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Annual changes in the Biodiversity 
Intactness Index in tropical 
and subtropical forest biomes, 
2001–2012
Adriana De Palma 1,7*, Andrew Hoskins 2,3,7, Ricardo E. Gonzalez4, Luca Börger 5, 
Tim Newbold6, Katia Sanchez‑Ortiz1,4, Simon Ferrier2 & Andy Purvis 1,4

Few biodiversity indicators are available that reflect the state of broad‑sense biodiversity—rather 
than of particular taxa—at fine spatial and temporal resolution. One such indicator, the Biodiversity 
Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a 
region compares with their abundances in the absence of pronounced human impacts. We produced 
annual maps of modelled BII at 30‑arc‑second resolution (roughly 1 km at the equator) across 
tropical and subtropical forested biomes, by combining annual data on land use, human population 
density and road networks, and statistical models of how these variables affect overall abundance 
and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and 
subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 
countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 
3.9% over the same period. We did not find strong relationships between changes in BII and countries’ 
rates of economic growth over the same period; however, limitations in mapping BII in plantation 
forests may hinder our ability to identify these relationships. This is the first time temporal change in 
BII has been estimated across such a large region.

Biodiversity indicators can play an essential role in tracking progress towards policy targets, especially if the 
indicators link strongly to both the targets and biodiversity, have broad geographic coverage, and are available 
as a time  series1. �ese stringent criteria, together with the pronounced geographic biases in biodiversity data 
 availability2–4, have contributed to a strong taxonomic bias in global biodiversity  indicators1,5–7. In an assessment 
of whether the rate of biodiversity loss had fallen by  20107, only one of four measures of the state of biodiversity 
considered any non-vertebrate data (the Red List Index considered corals in addition to birds, mammals and 
amphibians) and none of the three indicators of bene�ts accrued from biodiversity did so. �is bias is, if anything, 
stronger among indicators considered in a mid-term analysis of progress towards the Aichi 2020  Targets1: only 
one of the nine measures of the state of biodiversity (coral reef cover) considered non-vertebrate data, and none 
of the three measures of bene�ts did so. Indicators based on a taxonomically-broad sets of species are urgently 
 needed8 because species in di�erent clades o�en respond di�erently to given human  activities9–12. Given the cur-
rent state of biodiversity data availability, models o�er the best immediate prospect for estimating biodiversity 
indicators with broad taxonomic coverage and good spatial and temporal resolution  worldwide13,14. Despite the 
growth of databases that collate time-series data for  populations15 and  assemblages16, such data are as yet too 
sparse to produce �ne-grained estimates of rates of change through data  aggregation14,17. Additionally, geographic 
biases in the sites from which such data are available mean that the average trends they show may not accurately 
re�ect the true global  trend18–20.

�e Biodiversity Intactness Index (BII) is a model-based indicator of terrestrial biodiversity that has been 
designed to allow broad taxonomic coverage and good spatiotemporal  resolution21. BII is de�ned as ‘the aver-
age abundance of a large and diverse set of organisms in a given geographical area, relative to their reference 
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populations’, with the reference condition approximated by the contemporary situation in minimally-impacted 
sites, given the paucity of su�ciently precise historical baseline  data21; it is therefore a measure of the average 
state of local biodiversity. Although human impacts on the rate of global species extinction have perhaps attracted 
more  concern22–24, local diversity matters more than global diversity for reliable provision of many ecological 
functions and services. Reduction in local diversity is associated with reduced rates of delivery of key  functions25 
as well as greater variance in those  rates26. �is closer link to function is one reason why the Biodiversity Intact-
ness Index (BII) was proposed as a metric that could be used to assess the state of biodiversity relative to its 
proposed ‘Planetary Boundary’—i.e., the boundary beyond which if biodiversity continues to decline, Earth 
System functioning may  su�er27,28. In addition, losses across trophic groups can have larger impacts on ecosys-
tem function than losses within a trophic  group26 so, by including multiple taxa, BII may be more functionally 
relevant than many other measures of local diversity. BII usefully complements indicators focusing on species 
populations or  extinction29. Additionally, BII combines aspects of both alpha diversity (total abundance) and 
beta diversity (compositional similarity) to estimate the average local abundance of naturally-present species. 
�ese two aspects of diversity can show contrasting  patterns30 and responses to human  impacts31,32. �e contrast 
may in part help to resolve the recent debate on how human impacts have been a�ecting the diversity of local 
ecological  assemblages33.

BII can be estimated by combining statistical models of how land use (the main driver of terrestrial biodiver-
sity  loss34) and related anthropogenic pressures (e.g., land-use intensity and human population density) a�ect 
 assemblages19 with global maps of these factors. We  previously35 used this approach to estimate BII globally 
for the year 2005 using assemblage data from the PREDICTS  database36, a large global compilation of primary 
studies that compared ecological assemblages at sites facing di�erent land-use pressures.

Here we use annual global �ne-resolution maps of land use and human population density to map modelled 
BII at 30-arc-second resolution ( ∼ 1 km at the equator) across the world’s tropical and subtropical forest biomes 
for each year from 2001 to 2012. �ese biomes are generally under-represented in global  biodiversity16,20—pre-
senting a real challenge for producing well-resolved biodiversity indicators through data aggregation—but are 
home to most of the world’s terrestrial species, provide ecosystem services that sustain well over one billion 
 people37, and face severe anthropogenic threats, especially in south east  Asia38,39. �e main current threat to 
tropical forest biodiversity is land-use  change40, driven by a combination of factors that include agricultural 
expansion, timber extraction and infrastructure  development41, with rates and patterns of forest loss di�ering 
 regionally37. Deforestation and degradation reduce local species richness across a range of  groups12,42,43 but no 
biodiversity indicators are yet available that give a taxonomically broad picture. Model-based indicators such as 
BII are able to take advantage of developments in remote sensing that have greatly improved the ability to track 
land-cover change—particularly forest  loss44—at �ne spatial and temporal  resolutions45. Direct exploitation is 
also a major threat in these biomes, its intensity related to both human population density and  accessibility46; 
our statistical models therefore also include both human population density and road density.

