-

users who want to evade or protect themselves from the ad-scape.
Adblock Plus is arguably among the currently most popular ad-
blockers [17]. Users can configure this browser extension to i)

block or hide advertisements, and to ii) protect their privacy by
blocking trackers. Another popular tool is Ghostery, which mainly
focuses on protecting end-users’ privacy. The Electronic Frontier
Foundation’s Privacy Badger [10] shares the same objective; but in

contrast to Ghostery, which is proprietary software, Privacy Bad-

ger is open source—and based on Adblock Plus. Another option is
the NoScript plugin which is designed to interactively disable ex-
ecutable Web content such as JavaScript, which is often used by
advertisers and trackers.

To assess the popularity of these extensions we can refer to statis-
tics reported by popular browsers or to recent work by Metwalley
et al. [46]. They report, relying on a passive measurement study,
that 80% of the households visible at their vantage point do not use
any of these popular plugins. Among those that do, Adblock Plus

dominates, i.e., Adblock Plus is installed at 10%-18% of the house-
holds. Indeed, less than 3% of the households exhibit evidence of
other installed plugins. Given the popularity of Adblock Plus, we
next describe how this particular extension operates.
Adblock Plus. At the heart of Adblock Plus is the mechanism to fil-
ter adverts based on filter rules that appear in filter lists. The regular
expressions that form the set of filter rules follow a specific syntax,
which is described in detail in [4, 21]. If a filter rule matches a URL
that is not otherwise whitelisted, Adblock Plus will prevent the Web
browser from requesting the URL. Hence, this extension reduces
network traffic as it averts undesired ad-related objects from being
fetched.

However, some Web pages embed advertisements into the (main)
HTML document, e.g., textual advertisements. Since this docu-
ment is required to render the page, the tool does not block the
download of these HTML documents. However, Adblock Plus in-
cludes functionality to hide such—otherwise displayed— embed-
ded ads via CSS modification. Note that these ads are still trans-
ferred over the network even though they will not be displayed in
the browser to the user.
Filters Lists. Adblock Plus users can obtain various lists of filter
rules via a subscription mechanism. There are several filter lists
available for different purposes. When an end user installs the Ad-

block Plus extension for the first time, the plugin subscribes itself
to two filter lists. The first one is named EasyList and its goal is
to remove ads from English Web pages. The second list is called
non-intrusive advertisements (acceptable ads) and its purpose is to
whitelist the advertisements that are blacklisted by EasyList but
comply with the directives summarized in [5].

This list and, in particular, its activation by default is most likely
the origin of the controversy described in [6] (i.e., advertisers pay-
ing to be whitelisted). Note that users may still opt to deactivate
this list with a single click. There are additional lists to which Ad-

block Plus users can subscribe. Examples include i) customizations
of EasyList to non-English Web pages, or ii) EasyPrivacy, which
aims to protect the end users’ privacy by blocking Web trackers.
Measurement challenges. At first glance, given that this ad-
blocker only uses filter lists, it should be easy to emulate its be-
havior on a passively collected network trace. However, this is not
that simple as Adblock Plus relies on the information contained in
the DOM tree of the Web site to classify Web elements as adverts.
For example, the classification can be based on whether an image is
displayed in an iframe, which cannot be detected by inspecting the
URL. Thus, this ad-blocker relies on the entire structure of a Web
page rather than purely the URLs.

To reconstruct the entire structure of the Web page one needs
parse the payload part of the traces. For privacy reasons we cannot
and do not have access to this part. Our traces only include HTTP
header information (see §5). Hence, our methodology has to rely
on the information available in the HTTP headers. How we tackle
this challenge is discussed in the next section. Our methodology
enables us to approximately reconstruct the Web page meta-data
from the HTTP headers.
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Figure 1: Approach to classify ad requests.

3. METHODOLOGY
In this section we describe our approach for identifying ad-blocker

users from passive traces. The premise is that ad-blocker users ac-
cess fewer ads than non ad-blocker users. Thus, we need a method-
ology for identifying Web objects and separating them into ad or
non-ad objects. This is where we rely on Adblock Plus.

3.1 Identifying ad traffic
The goal of our methodology is to classify ad traffic in TCP/HTTP

header traces captured via passive measurements. For this classifi-
cation we rely on Adblock Plus functionality as it is the most popu-
lar ad-blocker to date. But rather than using a Adblock Plus browser
directly we use libadblockplus [16], a C++ wrapper around Adblock

Plus, developed by the same project. This allows us to classify Web
objects from the traces in an off-line fashion without the need to op-
erate a full browser. A summary of the classification methodology
is shown in Figure 1.

We use Bro [48] HTTP analyzer to extract information about all
HTTP transactions in network traces. This information includes
i) both the Host and the URI fields in the request header, ii) the
referer field in the request, iii) the Content-Type field in the
response, and iv) the Content-Length field present in HTTP re-
sponses. We also extended the Bro analyzer to parse and include v)

the Location header field present in response headers that relate
to HTTP redirections.

Processing passive traces with Bro gives us a list of Web ob-
jects. We then invoke libadblockplus to classify each of these ob-
jects into ad and non-ad objects. However, libadblockplus cannot
properly classify a URL as an advert using only the information
that is self-contained in the URL’s string. Many rules in the filter
lists apply to specific combinations of domains, i.e., a Web object
hosted in a specific (advertiser) domain from a specific (publisher)
domain. Thus, libadblockplus requires the following information
to properly classify a URL: i) the requested URL itself, ii) the rest
of URLs in the Web page that triggered the request that is currently
processed, and iii) the type of the content that is being requested
e.g., document, script, stylesheet, image, media or
object.

As mentioned above, the Adblock Plus browser extension relies
on information contained in the DOM tree. We, in contrast, have
only the information available in the HTTP headers. However, we
can still use this information to obtain a partial view of the rela-
tionships between the Web objects in a Web page. We tackle this

challenge in the following way. See the middle boxes in Figure 1
for an illustration of the approach.
Referrer Map. First, we extract the set of related URLs for a given
request. To this end we construct a referrer map that approximates
the set of URLs in a Web page based on the chain of observed
HTTP referrers. Our approach is based on the StreamStructure and
ReSurf methods discussed in [38, 56]. We also use these methods
to obtain the Web site that triggered the request. We construct the
referrer map out of the values in the referer header fields in the
requests. However, there are a few cases in which this chain may
be “broken”. One typical example is when the request following a
redirection to a new URL has no referer. This is the reason why
we extend Bro to also parse the Location response headers. With
this small modification we can add this type of missing referrers to
the map of referrers. Furthermore, we also insert the URLs that we
can find embedded within the URL of a request into the referrer
map.
Content Type. Second, we infer the type of the content in the
following way: one of the pitfalls in HTTP traffic analysis are mis-
matches between the Content-Type of the request and the ac-
tual content. Schneider et al. [52] showed that while mis-matches
often occur due to the format (e.g., jpeg vs. png), they actually
agree on the general category (e.g., image). In these cases the
mismatch does not impair our classification because libadblock-

plus relies on general categories. For other mismatches we parse
the URL to map the following file extensions to content types: i)
.png, .gif, .jpg, .svg, .ico (image) ii) .css (stylesheet) iii) .js

(script) iv) .mp4 and .avi (media). As a rule of thumb, we
rely on the Content-Type field when the file extension does not
yield a type. Some redirections may lead to mis-classifications. For
instance, there are cases where a URL within an <img> HTML tag
results in a redirection. Suppose there exists an exception filter for
that URL and its content type is image. To Adblock Plus this re-
quest is an image, since it can glean this information from the tag.
We, on the other hand, would filter it because we do not have ac-
cess to this information. Here, the referrer map helps us to set the
appropriate content type for the URL that is being redirected by
inspecting the type of the consequent request.
Base URL. Third, we process the URLs to avoid conflicts with the
filter lists. Namely, we noticed that libadblockplus mis-classifies
some requests because they include parts of the URL of a previ-
ous request in the query string. While the Adblock Plus plugin
does not filter the second request, libadblockplus does. To pre-
vent this type of mis-classifications we normalize the query strings
by removing dynamic values. However, there are some filters in
these lists that specify values for the fields in the query strings of a
URL, e.g., @@*jsp?callback=aslHandleAds*, where * represents
a wild-card. If we would normalize this string to jsp?callback=X, it
would not match anymore the previous exception filter and thereby
we would mis-classify the corresponding URL. Hence, we take
care not to overwrite the values in the query strings that appear
in the filter lists.

