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Annular Rearrangements, Incompressible

Axi-symmetric Whirls and L1-Local Minimisers

of the Distortion Energy

Charles Morris, Ali Taheri†

Abstract
In this paper we consider a variational problem consisting of an energy

functional defined by the integral,

F[u,X] =
1

2

∫
X

|∇u|2

|u|2 dx,

and an associated mapping space, here, the space of incompressible Sobolev
mappings of the symmetric annular domain X = {x ∈ Rn : a < |x| < b}:

Aφ(X) =

{
u ∈W 1,2(X,Rn) : det∇u = 1 a.e. and u|∂X ≡ x

}
.

The goal is then two fold. Firstly to establish and highlight an unexpected
difference in the symmetries of the extremiser and local minimisers of F
over Aφ(X) in the two special cases n = 2 and n = 3. More specifically,
that when n = 3, despite the inherent rotational symmetry in the problem,
there are NO non-trivial rotationally symmetric critical points of F over
Aφ(X), whereas in sharp contrast, when n = 2, not only that there is an
infinitude of rotationally symmetric critical points of the energy but also
there is an infinitude of local minimisers of F over Aφ(X) with respect to
the L1-metric. At the heart of this analysis is an investigation into the rich
homotopy structure of the space of self-mappings of annuli. The second
aim is to introduce and implement a novel symmetrisation technique in the
planar case n = 2 for Sobolev mappings u in Aφ(X) that lowers the energy
whilst keeping the homotopy class of u invariant. We finally generalise
and extend some of these results to higher dimensions, in particular, we
show that only in even dimensions do we have an infinitude of non-trivial
rotationally symmetric critical points.

1 Introduction

In this paper we set ourselves the task of finding symmetric minimisers and
critical points of the energy functional

F[u,X] =
1

2

∫
X

|∇u|2

|u|2
dx. (1.1)
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Here u is a weakly differentiable incompressible mapping of the rotationally
symmetric annular domain X ⊂ Rn centred at the origin and n is taken primarily
as 2 or 3 but we later generalise some of our results to arbitrary n ≥ 3. Our aim
is to extremise the energy functional F[u,X] (also called the distortion energy
functional when n = 2 for reasons that that will be become clear shortly) where
u ∈ Aφ(X), X = X[a, b] = {x ∈ Rn : 0 < a < |x| < b <∞} and

Aφ(X) =

{
u ∈W 1,2(X,Rn) : det∇u = 1 a.e. in X and u|∂X = φ

}
. (1.2)

Hereafter φ is the identity mapping of X onto itself, det∇u denotes the Jacobian
determinant of∇u and the last condition in (1.2) means that u = φ on ∂X in the
sense of traces. Now the Euler-Lagrange system associated with the distortion
energy F over the class of admissible mappings Aφ is seen to take the form (cf.
Section 3 for details)

EL[u; X,F] :=


|∇u|2u+ |u|4div C [x, |u|,∇u] = 0, in X,

det∇u = 1, in X,

u = φ, on ∂X,

(1.3)

where the matrix field C = C [x, y, ξ] with x ∈ X, y ∈ R and ξ ∈ SL(n,R) is
given by

C [x, y, ξ] = y−2ξ − p(x)ξ−t, (1.4)

with a suitable Lagrange multiplier p = p(x) while divergence is taken row-wise.
The terminology distortion energy is prompted by close links with geometric

function theory and the theory of quasiregular mappings (see, e.g., [13], [20, 19]).
Recall that a mapping f ∈ W 1,1

loc (Y,Rn) with det∇f ∈ L1
loc(Y) (here Y ⊂ Rn

a connected open set) is said to have finite distortion iff for some measurable
function K = K(y) with 1 ≤ K(y) <∞ a.e. on Y, 1

|∇f |n ≤ K(y) det∇f. (1.5)

