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Background: Intraindividual variability in reaction time (RT) has received extensive discussion as an indicator of
cognitive performance, a putative intermediate phenotype of many clinical disorders, and a possible trans-diagnostic
phenotype that may elucidate shared risk factors for mechanisms of psychiatric illnesses. Scope and Methodology:
Using the examples of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD), we
discuss RT variability. We first present a new meta-analysis of RT variability in ASD with and without comorbid
ADHD. We then discuss potential mechanisms that may account for RT variability and statistical models that
disentangle the cognitive processes affecting RTs. We then report a second meta-analysis comparing ADHD and
non-ADHD children on diffusion model parameters. We consider how findings inform the search for neural
correlates of RT variability. Findings: Results suggest that RT variability is increased in ASD only when children
with comorbid ADHD are included in the sample. Furthermore, RT variability in ADHD is explained by moderate to
large increases (d = 0.63–0.99) in the ex-Gaussian parameter s and the diffusion parameter drift rate, as well as by
smaller differences (d = 0.32) in the diffusion parameter of nondecision time. The former may suggest problems in
state regulation or arousal and difficulty detecting signal from noise, whereas the latter may reflect contributions
from deficits in motor organization or output. The neuroimaging literature converges with this multicomponent
interpretation and also highlights the role of top-down control circuits. Conclusion: We underscore the importance
of considering the interactions between top-down control, state regulation (e.g. arousal), and motor preparation
when interpreting RT variability and conclude that decomposition of the RT signal provides superior interpretive
power and suggests mechanisms convergent with those implicated using other cognitive paradigms. We
conclude with specific recommendations for the field for next steps in the study of RT variability in neurodevel-
opmental disorders. Keywords: Reaction time variability, intraindividual, ADHD, ASD, trans-diagnostic phenotype,
biomarker.

Introduction
That phenotypic and genotypic heterogeneity within
existing psychiatric diagnostic categories limits the
field’s ability to detect pathophysiology or predict
clinical course for individual children is no longer
much disputed. At the same time, many symptom
dimensions are shared across existing diagnostic
boundaries, and the extent to which this indicates
shared liability or etiology across disorders remains
a major question (Insel et al., 2010; Sanislow et al.,
2010). To help resolve these twin issues, investiga-
tors have turned to intermediate phenotypes. As
used here, an intermediate phenotype is a behavioral
or biological measure that is presumed to mediate
between etiological mechanisms of disorders and

psychiatric symptoms. The related term endopheno-

type has also been used, often to connote processes
that are heritable and thought to specifically mediate
gene-disorder pathways (see Gottesman & Gould,
2003; Kendler & Neale, 2010; Nolen-Hoeksema &
Watkins, 2011 for discussion of genes and endophe-
notypes; see Kendler & Neale for discussion of
endophenotypes as mediating between environmen-
tal risk or gene x environment interactions and later
disease). When they cut across existing diagnostic
boundaries and/or relate to symptom dimensions
expressed across multiple disorders they are referred
to as trans-diagnostic phenotypes (Nolen-Hoeksema
& Watkins, 2011).

In this review, we consider closely one such
measure: intraindividual (or within-person) variabil-
ity in reaction time (RT). RT variability could serve as
an intermediate, endo-, or trans-diagnostic pheno-
type depending on the context. Alternatively, it may

Conflicts of interest statement: Potential conflict for S. B.

disclosed in Acknowledgements.

© 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA 02148, USA

Journal of Child Psychology and Psychiatry 55:6 (2014), pp 685–710 doi:10.1111/jcpp.12217



be a biomarker that is associated with risk for a
disorder (via shared environmental or genetic influ-
ence), but does not mediate symptoms (Kendler &
Neale, 2010). While recognizing that any of these
may be possible, for simplicity we use the broad term
trans-diagnostic phenotype generically.

Computerized RT measures, long recognized as a
valuable indicator of cognitive performance (Barrett,
Eysenck, & Lucking, 1986; Berkson & Baumeister,
1967; Jensen, 1992), have recently gained renewed
attention due to recognition that within-child RT
variability may convey unique information. RT vari-
ability has been discussed in the literature as a
potentially important index of the stability/instabil-
ity of an individual’s nervous system. However, it
lacks specificity to a single psychiatric population
and so has not been seen as useful as an intermediate
phenotype for specific disorders. Indeed, increased
RT variability characterizes populations ranging
from those most commonly associated with child-
hood (e.g. ADHD, Castellanos & Tannock, 2002), to
those associated with pathological aging (e.g. Alzhei-
mer’s and other dementias; Hultsch, MacDonald,
Hunter, Levy-Bencheton, & Strauss, 2000), to
acquired disorders, such as traumatic brain injury
(e.g. Stuss, Pogue, Buckle, & Bondar, 1994).

One possibility is that increased RT variability may
simply be a final common correlate of many disor-
ders that reduce psychological or physical health,
much like fever is a final common correlate of many
infections. Alternatively, RT variability may be a
trans-diagnostic phenotype that is associated with
shared risk for several disorders or with symptom
domains that cut across several disorder categories
(Gottesman & Gould, 2003; Nolen-Hoeksema &
Watkins, 2011). Finally, it may be that RT variability
can be decomposed into distinct processes that differ
among psychiatric conditions. We discuss these
latter two possibilities in detail here, focusing on
two major neurodevelopmental disorders of particu-
lar interest for the JCPP readership: attention deficit
hyperactivity disorder (ADHD), for which the RT
variability literature is voluminous, and autism
spectrum disorder (ASD), for which the literature is
more sparse.

We select these two for several reasons. ADHD is
among themostheavily studiedconditionswith regard
to RT variability (Castellanos, Kelly, & Milham, 2009;
Castellanos et al., 2005; Epstein et al., 2011; Geurts
et al., 2008; Karalunas, Huang-Pollock, & Nigg,
2012b; Kofler et al., 2011; Lijffijt, Kenemans, Verba-
ten, & van Engeland, 2005; Willcutt, Doyle, Nigg,
Faraone,&Pennington,2005), andhasbeensubjected
to reviews andmeta-analyses, onwhichwebuild. Also,
there is preliminary evidence for shared genetic mech-
anisms for RT variability and ADHD (Andreou et al.,
2007; Kuntsi et al., 2006; Rommelse et al., 2008;
Uebel et al., 2010; Wood, Asherson, van der Meere, &
Kuntsi, 2010); this line of thinking is not as explicitly
developed in many other disorders. At the same

time, ASD is a major overlapping condition with
ADHD—particularly so in the new DSM-5 that puts
both disorders in the camp of neurodevelopmental
conditions.

Although core diagnostic criteria for ASD do not
overlap with those of ADHD, children with ASD often
show high levels of inattention and hyperactiv-
ity-impulsivity symptoms, and individuals with
ADHD often show deficits in one or more of the two
primary ASD symptom domains (social communica-
tion impairments or restricted/repetitive behavioral
patterns). Furthermore, ADHD and ASD may share
common genetic liability (Musser et al., 2014; Ron-
ald, Simonoff, Kuntsi, Asherson, & Plomin, 2008),
and RT variability has been explicitly proposed as a
trans-diagnostic phenotype that indexes shared risk
for these disorders (Rommelse, Geurts, Franke,
Buitelaar, & Hartman, 2011). With this background
in mind, the possibility that RT variability may serve
as a trans-diagnostic phenotype is intriguing, but its
potential to do so relies on the answers to several
key subquestions that have, as of yet, not been
well-addressed in the literature. It is the aim of this
review to organize thinking on these questions to
help the field forward.

First, most basically, are ADHD and ASD popula-
tions both characterized by increased RT variability?
This is a question that has been only minimally
addressed with the ASD literature, and thus it is the
first that we address here. We review meta-analytic
results for ADHD and report new meta-analytic data
for ASD. Second, what mechanisms might account
for RT variability? RT scores are complexly deter-
mined and not easily interpreted in terms of either
cognitive or neural mechanisms. Which mechanisms
account for RT variability in specific populations and
whether these are the same or different across
populations remains poorly understood. We describe
statistical approaches that have been used to better
characterize RT variability, and then discuss what
findings imply in terms of potential cognitive and
neural interpretations of RT variability. We also
introduce new meta-analytic data for ADHD that
complement the recent Kofler et al. (2013)
meta-analysis. After considering these two basic
questions, we conclude the review with specific
recommendations for future studies that are needed.

Characterizing RT variability in ADHD and ASD
ADHD and ASD provide an intriguing case for
potential shared genetic liability. Could RT variabil-
ity index a shared liability in both disorders or does it
distinguish the two conditions?

RT variability in ADHD

In ADHD, there is consistent meta-analytic evi-
dence that measures of RT variability distinguish
individuals with ADHD from typically developing
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populations with medium to large effect sizes (ESs)
for children/adolescents (0.72–0.85, Klein, Wen-
dling, Huettner, Ruder, & Peper, 2006; Kofler et al.,
2013; Lijffijt et al., 2005; Metin, Roeyers, Wiersema,
van der Meere, & Sonuga-Barke, 2012), and small to
medium ESs for adults (Hedge’s g = 0.46, Kofler
et al., 2013).

The most recent and largest of these meta-analy-
ses (Kofler et al., 2013) included 283 studies on
9,780 individuals with ADHD and 12,024 typically
developing controls. Consistent with earlier
meta-analyses, results indicated individuals with
ADHD were more variable than their typically devel-
oping counterparts with an ES of g = 0.71. This
effect was moderated by age with child/adolescent
populations showing larger between-group effects
(g = 0.76, 95% CI: 0.68–0.84) than adults (18+ years;
g = 0.46, 95% CI: 0.31–0.61). This apparent
decrease in the size of between group effects for RT
variability with age is coincident with declines in
ADHD symptoms (particularly hyperactive-impul-
sive symptoms) that occur with age (Biederman,
Mick, & Faraone, 2000). Kofler et al. (2013) also
found that RT variability effects were attenuated by
stimulant treatments, but they were unaffected by
nonstimulant and psychosocial treatments. Results
suggest a possible parallel course for cognitive and
symptom improvements (either developmentally or
with specific treatment) that warrants more study
(Buzy, Medoff, & Schweitzer, 2009; Epstein et al.,
2003; W�ahlstedt, Thorell, & Bohlin, 2009). After
accounting for participants’ age, there was no sig-
nificant unexplained between-study variance in
effects, suggesting that other sample characteristics
(e.g. gender) or task characteristics (e.g. duration,
inhibitory control demands) were not required to
explain between-study differences in the size of
effects observed. This finding is important because
it suggests that RT variation may be a quite robust
measure with a clear signal related to ADHD.

In secondary analyses, Kofler et al. (2013) exam-
ined ADHD versus other disorders (71 studies com-
paring 6,486 individuals with ADHD to 10,176
individuals with other clinical disorders, such as
other psychiatric conditions and learning disorders,
physical health conditions, and subthreshold
ADHD). As a group, children with ADHD (but not
adolescents or adults with ADHD) were also signif-
icantly more variable than the combined clinical
comparison groups, albeit with only a small ES
(g = 0.25, 95% CI: 0.09–0.41). However, given the
wide variety in the clinical comparison groups, it is
difficult to draw conclusions about specific compar-
isons of interest, such as between ADHD and ASD.
Overall, the literature on ADHD and RT variability is
large, has been reduced by meta-analysis, and
shows a reliable association of RT variability to
ADHD that is to a small extent distinct from other
conditions in aggregate.