Finally, recall that Adblock Plus also includes functionality to
block text advertisements that are included in the HTML itself.
Quite a number of HTML documents embed these advertisements,
which means that the browser extension will not block the associ-
ated request because blocking it would also imply blocking non-ad
content. Instead, the browser plugin hides this ad content during
the rendering phase of the page, in a process called element hid-

ing. Since we cannot and do not have access the packet payload we
cannot parse the Web page’s content and thereby, can neither detect
nor comment on this type of advertisements.
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3.2 Identification of ad-blocker users
To identify if an end user has installed an ad-blocker we rely on

the following observation: a browser with such an extension should
issue less ad requests than a browser without any ad-blocker. In
other words, a low number of ad requests is a strong indicator for
the presence of an ad-blocker.

Hence, we have to identify all requests of a particular end user
and compute the ratio of ad requests. The ratio for an end user
depends on i) the browser configuration, i.e., whether there is an
ad-blocker installed and, if so which ad-blocker with which con-
figuration, and ii) which sites the user visits. Given that many of
the most popular sites do indeed have extraneous content [42, 27,
25], the likelihood that an active user visits such a site is substan-
tial. Thus, we can use an active measurement study (see §4) to find
ad-ratio thresholds that distinguish between ad-blocker and non ad-
blocker users.

Although our primary goal is to identify any ad-blocker user,
we can additionally rely on plugin updates to identify specific ad-
blockers like Adblock Plus or Ghostery. For instance, the former
plugin regularly checks for updates of the filter lists to which the
user has subscribed. The update frequency is driven by the expi-
ration time specific to each list, e.g., EasyList has a soft expira-
tion date of 4 days [1] and EasyPrivacy soft-expires already after
a single day [2]. In fact, the Adblock Plus contact frequency is
quite high: typically upon browser bootstrap or once per day [46].
Hence, monitoring connections to Adblock Plus servers is a good
indicator for the presence of Adblock Plus. To identify Adblock

Plus servers in the traces we rely on multiple DNS resolvers to ob-
tain an up-to-date list of Adblock Plus server IPs.

4. METHOD EVALUATION & VALIDATION
We complement our passive analysis with an active measurement

study that has two goals i) validate that our methodology can clas-
sify ad traffic, and ii) identify ad-ratio thresholds to differentiate be-
tween end users that browse the Web with an ad-blocker and those
who do not.

Accordingly, we instruct a popular Web browser to fetch Web
sites using different configuration modes, e.g., with Adblock Plus

enabled or disabled. In parallel we capture the browsers network
traffic with tcpdump and apply the above methodology to the pas-
sive traces.

4.1 Active measurement setup
We instrument the widely used browser Chromium with Sele-

nium [20] to crawl the Alexa top 1000 sites. We run the browser
in a virtual frame-buffer on a dedicated GNU/Linux machine con-
nected to a university campus network. For each URL in the Alexa
top list we start a new browser instance with an empty cache, wait
5 seconds before starting a tcpdump traffic trace, load the URL and
wait another 5 seconds before closing the browser and tcpdump.
For each URL we repeat this process 7 times, once for each of the
following browser profiles:

Vanilla: We do not activate any plugin.
AdBP-{Ads|Privacy|Paranoia}: We activate the Adblock Plus plu-

gin and configure three separate profiles using the following
lists i) the EasyList and non-intrusive advertisements (Ads),
ii) EasyPrivacy (Privacy), and iii) EasyList and EasyPrivacy

(Paranoia).
Ghostery-{Ads|Privacy|Paranoia}: We activate the Ghostery plu-

gin and configure three separate profiles, which block the fol-
lowing object categories i) Advertisements (Ads), ii) Privacy

Browser Mode #HTTPS #HTTP #ELhits #EPhits

Vanilla 7,263 57,862 4,738 4,807

AdBP-Pa 4,287 48,599 6 * 6 *
AdBP-Ad 5,254 53,435 10 * 4,279
AdBP-Pr 5,189 55,717 3,627 7 *

Ghostery-Pa 2,908 48,765 940 624
Ghostery-Ad 5,734 57,425 1,326 4,668
Ghostery-Pr 6,902 55,394 4,514 2,865

Table 1: Active measurements: Aggregate results for the Alexa

top 1K list. Browser modes include Paranoia (Pa), Ad-blocker

(Ad) and Privacy (Pr). Classification of URLs based EasyList

(EL)and EasyPrivacy (EP). Ad-blockers lessen the total num-

ber of requests and lower the ratio of ad requests.

(Privacy), and iii) all categories, including Analytics, Bea-
cons and social media widgets (Paranoia).

This experiment results in seven sets of passive traces for each
of the top-1000 Alexa Web sites corresponding to the seven dif-
ferent browser profiles viz., with and without Adblock Plus and/or
Ghostery enabled. With this information—the configuration of the
Web browser that produced the network trace—we can apply our
methodology to each set of traces and, thereby, assess the accuracy
of our methodology.

4.2 Impact of ad-blockers on traffic
As described in §3, we use Bro HTTP analyzer to extract the

HTTP information from the set of traces collected during the exper-
iment. We then classify the requests using libadblockplus. Table 1
summarizes the total number of HTTP(S) requests in the traces and
the corresponding classification of requests according to the filters
of EasyList and EasyPrivacy.

Our first observation is that ad-blockers indeed significantly re-
duce the number of HTTP and HTTPS requests. For instance, in
the AdBP-Paranoia mode the browser issues 9K less HTTP re-
quests than in the Vanilla mode. The number of HTTP requests
issued by a browser configured with Adblock Plus in the most ag-
gressive mode is roughly 80% of the corresponding value for the
Vanilla mode. In this context, 6% of the ad requests in the trace for
the Vanilla mode either match a filter in EasyList (8.1%) or one in
EasyPrivacy (8.3%). These observations are consistent with those
reported in related work, e.g., see [42, 27]. The number of HTTPS
connections follows likewise this trend, i.e., 2.9K connections less.
This implies that browsers and servers also exchange ad traffic over
HTTPS, a case not covered by our methodology.

The number of requests for both plugins configured in the Para-

noia mode also differs. We remark that the numbers reported in
Table 1 are subject to configurations and do not strictly reflect the
actual filtering performance of each plugin; rather, they reflect the
existence of the filtering process.

Nonetheless, Table 1 shows that the number of objects classi-
fied as ad requests is a strong indicator for the presence of an ad-
blocker. As expected, ad-blockers hinder many requests from being
issued and thus, the number of identified ads with our methodology
is small (indicated in bold numbers in the table). In the absence of
an ad-blocker, the number of ad requests is significantly larger (see
the vanilla browser configuration row).

We note that our approach mis-classifies a small number of re-
quests. We indicate false positives with a ∗ in Table 1. False pos-

itives are requests that the Adblock Plus browser plugin does not
block but our methodology classifies as ad-related objects. We
manually investigate these cases and offer the following explana-

96



●

●

●●
●
●

●●●●●

●

●
●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●●●●●
●
●●●●
●
●●●
●
●
●●●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●●
●
●●●●●●●

●

●

●

●●
●
●
●

●

●

●

●●

●●
●●

●

●

●

●
●●●●●●
●

●

●
●
●

●

●●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●
●●

●

%
 o

f 
a

d
−

re
q

u
e

s
ts

Van
illa

AdB
P−P

a

G
ho

st
er

y−
Pa

 
Van

illa

AdB
P−P

a

G
ho

st
er

y−
Pa

 
Van

illa

AdB
P−P

a

G
ho

st
er

y−
Pa

 

0

10

20

30

40

50

1 page load 5 page loads 10 page loads

Figure 2: Active measurements: ratio of ad-requests per

browser configuration. Comparison among 1K iterations of 1,

5, 10 randomly selected page loads. The presence of an ad-

blocker is more evident when the user becomes more active.

tion: some are due to inconsistent Content-Type values in the
responses. For instance, in one case Bro reports the MIME text/x-c.
Our methodology maps this request to the content type object,
but a manual inspection of the object reveals that this object is in
reality a JavaScript object. Remapping the content type to script
triggers an exception filter that prevents the mis-classification. In
fact, the main source of mis-classifications are URLs to JavaScript
objects where the Content-Type field is set to text/html. Mod-
ern browsers circumvent this problem since they infer the type of
the object without relying on the HTTP headers. Our methodology
has to rely on the HTTP headers and thereby is affected by such
inconsistencies.