Estimating BII for each year greatly enhances its usefulness as an indicator. We summarise changes in aver-
age BII at national and regional levels to facilitate biodiversity assessments such as those undertaken by the 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) and the Group on 
Earth Observations (GEO). We also explore how per capita Gross Domestic Product (GDP) is related to average 
change in BII across countries. �e relationship between economic indicators and biodiversity is still unclear. 
Recent evidence has suggested that increases in GDP are correlated with increased forest area in tropical forested 
 regions47, while forest degradation and loss is concentrated in poorer  countries48; however, other work has shown 
that increased GDP is correlated with increased forest  change49 and extinction risk in  mammals50.

Results
In the mixed-e�ects models that underpin the estimation of BII, land use, land-use intensity, human population 
density and road density were all highly signi�cant in�uences on ecological assemblages. �e model of compo-
sitional similarity between pairs of sites in the PREDICTS database (i.e., the asymmetric Jaccard’s similarity of 
species abundances between a baseline site—minimally-used primary vegetation—and another site in the same 
study), could not be simpli�ed, as the factor combining land use and land-use intensity interacted signi�cantly 
with the three covariates (human population density, road density at the 50 km scale and road density at the 
1 km scale: all p < 0.01 according to permuted likelihood ratio tests). In the model of total site-level abundance 
of organisms (i.e., at a site, the sum of abundance of all species sampled), the land-use factor interacted signi�-
cantly with both human population density ( χ2

= 22.23 , df = 10, p < 0.05 ) and road density at the 50km scale 
χ
2

= 25.10 , df = 10, p < 0.01 ). Road density at 1 km was not maintained in the model for total abundance. �e 
 R2 values for the models of compositional similarity and total abundance were 0.56 and 0.67  respectively51,52. 
See the “Supplementary Material” for additional  R2 values and predictive performance.

Human dominated land uses o�en had signi�cantly lower diversity than in minimally-used primary vegeta-
tion (when all other variables were set to mean levels), particularly in terms of compositional similarity (See 
the “Supplementary Material” for full model coe�cients). However, even in primary vegetation, broader-scale 
pressures led to declines in diversity. As road density at the 50 km scale increases, abundance tended to decline 
in minimally-used primary vegetation, but the trend was not signi�cant (estimate (est) = −0.0283 , standard 
error (se) = 0.02, t-value (t) = −1.81 , lower bootstrapped Con�dence Interval (bCI) = −0.06 , upper bCI = 0.00). 
Compared to this trend, however, abundance declined signi�cantly more rapidly in lightly-used primary vegeta-
tion as road density increased (est = −0.0419 , se = 0.02, t = −2.55 , lower bCI = −0.0744 , upper bCI =  −0.0083 ). 
Road density at the 50km scale also resulted in some of the most extreme declines in compositional similarity, 
particularly in lightly and intensively-used primary vegetation. In minimally-used primary vegetation, there was 
a signi�cantly negative relationship between compositional similarity and road density (est = −1.624 , se = 0.02, 
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t = −8.16 , p < 0.001 ); this relationship was signi�cantly stronger in lightly and intensively-used primary vegeta-
tion (est = −0.1694 , se = 0.05, t = −3.66 , p < 0.001 ) where declines in abundance with increasing road density 
were much more rapid.

Human population density on the other hand seemed to have the strongest marginal impact on biodiversity 
in secondary vegetation sites. In minimally-used primary vegetation, abundance did not change signi�cantly 
as human population density increased (est = 0.0141, se = 0.01, t = 1.11, lower bCI = −0.01 , upper bCI = 0.04). 
Compared to this trend, abundance declined much more rapidly with increasing human population density in 
minimally- (est = −0.0422 , se = 0.02, t = −2.57 , lower bCI = −0.0751 , upper bCI = −0.0086 ) and lightly-used 
(est = −0.0362 , se = 0.02, t = −2.1 , lower bCI = −0.0726 , upper bCI = −0.0025 ) secondary vegetation. As human 
population density increased, compositional similarity declined signi�cantly in minimally-used primary veg-
etation (est = 0.3349, se = 0.04, t = 9.45, p < 0.001 ); compared to this trend, compositional similarity declined 
even more steeply in secondary vegetation when human population density increased (est = −0.3403 , se = 0.03, 
t-value = −11.53 , p < 0.001).

On average across the tropical and subtropical forested biomes, BII was 61.7% in 2012, with Bangladesh, 
Haiti and India having particularly low values while Suriname, Papua New Guinea and French Guiana still had 
values exceeding 90% (Fig. 1). �e average BII across the three biomes assessed was 63.6% in 2001, meaning the 
rate of loss has been approximately 0.17% per year on average, but losses have varied geographically (Fig. 1 and 
Appendix Fig. 1). BII fell most rapidly in the Tropical and Subtropical Moist Broadleaf Forests (with a loss of 
2.03 percentage points from 2001 to 2012), but remained relatively stable at 50.5% in Tropical and Subtropical 
Coniferous Forests. All regions saw an average decline in BII over the period, with Asia and the Paci�c su�er-
ing the greatest losses ( −2.3 percentage points) and the least severe declines in the Americas ( −1.63 percentage 
points); similarly, Asia and the Paci�c su�ered the sharpest declines in the area of primary vegetation ( −6.0 % 
relative to the area in 2001), while Africa saw a minor average increase ( +3%).