RT variability in ASD

In ASD, although RT variability has received some
theoretical attention as a putative trans-diagnostic
phenotype and/or key feature of the disorder (e.g.
Rommelse et al., 2011; Sinzig, Bruning, Morsch, &
Lehmkuhl, 2008), the evidence for increased RT
variability remains mixed. Some studies have found
increased RT variability in ASD as compared to
typically developing controls (e.g. Christakou et al.,
2012; Dinstein et al., 2012; Geurts et al., 2008),
while others have not (Geurts & Vissers, 2012;
Johnson et al., 2007; Lundervold et al., 2012).

Similarly, evidence is mixed for whether individu-
als with ADHD and ASD can be differentiated on the
basis of RT variability, with some studies finding that
children with ADHD are more variable in their
responding than children with ASD (e.g. Christakou
et al., 2012; Johnson et al., 2007) and others unable
to differentiate between the two clinical groups (e.g.
Raymaekers, Antrop, Van der Meere, Wiersema, &
Roeyers, 2007; Sinzig et al., 2008). In several stud-
ies, the ASD group was even less variable in their
response pattern as compared to controls (Lunderv-
old et al., 2012; Raymaekers, van der Meere, &
Roeyers, 2006) or to children with ADHD (Lunderv-
old et al., 2012). Together, the contradictory results
for comparisons of children with ASD to typically
developing children or children with ADHD raise the
basic question: Is RT variation even abnormal in
ASD? To answer this question we report a new
meta-analysis.

Is increased RT variability present in ASD?
A meta-analysis

Methods. A literature search was conducted in
August 2013 using Medline, PubMed, and PsychI-
nfo. Search terms included permutations of the ASD
diagnostic label (Autism, autistic, pervasive develop-
mental disorder, PPD-NOS, Asperger’s, high func-
tioning autism, HFA) with variability, reaction time
(RT), or common variability metrics (SDRT, coeffi-
cient of variation, CV, sigma, tau, SE of RT, Slow-*,
frequency, signal processing). See Figure 1 for PRIS-
MA flow chart describing the number of articles
found and excluded at each stage of search.

In total, 18 unique articles reporting
between-group comparisons for either children or
young adults (age <30 years) were identified. All 18
reported ASD-Control comparisons, and 10 studies
additionally reported ASD-ADHD comparisons. One
study was excluded (Geurts, Verte, Oosterlaan,
Roeyers, & Sergeant, 2004) because the sample
overlapped substantially with a larger study on the
list (Geurts et al., 2008). Thus, the final pooled
results are based on 17 studies (n = 1,520) for
the ASD-Control and 10 studies (n = 881) for the
ASD-ADHD comparisons. Studies included in the
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quantitative analyses are listed and summarized in
Table 1.

A random effects model was used to compute
pooled ESs for each between-group comparison. The
bias corrected ES Hedges’ g is reported (interpreted
similarly to the familiar Cohen’s d). Calculations
were completed using the software Comprehensive
Meta-analysis (Biostat Inc, Englewood, NJ).
Although several studies reported non-Gaussian RT
variability metrics (e.g. ex-Gaussian or fre-
quency-domain measures), which are discussed in
more detail in the next section, there were too few of
these studies to pool here. Thus, results below are
based on standard deviation and/or variance. For
studies that included more than one task condition
(Christakou et al., 2012; Dinstein et al., 2012;
Geurts, Begeer, & Stockmann, 2009; Johnson et al.,
2007; Pascualvaca, Fantie, Papageorgiou, & Mirsky,
1998; Sinzig et al., 2008), results were pooled across
tasks using a synthetic effects model (Borenstein,
Hedges, Higgins, & Rothstein, 2011). For cases in
which data were reported for an ASD-only and a
comorbid ASD+ADHD group (Adamo et al., 2013;
Geurts et al., 2008; Lundervold et al., 2012; Sinzig
et al., 2008; Tye et al., 2013), data from the comor-
bid group were excluded for analyses comparing
ASD to typically developing controls; however, we
report on potential effects of comorbid ADHD and
ASD symptoms in more detail below.

ES heterogeneity is described using the Q statistic,
which provides a statistical test to determine
whether heterogeneity is present, and the I2 statistic,
which quantifies the amount of unexplained
between-study variance (Huedo-Medina, San-
chez-Meca, Marin-Martinez, & Botella, 2006).
A limited sensitivity analysis was conducted via a
leave-one study-out procedure, in which ESs were
recalculated with each study in turn removed.
Potential publication bias was examined using fun-
nel plots. In the case of statistically significant
between-group heterogeneity for the ASD-Control
comparisons, moderator analyses were conducted to
examine effects of age, sample gender composition,
IQ, diagnostic method, and exclusion of comorbid
ADHD; however, given the small number of studies,
these comparisons had low power. We do not report
on type of task as a moderator because the number
of studies reporting each type of task is too small.
Meta-analyses in ADHD have found that neither task
type nor task conditions (e.g. type of task, event
rates, inter-stimulus interval, task length) moder-
ated ES (Huang-Pollock, Karalunas, Tam, & Moore,
2012; Kofler et al., 2013; Metin et al., 2012). How-
ever, the effects of task variables, particularly in
ASD, may be an important area for future research,
particularly because task type or condition effects
could cause the omnibus estimates to be too low or
too high.

Figure 1 Autism spectrum disorder meta-analysis: PRISMA diagram
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Results. The pooled ES for the ASD-Control group
comparison (total NASD = 455, Ncontrol = 1065) was
g = 0.37 (SE = 0.09; 95% confidence interval [CI]:
0.19–0.55; p < .001), indicating that individuals
with ASD were significantly more variable than
typically developing controls but with a small to
moderate ES. See Figure 2 for plot of ESs for each
study. The Q statistic for the comparison of ASD and
typically developing children indicated significant

unexplained between-study heterogeneity (Q = 32.0,
p = .010, I2 = 50.1). Leave-one-out sensitivity analy-
ses indicated the effect was not driven by any single
outlier study (with each study in turn removed, g

ranged from 0.33 to 0.42, all p < .01). Funnel plots
showed no evidence of publication bias.

The ADHD-Control group ES for the 10 studies
reporting this comparison was also computed to allow
direct comparison to the ASD ES. This avoids the

Table 1 Summary of articles included in autism spectrum disorders meta-analysis

Study Task type Groups N
Age

(years) IQ

Gender
(Male:
Female) Comparison ES (g) 95% CI

Adamo
et al. (2013)

SART Control 36 10.0 112 19:17 ASD-Control 0.15 �0.26 to 0.54
ASD 46 10.0 109 42:4 ASD-ADHD 0.14 �0.28 to 0.58
ADHD 46 10.0 106 39:7 ADHD-Control 0.15 �0.28 to 0.58

Christ, Holt, White,
and Green (2007)

Control 48 10.8 112.0 23:25 ASD-Control 1.45 0.83–2.06
ASD 16 8.2 88.4 16:2a

Christakou
et al. (2012)

Sustained
attention

Control 20 14.7 114.0 20:0 ASD-Control 0.27 �0.34 to 0.88
ASD 20 14.7 112.9 20:0 ASD-ADHD �0.55 �1.17 to 0.07
ADHD 20 14.0 108.2 20:0 ADHD-Control 1.02 0.38–1.67

Dinstein
et al. (2012)

1-back
(Working
Memory)

Control 14 26.0 114.0 10:4 ASD-Control 0.42 �0.31 to 1.15
ASD 14 26.5 114.0 10:4

Geurts
et al. (2008)

Change
task

Control 85 9.2 111.6 65:20 ASD-Control 0.73 0.27–1.18
ASD 25 9.3 106.8 23:2 ASD-ADHD 0.42 �0.05 to 0.90
ADHD 53 9.1 100.8 46:7 ADHD-Control 0.26 �0.08 to 0.60

Geurts
et al. (2009)

Go/No-go
(Social
Stimuli)

Control 22 10.3 103.2 19:3 ASD-Control 0.59 �0.04 to 1.21
ASD 18 10.3 108.0 16:2

Johnson
et al. (2007)

SART Control 18 11.1 107.7 18:3 ASD-Control 0.24 �0.37 to 0.86
ASD 21 12.2 98.7 21:1 ASD-ADHD �0.87 �1.48 to 0.26
ADHD 23 10.5 97.3 20:3 ADHD-Control 1.16 0.50–1.81

Lundervold
et al. (2012)

Conners’
CPT

Control 134 9.7 93.8 77:57 ASD-Control �0.55 �1.23 to 0.12
ASD 9 10.3 92.2 8:1 ASD-ADHD �0.85 �1.58 to �0.11
ADHD 38 10.0 78.1 32:6 ADHD-Control 0.43 0.07–0.79

Milne (2011) CPT Control 12 12.4 111.1 11:1 ASD-Control 0.32 �0.45 to 1.08
ASD 13 11.8 105.9 12:1

Pascualvaca
et al. (1998)

CPT Control 46 5.9 108.9 30:16 ASD-Control 0.23 �0.38 to 0.85
ASD 23 8.7 77.6 15:8

Raymaekers
et al. (2004)

Go/No-go Control 17 28.8 121.0 15:2 ASD-Control 0.52 �0.14 to 1.19
ASD 17 28.4 111.7 15:2

Raymaekers
et al. (2006)

Response
inhibition

Control 29 10.5 107.0 18:11 ASD-Control 0.64 0.16–1.13
ASD 39 11.3 107.0 33:6

Raymaekers
et al. (2007)

Go/No-go Control 28 10.5 107.0 20:8 ASD-Control 0.17 �0.33 to 0.68
ASD 31 10.5 107.0 27:4 ASD-ADHD 0.18 �0.34 to 0.71
ADHD 24 9.6 99.0 15:9 ADHD-Control 0.66 0.11–1.21

Sinzig et al. (2008) Attention/
Inhibition

Control 30 12.8 109.0 23:7 ASD-Control �0.05 �0.61 to 0.51
ASD 20 14.5 112.0 16:4 ASD-ADHD �0.53 �1.10 to 0.04
ADHD 30 12.9 102.0 27:3 ADHD-Control 0.63 0.11–1.14

Tye et al. (2013) CPT Control 26 10.6 120.0 26:0 ASD-Control 0.37 �0.54 to 0.62
ASD 19 11.7 115.7 19:0 ASD-ADHD �0.48 �1.14 to 0.18
ADHD 18 10.5 104.1 18:0 ADHD-Control 0.42 �0.19 to 1.04

van der Meer
et al. (2012)

Simple RT Control 418 9.5 106.2 227:191 ASD-Control 0.37 0.10–0.65
ASD+ADHD 58 11.5 104.2 50:2 ASD-ADHD 0.11 �0.21 to 0.43
ADHD 109 9.9 104.2 72:37 ADHD-Control 0.07 �0.14 to 0.28