4.3 Identifying ad-blocker users
Table 1 illustrates the effectiveness of our approach for classi-

fying ad requests in a network trace in a fashion similar to an ad-
blocker. Next, we tackle the question from §3.2: what ratio of ad
to non-ad requests is a useful indicator to infer ad-blocker usage?
To answer this question we show in Figure 2 a series of box-plots
for the ratio of ad requests across browser configurations (for space
reasons we only include the results for Vanilla, AdBP-Pa and the
Ghostery-Pa configuration modes). For each of these three modes
we execute three experiments. We randomly select 1, 5 and 10 sites
of the Alexa top 1K list, and compute three ratios of ad requests.
Our motivation for choosing different number of sites is to repre-
sent users with different levels of activity. We repeat this 1K times.
When comparing the box plots we can see that the ad-ratios dif-
fer significantly if the number of page loads is sufficiently large,
i.e., when users are active. Accordingly, we use a discrimination
threshold of 5% when the number of requests is sufficiently large,
e.g., 10 page loads or 1K requests. Using a slightly higher or lower
threshold does not alter the results significantly.

5. DATA SETS
We had access to two anonymized traces from a Residential Broad-

band Network (RBN) of a large European ISP. These two traces
were collected within two customer aggregation networks in the
same city. The first trace was captured at a low level which car-
ries the traffic of about 7.5K DSL customers to the Internet. The
second trace was captured at the next higher level, which carries
the traffic of about 19.7K DSL customers. The up-link speeds are 3
and 10 Gbps, respectively. Table 2 reports the dates when the traces
were collected.

Trace RBN-1 RBN-2

Date 11th Apr. 2015 11th Aug. 2015
Time 00:00 15:30
Duration 4 days 15 and ½ hours

Subscribers 7.5K 19.7K

HTTPbytes 18.8T 11.4T
HTTPreqs 131.95M 85.09M

Table 2: Passive measurements: Data sets

The monitoring infrastructure uses Endace DAG network moni-
toring cards [11]. These cards support a port-based classification,
which is appropriate for HTTP(S) traffic (see [44, 51]). Hence,
HTTP traffic can be associated to TCP traffic from (or to) port 80.
Likewise, HTTPS traffic relates to EasyList downloads can be as-
sociated to TCP traffic from (or to) port 443 from (or to) IPs in the
list of Adblock Plus servers that host these lists. We obtained this
list with active measurements (see §3.2) before and after the trace
was captured. They did not exhibit differences.

Like many other ISPs, most of the customers of this ISP have
a home gateway at their premises that performs Network Address
Translation (NAT). These gateways multiplex many user devices,
and thereby also browsers, to a single IP address. To report the
prevalence of ad-blockers in residential broadband networks we
have to identify unique devices and more specifically Web browsers.
Maier et al. [45] showed that a good indicator for separating HTTP
traffic from multiple devices behind the same NAT is the HTTP
User-Agent strings of the browsers (in contrast to the strings
used, e.g., by software update tools or media players). The ratio-
nale behind it is that the User-Agent string includes information
about the operating system, browser version, etc. Thus, we use the
pair end-host IP and User-Agent to separate our data by end
device. Given that most ISPs assign addresses to their customers
dynamically, we can only associate an IP address to a household
for traces with short duration.

Table 2 gives an overview of the two traces collected in this ISP.
The first data set corresponds to a 4-day long trace of the smallest
set of customers for which we only capture HTTP traffic, i.e., 7.5K .
The second trace is a shorter trace, but it captures peak time traffic
for a larger number of end users, i.e., 19.7K . In the remainder of
this work we use the latter trace to elaborate on ad-blocker usage,
and the former to describe general characteristics of ad traffic.

We pay careful attention to respect and preserve the privacy of
end users in our study. First and foremost, we process, aggregate,
and analyze the data on a private and secured infrastructure. Sec-
ond, the IP addresses of the end users are anonymized at the time of
the packet capture, i.e., the real IP addresses of the end users were
never stored to disk and are unknown to us. Third, we automate the
ad classification process which, when completed, truncates every
URL in the logs to a fully qualified domain name (FQDN), thereby
removing sensitive information.

6. AD-BLOCKER USAGE IN THE WILD
Using the methodology from §3 we can proceed to assess ad-

blocker usage in the residential broadband network trace RBN-2.
To infer if an end user1 is using an ad-blocker, we use the following
two indicators: i.e., i) the ratio of ad to non-ad requests, and ii)

automatic EasyList downloads by Adblock Plus (see §3.2).

1We use term “user” to refer to the pair formed by an IP address
and a browser’s User-Agent string.
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To this end, we have first to identify browsers in the trace. Along
with browsers, residential broadband networks indeed manifest a
rich and complex mix of other HTTP-based applications. To illus-
trate this mix, we show in Figure 3 the total number of retrieved
HTTP objects vs. the number of retrieved ads2,3 for each IP ad-
dress and User-Agent pair on a log-log scale. Due to the large
number of data points, we use a heat map to capture the density
within each area of the plot. We find in total 508.7K tuples of IP
and User-Agent in RBN-2. We see the whole range: some pairs
only account for a few requests while others issue orders of magni-
tude more requests. Overall, we observe 18.89% ad requests in this
data set.

Most relevant for us is that there is a substantial number of pairs
that request many Web objects but hardly any ads. These are the
ones in the lower right hand side of Figure 3. They are most likely
browsers that have an ad-blocker installed or visit only sites without
advertisements.

However, there are many more points in this plot than we would
have expected given the number of monitored DSL-lines (19.7K
different households); more than 25 different User-Agent strings
per household in average. Upon closer manual inspection we find
pairs that identify devices like consoles and Smart TVs. On the
other hand, given that most modern end-user devices run many
HTTP-based applications in parallel, we also find pairs that corre-
spond to desktop-based gaming applications or mobile apps (these
applications use custom User-Agent strings). Since advertise-
ments typically appear within Web sites and mobile applications,
we can discard User-Agent strings that do not correspond to
this type of applications. Moreover, since in-app ads differ sub-
stantially from browser ads, we limit our analysis to Web browsers
in this paper. Namely, we restrict our analysis to sessions for which
we can associate the User-Agent either to a well-known desktop
browser or to a mobile device browser. Indeed, a manual inspec-
tion of the pairs shows that some of the points on the right hand
side of Figure 3 correspond to mobile apps, which we do not want
to consider. Thus, we next use the User-Agent strings to identify
popular Web browsers.

6.1 Annotation of active users
Our approach is to manually label the User-Agent strings

in a subset of the data. We use this as a starting point to subse-
quently classify the entire data set. Our starting subset is the active
users. More precisely, we select tuples that issue more than 1K
requests (the heavy hitters) e.g., those corresponding to a few page
retrievals. As a result, we obtain a more tractable set of 15.2K pairs,
with 1.6K unique User-Agent strings. Among this set of strings,
we are able to manually annotate 601, which appear in 9.6K of the
heavy-hitter tuples.

With this set of annotated strings, we proceed to classify browsers
in the entire set of pairs. We identify 44.1K additional browsers.
All these browsers generate 57.2% of the observed requests and
82.2% of the ad requests in the RBN-2 trace. As expected, the
heavy hitters issue most of these requests, i.e., 50.6% requests and
72.5% ad requests. We thus continue our study with the set of
heavy hitters, i.e., the most active browsers.