Changes in BII from 2001 to 2012 varied among countries (Fig. 2), but the median log response ratio was sig-
ni�cantly negative (median = −0.01 , Wilcoxon test: V = 2814, p < 0.01 ). When considering only those countries 
where at least 50% of their area is within the included tropical or subtropical forest biomes, the results remained 
qualitatively similar, with most countries showing average losses over the time period (Fig. 2).

Average change over time at the country level was not clearly related to changes in  GDP per capita (esti-
mate = −0.0182 , se = 0.03, t-value = −0.71 , p = 0.48 ; Fig. 3) or to GDP in 2001 (estimate = 0.03, se = 0.02, 
t-value = 1.77, p = 0.08).

Discussion
Our estimate of average BII across tropical and subtropical forest biomes for the year 2012 (61.7%) is far below 
the precautionary ‘safe limit’ of Planetary Boundary for biosphere integrity, set by Ste�en et al.28 at a value of 
90%. �e Planetary Boundaries framework argues that transgressing safe limits risks perturbing natural nega-
tive feedbacks that have maintained the earth system in a stable state throughout the history of  civilisation28,53. 
In that framework, BII is intended to re�ect the ability of ecological assemblages to reliably provide ecosystem 
function and services on which society depends, with the ‘safe limit’ representing a threshold below which 
positive feedbacks make severe large-scale disruption to ecosystem services increasingly  likely27. It is unclear 
whether the earth system really has such a biophysical threshold for biodiversity integrity—either globally or 
across particular biomes as analysed here—or what value it takes if  so27,54–56 (which Ste�en et al.28 re�ected 
by proposing the true safe limit lies somewhere in the range 30–90%). However, even without a biophysical 

Percentage Point Change in BII

−10  −8  −6  −4  −2   0   5

Figure 1.  Map of country level di�erences in BII between 2001 and 2012 (expressed as percentage point 
di�erence). Increases in BII can occur if the abundance of originally-present species increases, so there is no 
upper limit to BII values and therefore to possible percentage point increase. BII cannot be less than zero, 
therefore the maximum possible decrease in BII is −95 percentage points (as the highest country-level mean 
value of BII in 2001 was  95%).
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threshold, worsening socioeconomic disruption is a predictable consequence of large-scale scarcity of goods 
and  services57, which is in turn a predictable consequence of unsustainable use of ecological  resources55. �e 
low global value and ongoing rapid loss of BII therefore present a worrying picture of the state of biodiversity 
in tropical and subtropical forest biomes.

BII is of course far from the �rst evidence of the severity of the state of biodiversity in these biomes. Meta-
analyses have shown the impact of forest degradation, fragmentation and loss on  biodiversity42,58,59. Tropical 
population time series show the ongoing steep  decline2; and a composite index based on carefully-structured 
expert judgement shows widespread decline even in protected  areas60. However, as a model-based indicator 
based on a large and taxonomically representative  database19,36, BII can be estimated at high spatiotemporal 
resolution across the whole set of biomes, making it possible to explore geographic variation in status and trends.

Only three countries are estimated to have remained above the 90% BII threshold: French Guiana, Suriname 
and Papua New Guinea. �is is in part because these countries maintained high levels of primary vegetation and 
low levels of urbanisation and human population density throughout the time period assessed. Most countries 
(81 of 124) and all but three subregions showed a decline in average BII from 2001 to 2012, with South East 
Asia seeing particularly widespread rapid  losses61. However, it is important to note that most changes in BII are 
relatively small (From 2001 to 2012, 98 of 124 countries changed BII by between −5 and 5 percentage points; 
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Figure 2.  Average change in BII over time at the country level, across di�erent subregions. Change was 
calculated as the log-response ratio of 2012 and 2001 values. A value of zero indicates no change (identi�ed by 
the dashed line), negative values indicate a decline over time, and positive values indicate an increase in BII over 
time. Darker boxes include all countries; lighter boxes use data for countries where BII has been calculated for 
at least 50% of their area. �e center line of the boxplot indicates the median value, boxes show data within the 
25th–75th percentiles, whiskers show points that are up to 1.5× the interquartile range of the data, points are 
data that fall outside of these limits. Outliers are shown as points.
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See Appendix Fig. 1). �e largest decrease in BII was in Côte d’Ivoire and appeared to be a result of agricultural 
expansion, as secondary vegetation decreased while the area of cropland increased. Agricultural abandonment, 
however, appears to have driven the largest inferred increase in BII, in the Cocos (Keeling) Islands. �is infer-
ence is likely to be overly optimistic, however, as it will take time to fully achieve these gains and we do not yet 
include the temporal dynamics of recovery in these models (see limitations below).

�e statistical models underpinning the estimation of BII highlight that land-use conversion was of course 
an important predictor of biodiversity loss, but degradation at local (1 km) and broader (50 km) scales were 
also signi�cant contributors: for primary vegetation, some of the strongest declines in compositional similarity 
were seen as road density increased at broader spatial scales, particularly in lightly and intensively-used primary 
vegetation. �is �nding suggests that natural intact vegetation must be protected at varying spatial scales in order 
to conserve local  diversity62. Indeed, the amount of natural intact vegetation is low and continuing to  decline63–65, 
and the rapid losses in south east Asia re�ect the rapid recent loss of natural forest across much of the region.