Vert�e, Geurts, Roeyers,
Oosterlaan, and
Sergeant (2006)

Change
Task

Control 82 9.2 112.2 67:15 ASD-Control 0.64 0.31–0.97
ASD 66 8.7 101.5 61:5 ASD-ADHD 0.07 �0.27 to 0.41
ADHD 65 9.1 99.8 54:11 ADHD-Control �0.58 �0.91 to �0.25

Overall Control 1065 ASD-Control 0.37 0.19–0.56
ASD 455 ASD-ADHD �0.17 �0.43–0.09
ADHD 426 ADHD-Control 0.37 0.07–0.66

ASD, autism spectrum disorder; ADHD, attention-deficit/hyperactivity disorder; SART, Sustained Attention to Response Task; CPT,
continuous performance test; TOVA, Test of Variables of Attention.
aGender ratio reported is for the full sample in the study. Gender ratio for the subset of individuals included in the RT variability
comparison was not reported.
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selection bias that would confound comparison of this
finding to the larger analysis by Kofler et al. (2013),
which included ADHD studies without an ASD com-
parison group. The ADHD-Control pooled ES (total
NADHD = 426, Ncontrol = 1,065) was g = 0.37
(SE = 0.15; 95% CI: 0.17–0.66; p = .015), indicating
small to moderate increases in RT variability in the
ADHD samples as compared to non-ADHD controls in
studies that also included an ASD group. Thus, for this
group of studies, ES was similar for ADHD and ASD
and obviously somewhat smaller than that seen in the
larger population of studies in meta-analyses that
could ignore ASD. There was significant between--
study heterogeneity in the size of the ADHD-Control
ES (Q = 44.9, p < .001, I2 = 79.9); however, this was
not pursued further as it is handled with more power
in the meta-analyses cited earlier (Kofler et al., 2013).

The pooled ES for the 10 studies reporting direct
comparisons of ASD (N = 455) versus ADHD

(N = 426) groups was g = �0.17 (SE = 0.13; 95%
CI: �0.43 to 0.09; p = .207), indicating that children
with ADHD were nonsignificantly more variable than
children with ASD. Funnel plots showed no evidence
of publication bias. The Q statistic indicated signif-
icant between-study heterogeneity (Q = 21.78,
p = .003, I2 = 67.9). Leave-one-out sensitivity analy-
ses indicated the effect was not driven by any single
outlier study (with each study in turn removed, g

ranged from �0.23 to �0.09, all p > .05); however,
given the small number of studies reporting this
comparison, between-study heterogeneity was not
pursued further for the current review.

Moderators of between-study heterogeneity for
ASD-control group comparisons

Meta-regression analyses indicated that age, sample
gender composition (% male), and IQ were not

(A)

(B)

Figure 2 Forest plot of Hedge’s g and 95% CI for studies reporting (A) ASD-Control comparisons and (B) ASD-ADHD comparisons of SDRT
in the meta-analysis
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related to the observed ESs for the ASD-Control
group comparisons (all p > .302).

Quality of the ASD diagnosis (coded as either “High
Quality,” including observational schedules and
clinical interviews given individually or in combina-
tion, and “Low Quality,” including prior clinical
diagnosis and diagnosis based on rating scales only)
significantly moderated the size of effect observed
(p = .048). Studies relying on Low Quality diagnostic
procedures had larger ESs (g = 0.63, SE = 0.16)
than those relying on High Quality diagnostic pro-
cedures (g = 0.24, SE = 0.11).

We next compared studies that excluded children
with comorbid ADHD from their ASD sample,
versus those that did not. (In cases where no
information was reported to determine this, studies
were assumed not to have excluded ADHD as this
would be an important exclusionary criterion likely
to have been highlighted in the methods.) Exclu-
sion of ADHD significantly moderated the ES
(p = .043) with a smaller ES for studies that
excluded ADHD (g = 0.15, SE = 0.15, p = .341)
than for those that did not (g = 0.52, SE = 0.10,
p < .001). All studies excluding ADHD from the
ASD sample also used “High Quality” diagnostic
procedures for diagnosing ASD, so the effects of
diagnostic quality and ADHD exclusion cannot be
separated. These results suggest, however, that the
small to moderate increase in RT variability in ASD
versus typically developing controls reported above
is explained by the subgroup of children with
comorbid ADHD.

Summary. Increased RT variability was observed
in ASD only when children with comorbid ADHD
were included. The aggregate data suggest that there
is a more reliable RT variability deficit in ADHD than
in pure ASD. Most studies relied on comparison of
categorical diagnostic groupings and thus do not
account for subthreshold symptoms. It may be
informative to see dimensional studies that examine
relationships between level of inattention and/or
hyperactivity-impulsivity symptoms and level of RT
variability in both disorders, to further inform
whether RT variability is specific to the ASD group
meeting full ADHD diagnostic group, or is related to
level of ADHD symptoms along a continuum regard-
less of diagnostic assignation. Of note, the pooled ES
for the ASD-control group comparison (g = 0.37,
and g = 0.15 if samples with comorbid ADHD are
excluded) is smaller than has previously been found
in ADHD using a larger sample of studies (0.72–
0.85, Klein et al., 2006; Kofler et al., 2013; Lijffijt
et al., 2005; Metin et al., 2012); however, the
ADHD-Control ES in the set of studies looked at
here (g = 0.37) was also smaller than in prior larger
meta-analyses, so our ASD effect should not be
directly compared to the larger number of studies of
ADHD.

Cognitive and neural mechanisms of RT
variability
The review to this point suggests that there may be
partial specificity of RT variability effects to ADHD
(vs. ASD), and that effects seen in ASD may be
restricted to the group with comorbid ASD+ADHD.
However, this does not tell us why either group is
more variable. RT variability may be determined by
multiple processes, such as stimulus encoding,
speed of information processing (itself varying with
arousal, effort, motivation, and other state factors),
speed-accuracy trade-offs (also varying with incen-
tives and instructions), post-error slowing, motor
preparation, and response execution. As a result,
multiple neural and physiological processes are also
involved.

Isolating these components has been addressed, in
part, by applying statistical models to decompose RT
variability. If the study of RT variability is to
progress, characterizing the specific nature of RT
variability in different clinical groups and the most
sensitive and specific ways to measure this variabil-
ity will be crucial. In the following section we discuss
these alternative measurement approaches in detail,
and then turn to how results may be interpreted.
To-date, these alternative analysis approaches have
been applied primarily in ADHD, so we focus on it
here. However, if comorbid ADHD accounts for
increased RT variability in ASD, we would expect
the cognitive and neural mechanisms to be similar in
both populations (ADHD, and ASD+ADHD). Empir-
ically evaluating this claim using some of the
approaches described below will be of interest.

Methodological concerns and alternative analytical
approaches to RT variability

Themajority of studies of RT variability in both ADHD
and ASD, as well as in other conditions, have used
standard deviation (SDRT) to quantify RT variability.
However, in addition to beingmultidetermined, SDRT
has two othermajor limitations. First, althoughmean
RT and RT variability are often assumed to represent
different cognitive mechanisms (e.g. speed and
attention lapses, Hervey et al., 2006; Leth-Steensen,
Elbaz, & Douglas, 2000; Wagenmakers, Grasman, &
Molenaar, 2005), SDRT is typically highly correlated
with mean RT (r between 0.7 and 0.9 in many
studies). To try to address this, some studies calcu-
late the coefficient of variation: SDRT/mean RT.
However, if the RT variance and mean are driven by
the samemechanism, then the coefficient of variation
would not clarify matters (Karalunas & Huang-
Pollock, 2013; Karalunas, Huang-Pollock, & Nigg,
2012a; Klein et al., 2006; Wagenmakers et al., 2005;
Wood et al., 2010).

Second, standard statistics using SDRT assume
that RTs fit a Gaussian (normal) distribution, but in
fact RT distributions are nearly always positively
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skewed to some extent (see Figure 3 for example).
Because Gaussian measures do not accurately
reflect the shape of RT distributions, they are
underpowered to detect group differences (Ratcliff,
1993). Alternatives include ex-Gaussian, time series,
and diffusion models to decompose the RT signal. We
briefly describe each analysis approach.

Ex-Gaussian decomposition. Ex-Gaussian decom-
position can handle skewed RT distributions and
model them more accurately than a regular Gauss-
ian RT variability analysis. It provides estimates of
the mean (l) and standard deviation (r) of the normal
(Gaussian) portion of the distribution and the mean
and standard deviation of the exponential tail of the
distribution (s). Figure 3 depicts the approach.
Ex-Gaussian analyses help clarify which portions
of the RT distribution differ between groups. How-
ever, cognitive interpretations of these parameters
are not agreed upon, a point to which we return
below.

Frequency decomposition. Traditional RT analyses
also discard potentially relevant information about
the temporal ordering of RTs (i.e. whether very fast or
slow RTs occur at predictable times throughout a
task). Time series approaches to analyzing RTs
preserve this information. Frequency-domain analy-
ses, such as fast-Fourier transform (e.g. Geurts
et al., 2008; Karalunas et al., 2012b) or wavelet
analyses (e.g. Di Martino et al., 2008) make use of
the full series of RTs to look for patterns in regard to
when long RTs occur. Figure 4 depicts this
approach. Frequency-domain approaches, in the
case of ADHD, grew out of interest in putative
oscillatory abnormalities in specific brain networks
that might cause long RTs to occur in a specific
low-frequency time course of ~0.10 Hz (Castellanos
et al., 2009).

Diffusion model decomposition. One limitation of
both the ex-Gaussian and time series approaches is
that they do not take into account response accu-
racy. When more than one response is possible or

accuracy is not extremely high, then speed-accuracy
trade-offs can confound the interpretation of RT data
(Matzke & Wagenmakers, 2009). This has been long
recognized (van der Meere & Sergeant, 1988; Ser-
geant & Van der Meere, 1988) but not regularly
taken into account in the clinical literature. A drift
diffusion model of RTs (Ratcliff & Rouder, 1998)
provides an approach that addresses this concern.
Widely used in the cognitive psychology literature to
study normative adult cognition (Balota & Yap,
2011; K€uhn et al., 2011; Ratcliff, Thapar, Gomez,
& McKoon, 2004; Schmiedek, L€ovd�en, & Lindenber-
ger, 2009; Spaniol & Bayen, 2005; Thapar, Ratcliff,

Figure 3 Ex-Gaussian approach to reaction time data. Adapted from Lacouture & Cousineau (2008). In ex-Gaussian analyses, l reflects the
mean of the normal (Gaussian) portion of the distribution, r captures the standard deviation of the normal portion of the distribution,
and s reflects both the mean and standard deviation of the exponential portion of the distribution

(A)

(B)

Figure 4 Frequency-domain apprach to reaction time series. (a)
shows two different frequency time series; (b) depicts the time
series created by combining the fast and slow frequency
variability into a single time series. Frequency-domain analyses
are used to quantify the contribution of different frequency
patterns to the final time series. In this case, the slow frequency
contributes twice as much as the fast frequency, and so
frequency-domain analyses would indicate twice as much
“power” in the low as the high frequency
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& McKoon, 2003), these models were developed to
explain decision-making in forced-choice paradigms
for which relatively rapid (~1 s) response decisions
are required. Initially developed for two-choice par-
adigms, diffusion models have been extended to
apply to one- and multiple-choice paradigms as well
(Leite & Ratcliff, 2010; Ratcliff & Van Dongen, 2011).
However, they have only to a limited extent been
employed to understand abnormal cognition or
development (White, Ratcliff, Vasey, & McKoon,
2010).