2We use term “ad”, “ad object” and “ad request” interchangeably
in this paper to refer to a request that is blacklisted by EasyList and
its derivatives, as well as those that are blacklisted by EasyPrivacy.
We also use this term to refer to requests that are whitelisted by the
list of non-intrusive advertisements.
3Note that fetching and displaying an advert can involve several
executions and thereby multiple requests [25].
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We separate these browsers into i) mobile and ii) desktop ver-
sions. We identify 1.9K browsers in the mobile category. They
correspond to iPhone and Android phones. These browsers issue
5.9% of both the ad and the total number of requests in the RBN-2
trace. The desktop category accounts for the rest of requests and
it is constituted by 7.7K browsers which we further separate into
Firefox (3,423), Chrome (2,267), Internet Explorer (654) and Sa-
fari (1,324) browsers.

6.2 Inferring ad-blocker usage
With this set of annotated browsers, we continue our analysis

of ad-blocker usage at our vantage point. We use two indicators:
(a) ratio of ad requests, which applies to any ad-blocker, and (b)
HTTPS connections to check for filter updates, which is specific to
Adblock Plus.
First indicator: low ratio of ad requests. We use this indicator
to detect the presence of an ad-blocker from the HTTP requests.
Our motivation for this indicator stems from the insights of the ac-
tive measurement study (see §4). The rationale is that users that
installed an ad-blocker retrieve significantly smaller number of ads
than those that have not.

Figure 4 shows the empirical cumulative distribution function
(ECDF) of the percentage of ad requests per browser for the anno-
tated set of active browsers. Since not all filter lists are installed
by default, e.g., the EasyPrivacy list, we only consider ads clas-
sified by EasyList, which indeed is installed by default. In this
context, 40% of the Firefox and Chrome active browsers issue less
than 1% ad-requests; they qualify as ad-blocker candidates. By
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contrast, only for 18% of the Safari and 8% of the IE instances
the ratio of ad requests is below the threshold. This can be due to
the fact that installing and ad-blocker like Adblock Plus in these
browsers is a bit more cumbersome and thus might deter their us-
age. Based on these observations and the results from the active
measurement study (see §4), we set the threshold for identifying
ad-blocking browsers to 5%, to i) tolerate mis-classifications due
to content type (see §4.2), and ii) take into consideration users that
disable blocking for specific sites.
Second indicator: downloads of filter lists. As mentioned above,
Adblock Plus frequently checks for updates to the filter lists. These
updates typically occur during browser bootstrap or when a list
soft-expires (see §3.2). Thus, we can estimate the number of Ad-

block Plus users by monitoring EasyList downloads. However,
the Adblock Plus browser extension uses HTTPS to download the
lists. Hence, we cannot differentiate between multiple browsers
hidden behind a single IP (e.g., in the presence of a NAT), since
the User-Agent is not visible. Instead, we can only report the
number of households in which there is at least one device with an
Adblock Plus installation.

We find several thousands of HTTPS connections to Adblock

Plus servers in the RBN-2 trace. These connections are issued from
19.7% of the households in this data set. This number is slightly
larger than what has been previously reported. Metwalley et al. [46]
reports that the fraction of households with at least one device using
an Adblock Plus plugin is between 10% and 18%. As stated pre-
viously, this information is not sufficient to discern browsers that
likely run an ad-blocker, but we can leverage it as indicator and
correlate it with the ad-ratio indicator.
Correlation of indicators to assess Adblock Plus usage. We
proceed to correlate the ad-ratio with the EasyList downloads indi-
cator. We obtain four classes as the cross product corresponding to
a combination of the two indicator values. We summarize these 4
classes along with their corresponding traffic statistics in Table 3.
We find that 46.8% of the 9.6K active browsers neither classify as
an ad-blocker candidate nor contact Adblock Plus servers (denoted
in the table with the type name A). The orthogonal case, i.e., those
annotated with type C, constitute 22.2% of the active browsers
population. As expected, this class is dominated by Firefox and
Chrome browser User-Agents. These two types of browsers
represent 51% and 32% of the occurrences respectively. Safari on
the other hand accounts for 11%. In practice 31% of the Firefox
and Chrome instances fall into this class and thereby they probably
have Adblock Plus installed. This share is slightly larger than the
official statistics [18, 15]. This difference could be explained by a
permissive threshold value or by a bias due to the population at our
vantage point.

There are many browsers for which the download information
and the ratio of ad requests produce inconsistent outcomes (types
B and D). Type-D browsers exhibit ad-blocker-like behavior, al-
beit they did not attempt to download EasyList. Browsers in this
category sum up to 15.3% of the active browser population. There
are two possible explanations for this apparent inconsistency. The
end users might i) have installed a different plugin, e.g., Ghostery

or NoScript, or ii) have requested content from sites with few ad-
vertisements. Based on the observation that other ad-blockers are
much less prevalent than Adblock Plus [46], we speculate that the
most likely cause for this inconsistency is the latter scenario.

The second type of inconsistency relates to type-B browsers.
They add up to 15.7% of the active browser population. For these
instances we observe an EasyList download but the ratio of ad re-
quests is higher than 5%. The most plausible explanation for this

Type Ratio EasyList Instances % requests % ad reqs.

A X X 46.8% 22.5% 46.3%
B X X 15.7% 8.1% 15.8%
C X X 22.2% 12.9% 6.5%
D X X 15.3% 7.1% 4.0%

Any - - 9.6K 50.6% 72.5%

Table 3: Ad-blocker usage: classification and statistics for the

annotated set of active browsers using the indicators i) Ratio:

low ratio of ad requests, i.e., ≤5%, and ii) EasyList: HTTPS

connections to an Adblock Plus server.

contradictory information is that there may be many users in the
same household, some of them using Adblock Plus and others not.

6.3 Adblock Plus configurations
There are various filter lists with different objectives available for

Adblock Plus users. Most notably, there are lists to i) block and hide
adverts (e.g., EasyList), ii) whitelist adverts (list of non-intrusive

ads), and iii) protect user privacy by blocking Web trackers (e.g.,
EasyPrivacy). To further elaborate on ad-blocker usage we dissect
our corpus of adverts by the list that triggered the classification.

Our first observation is an unexpected high share of ad requests
among the likely Adblock Plus users (type-C). For this observation,
we refer to Table 3, which reports the contribution of each user cat-
egory to the total number of ad requests in RBN-2. One would
expect the relative share of ad requests for Adblock Plus users to be
close to 0%. Instead, we find a share of 6.5% ad requests. The ex-
planation for this high percentage is that our threshold-based clas-
sification is based on EasyList hits. We use this list because it is by
default activated upon Adblock Plus installation; along with the list
of non-intrusive advertisements whitelist. However, the numbers
that we report in Table 3 correspond to all hits, including those trig-
gered by the other lists, i.e., EasyList derivatives and EasyPrivacy.
Indeed, we observe that 82.3% and 11.1% of the positive classifi-
cations for Adblock Plus users relate to filters in EasyPrivacy and
in the list of non-intrusive ads respectively. This observation moti-
vates the consequent analysis about the lists that Adblock Plus users
subscribe to.
EasyPrivacy. Metwalley et al. [46] report that 77% of the users
contact a tracker immediately after they start browsing the Web.
We can leverage this observation to estimate the extent to which (if
at all) an Adblock Plus user interacts with a tracker. Our assump-
tion is that such interactions should only occur for those users who
do not install the EasyPrivacy list. We observe that only 0.1% of
the non-adblock users do not issue requests matching EasyPrivacy

filter rules, i.e., almost every user contacts a tracker. By contrast,
the corresponding fraction for Adblock Plus users is 5.1%. If we
use a more permissive value, i.e., 10 requests to account for mis-
classifications, then the percentage of Adblock Plus users that likely
installed EasyPrivacy is 13.1%. Overall, we see a consistent differ-
ence around 15% using different values.