The smallest such K is called the outer distortion of f and denoted by KO(y, f).
Likewise the inner distortion KI(y, f) of f is defined by the quotient,

KI(y, f) =
n−n/2|cof∇f |n

det(cof∇f)
, (1.6)

when det∇f(y) 6= 0 and KI(y, f) = 1 otherwise. Now mappings with minimum
distortion or those extremising a suitably defined distortion energy, for instance,
the Lp-norm of the inner distortion KI(y, f) for 1 ≤ p ≤ ∞ are of particular
interest in the theory (cf., e.g., [1, 2]). A classical example is Teichmüller theory

1As shall be customary throughout this paper for a square matrix A ∈ Rn×n the symbol
|A| denotes the Hilbert-Schmidt norm: |A| =

√
tr(AtA).
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where one seeks mappings between Riemann surfaces that minimise the sup-
norm of KI(y, f) or yet another example, and at the opposite extreme, mappings
that minimise the L1-norm of KI(y, f) with respect to the weighted measure
|y|−ndy. As a matter of fact it is this latter case that ties in with the work in
this paper and for which the distortion energy takes the form

K[f,X] =

∫
X

KI(x, f)

|x|n
dx. (1.7)

For homeomorphisms f ∈W 1,n(X,X) with finite distortion and L1-integrable
inner distortion KI(x, f) over X, i.e.,

||KI(·, f)||L1(X,dLn) =

∫
X

KI(x, f) dx = n−n/2
∫
X

|cof∇f |n

(det∇f)n−1
dx <∞,

it follows (cf. [1, 14]) that the distortion energy integral (1.7) can be written as

K[f,X] =

∫
X

KI(x, f)

|x|n
dx = n−n/2

∫
X

|∇h|n

|h|n
dx =: Fn[h,X], (1.8)

where h = f−1 ∈W 1,n(X,X). Thus it is evident that for n = 2 the K energy of
the Sobolev homeomorphism f agrees the F = F2 energy of its inverse mapping
h. Note also that if f satisfies the additional incompressibility constraint as set
in Aφ(X), the distortion energy and the above can also be reformulated as

K[f,X] =

∫
X

|cof∇f |n

|x|n
dx = n−n/2

∫
X

|∇h|n

|h|n
dx = Fn[h,X]. (1.9)

The identities (1.8)-(1.9) when n = 2 give one reason for studying (1.1) and
the structure of its extremisers in this paper. For other reasons and motivations
mostly pertaining to considerations of invariance and symmetry in nonlinear
elasticity, 2 in particular, the various symmetries of extremisers as well as local
and global energy minimisers, in the presence of an incompressibility constraint,
see [3, 4, 6], [24, 25] as well as [21, 26, 27, 28].

Returning now to (1.1) it is the nonlinear system (1.3) and the existence vs.
non-existence of non-trivial symmetric solutions to this system that will be the
primary focus of the paper. Generally we think of a mapping u ∈ Aφ(X) as
being rotationally symmetric iff it is invariant under all rotations R, that is, iff
it satisfies u(x) = Ru(Rtx), for all x ∈ X and R ∈ SO(n).

For the sake of this paper however we shall considerably weaken this condi-
tion and refer to a mapping u as being rotationally symmetric iff u is invariant
under all rotations R ∈ T ⊂ SO(n), that is, u(x) = Ru(Rtx) for all x ∈ X and
R ∈ T, where T is a maximal torus in SO(n), that is, a maximal commutative
subgroup in SO(n).