In brief, drift-diffusion models assume that infor-
mation about a stimulus is accumulated via a noisy
information accumulation process until a decision
criterion ismet, at which point a response is initiated.
Thus, how quickly a person responds is related both
to the conservativeness of the criteria they have set
for responding (called boundary separation), and to
the rate at which information is accumulated in favor
of one of the response criterion (called drift rate).
Processes that are not directly related to the response
decision, such as stimulus encoding and motor
preparation and execution, also influence the final
RT and are modeled in a “non-decision time” param-
eter (Ratcliff, 2006). Figure 5 depicts this approach
(Ratcliff & Rouder, 1998).

What do alternative analyses reveal about the
nature of RT variability? Summary and new
meta-analysis. Do these alternative analysis
approaches clarify anything about the specific
changes in portions of the RT distribution that drive
RT variability? The answer here depends on
approach.

Using the ex-Gaussian approach, the most con-
sistent group differences in ADHD are in the s
parameter (e.g. Epstein et al., 2011; Karalunas &
Huang-Pollock, 2013). As a part of the recent

meta-analysis of RT variability in ADHD described
earlier (Kofler et al., 2013), the size of effects for
traditional (SDRT) and ex-Gaussian parameters were
compared directly. The pooled ES for s (g = 0.99,
95% CI = 0.64–1.34) was not significantly larger
than the estimate for SDRT (g = 0.70, 95%
CI = 0.62–0.77). The s ES was, however, significantly
larger than that for r (g = 0.39, 95% CI = 0.15–0.63).
This suggests that that increased SDRT in ADHD is
driven by RTs in the exponential tail of the distribu-
tion, confirming at the level of pooled effects some-
thing that has been identified in many individual
studies (e.g. Hervey et al., 2006; Leth-Steensen
et al., 2000). However, the pooled ES for s is based
on a small number of available studies and there is a
wide CI around the effect. So, these conclusions
could be overturned with additional study, or, more
notably, it may emerge that s is reliably more
sensitive than SDRT when more studies are available
to pool.

Frequency-domain approaches have, in aggregate,
failed to find effects confined to specific frequency
ranges (for review see Karalunas et al., 2012b),
suggesting that no specific frequency band drives
RT variability in ADHD and that no consistent,
predictable time course of long RTs can be identified
within the RT bands studied. Furthermore,
meta-analysis again suggests a similar ES for fre-
quency measures (g = 0.63, 95% CI = 0.35–0.90)
and SD (g = 0.70, 95% CI = 0.62–0.77; Kofler et al.,
2013). Again, the relatively small number of studies
and wide CI around the frequency effect suggest that
additional comparison using frequency approaches
may be warranted. However, given that group differ-
ences do not appear limited to a specific frequency
range, studies will need to carefully explore a range
of frequencies rather than comparing groups only in
a single band.

Figure 5 Adapted from Ratcliff and Rouder (1998). Diffusion model approach to characterizing reaction time data. Diffusion model
parameters are depicted for a hypothetical single trial. Drift rate (v) is the rate at which information accumulates toward a decision
boundary, as reflected by the average slope of the line. It is determined by speed of information processing and “noise” unrelated to the
decision processes (which is represented by the hypothetical jagged deviations from the average slope shown in the Figure). Larger values
of v indicate faster processing. Boundary separation (a) indicates the conservativeness of the response criterion with wider separations
indicating more conservative responding. Finally, nondecision time (Ter) includes all nondecision processes, such as stimulus encoding
and motor preparation. Larger values of Ter indicate longer nondecisional processing times
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ES estimates for diffusion models, because of their
relatively recent introduction into the clinical litera-
ture (White et al., 2010), have not yet been pooled,
and so we undertook that effort here.

Methods. Focusing on our populations of interest,
we searched PubMed and PsychInfo databases in
August 2013 for combinations of the terms, ADHD,
attention deficit disorder, and ADD with diffusion
model, drift rate, boundary separation, and nondeci-
sion time to identify articles reporting ADHD-Control
group comparisons on any of the diffusion model
parameters. Similar literature search was conducted
using variations of the ASD diagnostic label; however,
no studies reported diffusion model analysis in ASD.
Given Kofler et al.’s (2013) finding that SDRT was
more sensitive to ADHD in children than in adults,
and that only one study of adults with ADHD was
available (Merkt et al., 2013), we limited our
meta-analysis to children and adolescents. Five stud-
ies including six independent samples (Karalunas &
Huang-Pollock, 2013; Karalunas et al., 2012a; Metin
et al., 2013; Mulder et al., 2010; Salum et al., 2013)
reported ADHD-Control group comparisons on at
least one diffusion model parameter in child/adoles-
cent samples. See Table 2 for a list of studies and the
number of participants included in analysis for each
parameter. The analytic approach was the same as in
our meta-analysis of ASD above. Due to the small
number of studies, moderator analyses were not
performed.

Results. Children with ADHD had significantly
slower drift rates than non-ADHD controls

(g = 0.63, 95% CI: 0.42–0.83, p < .001) with a mod-
erate to large ES, as well as significantly faster
nondecision times (g = �0.32; 95% CI: �0.49 to
�0.15, p < .001) with a small ES. Groups did not
differ in their boundary separations (g = 0.01; 95%
CI: �0.19 to 0.16, p = .90) with the effect close to 0
(see Figure 6 for plot of ESs for each study). Funnel
plots showed no evidence of publication bias for any
of the measures. No significant between-study het-
erogeneity was present for drift rate (Q = 8.9,
p > .05; I2 = 55.3), boundary separation (Q = 8.7,
p > .05; I2 = 42.3), or nondecision time (Q = 7.9,
p > .05; I2 = 37.1). Leave-one-out sensitivity analy-
ses indicated that none of the effects were driven by
any single outlier study (with each study in turn
removed, g ranged from 0.56 to 0.70 for drift rate,
�0.06 to 0.06 for boundary separation, and �0.26 to
�0.35 for nondecision time, with no change in
significance).

The pooled ES for drift rate was significantly larger
than ESs for boundary separation and marginally
larger than for nondecision time. The ES for drift
rate, the most sensitive measures using this decom-
position approach, did not differ from the ES for
SDRT in the subset of these studies that reported it
(g = 0.65, 95% CI: 0.46–0.83, p < .001).

Summary: Two conclusions, while tentative based
on the relatively small number of studies available,
emerge from this section to guide future work. First,
decomposition approaches do not increase mea-
surement sensitivity to ADHD deficit versus simply
using SDRT. Second, however, increased SDRT in
children with ADHD is not attributable to specific

Table 2 Summary of studies included in the meta-analysis of diffusion model parameters in ADHD

Parameter Study N Control N ADHD ES (g) 95% CI Q I2

Drift rate Karalunas and Huang-Pollock (2013) 62 91 0.81 0.48–1.15
Karalunas et al. (2012a, Cohort #1) 50 164 0.40 0.08–0.72
Karalunas et al. (2012a, Cohort #2) 91 81 0.68 0.37–0.98
Metin et al. (2013) 48 65 0.96 0.57–1.35
Salum et al. (2013) 378 100 0.42 0.20–0.65
Overall effect 629 501 0.63 0.42–0.83 8.9 55.3

Boundary separation Karalunas and Huang-Pollock (2013) 62 91 0.21 �0.11 to 0.53
Karalunas et al. (2012a, Cohort #1) 50 164 0.21 �0.11 to 0.52
Karalunas et al. (2012a, Cohort #2) 91 81 �0.11 �0.41 to 0.19
Metin et al. (2013) 48 65 �0.09 �0.46 to 0.28
Mulder et al. (2010) 30 25 0.13 �0.40 to 0.66
Salum et al. (2013) 378 100 �0.25 �0.47 to �0.03
Overall effect 629 501 0.01 �0.19 to 0.16 8.7 42.3

Nondecision time Karalunas and Huang-Pollock (2013) 62 91 �0.37 �0.04 to �0.69
Karalunas et al. (2012a, Cohort #1) 50 164 �0.22 �0.54 to 0.09
Karalunas et al. (2012a, Cohort #2) 91 81 �0.19 �0.49 to 0.11
Metin et al. (2013) 48 65 �0.77 �1.55 to �0.39
Mulder et al. (2010) 30 25 0.01 �0.52 to 0.53
Salum et al. (2013) 378 100 �0.32 �0.54 to �0.10
Overall effect 629 501 �0.32 �0.48 to �0.15 7.9 37.1

SDRT Karalunas and Huang-Pollock (2013) 62 91 0.62 0.30 to 0.95
Karalunas et al. (2012a, Cohort #1) 50 164 0.53 0.21–0.85
Karalunas et al. (2012a, Cohort #2) 91 81 0.78 0.47–1.09
Overall effect 203 336 0.65 0.46–0.83 1.3 0

SDRT, standard deviation of reaction time; CI, confidence interval.
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low-frequency patterns of variability, group differ-
ences in l, or group differences in boundary separa-
tion (speed-accuracy trade-off strategy). Instead it is
largely explained by increased s and slow drift rate.
Although a perfect isomorphism between diffusion
model and ex-Gaussian parameters does not exist,
slow drift rate exerts the largest effects on the upper
tail of the RT distribution, so the findings of slow drift
rate and large s values are fully consistent with each
other. Thus, we suggest that a single mechanism
likely unifies these findings, which we discuss next.
Finally, group differences in nondecision time may
reflect a distinct influence that also contributes to RT
variability but to a smaller extent. What these
mechanisms might be is discussed subsequently.

Although we reported that RT deficits in ASD
apart from ADHD are doubtful, it is still interesting
to consider whether any effect that is present in
ASD may be also characterized by similar patterns
of increased s and drift rates. Few data are avail-
able to address this. Only one study has reported
comparison on ex-Gaussian measures (Geurts
et al., 2008); they did find increased s in children
with ASD-only and with ASD+ADHD. However, RT
variability in the latter group was also character-
ized by increase r with a similar size of effect. This
may suggest a combination of shared and unique
mechanisms of RT variability in comorbid
ASD+ADHD groups, but clearly additional study is
required.