In light of these observations, we speculate that most Adblock

Plus users, i.e., more than 85%, do not subscribe to EasyPrivacy

but just to EasyList. In fact, this argument is supported by a blog
post from the EasyList maintainers, which reported back in 2011
that only 4.1% of their 12 million users subscribed to EasyPri-

vacy [9]. The key take-away is that it seems that Adblock Plus

users install this software to block annoying advertisements but do
not configure it to protect their privacy.
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Non-intrusive adverts. We conduct a similar analysis to elab-
orate on the prevalence of the non-intrusive ads list. We find that
Adblock Plus users issue 7.9% of the total number of whitelisted re-
quests. In comparison, non-adblocker users generate 37.9% of this
type of requests, despite the fact that the population of this set is al-
most twice the population of the former set. This first observation
highlights the importance of this list for advertisers and publishers
alike, i.e., Adblock Plus users still generate a significant fraction of
ad requests.

When trying to elucidate whether an Adblock Plus user opts out
of this whitelist, we find that 11.8% of the Adblock Plus users issue
no requests of this kind. The corresponding percentage for non-

adblock users is 6.1%. The reason why many non-adblock users do
not issue ad requests of this kind is because this type of adverts are
less prevalent (see §7). At less than 10 issued whitelisted requests,
the difference between both groups is roughly 20%, a pattern that
is repeated across different values. This is, perhaps, an indication
that at most 20% of the users actually deactivate this list, thus dis-
abling the whitelisting of adverts that conform the non-intrusive
ads guidelines. We emphasize a word of caution on this last state-
ment and remark that corroborating this observation would require
to conduct an analysis of the browsing patterns of Adblock Plus

users.

Summary: Our main observation is that a significant fraction of
the most active users in our traces browse the Web with Adblock

Plus, i.e., 22.2% of the active users. This extension is especially
popular among Chrome and Firefox users, i.e., 30%; and less pop-
ular among Safari and Internet Explorer users. We find that most
Adblock Plus users do not install the EasyPrivacy list that protects
them from trackers. Hence, it seems that Adblock Plus users are
mostly interested in blocking ads rather than protecting their pri-
vacy. However, this might be an awareness problem. We also find
that most Adblock Plus users probably do not opt out from the list
of acceptable ads (non-intrusive ads) which is enabled by default.
In fact, we find that the set of heavy-hitter Adblock Plus users still
generates a substantial number of such ads, even when compared
to non-adblock users. This observation suggests that conforming
to the acceptable ads guidelines may benefit some players in the
advertising domain.

7. ADS IN THE WILD
One under-explored aspect of the ad-scape is the prevalence of

ads that end users experience during regular browsing sessions.
Most previous work (see e.g., [25, 42]) has relied on active mea-
surements and therefore cannot capture how the average user in-
teracts with the ad-scape while browsing the Web. Thus, in this
section we use our passive measurement methodology to study ba-
sic properties of ad traffic in the wild. Concretely, we investigate i)

basic ad-traffic properties, ii) content-related properties of the ob-
served ads, and iii) whitelisted ads.

7.1 Ad-traffic characterization
To comment on the temporal characteristics of the ad-traffic we

conduct our analysis on the RBN-1 trace, as it spans a longer pe-
riod than RBN-2. We find that 17.25% and 1.13% of the requests
and bytes respectively correspond to ad objects in the RBN-1 trace.
To put these numbers into perspective, we refer to our active mea-
surement results (see Section 4). For the Alexa top 1K sites we
classified 16.4% of the total requests as adverts (see Table 1).

We highlight the variability of ad traffic in Figure 5(a), where
we depict a time series for the number of requested Web objects
vs. the number of ad requests using bins of 1 hour. The non-ad re-
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RBN-1 trace). Ad traffic exhibits a daily pattern, both in terms

of number of requests and in terms of its ratio to all requests in

the trace.

quests manifest the characteristic time of day and of week pattern
of residential networks. During the night there are relatively fewer
requests and the busy time is in the evenings, right before midnight.
On the weekend there are fewer requests than during the week, in
particular on Saturday. Moreover, the lunch break is also clearly
visible. Surprisingly, the ad-related requests do not show the same
pattern. To visualize these differences we plot in Figure 5(b) the
percentages of ad requests and ad bytes over time. Here we only
consider ads reported by filters in EasyList and EasyPrivacy (ex-
cluding non-intrusive ads). The figure reveals that, surprisingly,
the ratio of ad requests also manifests a diurnal pattern, ranging
from 6% up to 12%, instead of having a constant rate.

To explain this surprising diurnal pattern we offer two possible
explanations. The first one is that users request different content
and that the pages that serve this content have a different ratio of
advertisements. For example, streaming video chunks might result
in a very low ratio of ads. Another example are Web site cate-
gories, e.g., the news category has more objects than other cate-
gories (see [27] for a detailed study about the complexity of pop-
ular Web sites). Our second explanation for the diurnal pattern is
that the share of ad-blockers users varies at different times of the
day. We leverage the classification described in §6.1 to investigate
this for RBN-2. Our finding is that at peak time the number of
non-adblocker active users is twice the number of active Adblock

Plus users. By contrast, during the off hours the number of active
Adblock Plus and non-adblocker users is roughly the same.
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Content-type Ads Non-Ads

Reqs Bytes Reqs Bytes

image/gif 35.1% 14.1% 3.5% 0.7%

text/plain 28.7% 34.2% 14.3% 2.1%

text/html 14.4% 11.8% 7.6% 1.1%

- 11.8% 5.4% 28.7% 63.4%

app./xml 4.5% 2.2% 1.8% 0.2%

image/png 1.9% 1.6% 5.1% 0.8%

image/jpeg 1.8% 5.2% 19.8% 3.4%

app./x-shock. 1.4% 8.1% 0.2% 0.1%

video/mp4 0.0% 10.9% 0.3% 8.6%

video/x-flv 0.0% 5.4% 0.1% 3.1%

Table 4: Trace RBN-1: ad traffic by Content-type.

Our next question relates to the type of adverts that we see. To
answer it we dissect the ad requests by the list that triggers the clas-
sification. EasyList causes significantly more hits than EasyPri-

vacy, which in turn triggers more classifications than the non-intrusive

ads list. More precisely, EasyList classifies 55.9% of the ad re-
quests in RBN-1. The EasyPrivacy is responsible for 35.1% of the
requests. The non-intrusive ads list triggers the remaining matches.
We observe the same trend in RBN-2.

7.2 Ad-related objects by Content-Type
Next, we consider the types of the requested ads (e.g., image vs.

video ads) and their prevalence. Therefore, we analyze the Content-

Type of the Web objects in RBN-1. Table 4 shows the most preva-
lent objects according to the MIME type reported by Bro HTTP
analyzer along with their corresponding contribution to the total
traffic and to the ad traffic in terms of requests and bytes. Most ads
are either image/gif, text/html, or text/plain. The fraction of bytes
is dominated by text/html objects, while the fraction of bytes for
the type image/gif is relatively small. The latter is not surprising
given that many of the ad objects used to track users are small, i.e.,
43 bytes. At the other extreme are videos (i.e., video/mp4, video/x-

flv), flash objects (i.e., x-shockwave), and non-gif images such as
image/jpg. All these types contribute a higher fraction of bytes than
requests.

To highlight the different distributions, we show in Figure 6(a)
the density of the ad-object size on a log scale separated by the
Content-Type. We consider four different classes: images (gif,
jpeg, and png), text (html, plain), video (mp4, flv), and applications
(xml, flash). The density of the logarithm highlights that most im-
ages are very small (43 bytes), while most videos are rather large
(> 1 MByte). If we compare these values to the typical object
size of non-ad objects, see Figure 6(b), we notice significant differ-
ences. Most non-ad videos are smaller than ad videos, while most
non-ad images are larger. One of the reasons is that most video-
streaming providers split regular videos into multiple chunks and
each chunk corresponds to one Web object. Since most video ads
only last for 15-45 seconds and advertisers expect end users to see
the complete video stream, chunking may be considered to be un-
necessary. Moreover, most ad videos typically have a length in the
same order of magnitude. Surprisingly, we see that non-ad text ob-
jects are likely to be smaller. These are likely requests involving
high-interactive sites, e.g., for auto-completion or for suggestions.