Our analysis was less able to shed light on how indirect socioeconomic drivers have shaped patterns of 
biodiversity loss. Despite the suggestion that forest loss and degradation tend to be concentrated in poorer 
 countries48, there was no clear pattern between trends of BII and GDP over time, and only a tenuous relationship 
between temporal trends in BII and GDP per capita in 2001. It is possible that the e�ect of GDP changes on BII 
may be masked in our data because of limitations in the treatment of plantation forest. Higher GDP can lead 
to lower biodiversity through increased investment into cropland and thus increased rates of forest conversion 
to  plantations49. While we attempted to include the impact of plantation forests in our analysis by considering 
the e�ects similar to more intensively-used secondary vegetation (see “Methods” for more detail), if the impact 
of plantation forests are not adequately included in projections of biodiversity change, correlations with GDP 
may be muted.

�e average BII values reported here are substantially lower than our earlier global estimate, where BII across 
the terrestrial surface was found to be approximately 84.6%, with tropical forest biomes estimated to range from 
86% (tropical and subtropical dry broadleaf forests) up to 93% (for tropical and subtropical moist broadleaf 

−0.6

−0.4

−0.2

0.0

0.2

0.5 1.0 1.5 2.0

ln(GDP2012/GDP2001)

ln
(B

II
2
0
1
2
/B

II
2
0
0
1
)

IPBES
Region

Africa

Americas

Asia−Pacific

Country Area (km
2
)

< 30,000

30,000 to 300,000

> 300,000

Figure 3.  Change in BII over time plotted against the change in Gross Domestic Product (GDP) per capita for 
each country. Change was calculated as the log-response ratio of 2012 and 2001 values. A value of zero indicates 
no change, negative values indicate a decline from 2001 to 2012, and positive values indicate an increase 
between 2001 and 2012. Note that not all countries have available data on GDP per capita for the years 2001 
and 2012 so some countries are excluded from this plot. Colours represent the di�erent regions. �e circles are 
scaled according to the country area.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20249  | https://doi.org/10.1038/s41598-021-98811-1

www.nature.com/scientificreports/

forests) (with an average across the tropical and subtropical forest biomes of 92%)35. Six factors contribute to this 
di�erence. First, the new land-use maps have stricter bounds on the extent of primary forest. Second, we have �t-
ted a model using data from tropical and subtropical forest biomes only, recognising that there are o�en regional 
di�erences in response to human impacts, both in terms of  alpha42,66 and beta  diversity67. �ird, we compare 
biodiversity to a baseline of minimally-used primary vegetation rather than to the less stringent baseline of all 
primary vegetation used  previously35, meaning that we now more closely approximate the idealised reference 
 condition21. Fourth, our models of compositional similarity use data more e�ciently than previously. Our earlier 
models compared each site with at most one other site to avoid pseudoreplication, which led to some sites being 
discarded and greatly limited the complexity of models that could be �tted; the models used here instead compare 
each site with each other site within the same study, using permutation tests to avoid elevated Type I error rates, 
and the richer data set means that we are able to account for additional habitat degradation related to roads and 
human population density in these  models68. Fi�h, we now use logit rather than log transformation of compo-
sitional similarity, which is more appropriate given that compositional similarity is continuous and bounded 
between zero and one. Sixth, we have attempted here to incorporate into projections the impact of plantation 
forests (by assuming that plantation forest is most likely to be incorporated into lightly- and intensively-used 
secondary forest in the land-use maps), which can drive major biodiversity loss, particularly when expanding 
at the expense of primary  forest42,66,69.

We have provided a method for estimating annual change in BII in the hope that this global indicator of local 
terrestrial biodiversity can better inform policy at national and international levels by highlighting key areas for 
conservation or restoration and monitoring progress towards conservation and restoration targets. BII, as a meas-
ure of biotic integrity, is one of three suggested indicators in a post-2020 biodiversity framework aiming to “bend 
the curve” of biodiversity loss, with targets proposed for the proportion of biomes and ecoregions that should be 
within the planetary boundary by 2030 and  205029. Although no national or global biodiversity commitments 
have yet been speci�ed using BII, such model-derived indicators o�er two potential advantages over indicators 
based on biodiversity time-series. First, because remote-sensing can detect land-use change in near-real time, 
they can potentially overcome the reporting lag that arises when compiling and synthesising biodiversity time 
series into an indicator (e.g., about four years with the Living Planet  Index70). Second, the pressure-response 
framework in principle makes it easier to assess whether the sum of proposed actions to tackle drivers (such as 
nationally de�ned contributions) will be su�cient to achieve the desired  state71. Such models, combined with 
targeted monitoring to validate or re�ne their projected trajectories, can enable timely adjustments to policy 
responses if needed. �is feature—important in the climate arena—was lacking in the Aichi Targets, which were 
all  missed72 despite a mid-term  assessment1 having warned that they would be. BII e�ectively converts measured 
anthropogenic pressures into estimated biodiversity consequences based on statistical modelling of relevant 
biodiversity data sets. It therefore attempts to go beyond composite indicators of total anthropogenic pressure 
such as the Human Footprint  Index73. �e signi�cant interactions among pressures in our models highlight a 
limitation of composite indicators (which implicitly assume e�ects are additive) but also complicate disaggrega-
tion into a simple understanding of responses to di�erent pressures.