(A)

(B)

(C)

Figure 6 Forest plot of Hedge’s g and 95% CI for studies reporting ADHD-Control comparisons on diffusion model parameters. (A) Drift
Rate (positive ESs indicate slower drift rates for the ADHD group), (B) Boundary Separation (positive ESs indicate narrower boundary
separations for the ADHD group), (C) Nondecision Time (negative ESs indicate faster nondecision times for the ADHD group)
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Mechanistic interpretation of RT variability. If
slow drift rate, effects on s, and/or differences in
nondecision times account for RT variability in
ADHD (or in comorbid ASD+ADHD), what mecha-
nisms might this implicate either cognitively or
neurobiologically? Numerous cognitive and neural
hypotheses have been suggested to account for RT
variability, including attention lapses (e.g.
Leth-Steensen et al., 2000), poor behavioral inhibi-
tion (e.g. Barkley, 1997), deficient neuroenergetic
supply (Killeen, Russell, & Sergeant, 2013), temporal
information processing deficits (e.g. Sonuga-Barke,
Bitsakou, & Thompson, 2010), deficits in motor
preparatory and output processes (e.g. Suskauer
et al., 2008), abnormalities in default-mode network
functioning (e.g. Castellanos et al., 2005), and work-
ing memory deficits (e.g. Rapport et al., 2008), to
name but some of the many proposed (see Kofler
et al., 2013; Table 1 for a complete list of these with
additional explanation.) Here, we focus on cognitive
interpretations that are consistent with the results of
the alternative analysis approaches we have
described, as well as how these may inform the
search for neural correlates of RT variability in
ADHD or ASD.

Interpretation of the nondecision time parameter
is not reducible to a single function because it
encompasses multiple components, including both
predecision processes, such as encoding, and post-
decision processes, such as motor organization and
output. However, given a long standing and relatively
more robust literature implicating motor preparation
and output as compared to encoding problems in
ADHD (e.g. Carte, Nigg, & Hinshaw, 1996; Sergeant
& Scholten, 1985), our hypothesis would be that
faster nondecision times indicate differences in
motor processing in this population. If this is the
case, faster nondecision times may be related to less
efficient motor preparation (Metin et al., 2013), or to
motor impulsivity, although it is important to note
that not all differences between ADHD and typically
developing children need to be interpreted as
deficits.

One important caveat for future studies will be to
determine the relationship of nondecision times to
mean RT versus RT variability. While slow drift rates
are directly related to distributional skew, and thus
variability, faster nondecision times may have a
more uniform effect across the RT distribution.
Alternatively, inconsistency in the nondecisional
processes (e.g. particularly fast nondecision times
on some trials) could lead to increased RT variability
and differences in the mean nondecision parameter
estimate. The trial-to-trial variability of diffusion
model parameters can be directly modeled to
address this question.

What mechanisms account for slow drift rates and
larger s? Although these two metrics may be related,
they are usually interpreted differently in terms of
their cognitive mechanisms. The ex-Gaussian

parameter s is commonly interpreted as reflecting
“attention lapses” (de Kieviet, van Elburg, Lafeber, &
Oosterlaan, 2012; Sonuga-Barke & Castellanos,
2007; Unsworth, Redick, Lakey, & Young, 2009;
Weissman, Roberts, Visscher, & Woldorff, 2006).
This interpretation is interesting, yet for several
reasons it is problematic. First, although an atten-
tion lapse interpretation may be consistent with
older work suggesting that s reflects higher-order
decision processing while l and r index motor
response (Hohle, 1965), precisely the opposite inter-
pretation of s, that it primarily reflects motor pro-
cesses, has also been made (see Matzke &
Wagenmakers, 2009). Second, empirical and simu-
lation studies suggest that smay reflect the influence
of multiple processes (Heathcote, Popiel, & Mewhort,
1991; Matzke & Wagenmakers, 2009).

The interpretation of “attention lapses” is also
complicated by the multicomponent nature of atten-
tion itself (Huang-Pollock & Nigg, 2003; Mirsky,
Anthony, Duncan, Ahearn, & Kellam, 1991; Mirsky,
Pascualvaca, Duncan, & French, 1999; Petersen &
Posner, 2012; Posner & Petersen, 1990), which
includes components like filtering, alerting/arousal,
orienting, and executive control (Deutsch & Deutsch,
1963; Fan, McCandliss, Sommer, Raz, & Posner,
2002; Treisman, 1964). Which component is
involved in the lapse? In other words, a lapse is an
event, but not a component mechanism, so it leaves
us with our fundamental interpretive problem.

Which component of attention might explain RT
variability in ADHD? Some task comparisons within
ADHD samples initially suggested that RT variability
may be higher on tasks with higher executive
demands (Klein et al., 2006); however, as noted, a
recent meta-analysis suggests that task demands do
not moderate the RT variability ES in this population
(Kofler et al., 2013). As noted in our own meta-analy-
sis, the small number of studies and wide variety of
tasks used precludes drawing conclusions about
task effects in ASD.

Slow drift rate, although expected to lead to larger
s values, has not typically been interpreted in terms
of attention lapses. Instead, the diffusion model
conceptualizes drift rate as an RT counterpart to a
signal detection model of accuracy. From this per-
spective, the drift rate parameter is conceptually and
mathematically similar to discriminability (d’) in
traditional signal detection theory (Ratcliff &
McKoon, 2008; Ratcliff & Rouder, 1998).1 Within a
signal detection framework, d’ is often interpreted as
an index of arousal (van der Meere & Sergeant, 1988;
Sergeant, Oosterlaan, & van der Meere, 1999).
Optimal arousal (neither too high nor too low)
maximizes the individual’s ability to detect signal
from noise. Analogously, the drift rate parameter in
the diffusion model is linked conceptually to neural
noise, with slower drift rate (i.e. slower, less efficient
information processing) indicative of a low
signal-to-noise ratio in neural circuits underlying
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decision-making (Ratcliff, Cherian, & Segraves,
2003; Ratcliff, Philiastides, & Sajda, 2009; Ratcliff
& Rouder, 1998). In this sense, rather than impli-
cating a new mechanism as explaining RT variabil-
ity, slow drift rate may be consistent with classic
theories of ADHD emphasizing a deficit in cortical
“arousal” (Satterfield, Cantwell, & Satterfield, 1974;
Zentall & Zentall, 1983) or, concomitantly, disrup-
tion in ascending noradrenergic neural systems that
facilitate signal detection (McCracken, 1991). We
address definitions, complexity in this conclusion,
and alternative possibilities below.

Arousal has also been implicated in ASD, although
unlike in ADHD, where d’ tends to show
under-arousal in ADHD (Huang-Pollock et al.,
2012; Losier, McGrath, & Klein, 1996), in ASD both
under- and over-arousal are reported, leaving the
main trend unclear (Geurts et al., 2009; Raymae-
kers, van der Meere, & Roeyers, 2004; Raymaekers
et al., 2006, 2007; Rogers & Ozonoff, 2005). Given
the results of the present ASD meta-analysis,
accounting for sample differences in ADHD symp-
toms may help clarify ASD results, but more work is
needed in both populations to relate abnormal
arousal levels to RT variability.

Neural Mechanisms of RT variability: Conceptual
considerations. What neural processes are related
to increased RT variability? Neural correlates of RT
variability have been extensively studied in animals,
including primates, using single, and multiunit
recordings. In humans, noninvasive approaches,
such as such as functional magnetic resonance
imaging (fMRI) and electroencephalograph (EEG)
recordings have been used to study cortical activity
and its relationship to RT variability (Toga & Mazzi-
otta, 2002). RT variability has been discussed as a
general indicator of the integrity of brain networks
(MacDonald, Li, & B€ackman, 2009), and has been
variously empirically linked to amount of myelina-
tion (Tamnes, Fjell, Westlye, Østby, & Walhovd,
2012), latency jitter in evoked electrocortical
response potentials (ERPs, Saville et al., 2011),
localized group differences in activation in brain
regions underlying executive control and deci-
sion-making (Philiastides, Auksztulewicz, Heekeren,
& Blankenburg, 2011; Philiastides & Sajda, 2006),
and group differences in activation in large-scale
brain networks, particularly those associated with
rest (Weissman et al., 2006). Thus, a wide range of
correlated brain patterns have been associated with
RT variability in normal adult populations, and it is
difficult to use that literature to identify a single
brain mechanism being implicated in RT variability
in ADHD, specifically.

Of particular concern is that the basis of RT
variability may vary in different populations, and so
population-specific studies may be of most help in
understanding RT variability mechanisms in devel-
opmental psychopathology. However, despite the

resurgence of interest in RT variability and its neural
underpinnings in neurodevelopmental disorders
such as ADHD and ASD, there is still a relatively
small literature that directly links RT variability to
measures of brain function in these populations. As
one illustration, over 1,900 articles are found when
“ADHD,” “reaction time,” and “brain,” “neural,” or
“imaging” are used as search terms in PubMed, while
only 19 publications are found if these terms are
required to be in the abstract, and few of these
actually address the correlation of RT variability to
brain metrics as we describe below. A similar picture
exists for ASD with 204 versus only 10 studies in the
general and more restrictive searches respectively.

Given the vastness of the relevant literature that
could be used to make circumstantial arguments
related to brain mechanisms of RT variability, the
wealth of existing reviews on ADHD and brain
imaging generally, and the dearth of literature
directly examining ADHD (or ASD), the brain, and
RT variability at the same time, we do not attempt
comprehensive review of all brain findings related to
RT variability. Rather, we focus only on the final,
small set of directly relevant data, bringing in other
studies selectively to amplify key questions.

Bounding the literature, even when restricting it to
ADHD (or ASD), is debatable. For example, virtually
all brain imaging studies of ADHD also report on
some behavioral measures, including RT variability,
that one might use to bolster a circumstantial
argument of one form or another. Nevertheless,
unless these were directly analysed in relation to
brain imaging data (either MRI or EEG/ERP), we did
not review those studies. With these foci in mind, we
identified a handful of studies directly relevant to the
question of neural correlates of RT variability in
ADHD or ASD that we discuss below. We discuss
these findings in relation to attention functions,
including both alerting/arousal and executive con-
trol of attention; motor response and preparation;
and “neural noise,” as these have been some of the
most prominent theories in the literature to-date and
are consistent with the decomposition analyses
presented earlier.

Our use of terminology is guided by Posner and
Petersen (1990); Petersen and Posner’s (2012) influ-
ential attention model because they propose specific
neural systems related to attention components. We
then discuss in detail at the end of the section how
these may map onto another very influential model
in the ADHD and ASD fields: the cognitive-energetic
model. The primary goal here is to highlight the
potential for cross-disciplinary studies of RT vari-
ability that bridge cognitive, neural, and psychopa-
thology theories.

RT variability and attention functions. In the
Petersen–Posner perspective (Petersen & Posner,
2012; Posner & Petersen, 1990), the brain is
organized by modular interconnected networks
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responsible for distinct attentional functions includ-
ing orienting, altering (arousal), and executive con-
trol. Both the alerting/arousal and executive control
functions of attention have been suggested as puta-
tive contributors to RT variability so we pause to
describe those networks here.

The alerting network is responsible for establish-
ing and maintaining an alert state suitable to task
demands, as well as enhancing the signal:noise ratio
for novelty detection. It is quite isomorphic with what
has also been referred to in the earlier ADHD
literature as arousal. Arousal and alerting have
historically been associated with a right-hemisphere
fronto-parietal-thalamic-brainstem network modu-
lated by the norepinephrine (NE) system (Pardo, Fox,
& Raichle, 1991; Posner & Petersen, 1990; Sturm
et al., 2004), with the anterior cingulate cortex (ACC)
and the right dorsolateral prefrontal cortex exerting
top-down control during alertness, in order to regu-
late noradrenergic activation originating from the
brainstem (Mottaghy et al., 2006).