7.3 Non-intrusive advertisements
Next, we look at the relevance of the list of non-intrusive ads.

On the one hand, ad-blockers threaten the financial backbone of
the Web. On the other hand, they also ensure some balance by
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Figure 6: PDF of the object size distribution of the requests

according to their MIME type (RBN-1). Ad-related objects ex-

hibit characteristic sizes.

preventing ads from becoming too intrusive [19]. The result is the
non-intrusive ads list which whitelists adverts and is enabled by
default. Indeed, according to Financial Times [6] some companies
including Google, Microsoft and Amazon, pay money to Adblock

Plus to be whitelisted. But what is the effect of this list? Given
our vantage point and our ability to classify traffic the same way
Adblock Plus does, we can investigate the impact of the whitelist
using the RBN-2 trace.

We first ask how many of the ad-related requests match the whitelist.
This is the case for 9.2% of the ad requests. While this number may
seem low at first, we calculated it using also the hits triggered by
an EasyPrivacy filter. If we restrict ourselves to ad requests identi-
fied by EasyList and non-intrusive ads, then the percentage that is
subject to whitelisting grows up to 15.3% viz., these adverts would
not be blocked by the default Adblock Plus installation.
List accuracy. However, these numbers likely overestimate the
real impact that this list has. We manually inspected the filter
rules and found some anomalies: some rules are overly general,
e.g., they whitelist an entire domain rather than specifically ad-
dressing ad-related parts. For example, many requests match the
@@||gstatic.comˆ$document filter rule, which whitelists
the entire gstatic.com domain. This domain hosts unsuspected
fully qualified domain names (FQDNs) e.g., fonts.gstatic.com
and services such as Street View. Hence, this filter list may also
whitelist non-ad-related traffic. On the other hand, and referring to
the previous example, font objects may very well be necessary to
display an advertisement e.g., Google’s AdSense.

Therefore, we ask how much of the whitelisted traffic would
have been otherwise blocked by a blacklist, i.e., when Adblock Plus

users choose to stop allowing non-intrusive advertisements. The
ratio is surprisingly small: only 57.3% of the whitelisted requests
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would have been blacklisted. Moreover, 23.2% of those would be
filtered by EasyPrivacy. These observations highlight that the list
of non-intrusive ads should be handled with caution when trying
to identify adverts. In the remainder of this subsection we consider
only those whitelisted requests which “match the blacklist”.
Publishers. Recall, we can identify the main page that originated
the request using the methodology described in [56]. We find 991
unique FQDNs with more than 1K blacklisted requests to which we
can associate 84.0% of the total requests blacklisted by EasyList

and its language derivatives. The non-intrusive ads list whitelists
8.6% of these requests.

We find that some sites in the dating, shopping, translation, au-

dio and video streaming categories, as well as some sites in the
mixed content categories benefit the most from the whitelist4. On
the other side, we find that most of the sites without whitelisted re-
quests belong to the adult content category, followed by Webs in
the mixed content category. Here, we also find another one in the
file sharing / video streaming category. It is not surprising to see
that these sites are not whitelisted. However, it is surprising to find
a few instances of popular sites in the news category (in fact they
appear in the Alexa top 1K). Thus, an Adblock Plus user would
block every ad-related request related to these sites. We manually
checked these sites with Adblock Plus to corroborate this observa-
tion.
Ad-tech companies. We repeat the same analysis to shed light
on how the non-intrusive ads list affects ad-tech companies. We
select FQDNs with more than 10K blacklisted requests. These do-
mains sum up to 82.1% of the total blacklisted requests, from which
11.1% are whitelisted.

Like in the publisher case, we see a mix. The list of non-intrusive

ads whitelists 47.9% of Google’s requests (recall we exclude HTTPS
traffic). Some of its services do get most of their requests through
(e.g., analytics, ad-services) while others do not. While the bulk of
these requests corresponds to Google, we also see other companies
benefiting from the non-intrusive ads list. One particular example
is a technology/Internet Web site that operates its own ad-platform,
for which the non-intrusive ads list whitelists 94% of the otherwise
blacklisted requests.

Summary. Our main observation is that a significant share of the
requests and bytes in a residential broadband network are due to
online advertising e.g., 17.25% and 1.13% of the requests and bytes
respectively for trace RBN-1. We observe that ad-related traffic
exhibits a different diurnal pattern than regular traffic. Moreover,
ad objects have more characteristic sizes than non-ad objects. In
ads gif images dominate in terms of number of requests, followed
by text/plain objects, which in turn dominate the share of ad traffic
in terms of bytes.

Moreover, our analysis of the potential benefits of whitelisting
i.e., the list of non-intrusive ads, shows that some content publish-
ers substantially benefit from this list, while others not. Among the
latter are sites in the adult category. However, we also find pop-
ular sites in the news category among them. Some ad-tech com-
panies also benefit from this list; for instance Google, which car-
ries the bulk of the whitelisted traffic and for which 47.9% of the
ad-related traffic is whitelisted. Another example is a popular tech-

nology/Internet Web site. This site operates its own ad-platform,
for which the non-intrusive ads list whitelists 94% of the otherwise
blacklisted ad traffic.

4We use http://sitereview.bluecoat.com to classify
Web sites into categories.

8. ADVERTISEMENT INFRASTRUCTURE
Next, we turn our attention to the infrastructure that serves ad-

related objects. This study is motivated by the need to better un-
derstand the ad-scape [7], a complex and diverse ecosystem com-
posed by hundreds of companies that provide numerous services
and closely interact with each other, e.g., ad-networks and exchanges.
In this section we study the server-side infrastructure from the per-
spective of an end user using Adblock Plus. Namely, which infras-
tructures end users contact, how often and how many, and if we can
find signs of real-time bidding.

8.1 Server side ad infrastructure
The first aspect of the ad-scape infrastructure are the character-

istics of the Web servers that deliver ad objects to the end users.
We use the term server to refer to an IP address. Note, that any
of these addresses may on the one hand be only a front-end of a
large server farm or on the other hand a server that is co-located
with other virtual servers. We find 29.0K and 19.6K servers in
RBN-1 that serve ad objects according to EasyList and respectively
EasyPrivacy. Some servers (i.e., 5.2K) serve objects matching both
lists. As one may expect—like almost every other distribution in
the Internet—the distribution of requests per server is heavy-tailed
(not shown). If we use only EasyList driven classification, the me-
dian number of ad objects per server is 7, the mean is 438, and the
90

th / 95th / 99th percentiles are respectively 320 / 1.1K / 6.8K ad
objects. The busiest server in the RBN-1 trace, which is operated
by Liverail, received 312.3K ad requests in total.

The second aspect relates to the objects served by these servers:
do they exclusively serve ad-related objects or do they serve regu-
lar content as well? One argument for the first case is that by now
there is a separate infrastructure and market dedicated to the ad-tech
ecosystem. The opposing argument is that one can take advantage
of synergy effects by delivering ads via the same infrastructure as
regular content. We find 222.2K servers in RBN-1. For 21.1% of
them we classify at least one request as an ad object. These IPs
serve 54.3% of the total number of non-ad objects in RBN-1. How-
ever, about 6.9K servers deliver exclusively ad objects. Here, we
consider that a server is exclusively dedicated to deliver ad objects
if our methodology identifies more than 90% of its requests as ad-
verts. We consider this reasonable since our methodology may not
be able to identify all ads and thus provides only a lower bound.
We use the previous threshold to find 10.1K ad servers, which alto-
gether deliver 32.7% of the adverts. Likewise, we define the notion
of “tracking server” to refer to the set of servers that only serve ad-
related objects identified using EasyPrivacy. We find 3.3K of these
servers, which deliver 18.8% of all the ad-related objects reported
by EasyPrivacy.