2Another closely related model would be the Dirichlet energy over Aφ(X) as in [21, 22, 27],
however, the symmetrisation technique and energy bounds developed here do not immediately
extend to this case. In a future paper we generalise our results to integrals

∫
X |∇u|

p/|u|q with

p ≥ n, q > 1, n ≥ 2 over Apφ(X) = {u ∈W 1,p(X,Rn) : det∇u = 1 a.e. in X, u = φ on ∂X}.
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With this introduction in mind and by specialising for the sake of clarity and
definiteness to n = 3 for the moment we define a whirl mapping u of an annulus
X = X[a, b] ⊂ R3 as a continuous self-map of X onto itself which agrees with
the identity mapping φ ≡ x on the boundary ∂X and has the form

u : x 7→ Q(ρ, x3)x =

cos g(ρ, x3) − sin g(ρ, x3) 0
sin g(ρ, x3) cos g(ρ, x3) 0

0 0 1

x1

x2

x3

 . (1.10)

Here ρ =
√
x2

1 + x2
2 and Q(ρ, x3) ∈ T for (ρ, x3) in Ω [as (1.11)] where T = Ty

is the subgroup of rotations that fix y = (0, 0, 1).3 The function g ∈ C(Ω,R) is
called the whirl function associated with the whirl mapping u and

Ω =

{
(ρ, x3) ∈ R2 : ρ > 0 and a <

√
ρ2 + x2

3 < b

}
. (1.11)

Thus it is clear that Q ∈ C(Ω,SO(3)) with Q ≡ I3 on ∂Ωa ∪ ∂Ωb, where
∂Ωa = {(ρ, x3) ∈ ∂Ω : ρ2 + x2

3 = a2} and ∂Ωb = {(ρ, x3) ∈ ∂Ω : ρ2 + x2
3 = b2}.

Note that ρ ≡ 0 corresponds to the segment {x = (0, 0, x3) : a < |x3| < b} ⊂ X
where by inspection any whirl mapping u verifies u ≡ x on this segment. Now
translating the boundary conditions of u and Q onto the whirl function g it must
be that g ≡ 2πk1 on ∂Ωa and g ≡ 2πk2 on ∂Ωb for some k1, k2 ∈ Z respectively
while along the flat boundary segment ∂Ωρ = {(ρ, x3) ∈ ∂Ω : ρ = 0} the whirl
function g is left free.

Next assuming further differentiability on the whirl function g one can easily
show that the class of whirl mappings is contained in Aφ(X), that is, any whirl
mapping is an admissible mapping. Furthermore a straightforward calculation
shows that the distortion energy of a whirl mapping u = Q(ρ, x3)x (see Section
4 for notation and detail) can be expressed as

F[Q(ρ, x3)x,X] =
1

2

∫
X

|∇u|2

|u|2
dx =

1

2

∫ b

a

∫
S2

|∇u|2

|u|2
dH2r2dr

= 6π ln(b/a) + π

∫
Ω

ρ3|∇g|2

ρ2 + x2
3

dρdx3. (1.12)

Now in seeking extremisers of F in the form of whirl mappings we first examine
the Euler-Lagrange equation associated with the restricted energy functional

H[g,Ω] = π−1F[Q(ρ, x3)x,X]− 6 ln(b/a) =

∫
Ω

ρ3|∇g|2

ρ2 + x2
3

dρdx3, (1.13)

[see (1.10) and (1.12)] over the space of admissible whirl functions given for each
j ∈ Z fixed by

Hj(Ω) =

{
g ∈W 1,2(Ω) : g|∂Ωa

= 0, and g|∂Ωb
= 2πj

}
. (1.14)

3Note that when n = 3 this subgroup is both a copy of SO(2) and a maximal torus in the
rotation group SO(3).
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It is quite remarkable to see that in contrast to the full nonlinear Euler-Lagrange
system (1.3) associated with F[u,X] over Aφ(X) this restricted form of the
Euler-Lagrange equation takes the convenient linear divergence form equation

EL[g; Ω,H] :=


div
[
ρ3∇g/(ρ2 + x2

3)
]

= 0, in Ω,

g = 0, on ∂Ωa,

g = 2πj, on ∂Ωb,

ρ3/(ρ2 + x2
3) ∂νg = 0 on ∂Ω\[∂Ωa ∪ ∂Ωb].