Consistent with that literature, Posner and Peter-
sen (1990) noted two distinct functions: phasic alert-
ing to a stimulus and tonic sustaining of attention to
the stimulus, which they called vigilance. A recent
revision of this historical model (Aston-Jones &
Cohen, 2005; Petersen & Posner, 2012 the latter
referring again to “alerting”), emphasizes ascending
norepinephrine systems that project to frontal and
parietal cortices and are involved in bottom-up opti-
mization of behavioral performance by influencing
responsivity (i.e. a gain parameter) in those cortical
systems. In addition, projections from the anterior
cingulate cortex and prefrontal cortex can regulate
the NE system in response to the perceived utility of
the task to the individual, helping to explain how
top-down cognitive control can be involved in delib-
erate regulation of arousal and task efficiency. Within
this framework, phasic release of NE (via the locus
coeruleus [LC]) is associated with optimal deci-
sion-making and task performance, whereas less
phasic and greater tonic LC activation produces a
less optimized and more distractible behavioral
pattern. Elevated tonic LC activity is associated with
both lower d’ (signal detection in an accuracy task,
such as the continuous performance task) and low-
ered response thresholds (Aston-Jones, Rajkowski,
Kubiak, & Alexinsky, 1994) and thus, we would
hypothesize, is also associated with slower drift rate
(signal detection in a reaction time framework).

Executive control of attention is required for sup-
pressing interference, handling response conflict,
complex working memory, and top-down regulation
of arousal and motivation. As pointed out by Peter-
sen and Posner (2012), cognitive neuroscientists
disagree as to whether executive control is handled
by one or two neural networks (Carter & Krug, 2012;
Petersen & Posner, 2012). The perspective that
argues for two such networks (Dosenbach, Fair,
Cohen, Schlaggar, & Petersen, 2008; Petersen &

Posner, 2012) proposes that a fronto-parietal task
network includes lateral frontal and parietal nodes,
and is involved in the initial onset of task control.
Maintaining task set over time is handled by a
second network, termed the cingulo-opercular net-
work, which includes medial PFC, dorsal anterior
cingulate, dorsal anterior prefrontal cortex, lateral
frontal pole, and anterior insula. The cingulo-oper-
cular network is likely involved in many other
functions (such as task switching), but here we
highlight its putative role in maintaining task set—a
function that would seem relevant to RT variability.

Very few studies have directly examined functional
brain activation in relation to RT variability in
children with ADHD or ASD specifically. Two fMRI
studies in ADHD demonstrated that children with
ADHD showed greater RT variability and reduced
brain activity in the right-sided anterior cingulate
gyrus (Konrad, Neufang, Hanisch, Fink, & Her-
pertz-Dahlmann, 2006) and in fronto-parietal brain
regions (Cao et al., 2008). A third study also found a
negative correlation between RT variability and acti-
vation in the anterior cingulate in ADHD subjects
(Rubia, Smith, Brammer, & Taylor, 2007), although
here the measure of brain activation reflected the
difference in activity on standard versus oddball
trials of a go/no-go type task, making it difficult to
interpret in the current framework. The authors
suggest that in this case the pattern of activation
may implicate motor output functions, relevant to
our findings on the diffusion model earlier. This
study also found a different pattern of correlations
between typically developing and ADHD children,
highlighting the importance of studying typically
developing and nontypically developing populations
together.

Interestingly, where differences have been found,
these abnormalities are primarily located in cortical
areas which are proposed to reflect top-down control
(rather than bottom-up activation) of arousal/alert-
ing functions. The ADHD findings are consistent
with research identifying reduced fronto-parietal
activation during cognitive tasks in ASD as well
(Solomon et al., 2009), although RT variability was
not directly assessed. Most interesting for the ASD
study is that the reduced fronto-parietal activation
was related to symptoms of ADHD in the ASD
groups, making it a promising target for study of
neural correlates of RT variability in both groups.

RT variability and the default network. Another
neural network that has taken a primary role in
discussion of RT variability in relation to “attention”
functions is the default-mode network. The
default-mode network includes the precuneus/pos-
terior cingulate cortex (PCC), the medial prefrontal
cortex and the medial, lateral, and inferior parietal
cortex (Laird et al., 2009; Schilbach, Eickhoff, Rotar-
ska-Jagiela, Fink, &Vogeley, 2008), and is believed to
becharacterizedbyslowneural oscillationsata rateof
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less than ~0.10 Hz. Its functions are debated but it
activates when task control is relaxed (for example,
during stimulus-independent thoughts and mind
wandering, Andrews-Hanna, 2012; Christoff, Gor-
don, Smallwood, Smith, & Schooler, 2009; Spreng,
2012). Activity in the default-mode network is atten-
uated, although not extinguished, during the transi-
tion from rest-to-task states (Eichele et al., 2008;
Greicius, Srivastava, Reiss, & Menon, 2004; Raichle
et al., 2001). Stronger deactivation is associated with
increased task difficulty (Singh & Fawcett, 2008),
thus it is anticorrelated with executive control net-
works in typically developing individuals. The poster-
ior cingulate cortex, a key hub in the default-mode
network, may be involved in regulating consistency of
responding (Leech & Sharp, 2013) and so may be
particularly relevant to RT variability.

Because ADHD has been correlated with weaker
connectivity of the default mode network to the task
control networks, an initial hypotheses in the ADHD
field was that a failure to sufficiently suppress
default-mode network activity would be mirrored by
periodic and transitory performance deficits mani-
fested in specific frequency patterns in the RT time
series (Castellanos et al., 2009). Frequency-domain
analyses of RT data described in the prior section do
not support this particular hypothesis. It remains
plausible, however, that default-mode network activ-
ity could contribute to increased RT variability in
some manner not yet detected at the behavioral level
due to the many processes that affect the final RT.
One study has found that reduced deactivation of
the default-mode network is correlated with more
variable RTs for children with ADHD (Fassbender
et al., 2009). In addition, by using a diffusion tensor
imaging approach in a sample of children with
ADHD, Lin et al. (2013) found that s correlated with
fractional anisotropy (a putative measure of white
matter integrity) in white matter tracts in the midc-
ingulum bundle connecting ACC and PCC, which
they suggest is consistent with default network
involvement in distributional skewing. However,
another study found no significant correlation
between RT variability and activation in other
regions considered to be part of the default network
(medial PFC, precuneus) in either ADHD or ASD
(Christakou et al., 2013), although the relationships
between RT variability and medial PFC activity was
significant for typically developing children. Other
studies and pooled data sets that allow more pow-
erful analyses will be helpful to resolve these rela-
tionships. In addition, other work in healthy adults
now suggests that, rather than absolute activation in
any one network, it is balance of activation in the
default-mode network and an anti-correlated “task--
positive” network that is active during goal-directed,
attention-demanding cognition that is important,
with greater negative correlation between these net-
works predicting lower RT variability (Kelly, Uddin,
Biswal, Castellanos, & Milham, 2008).

Replication of studies showing correlations
between RT variability and activity in the default
network would be helpful, particularly in children. In
addition, the exact nature of default-mode network
abnormalities in both ADHD (Konrad & Eickhoff,
2010) and ASD (Minshew & Keller, 2010), remains
unclear with both hyper- and hypo-activation vari-
ously found and disagreement about whether differ-
ences are present at rest (e.g. Fair et al., 2010) or
only during task completion. Thus, the relationship
of default-mode network activity and RT variability is
an interesting area for further work, but one in which
clear conclusions cannot yet be drawn.

EEG and ERP measures of attention func-
tions. Electroencephalograph (or scalp electrical
recordings) is another brain measure that can
further help to quantify attention processes, as well
as their relationship to RT variability. Brain locali-
zation with EEG is not as robust as with MRI, but
temporal resolution is superior to MRI. Two major
approaches have been used: (1) the power spectrum
of the EEG signal and (2) examination of specific
components of event-related potentials. Both ADHD
and ASD have been associated with alterations in the
power spectra in EEG signal (Barry, Johnstone, &
Clarke, 2003; Broyd, Helps, & Sonuga-Barke, 2011)
and with alterations in ERP markers (Johnstone,
Barry, & Clarke, 2012). In addition, EEG metrics
have been proposed as a potential therapeutic tool to
improve arousal and attention via neurofeedback
methods (Arns, de Ridder, Strehl, Breteler, &
Coenen, 2009), and so understanding their relation-
ships to behavioral measures is particularly relevant
for guiding clinical applications.

First, the frequency or power spectrum of the EEG
can serve as a central nervous system indicator of
arousal in the sense of the Petersen and Posner
(2012) alerting network (Minkwitz et al., 2011). The
relationship between EEG power spectrum and
arousal, however, is a complex one. As a rule of
thumb, higher power in fast frequencies (e.g. the
beta band) is indicative of high arousal, while higher
power in slow frequencies (e.g. theta band) is indic-
ative of low arousal (Arns, Conners, & Kraemer,
2013; Pizzagalli, 2007). The theta/beta ratio, histor-
ically interpreted as an index of central arousal, is
altered in both ADHD (Arns, Conners, & Kraemer,
2013) and ASD (Kouijzer, de Moor, Gerrits, Congedo,
& van Schie, 2009). This effect is not specific to
either disorder, although ASD studies have generally
not considered comorbid ADHD. Furthermore, the
arousal interpretation has been questioned by recent
findings that the theta/beta ratio is unrelated to
measures of skin conductance, an accepted periph-
eral nervous system indicator of arousal (Clarke
et al., 2013). RT variability studies may wish to
examine skin conductance. Alternatively, alpha
power, which is related to skin conductance, may
be informative to test an arousal hypothesis of RT
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variability in ADHD or ASD (Barry, Clarke, John-
stone, & Brown, 2009). It is also possible that
cortical and peripheral nervous system arousal are,
at least to some extent, dissociable and that mea-
sures of both are needed.

Traditionally examined EEG bands (i.e. alpha,
theta, beta) may also be modulated by underlying
very low frequencies (Buzsaki & Draguhn, 2004;
Monto, Palva, Voipio, & Palva, 2008; Novak, Lep-
icovska, & Dostalek, 1992; Vanhatalo et al., 2004;
Voipio, Tallgren, Heinonen, Vanhatalo, & Kaila,
2003), that are the neurophysiological correlates of
default-mode network activity (He, Snyder, Zempel,
Smyth, & Raichle, 2008). Fluctuations in EEG-
indicated arousal states, including both higher fre-
quency indicators and very low frequencies, have
been used to predict single trial RTs in adults with
and without ADHD (Helps, Broyd, James, Karl, &
Sonuga-Barke, 2009; Minkwitz et al., 2011). How-
ever, studies were small and thus preliminary. More
work is needed to confirm findings, determine
whether magnitude of effects are sufficient for
further development, and extend findings into child
clinical populations.