Next, we consider the Autonomous Systems (ASes) which host
the ad servers since we want to understand if ad traffic is highly
concentrated in a few large infrastructures. To this end we use
the global routing information in order to determine the AS that
is responsible for the IPs of the servers. The top-10 ASes con-
tribute to the majority of the ad objects in the RBN-1 trace, namely
56.8%. Among these ASes, see Table 5, we find four categories
of players: search engines, cloud providers, CDNs and two ad-tech
ASes, i.e., AppNexus and Criteo. Google leads this ranking with
21.0% and 33.9% of all ad requests and bytes, respectively. The
relative ratio of ad objects for Google traffic is 50.7% and 15.9% of
the total ad requests and bytes to this AS. This ratio may at first
seem large and one may ask if our methodology is sound. How-
ever, recall that Google switched many of its services to HTTPS—
apparently mostly for their “core” content, i.e., search results and
video streaming.
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AS %ads relative to % ads relative to

ad objects in trace all objects per AS

Requests Bytes Requests Bytes

Google 21.0% 33.9% 50.7% 15.9%

Am.-EC2 7.0% 4.6% 19.8% 2.8%

Akamai 6.5% 19.0% 6.4% 1.0%

Am.-AWS 5.5% 1.1% 45.9% 16.6%

Hetzner 3.4% 1.4% 23.4% 3.5%

AppNexus 3.1% 0.4% 32.9% 50.2%

MyLoc 2.9% 3.0% 64.0% 14.9%

SoftLayer 2.8% 0.4% 48.5% 1.9%

AOL 2.7% 0.3% 74.7% 25.4%

Criteo 1.9% 1.1% 78.1% 88.2%

Table 5: Trace RBN-1: Ad traffic by AS for top-10 ASes.

Among the other top contributors are also cloud providers, in-
cluding Amazon, Hetzner, and MyLoc. Finding cloud providers in
the list of top contributors highlights that clouds are also used by
the advertisement industry. While some companies opt to manage
their own AS to better control and operate their ad infrastructure,
others opt to take advantage of the massive amount of resources
and flexibility that cloud providers offer. Finally, CDNs like Aka-
mai (which deploys caches within ISPs or within their own address
space) and SoftLayer form the third category of ASes that serve ad
objects. The presence of CDNs in this list of top contributors sup-
ports the argument that the same infrastructure that serves regular
content delivers also ad objects.

The last category of ASes in Table 5 includes the relatively un-
known ASes AppNexus and Criteo. These are companies whose
main business is online advertising. They operate just a few servers
(those visible in our traces), e.g., 39 for Criteo. Excluding the land-
ing pages of these companies, we expect these ASes to mostly serve
adverts, which is not strictly the case. While we classify 50.2% of
the AppNexus bytes as advertisement traffic, the ratio of the re-
quests is much lower (32.9%). Hence, our methodology probably
underestimates the number of ad requests for this AS. One possible
explanation for this mismatch is that the lists are conservative and
do not address all possible URLs to prevent blacklisting desired
traffic. Another possible explanation is that fetching an advert can
require several JavaScript executions (see [25]) and thereby involve
multiple non-ad requests as well. If we do not classify all requests
in this chain as ad objects, except for one, the ratio of adverts per
AS may decrease. In contrast to AppNexus, the percentage of ad
traffic for Criteo in terms of requests and bytes is as high as 78.1%
and 88.2%, respectively.

8.2 Ad-exchanges and real-time bidding
Real-time bidding (RTB) refers to the process of selling adver-

tisement space on a per-impression basis, i.e., per user. This is a
standard process in today’s Internet (see [23, 53, 25]). The process
works as follows. When a user requests an advert from an ad ex-
change, this exchange contacts multiple advertisers and the highest
bidder among them wins the right to display the ad to the user. Ad-
vertisers can use many pieces of information to decide on their bid,
including but not limited to geographical location, age, or gender.
Usually, exchanges wait for around 100 ms before closing the auc-
tion [14]. Earlier work revealed the complexity of the ad-ecosystem
which involves multiple players [23, 58, 49].

With our traces we can identify real-time bidding in the wild
by leveraging a threshold of 100 ms for answering a request. The

key observation here is that the bidding threshold adds extra delay
to the HTTP hand-shake i.e., the time difference between the first
HTTP response and the first HTTP request packet. If the delay is
larger than 100 ms it may be due to RTB. However, it may also be
due to large network delays. To avoid mis-classifications we use
the TCP hand-shake time—the difference between the TCP SYN-
ACK and the TCP SYN packets—as a proxy for the network round
trip time (RTT) to the server. Note, that given the location of our
monitor within the aggregation network, the TCP hand-shake time
only captures the wide area delays and thus automatically removes
access network variations. Likewise, we remove biases due to the
servers’ locations viz., otherwise data in Europe can be expected
to be served faster than that in the US or even Asia. Finally, if the
HTTP object is fetched via a persistent connection we still use the
TCP hand-shake time from this connection as the delays usually
do not vary that significantly within a few seconds—the expected
durations of these persistent connections.

Figure 7 shows the density of the logarithm of the difference be-
tween the HTTP and TCP hand-shake times for the RBN-2 trace,
dissected into ad and non-ad HTTP transactions. The first obser-
vation is that most of the hand-shake time differences are small,
i.e., 1 ms. They relate to noise on the network path or to the pro-
cessing overhead at the server to determine the HTTP response.
The second observation is that while most of the non-ad objects
have a short hand-shake time, namely less than 10 ms, ads have—
more often than non-ads—larger hand-shake times. This can be
seen from the three clear modes at 1 ms, 10 ms and 120 ms in Fig-
ure 7. Compared to the non-ad objects a much larger share of ad
objects exhibit a time difference between hand-shakes of more than
100 ms. This suggests the presence of back-offices, which include
ad-exchanges to enable RTB and CDN to fetch objects from other
distant servers [49].

In fact, a manual inspection of the fully qualified domain names
with such large hand-shake time differences (≥90 ms) reveals that
these host names belong to ad-tech companies. To give an example,
Google’s DoubleClick, which offers RTB, contributes to 14.5% of
the ads in this range. We also find other organizations offering
RTB, e.g., Mopub (an RTB exchange for mobile in-app ads), the
Rubicon project, Pubmatic or Criteo. Each of these organizations
contributes roughly 5% to the total number of ads in this range. We
also find Web tracking companies here, e.g., AddThis.

Summary: The ad infrastructure is mostly concentrated in a few
ASes. Along with the expected players, e.g., Google, we observe
that some ad-tech companies opt to either deploy their infrastruc-
ture in clouds or rely on CDNs, while others choose to manage
their own AS, e.g., AppNexus and Criteo. Moreover, our data sug-
gests that often the same infrastructure serves ad content as well
as regular content, although some servers do indeed only serve ad-
related content. Finally, we show that ad requests typically involve
more back-end functionality, i.e., RTB, than non-ad requests, which
again highlights the complexity underlying this ecosystem.

9. RELATED WORK
Content and services which are offered for free on the Internet

are primarily monetized through online advertisement. A rich body
of literature seeks to broadly understand the scale, dynamics, mech-
anisms, economics and general interest concerns related to adver-
tisements on the Web. In this section we provide a summary of the
most relevant lines of research concerning our work.
Privacy and security aspects. The first and largest line of re-
search includes studies that investigate the extent to which adver-
tisements violate or are in conflict with end users’ privacy [35, 40,
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gest that ad requests typically involve more back-end function-

ality than non-ad requests.