While our approach has dealt with many of the previous issues with estimating and projecting  BII74,75, there 
are a number of caveats to our approach that must be considered as well as limits to the interpretation of results.

Limitations and future work. �ere are two conceptual reasons why our implementation of BII may 
still underestimate biodiversity loss to date. Firstly, the compositional similarity metric implied in the original 
 de�nition21 is permissive, in that the species abundance distribution could be completely reorganised without 
reducing BII, provided that the total abundance of originally-present species is not reduced and novel species are 
not introduced. �erefore, a region with high BII can still under some circumstances have shown strong losses 
in other aspects of  diversity76. Using a combination of beta-diversity metrics may provide a more comprehensive 
assessment of the state of  diversity31,32 and is a natural avenue for future development of BII. Secondly, we have so 
far only considered the impacts of land-use change and related pressures (human population and road density). 
Although these are the most important drivers of biodiversity loss in the recent past and near future, particularly 
in the  tropics77, climate change is likely to become increasingly important over longer  timescales78, especially as 
forest conversion already leads to strong changes in local temperature, potentially exacerbating future impacts of 
climatic  change79. Incorporating both land-use change and climate change impacts is likely to improve estimates 
of biodiversity  change78,80,81.

�e biodiversity data come from spatial rather than temporal  comparisons19. �is means that we assume 
that either there are no lags in response or the data are sampled after communities have again reached 
 equilibrium19,82,83; the former is exceptionally  unlikely82 and the latter is unlikely to be true for all studies in the 
dataset. �e result of these assumptions may lead to us mis-estimating the response of biodiversity to land-use 
change. However, spatial studies are more easily conducted—and therefore collated—than temporal studies; our 
overall dataset is therefore less hindered by geographic and taxonomic biases than any temporal dataset currently 
 available2,61,83. In addition, temporal datasets rarely link biodiversity to speci�c pressures, making it di�cult to 
extrapolate across space and time under using information on pressures. �e spatial dataset that underlies our 
models still has gaps in coverage, but because the biodiversity data is linked to pressures, we can extrapolate 
responses to ‘�ll in the gaps’. Such extrapolations become less reliable if responses vary across regions—limit-
ing our analyses to data for tropical and subtropical biomes therefore makes the extrapolations more  reliable84.

Additionally, the data we have used for anthropogenic pressures in our spatial and temporal projections 
vary in their resolution and in their accuracy. �is is particularly important for road networks, which can grow 
rapidly; however, the data are only available as a static layer, and the completeness varies regionally. Static road 
layers may still provide insights into biodiversity responses: for instance, roads built pre-2000 were associated 
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with forest loss in the following decade in  Borneo85. However, other linear infrastructure, such as gas lines, can 
also have important consequences for biodiversity that are not included  here86. Human population density was 
interpolated between time steps and, as the data are downscaled using an areal-weighting approach, its resolu-
tion at the pixel level varies depending on the size of the input areal  unit87. Our models also assume that the 
response of biodiversity to land-use change is immediate; lagged responses are likely to be common and may 
be  complex19,82,83. �ese di�culties mean that, while we have estimated BII at a 30" resolution, the estimates 
are most suitable for assessing average changes across larger pixels or areas (e.g., at a country level) and across 
broader time steps, rather than focussing on pixel-by-pixel and year-on-year changes.

In common with many other widely-used biodiversity  indicators88, BII has not yet been su�ciently thoroughly 
evaluated to be sure what level of inferred change is needed to give con�dence of real change on the ground 
given the imperfections and uncertainties in data and models. However, it is clear that estimates of change will be 
more uncertain for smaller areas. Appendix Fig. 2 plots the log response ratio of BII ln(BII)2012/(BII)2001 against 
log10(country area  (km2)), showing the 0.025%, 50% and 97.5% quantile regressions; while there is not a strong 
relationship, the �gure highlights countries that, for their size, have experienced unusually rapid BII change. 
An important step for future work would be to incorporate parameter uncertainty in both the abundance and 
compositional similarity models to provide uncertainty bounds on estimates and trends. �is will be important 
especially for urban areas, where the data used here are limited and so projected diversity is more uncertain. 
�is e�ort is made both more complicated and more important by the fact that BII is based upon two statistical 
models rather than one. One option is to take samples from the standard errors of the model estimates to pro-
duce a range of possible projections; cross-validation provides another possible route. A thorough exploration 
of error propagation is beyond the scope of the present study. However, future work could aim to incorporate 
uncertainty estimates both from the biodiversity models and the driver data.

Validation of BII would ideally come from comparing model outputs with observational data to assess the 
model  skill89, rather than from measures of model �t such as  R2 (as has been done for the underlying land-use 
 data90). However, the broad taxonomic and ecological spread of the data used in modelling BII presents a major 
challenge for such an evaluation: part of the original motivation behind BII was precisely the lack of time-series 
data covering a broad range of  taxa19,21. Clade-speci�c responses to anthropogenic pressures, which average 
out in the modelling because of the taxonomic representativeness of the PREDICTS  database19, preclude using 
observed trends for particular taxa to test hindcasts. Robust assessment of skill is an important future challenge 
for many ecological  models91: no global biodiversity indicators have yet been tested thoroughly in this  way92.

Although estimating how BII has changed across space and time includes many underlying assumptions and 
uncertainties, the approach we have used goes far beyond our previous implementation of BII by producing 
annual estimates based on improved statistical modelling and time-varying data on land-use change derived from 
remote sensing. �ese annual estimates provide a useful tool for policy makers hoping to track progress towards 
national and international targets, and for assessing the state of nature; they also provide further evidence of the 
perilous state of tropical forest  biodiversity93.