(1.15)

Judging based on the above set of equations and considering the cases n = 2
and 3 only it can be shown that in each case there is a unique solution for every
fixed j ∈ Z given explicitly in turn by the extremising whirl functions g = gj ,

• n = 2 (note that in two dimensions we have ρ ≡ r)

g(r) = 2πj
log(r/a)

log(b/a)
, a ≤ r ≤ b, (1.16)

• n = 3

g(ρ, x3) = 2πj
ab

b− a

[
1

a
− 1√

ρ2 + x2
3

]
, (ρ, x3) ∈ Ω. (1.17)

We shall demonstrate in the proceeding sections that unless j = 0 the whirl
function g from (1.17) does NOT correspond to a whirl mapping u ∈ Aφ(X) that
is a critical point of F over Aφ(X). This is then shown to be in stark contrast to
the two dimensional case (n = 2) where we show by utilising the rich topological
structure of Aφ(X), namely, the infinitude of its homotopy classes (Aj : j ∈ Z),
that the whirl mapping uj corresponding to the whirl function g from (1.16) is
a critical point of F over Aφ(X).

In summary we are able to prove that in three dimensions critical points of F
cannot have the rotational symmetry one naturally expects (the weak symmetry
as was defined earlier) whereas in two dimensions there is an infinitude of such
symmetric critical points. As a matter of fact we prove that in two dimensions
any minimiser of F in the homotopy class Aj (with j ∈ Z) – that incidentally is
also a local minimiser of F in Aφ(X) with respect to the L1-metric – must be
rotationally symmetric. We finally end by discussing the counterparts in higher
dimensions.

2 The rich homotopy structure of the space A(X)

In this section we pause briefly to describe the homotopy structure of the space
of continuous self-maps A(X) of the annular region X. This will enable us later
to prove the existence of local energy minimisers for F over Aφ(X). To this end
let X = X[a, b] and consider the space of continuous self-maps A = A(X) =
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{f ∈ C(X,X) : f |∂X = φ} equipped with the uniform topology. A pair of
mappings f0, f1 ∈ A are said to be homotopic, denoted f0

∼= f1, iff there exists
F ∈ C([0, 1]×X,X) such that,

F (0, x) = f0(x), ∀x ∈ X,

F (1, x) = f1(x), ∀x ∈ X,

F (t, x) = φ(x) = x, ∀t ∈ [0, 1] and ∀x ∈ ∂X.

(2.1)

The set of all mappings in A homotopic to a given one, say, f ∈ A – referred to
as the homotopy class of f , is denoted [f ]. As homotopy classes of A partition
A into pairwise disjoint subsets we next show how to effectively enumerate the
sets {[f ] : f ∈ A} and in doing so we note a difference between n = 2 and n ≥ 3.

• (n = 2) We use the winding number of closed plane curves about the origin
to enumerate the homotopy classes {[f ] : f ∈ A}. To do this we fix f ∈ A
and use polar co-ordinates to write for θ ∈ [0, 2π] the circle mapping

ωθ(r) = f |f |−1(r, θ) : [a, b]→ S1, (2.2)

where ωθ(a) = ωθ(b) = φ. This circle mapping has a well defined winding
number that as a result of f being continuous is independent of the choice
of θ ∈ [0, 2π]. The latter correspondence will be denoted hereafter by

f 7→ deg(f |f |−1). (2.3)

Note that this integer agrees with the Brouwer degree of the map resulting
from identifying S1 ∼= [a, b]/{a, b}, justified as a result of ωθ(a) = ωθ(b).