36]. Other studies propose to address these issues with privacy-
aware ad technologies [37]. Security-centric studies report the preva-
lence and properties of malicious ads [59, 43] and how to detect
them [54, 53]. Another related study concerns ad injecting browser
extensions [57]. Other studies in this area paid special attention to
targeted advertisements. The goal of these advertisements is to im-
prove the effectiveness of the displayed ads to the user by matching
the users’ interest. Farahat et al. [31] report an empirical evalua-
tion and confirm the effectiveness of such advertisements. How-
ever, they also outlined ways in which more sophisticated targeting
algorithms can cause harm. A large body of related work inves-
tigates privacy issues related to such user profiling, e.g., [35, 40,
36, 37, 30]. Gill et al. conducted a passive measurement study to
quantify the information that is aggregators collect and assess, at
the same time, the value of this data [32]. Balebako et al. propose
tools to mitigate behavioral advertisements [24]. Krishnamurthy
and Wills [41] investigate privacy diffusion in a longitudinal study,
where they report about the increasing aggregation of user-related
information by a few companies, as well as the limitations of exist-
ing protection techniques.
Ad content and traffic characterization. Another notable line of
research concerns the empirical characterization of the online ad-
vertisement landscape as well as its impact on Web site complexity.
Guba et al. [34] and Barford et al. [25] characterize the ad-scape
and highlight its underlying complexity. For instance, how ad ex-
changes enable real-time bidding to sell advert placements on a per
user basis. Pujol et al. [49] report the scale of such “hidden” inter-
actions in a passive measurement study. However, advertising has
also a very visible and pronounced influence on today’s Web site
complexity. Krishnamurthy and Wills [42] report that 25–30% of
the Web objects in the Alexa most popular sites are extraneous.
Mobile ads. There is one branch of related studies that focuses on
advertising in the mobile domain. For example, Rodríguez et al. [55]
quantify empirically mobile ad traffic via passive measurements.
They reveal insights in the delivery mechanisms and outline means
for optimized ad delivery. Targeting mechanisms used in the mo-
bile world (e.g., location-based or user-based targeting) are not rare
in today’s Internet [26]. In this regard, Nath [47] characterizes
the ads displayed in mobile applications and reports about the in-
formation that these apps collect for targeted advertising. More-
over, energy consumption is an important topic in the mobile do-
main. Thus, some studies also devoted their attention to quantify
the energy consumed by mobile advertisements [22, 29, 28, 55]. In
this regard, energy savings can be achieved by either pre-fetching
ads [28], or by blocking them to reduce radio traffic [50].

Ad-blocking tech and tracking services. Butkiewicz et al. [27]
report the share of extraneous content like ads in Web pages, and
conclude that an ad-blocker can reduce the median number of re-
quested objects per site by up to 75%. Guglemann et al. [33] in-
vestigate how to detect privacy-intrusive trackers and services from
passive measurements. Kontaxis and Chew [39] describe a tracking
protection mechanism for the Mozilla Firefox browser. Metwalley
et al. [46] contribute to this line of research with a passive measure-
ment study about the extent to which Web trackers follow users in
a residential broadband network. One of their findings is that while
many users install Adblock Plus (roughly 18% of the households),
most of them do not install an extension to protect their privacy.

Previous research on online advertisements mainly focused on
the empirical classification and characterization of advertisements
via active measurement studies. In the passive measurement do-
main, related work has mostly focused on assessing privacy issues.
Our work complements this body of work with a passive measure-
ment study about advertisement traffic and ad-blocker usage in a
residential broadband network.

10. DISCUSSION
Our methodology leverages Adblock Plus functionality to pro-

vide insights into how ad-blockers may influence ad traffic dynam-
ics and thereby, Web traffic. Although we show that the proposed
methodology is capable of classifying ad requests in HTTP header
traces, the classification approach comes at a price.

First of all, the classification of ad requests in header traces is
complicated by the lack of structural information in the absence of
the HTML payload; individual HTTP requests cannot be associated
with Web objects (e.g., if an image is embedded in an iframe). This
structural information is leveraged by Adblock Plus to improve the
ad detection.

To tackle this challenge, we propose a methodology to partially
reconstruct the Web page structure. Our methodology mainly em-
ploys the construction of a referrer map which associates individual
requests (e.g., images, video, CSS, or JavaScript) with the accessed
page. While this approach allows us to cluster related requests by
page, it cannot reconstruct the entire Web page structure as needed
by Adblock Plus to achieve higher detection accuracy. We suggest
that a complete reconstruction is only possible by accessing the
payload and executing the embedded JavaScript code, which might
further manipulate the Web page structure.

Moreover, ad and non-ad objects can be transferred over HTTPS,
or a mixture of HTTP and HTTPS (e.g., the landing page over
HTTPS and the ads over HTTP). Since URLs in HTTPS transfers
cannot be analyzed, we cannot always associate all requested ob-
jects with a page when constructing the referrer map of such a page.
We are, thus, also unable to reason about the prevalence of ad traffic
carried over HTTPS connections.

Second of all, our methodology can underestimate the volume
of ad traffic in the presence of hidden ads, i.e., ads embedded in
the main HTML of the page whose retrieval cannot be blocked.
To identify these kind of ads we would require access to the en-
tire HTML document (i.e., packet payload), which is not possi-
ble in our study. In cases where the payload can be analyzed, our
methodology can be extended to detect hidden ads and address the
challenges discussed above.

Lastly, we remark that there are many other ad-blockers available
to end users besides Adblock Plus. We may not be able to detect
users with different extensions (or even Adblock Plus with custom
configurations) if they are tailored to block different objects than
those affected by EasyList.
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Furthermore, analyzing the number of ad requests (indicator 1,
see §6.2) involves a set of potential biases: i) custom configurations
and different filter lists (e.g., Web site whitelisting), ii) cascaded
effects in which the blocked ad request who have triggered subse-
quent requests, or iii) the interaction of Adblock Plus with other
blocking extensions. The immediate consequence of such biases is
that we may underestimate the overall usage of ad blocking browser
extensions. Moreover, caches and ad blocking middle-boxes or
proxies can also decrease the number of observed ad requests. Con-
sequently, confusing Adblock Plus instances with ad blocking prox-
ies will lead to overestimation of the number of Adblock Plus users.
To limit the effect of these biases, we introduced the filter list down-
load indicator (§6.2) which monitors updates triggered by Adblock

Plus. However, since such updates are fetched via HTTPS, we can-
not observe the User-Agent string required to differentiate different
browsers behind a NAT.

We point out that this is a general limitation of the presented
results, which we produced using the lists mentioned in Section 2,
rather than of the applied methodology. We selected Adblock Plus

based on its popularity among end users and note that our approach
can be extended to consider other ad-blockers.

11. CONCLUSION
The goal of our work is to elucidate the interactions between the

end users and the ad ecosystem. We conduct a passive measure-
ment study using traces collected at a residential broadband net-
work of a major European ISP with two objectives in mind. First,
elaborate on the prevalence of ad-blockers to inform the ongoing
debate regarding these tools. Second, complement related work by
characterizing ad traffic at this vantage point using Adblock Plus

functionality.
Our main observation is that a significant fraction (22%) of the

most active users in our traces browse the Web with Adblock Plus.
Surprisingly, we find little evidence that Adblock Plus users install
the EasyPrivacy list of filters, which aims to protect end users’ pri-
vacy by blocking trackers. Likewise, our results suggest that most
Adblock Plus users do not opt out from the list of acceptable ads
that is enabled by default in Adblock Plus. Based on these observa-
tions we conjecture that Adblock Plus users are mostly interested in
blocking annoying ads rather than protecting their privacy, or that
they are not aware of these options or how to change them.

Motivated by these observations, we also investigate the poten-
tial benefits of whitelisting, i.e., the list of non-intrusive ads. This
list can be tremendously beneficial to some content publishers and
ad-tech companies given the number of Adblock Plus users. We
find that 9% of the ad-related requests are whitelisted by this list,
while 56% and 35% of the ad-related requests are blacklisted by
EasyList and EasyPrivacy, respectively.

Overall, we find that 18% and 1% (requests and bytes) of the to-
tal traffic at our vantage point relates to ad traffic. This share of ad
traffic is distributed across different infrastructures, including con-
tent and cloud providers and CDNs. However, these infrastructures
are concentrated in a few ASes. The top 10 ASes include the ex-
pected players, e.g., Google (which dominates the list in terms of
requests and bytes). We further observe that some ad-tech com-
panies opt to either deploy their infrastructure in clouds or rely on
CDNs, while others choose to manage their own AS, e.g., App-
Nexus and Criteo. Moreover, our data suggests that often the same
infrastructure serves ad content as well as regular content, although
some servers do indeed only serve ad-related content.

We also show that ad-related requests typically involve more
back-end functionality than non-ad requests. This complexity re-
sults in higher observed response times for ad objects than non-ad

objects. These latency inflations suggest the presence of real-time
bidding within ad exchanges.

This paper takes a first step towards understanding how users
employ ad-blockers and what advertisement traffic is potentially
affected by this software. Yet, our study also poses new questions.
In future work we plan to extend our analysis to better understand
the reasons that drive end users to use ad-blockers. Moreover, we
also plan to explore the economic impact and implications that ad-

blocking tech has for the “free” Web.
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