Event-related (ERP) components of the EEG signal
can also be used to understand attention compo-
nents in relation to RT variability. Such designs
measure alterations in the EEG signal at specific
millisecond time points preceding or following stim-
ulus presentation. Several attention-dependent ERP
components could be related to RT variability. Here,
we discuss the positivity at 300 ms (P300) as an
example of how ERP components can serve to
disentangle RT variability. We later discuss the
contingent negative variation (late CNV) as an addi-
tional example when considering motor preparatory
processes.

The ‘P300’ is believed to reflect working memory
updating and the decision about which is the correct
response (Verleger, 1997). Because P300 depends on
attention deployment, it is thought to represent the
allocation of executive control resources to the task
(Polich, 2007). P300 amplitude and latency have
been found to be altered in both ADHD (Johnstone
et al., 2012) and ASD (Jeste & Nelson, 2009). Fur-
thermore, both amplitude and latency of the single
trial P300 have been correlated with RTs on individ-
ual trials (van Deursen, Vuurman, Smits, Verhey, &
Riedel, 2009; Holm, Ranta-aho, Sallinen, Karjalai-
nen, & Muller, 2006; Jung et al., 2001; Nakata,
Sakamoto, & Kakigi, 2012; Saville et al., 2011;
Verleger, Paehge, Kolev, Yordanova, & Jaskowski,
2006), suggesting a role for executive control
resources in determining RT variability. Taken
together, results from EEG and ERP studies are
broadly consistent with those using functional MRI
approaches, and provide some evidence for both
arousal and executive control contributions to RT
variability. However, also similar to studies using
fMRI approaches, considerably more work is needed

to replicate and extend these findings and to under-
stand the interaction of bottom-up arousal and
top-down control processes.

General “noise” in neural information process-
ing. Poor signal-to-noise ratio, either via low arou-
sal, inefficient executive control of attention, or for
other reasons, is implicated as a mechanism of RT
variability in our review of behavioral data earlier.
We discuss here several metrics that may be useful
in future studies to better understand the role of
“noise,” or signal variability more generally, in rela-
tion to RT variability.

First, the EEG measure of intertrial phase coher-
ence (ITC) is a measure of the degree to which the
phase (or timing) of the frequency-domain evoked
responses aligns across trials, independently of
amplitude (Delorme & Makeig, 2004; Groom et al.,
2010; Makeig, Debener, Onton, & Delorme, 2004).
ITC is thought to be related to the temporal stability
of information processing (i.e. latency variability) in
traditional evoked response potentials. ITC can be
used to examine the temporal stability of neural
transmission in the brain in relation to cortical noise
(Koychev, Deakin, Haenschel, & El-Deredy, 2011)
and the degree of synchronization between cortical
neuronal networks (Shin et al., 2010; Winterer et al.,
2000). Using measures of latency variability and ITC,
several studies have demonstrated that the cortical
responses of individuals with ASD (e.g. Dinstein
et al., 2012; Milne, 2011) and ADHD (e.g. Groom
et al., 2010; McLoughlin, Palmer, Rijsdijk, & Makeig,
2014) are less consistent when compared to typically
developing controls. This is interesting in regard to
whether behavioral inconsistency could be related to
cortical variability. The aforementioned studies have
provided preliminary evidence of a positive relation-
ship between this cortical signal variability and RT
variability (Groom et al., 2010; McLoughlin et al.,
2014; Milne, 2011). However, at least one study in
ASD failed to find increased signal variability to
simple sensory stimulation (Coskun et al., 2009),
and so again these findings are tentative.

Second, several measure of brain signal complex-
ity on EEG or MRI have also been applied in the
study of RT variability, although not yet within the
context of ADHD or ASD (Garrett et al., 2013). These
include measures such as frequency-domain analy-
ses, multiscale entropy, and principal components
analysis applied to either the EEG or BOLD time
series. Signal complexity may be related to the
concepts of signal variability and neural “noise,”
although an exact correspondence between the
many measures of each of these constructs requires
further study. Interestingly, however, greater signal
variability and complexity have been negatively

correlated with RT variability in typically developing
child and adult populations (Garrett, Kovacevic,
McIntosh, & Grady, 2011; McIntosh, Kovacevic, &
Itier, 2008), such that increased complexity in the
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neural signal is associated with decreased RT vari-
ability.

Overall, these two domains together highlight an
important caveat to be considered in future studies
of RT variability: that “noise” within neural systems
may have functional significance, including allowing
these systems to flexibly adapt to changing tasks or
demands (see Garrett et al., 2013 for detailed dis-
cussion). In other words, within-person brain signal
variability may not simply reflect “noise” but may be
functional. For example, connectionist and cellular
research suggest that networks formed in the pres-
ence of greater noise are more robust to disruption,
thus enhancing learning and environmental adapta-
tion, and helping to maintain optimal performance
(Basalyga & Salinas, 2006; Faisal, Selen, & Wolpert,
2008). In this sense, either too much or too little
“noise” may impair performance. Signal complexity
measures have also been studies as putative bio-
markers of neurodevelopmental disorders (Bosl,
Tierney, Tager-Flusberg, & Nelson, 2011) with some
success and so understanding their relationships to
behavioral measures such as RT variability may
prove informative.

Motor preparation and response output. A con-
siderable and long standing literature calls into
question motor preparation and output processes
in ADHD (e.g. Carte et al., 1996; Sergeant & Schol-
ten, 1985). Thus, group differences in nondecision
times, despite the complications in interpretation
noted earlier, may add to this literature. Both EEG
and task-based fMRI provide some support for a
contribution of motor processes to RT variability. For
example, contingent negative variation (CNV), one
example of a slow cortical potential, can be an index
of cortical activation in terms of either an orienting
(initial alerting) reaction (early CNV) or preparation
of a rapid execution of the motor response (late CNV).
Late CNV has been found to be reduced in ADHD
(e.g. Albrecht et al., 2012; Doehnert, Brandeis,
Schneider, Drechsler, & Steinhausen, 2012). Fur-
thermore, in typically developing child populations,
slow cortical potentials associated with response
preparation and output have been correlated with
RTs (Bender et al., 2012; Kok, 1988; Wascher,
Verleger, Jaskowski, & Wauschkuhn, 1996), sug-
gesting a role for motor preparation in determining
RT variability.

Using fMRI in typically developing children, less
RT variability on a go/no-go task was associated
with activation in premotor circuits, and more RT
variability was associated with activation in pre-
frontal circuits (Simmonds et al., 2007). Together,
results suggests that the use of premotor circuits
might be “more efficient” as compared to the use of
prefrontal circuits associated with top-down cogni-
tive control (Simmonds et al., 2007).

These findings are particularly relevant to children
with ADHD, since previous studies provided evi-

dence for structural and functional abnormalities of
the pre-SMA in subjects with ADHD (Shaw et al.,
2006; Tamm, Menon, Ringel, & Reiss, 2004) leading
to the hypothesis that children with ADHD may
recruit prefrontal regions to compensate for less
efficient use of premotor systems. Indeed, a reverse
brain activation pattern was observed in children
with ADHD during the identical task with increased
pre-SMA activation associated with more RT vari-
ability and greater prefrontal activation associated
with less RT variability in the patients’ group
(Suskauer et al., 2008). It may be that recruitment
of prefrontal resources as a compensatory mecha-
nism for motor task performance precludes the use
of those prefrontal resources for higher order exec-
utive functions with which children with ADHD often
struggle.

Nevertheless, the interpretation is not straightfor-
ward. The interplay of PFC and premotor, as well as
other circuits, is not necessarily linear but can
include compensatory effects. The question of how
PFC and motor regions interact is similar to ques-
tions raised about the interaction of top-down and
bottom-up aspects of arousal networks. Contempo-
rary models, such as dynamic causal modeling
(Friston, Harrison, & Penny, 2003; Smith et al.,
2011), that may address questions about complex
causal network interactions have yet to be applied
here although it should be noted that even these
advanced models rely on model comparisons to
make causal inferences, and so conclusions need
to be interpreted carefully.

Summary: The most widely used neuroimaging
approaches to this point in child psychopathology,
MRI and EEG, provide substantial information to
enable the development of behavior-brain linkages
related to RT variation in ADHD, ASD, and other
disorders. Nevertheless, the imaging literature
related to RT variability must be considered to be
preliminary because, as noted, there are relatively
few studies directly linking RT variability to specific
measures of neural functioning in ADHD or ASD.
Findings are amenable to competing interpretations,
but have some convergence with the cognitive stud-
ies summarized. SDRT in ADHD has been correlated
with breakdowns in top-down control circuits, with
measures of arousal states, and with neural mea-
sures of motor preparation (and thus activation,
discussed in the next section). The interaction of
top-down circuits with arousal or motor response
networks in ADHD remains poorly understood. As
with the behavioral literature, there is more available
neuroimaging literature examining correlates of RT
variability in ADHD than in ASD (or ASD+ADHD),
and so our discussion of neural networks that may
be involved in RT variability necessarily applies to a
greater extent to ADHD than to ASD. Nevertheless, if
comorbid ADHD accounts for increased RT
variability in ADHD, then similar neural correlates
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should be identified in the ASD+ADHD populations
as well. If similar neural correlates are not identified,
this would require re-evaluation of the suggestion
that ADHD drives RT variability in ASD samples.
Regardless, in both populations, convergence in
understanding neural correlates, particularly of
components of RT variation like drift rate, s, or
nondecision times appears tractable over time, and
should help elucidate mechanisms.

A cognitive-energetics perspective on RT variability

The cognitive-energetic model (CEM) is an influential
state-regulation model applied in the ADHD litera-
ture (Sergeant, 2000; Sergeant et al., 1999), and, to
a lesser extent in the ASD literature. It is derived
from a somewhat different intellectual tradition than
the Peterson and Posner model which guided our
discussion of neuroimaging findings, but also
speaks to the coordination of bottom-up and
top-down processes required for optimal perfor-
mance on attention-demanding tasks. Although it
is not explicitly a neural model, it has had a greater
influence to-date on the ADHD field than other
models and is frequently cited in papers attempting
to interpret RT variability findings. Therefore, its
consideration provides important additional insight
for interpreting RT variability.

Briefly, the CEM suggests that task performance is
affected by three distinct, hierarchically organized
energetic pools: effort, arousal, and activation.
Arousal modulates early stages of processing (such
as stimulus encoding) and is related to phasic neural
activity. Activation influences response preparation
and motor output and is hypothesized to be related
to tonic neural activation (Sergeant, 2000). The effort
pool feeds each of the other energetic pools and
drives central decision-making (computational) pro-
cesses. The effort pool is hypothesized to be further
regulated in a top-down manner by an “executive
management” system (Sergeant, 2000), which we
take to be similar to the top-down executive or
cognitive control systems pointed out by Petersen
and Posner and many other authors.