Methods
Spatial and temporal projections of BII are produced by multiplying together the projections from statistical 
models of the two components of BII: overall organismal abundance (relative to overall abundance in the refer-
ence condition) and compositional similarity to an intact  assemblage94. We therefore �rst describe the statistical 
models relating site-level biodiversity to anthropogenic pressures (land-use change, human population density 
and road density), then how these models were projected, and �nally how the resulting BII estimates were ana-
lysed at the national and regional level.

Statistical models of how biodiversity responds to anthropogenic pressures. Biodiversity 
data. Biodiversity data came from the PREDICTS database, a global collation of spatial  comparisons36. �e 
database contains surveys (‘studies’) of multiple sites di�ering in land use and related  pressures95. �e data were 
subset to only those sites in the following tropical or subtropical forested biomes: tropical and subtropical conif-
erous forests, tropical and subtropical dry broadleaf forests and tropical and subtropical moist broadleaf  forests96. 
Although the PREDICTS database is somewhat biased towards north temperate latitudes, under-represented bi-
omes were speci�cally targeted during its compilation, so it has reasonable coverage of tropical and subtropical 
 regions36. We only used studies that sampled communities, excluding studies that focused on single species. All 
sites included had known geographic coordinates (so that the geographic distance among sites in a study could 
be calculated). Where enough information was provided in the methods of the original paper, for each site the 
sampling grain was estimated as the ‘maximum linear extent’; for example, the total transect length walked when 
sampling at a  site95. �e �nal dataset used for analyses contained 777,173 records from 180 published sources 
on the abundance of 20,740 species from 5159 sites worldwide (representing 45 countries; see Appendix Fig. 3 
for a map of sites). Invertebrates make up 42.9% of the species, plants 36%, vertebrates 18.7% and fungi 2.4%.

Anthropogenic pressure data. �e PREDICTS database holds site-level data on land use (primary vegetation, 
secondary vegetation, plantation forest, cropland, pasture or urban) and land-use intensity (minimal, light and 
intense), classi�ed using information in the original sources or provided by their  authors95. Although plantation 
forest exists as a separate land-use class in the PREDICTS database and is characterised by assemblages that are 
both relatively low in species richness and compositionally  distinct66,97, it is rarely separated from other forests in 
global land-use layers; this is also true here. One  option35 is to model responses to plantation forest but omit the 
e�ect when projecting results across space. Given the importance of plantation forests in tropical forested areas, 
we chose instead to group plantation forests together with secondary vegetation when modelling. We did this 
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because it is the most likely source of plantation forest in the global land-use layers and because previous pan-
tropical analyses have shown little di�erence between losses caused by primary conversion to secondary vegeta-
tion or plantation  forest42, unless the plantations are  intensive66. Lightly- and intensively-used plantation were 
therefore included with intensively-used secondary vegetation, and minimally-used plantation was included 
with lightly-used secondary vegetation. In addition to land-use and intensity, we included as pressures human 
population  density98 and the density of  roads99; we estimated the latter at two spatial scales, using their values 
within both the 1-km and 50-km grid cells containing each site. Compositional similarity between two sites is 
expected to re�ect their environmental similarity as well their geographic proximity and the anthropogenic pres-
sures that they face. We therefore extracted environmental conditions for each site from WorldClim (elevation, 
maximum temperature of the warmest month, minimum temperature of the coldest month, precipitation of the 
wettest and driest  month100).

Mixed-e�ects models. Two mixed-e�ects  models101 were run. �e �rst model focussed on total abundance of 
organisms, calculated as the sum of abundance across all species recorded at each site. If sampling e�ort varied 
among sites within a study, and abundance was reported in an e�ort-sensitive metric (e.g., count of individuals), 
abundance was divided by sampling e�ort to make the numbers directly  comparable84. Within each study, total 
abundance was then rescaled so that the maximum value was unity; this rescaling reduces the inter-study vari-
ance caused by di�erences in sampling e�ort and taxonomic focus and so facilitates modelling. Rescaled total 
abundance was square-root transformed prior to modelling, which used Gaussian errors; non-integer abun-
dances in the original data precluded modelling of untransformed values with Poisson errors, and square-root 
transformation resulted in a better residual distribution than ln-transformation. Rescaled total abundance was 
modelled as a function of the following �xed e�ects: site-level land use and intensity (LUI), human population 
density ( ln(x + 1) transformed), and density of roads at the 1 km and 50 km scale (cube-root transformed), 
along with two-way interactions of LUI with each other anthropogenic pressure. We included an additional 
control variable to account for among-study di�erences in human population density (by taking the mean value 
within each study); this was to control for potential sampling and detection biases where sampling may be more 
complete in areas of higher human population density (which are generally closer to research institutions and 
more accessible for sampling). All continuous explanatory variables were standardised (centered and scaled to 
give a mean of zero and standard deviation of one) to reduce collinearity. We used a random-e�ect structure of 
spatial block within study, to account for di�erences in sampling methodology and large-scale environmental 
di�erences across studies and the spatial structure of sites within studies. With the model �tted using Restricted 
Maximum Likelihood (REML), we assessed whether random slopes were required by comparing Akaike’s Infor-
mation Criterion (AIC) for models with each variable �tted as a random slope in turn. �e best �xed-e�ects 
structure was then determined using backwards stepwise model simpli�cation with the model �t using Maxi-
mum  Likelihood102. Bootstrapping was used to estimate signi�cance of coe�cient values in the �nal model.