Given that all cognitive tasks require optimal
management of all three energetic pools for optimal
performance, differentiating their effects experimen-
tally requires careful analysis. For example, manip-
ulating event rates on tasks with high motor output
demands (e.g. go/no go tasks) is interpreted in
terms of activation, whereas increasing event rates
on tasks with greater perceptual demands (e.g.
continuous performance tests) is interpreted in
terms of changes in arousal (Sergeant et al., 1999).
In addition, in a cognitive-energetic framework,
rewards may increase arousal, but they do so
indirectly through the effort pool (in contrast with
other models of motivation effects which cite arousal
as the mediating function of reward cues; e.g. Gray,
1981).

Although effects on specific energetic pools are
difficult to isolate, in general, studies of cognitive
deficits in ADHD using a CEM perspective have been
interpreted as supporting deficits in activation or
effort more consistently than deficits in arousal. In
contrast with that suggestion, it is notable that a
recent meta-analysis (Metin et al., 2012) found no
evidence of event rate effects on SDRT in go/no-go
tasks despite finding effects on other performance
variables, such as mean RT. How this converges with
the small but significant differences reported here in
the diffusion model parameter related to motor
output (and thus to activation) is unclear; however,
findings in both studies may actually be consistent
with the suggestion that motor output processes
(indicated by event rate measures of activation and
nondecision times) are related to mean RT differ-
ences in ADHD but less so to RT variability. This
hypothesis requires further evaluation in future
studies.

Despite our caution that these models are not
isomorphic, the CEM does have some parallels to
the attention models used to guide our discussion of
neural findings. For example, Aston-Jones and
Cohen (2005) hypothesize that the balance of tonic
and phasic NE release is related to perceived task
utility, which may be determined, in part, by reward
contingencies as well as by executive (strategic)
considerations. This provides an important concep-
tual link to the CEM, which similarly suggests that
cognitive performance is dependent on the state of the
individual (i.e. their regulation of state in response to
perceived strategic value). Nevertheless, the precise
correspondence in the terminologies applied in dif-
ferent models is not entirely clear. For example, the
“arousal” energetic pool from a CEM perspective
primarily affects stimulus encoding and is related to
phasic NE release based on related earlier work by
Pribram and McGuinness (1975). In comparison, the
phasic NE release that defines part of the “arousal”
function as discussed by Aston-Jones and Cohen
(2005) is empirically linked to central decision pro-
cessing, a function that the CEM more closely aligns
with “effort.” Similarly, evidence that reward incen-
tives may help normalize default network activation
in ADHD may suggest that this network corresponds
inversely to the effort construct in theCEM framework
(Liddle et al., 2011) but such a suggestion must be
considered speculative. Integrating the substantial
literature of CEM findings in ADHD with more recent
neuroscience basedmodels of attention is beyond the
scope of the current review but will be in important
part of ongoing consolidation of neuroscience models
of RT variability and of ADHD and ASD over time.

Future directions and key hypotheses for
research
The data so far at hand suggest some specificity of
RT variability effects to ADHD and a subgroup of
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children with comorbid ASD and ADHD. Effects for
ADHD are marginally (but not reliably) larger than
for other child disorders as well. Even so, ESs for RT
variability for ADHD (with or without ASD) remain
moderate, and similar in size to other cognitive
measures in these disorders, suggesting that only a
subset of children in either population are charac-
terized by increased RT variability or that it is quite
distant from pathophysiology. For this reason, sen-
sitivity and specificity will likely remain limited when
using a strictly categorical approach to compare
diagnostic and comorbid groups.

In part, many experts would propose that this is
because the consensus cutoffs used to diagnose
individuals with the disorders are partially arbitrary,
so that a child with ASD and five symptoms of
inattention and five of hyperactivity would not meet
criteria for ASD+ADHD, but may be more similar to a
child who did meet criteria for both disorders than to
a child with ASD and few ADHD symptoms. This
concern may be partially resolved by combining
dimensional and categorical approaches to flesh
out the relationships between ADHD, ASD, and RT
variability, for example by covarying ADHD symp-
toms in the ASD group or by looking dimensionally to
see if RT variability is related in the same way to
inattention and/or hyperactivity symptoms regard-
less of diagnostic groupings.

Alternatively, instead of starting with diagnostic
categories, it may prove fruitful to identify those
children who are characterized by increased RT
variability (regardless of the diagnosis) and then
determine whether they share other similarities in
associated neural, genetic, cognitive, behavioral, or
clinical outcomes. Within the ADHD literature,
person-centered approaches that can identify sub-
groups of children who share features are just
beginning to be applied to cognitive profiles (e.g.
using graph theory community detection approach,
Fair, Bathula, Nikolas, & Nigg, 2012), but have not
yet been applied with the ASD literature or within
samples containing children with a range of diag-
nostic designations, which will be an important
future direction for the field. Which cognitive
parameters to include in these types of grouping
analyses will also be an important consideration.
RT variability’s relationship to other measures of
cognitive processing, such as working memory,
attention, or inhibition remains unclear. It may
mediate deficits in these other cognitive domains
(Karalunas & Huang-Pollock, 2013) or reflect a
distinct cognitive problem, and exploring these
relationships will be important for determining
which input features are needed to understand
heterogeneity based on cognitive function.

In addition to questions about how best to
approach diagnostic heterogeneity, the field has also
wrestled with the best measurement approach to
quantifying RT variability. Alternative analysis
approaches have not increased measurement

sensitivity (at least in ADHD), but have helped
characterize specific ways in which RT distributions
differ and narrowed the focus as a target for future
neuroimaging work. A key task for the field is to
empirically evaluate the association of these concep-
tually more well-defined parameters with cognitive
(e.g. Karalunas & Huang-Pollock, 2013) and neural
(e.g. Jackson, Balota, Duchek, & Head, 2012; Lin
et al., 2013) correlates in clinical populations, which
will not only address questions about mechanisms of
RT variability, but also has the potential to aid in
linking cheap, reliable behavioral measures with
specific neural markers of disease.

Nevertheless, these cognitive models have their
own limitations. Ex-Gaussian models can be applied
to a wide range of task types, however, they do not
take into account response accuracy and the cogni-
tive interpretation of parameters remains unclear.
Conversely, diffusion model parameters have some-
what clearer cognitive interpretations, but cannot
easily be applied to tasks other than forced two-
choice paradigms, which leaves out many tasks
commonly used in the clinical literature. In both
cases, defining and eliminating outlier data points
can be somewhat arbitrary. Thus, additional models
are needed, as are studies that examine the rela-
tionships between parameters in different models
(e.g. Feige et al., 2013), so that those with broader
applicability can be more firmly interpreted in terms
of mechanisms.

In the future, an emphasis should also be placed
on studies that simultaneously test competing
hypotheses about possible mechanisms. It seems
unlikely that RT variability reflects one unitary
cognitive mechanism. Rather, RT variability may
reflect different antecedents depending on task,
practice (Allaire & Marsiske, 2005), and time scale
(Schmiedek et al., 2009). For this reason, it is
important to consider the possibiltiy that grouping
individuals who share the common feature of RT
variability, as suggested above, may not reduce
within-group heterogeneity. Combining studies
using person-centered approaches with RT decom-
position and neuroimaging approaches that can help
clarify which mechanisms are at play for different
individuals will be important.

In addition, in future studies it will be important to
employ methods suitable for quantifying the complex
interactions between different brain regions and
networks. In functional imaging studies, contempo-
rary models, such as dynamic causal modeling
(Friston et al., 2003; Smith et al., 2011), have yet
to be applied to the study of RT variability. In
addition, neuroimaging methods with high temporal
resolutions, such as EEG or MEG, combined with
new statistical approaches to characterize RT vari-
ability might be particularly suited to clarify the
neurobiological basis of trial-to-trial variability. For
example, more research is needed on ERP single trial
variability focusing on the relative contributions of
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latency, amplitude, and topography variability of
different ERP components to RT variability.

It may also be particularly useful to apply broader
range of measures to look for convergent validity
across biological systems. Processes such as arousal
can be assessed via peripheral nervous system
measures of skin conductance and pre-ejection
period (Berntson, Quigley, & Lozano, 2007; Dawson,
Schell, & Filion, 2007). Peripheral nervous system
measures have only rarely been studied in conjunc-
tion with RT variability (but see for example B€orger
et al., 1999; Sroufe, Sonies, West, & Wright, 1973),
but future studies employing these measures may
prove informative.

Conclusions
Where does this leave us? While certain of our
conclusions are necessarily quite preliminary, the
review leads to several specific hypotheses that can
be tested and challenged going forward, as well as
highlights the need for studies addressing specific
questions. First, RT variability shows some specific-
ity to ADHD, including to a subset of children with
ASD who share comorbid ADHD diagnosis, but more
comparison across clinical populations that consid-
ers task decomposition will remain helpful in under-
standing subgroups. Second, RT variability in ADHD
is explained by very slow RTs on some trials
(s parameter) and by slow drift rate, as well as to a
lesser extent by faster nondecision times, which may
be related to inefficient motor organization. Third,
there remains ample need for more studies attempt-
ing to distinguish the role of top-down executive
control from resource allocation or availability (e.g.

effort, activation, or arousal) explanations of RT
variability in ADHD or ASD. Nonetheless, at the
behavioral level, we can suggest that RT variability is
likely a measure of mechanisms already under
investigation in ADHD (cognitive control, arousal,
motor output problems) rather than a distinct or
novel mechanism. The neuroimaging literature con-
verges with this picture and highlights the impor-
tance of considering the interaction of top-down
control networks with those involved in arousal and
motor preparation. A match of cognitive decomposi-
tion with imaging methods may help to resolve
apparent differences between studies and to better
understand individual differences in response style,
which are key goals for the next set of studies in the
field.
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Key points

• Intraindividual variability in reaction times has received extensive discussion as an indicator of cognitive
performance and a putative intermediate phenotype of many clinical disorders, including ADHD and ASD.

• Reaction-time (RT) variability is well-documented in ADHD. Although relatively few studies have examined RT
variability in ASD, the current review and meta-analysis suggest that RT variability is present in ASD only when
a comorbid ASD+ADHD group is included in analyses.

• RT variability in ADHD is primarily explained by very slow RTs on some trials (s parameter) and by slow drift
rate, which may implicate low alertness/arousal as a mechanism of increased RT variability and difficulty
distinguishing signal from noise in speeded decision-making.

• In turn, this could be related in the brain to alterations in ascending norepinephrine systems and/or in
top-down circuits that regulate arousal via dampening effects on sub-cortical norepinephrine neurons. That
said, the neuroimaging literature also provides some evidence for motor preparation or activation in
determining RT variability, which may be consistent with the small but significant effects found for group
differences in nondecisional processing in ADHD.

• Future studies employing dimensional and person-centered approaches, testing multiple competing theories
within the same samples, and identifying convergent evidence across cognitive, central, and peripheral
nervous system measures are needed to better characterize mechanisms contributing to increased RT
variability in ADHD or ASD populations.
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Note

1. One conceptual difference is that whereas signal
detection parameters are based on accuracy data,
diffusion model parameters are estimated from RT
distributions. This is a potential benefit because
signal detection parameter estimates (which rely on
accuracy scores) are most reliable when accuracy is
around 50%, but many tasks used have higher or
lower accuracy rates, making analysis of signal
detection measures problematic (Chapman &
Chapman, 1973, 1978).
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