�e second model assessed the response of compositional similarity to human impacts. We excluded studies 
where sampling e�ort varied among sites. For studies with at least one site classed as minimally-used primary 
vegetation (the baseline site), we calculated for each study in turn the compositional similarity of each site to 
each baseline site, measured as the proportion of site j’s individuals that belong to species also present in site i 
(where site i is in minimally-used primary vegetation, i.e., an asymmetric version of the abundance-based Jaccard 
similarity  index103). Compositional similarity was logit transformed (car package, version 2.1-6104; an adjustment 
of 0.01 was used to account for values of 0 and 1). Compositional similarity between any pair of sites will be 
in�uenced by how much more impacted site j is than the baseline site i, as well as the absolute level of pressure 
faced by site j. For each continuous pressure variable, we therefore include in the models both the value at site j 
as well as the di�erence in value between site i and site j. We included geographic distance (ln-transformed) and 
environmental distance calculated as Gower’s  dissimilarity105 using the gower package in  R106, (cube-root trans-
formed) between sites to account for decays in compositional similarity with  distance67. Geographic distance was 
divided by the median maximum linear extent in the dataset prior to ln-transformation. �e land-use contrast 
was included as a �xed e�ect along with its interactions with the continuous variables. As this dataset is more 
restricted than that used for abundance (because only studies that sample minimally-used primary vegetation can 
be used), we were not able to consider e�ects of use intensity within land uses, other than for primary vegetation 
(split into minimally-used primary vegetation and a combined class of lightly- and intensively-used primary 
vegetation) and secondary vegetation. Finally, we included the mean value of human population density within 
each study as a control variable. We included Study as a random intercept and assessed whether a random slope 
was supported by using the same framework as before, choosing the random structure with the lowest AIC value 
among the models that converged successfully. Backwards stepwise model simpli�cation was performed to sim-
plify the �xed e�ects structure of the model �t using Maximum Likelihood. Traditional signi�cance tests based 
on likelihood ratios are not accurate here, because the data used are not independent (as each site is compared 
to multiple other sites within the same study). We therefore used permutations to determine whether a variable 
could be excluded from the model without signi�cant loss of explanatory  power107. We permuted the dataset 
1000 times by randomly shu�ing compositional similarity measurements within each study and re�tting both 
the full and simpli�ed model with this dataset. We then compared the likelihood ratio of our observed models 
with the distribution of likelihood ratios from models using the 1000 permuted datasets to assess whether the 
ratio was signi�cantly higher than expected based on models with the same di�erences in parameters. We used 
a similar approach to estimate the signi�cance of coe�cient values in the �nal model. Note that this approach 
to modelling compositional similarity makes fuller use of the data than that used in a previous  analysis35, which 
compared independent pairs of sites within studies and averaged coe�cients across 100 models �tted to di�erent 
randomly-chosen sets of pairwise comparisons. Our matrix-based approach uses all relevant site comparisons 
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in the same model, allowing us to estimate more �xed e�ects, but carries with it the need for permutation tests 
to assess signi�cance of variables and  coe�cients107.

Diversity analyses were performed using R Statistical  So�ware108 version 3.4.3. Prior to modelling, all explana-
tory variables were assessed for multicollinearity using Generalized Variance In�ation  Factors109 for each model; 
all values were below 5, indicating acceptable levels of collinearity. Transformation of explanatory variables were 
chosen based on improvements to residual distribution.

Global anthropogenic pressure data and maps of BII for each year. Land use. Hoskins et al.90 
statistically downscaled global land-use data for the year 2005 from 0.5-degree  resolution110 to 30 arc-second 
resolution, estimating the fraction of each pixel in each of the following classes: primary habitat, secondary habi-
tat, cropland, pasture and urban. �at approach was extended here, by integrating the static data for 2005 with 
remotely-sensed time-varying data on land cover and forest change. �e original method described in Hoskins 
et al.90 uses a combination of Generalised Additive Models (GAMs) and constrained optimisation to produce 
�ne-grained predictions of multiple land-use classes using the best-available spatial data on climate, landform, 
soil, land cover, human population density and accessibility (at 30 arc second resolution) as inputs (See Appen-
dix Table 1 for details). �e downscaled land-use maps produced by this method were validated in a number of 
ways, including against the original coarser-scale land-use  data110 and against an independent dataset of land use 
(the PREDICTS database, which includes land-use classes for sites within the dataset)90. While there is of course 
still uncertainty in the downscaling models, the validation showed this producedure to be  e�ective90.

We made several modi�cations to this method in order to generate our land-use time-series. To improve 
predictions outside of the �tted parameter space, we performed AIC-based backwards stepwise model selection, 
to identify the most parsimonious set of predictor variables. We then �tted our downscaling models to the year 
2005 coarse-grained Land-Use Harmonisation  data110 and, using time-varying covariates, used these models to 
predict land use for the full time-series. Our time-varying covariates were derived from Collection 5 MODIS 
Global Land Cover Type product, which has a yearly temporal  resolution111. Once our downscaling models were 
�tted to the 2005 data of this land-cover dataset, we were able to predict land-use change using the remaining 
years in the time-series.

We maximised the in�uence of the time-varying covariates in our downscaling models by �tting the GAMs 
in two stages. Initially the GAMs were �tted to only the time-varying covariates (i.e., annual land-cover datasets), 
allowing these to explain as much variation in the data as possible. �e static covariates were �tted only in a sec-
ond step, so that they were only able to describe variation not already described by the time-varying covariates. 
�is resulted in models that maximised information coming from the time-varying land-cover data and, as such, 
re�ected the temporal change in the land-cover layers as much as possible in our land-use predictions. Within 
tropical and sub-tropical forested regions (de�ned as Tropical and Subtropical Moist Broadleaf Forests, Tropical 
and Subtropical Dry Broadleaf Forests and Tropical and Subtropical Coniferous forests  in96), we further re�ned 
our land-use estimates by integrating the Global Forest Changes (GFC)  dataset44 using the following rules. Within 
a cell, when the predicted proportion of primary habitat was greater than observed by GFC, primary habitat was 
reduced to match the GFC- observed forest cover. All other land uses were then scaled proportionally to their 
predicted values to ensure all constraints were met. When the sum of predicted primary and secondary habitat 
were less than observed GFC data they were scaled proportionally so that their sum matched the GFC data. �e 
remaining three land uses were then scaled proportionally to ensure all constraints were met. �is provided 
land-use estimates within forest biomes that were consistent with the observed change in the GFC dataset. Note 
that this procedure can result in occasional increases in the amount of primary vegetation over time.

Human population density. We downloaded human population density data for the years 2000, 2005, 2010 and 
2015  from98 (adjusted to match 2015 revision of UN WPP Country Totals). A�er ln(x + 1) transformation (the 
1 is added to avoid problems caused by zeros in the data), we interpolated data for intervening years by assuming 
linear change in the ln-transformed value over time (i.e., assuming that populations grow  exponentially98,112). 
For example, a cell’s value for 2006 is given by 0.8× value for 2005 + 0.2× value for 2010.

Density of roads. We used a vector map of the world’s  roads99 to derive maps of road density: for each 30 
arc-second cell, road length is calculated within a 1km and 50km radius from the centre point of the cell 
and expressed as density per 30 arc-second cell (approximately  1km2) of land (using the arcpy functions of 
LineLength and FocalStatistics, ArcGIS v10.5). In the absence of any global time-series data of roads, we treated 
this layer as a static, rather than dynamic, pressure in our projections. However, it should be noted that there are 
still substantial gaps in the gRoads dataset, particularly in South and East  Asia113.

Land-use intensity. To estimate land-use intensity for each year, we applied the statistical models  of97 of land-
use intensity to each year’s data on land use and human population density. Brie�y, Newbold et al.97 reclassi�ed 
the Global Land Systems  dataset114 into land-use/use-intensity combinations and then modelled how the pro-
portional coverage of each combination within each 0.5◦ grid cell depended on the proportion of the grid cell 
under that land use, human population density and UN sub-region (and all two- and three-way interactions).

Maps of modelled BII for each year. We used each year’s maps of land use, land-use intensity and human popu-
lation density, along with the (static) maps of road density to drive the two statistical models of how biodiversity 
responds to anthropogenic pressures. Anthropogenic pressure data were not permitted to exceed the ranges 
found among sites in the biodiversity dataset (the values were capped), to prevent extrapolation beyond our data.
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For total abundance, the modelled responses were back-transformed (squared) and expressed relative to the 
modelled estimate for the baseline condition of minimally-used Primary vegetation with zero human popula-
tion and road density (Note that the baseline estimate comes from the statistical model (predictions) rather 
than from just combining data from sites where all anthropogenic pressures match the baseline conditions.) For 
compositional similarity, values were back-transformed (inverse-logit with adjustment) and expressed relative 
to the modelled estimate for the baseline, i.e., the compositional similarity between two minimally-used Primary 
vegetation sites, both with zero human population and road density, having the same environment (zero envi-
ronmental distance between the sites) and being adjacent (geographic distance between them equating to the 
median sampling grain in the dataset). Control variables (study-level mean values of human population density 
and environmental variables) were set to zero for this step. We multiplied the spatial projections of overall abun-
dance and compositional similarity together to estimate BII. We did this for each year between 2001 and 2012.

Average BII values for each country, subregion and region were calculated for each year by averaging mod-
elled values across all grid cells intersecting the relevant region’s shape �le (as de�ned for the IPBES assessment, 
 from115) a�er re-projecting to a Behrmann equal-area projection. To assess overall trends across the time period, 
we calculated the log response ratio of start (year 2001) and �nal (year 2012) values as ln(BII2012/BII2001) . Wil-
coxon signed-rank tests were used to assess average trends across all countries. We also relate these changes to 
contemporaneous changes in GDP per capita (in current US  dollar116) and GDP levels at the start of the time 
series ( log10−transformed value at 2001). We ran linear mixed e�ects  models117, including IPBES subregion 
as a random intercept to account for spatial autocorrelation among neighbouring countries. Simulated model 
residuals were also tested for spatial autocorrelation. For models including the log response ratio of GDP as an 
explanatory variable, spatial autocorrelation was still evident in the  residuals118–120, so a gaussian spatial auto-
correlation structure was included in the  model117. Models were run on all countries and on only those where 
at least 50% of their area was included in the projections; results did not vary qualitatively so we report results 
for all countries.

Data availability
�e biodiversity used here are openly available for download from the NHM data portal (data.nhm.ac.uk) 
along with summary statistics for land use and BII for each country and region (https:// doi. org/ 10. 5519/ 5wriu 
tqz). Summary statistics are also available from the Biodiversity Indicators Partnership portal (bipdashboard.
natureserve.org). �e land-use layers are openly available on the CSIRO Data Access Portal.
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