• (n ≥ 3) Fix f ∈ A. Then using the identification X ∼= [a, b] × Sm (where
for convenience we put m = n− 1) it is not difficult to see 4

ω[r](·) = f |f |−1(r, ·) : [a, b]→ Cφ(Sm,Sm), (2.4)

with
ω[a] = ω[b] = φ, (2.5)

uniquely defines an element of the fundamental group π1[Cφ(Sm,Sm)].
Now by considering the action of the special orthogonal group SO(n) on
the sphere Sm – viewed as its group of orientation preserving isometries –
specifically,

E : ξ ∈ SO(n) 7→ ω ∈ C(Sm,Sm), (2.6)

where the assignment E : ξ 7→ ω works by setting

ω(x) = E[ξ](x) = ξx, x ∈ Sm,
4Here as usual φ denotes the identity mapping of the m-sphere onto itself and Cφ(Sm, Sm)

denotes the connected component of C(Sm, Sm) containing φ, that is, the component contain-
ing all mappings with Brouwer-Hopf degree +1.
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it can be shown that the latter induces an isomorphism on the level of the
fundamental groups, i.e.,

E? : π1[SO(n)] ∼= π1[Cφ(Sm,Sm)] ∼= Z2. (2.7)

Thus we are lead to the correspondence

f 7→ deg2(f |f |−1) ∈ Z2. (2.8)

Proposition 2.1. (Enumeration) Let A = A(X) be as described above. Then

• (n = 2) The degree map deg : {[f ] : f ∈ A} → Z is a bijection. Moreover,
for a pair of maps f0, f1 ∈ A,

[f0] = [f1] ⇐⇒ f0
∼= f1

⇐⇒ deg(f0|f0|−1) = deg(f1|f1|−1).

• (n ≥ 3) The degree mod 2 map deg2 : {[f ] : f ∈ A} → Z2 is a bijection.
Moreover, for a pair of maps f0, f1 ∈ A,

[f0] = [f1] ⇐⇒ f0
∼= f1

⇐⇒ deg2(f0|f0|−1) = deg2(f1|f1|−1).

For a proof of the above statement and more detail on the subject of this
section the reader is referred to [26] or [28].

3 The Euler-Lagrange Analysis and the uncon-
strained energy n ≥ 2

The aim of this section is to formulate the Euler-Lagrange equation associated
with F over Aφ(X). Recall that in principle the F energy can become infinite if
|u| is too small or zero, however, for whirl mappings which we are considering
as potential critical points of the energy (or even more generally Ln-integrable
mappings u in Aφ), |u| is bounded away from zero in virtue of u being a self-map
of X onto itself. Thus in this case F[u] < ∞. Additionally we remark that for
the class of mappings just described det∇u is L1-integrable; a conclusion that
may not hold not in general for the unconstrained Sobolev mappings u of class
W 1,2 when n ≥ 3.

Now to formally derive the Euler-Lagrange equations we use the method of
Lagrange multipliers and consider instead the unconstrained energy functional

E[u,X] =

∫
X

[
|∇u|2

2|u|2
− p(x) (det∇u− 1)

]
dx. (3.1)

Here p = p(x) is the stated Lagrange multiplier while it is evident that whenever
u ∈ Aφ(X) we have E[u,X] = F[u,X]. We can now calculate the first variation
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of the unconstrained energy in the usual way by setting d/dε(E[u+εϕ])|ε=0 = 0,
where u ∈ Aφ(X) is sufficiently regular and satisfies |u| ≥ c > 0 in X, and for
all ϕ ∈ C∞c (X,Rn) and ε ∈ R sufficiently small, hence obtaining,

0 =

∫
X


n∑

i,j=1

[
1

|u|2
∂ui
∂xj
− p(x)[cof∇u]ij

]
∂ϕi
∂xj
−

n∑
i=1

|∇u|2

|u|4
uiϕi

 dx

=

∫
X

−
n∑

i,j=1

∂

∂xj

[
1

|u|2
∂ui
∂xj
− p(x)[cof∇u]ij

]
ϕi −

n∑
i=1

|∇u|2

|u|4
uiϕi

 dx

=

∫
X

−
n∑
i=1

 |∇u|2|u|4
ui +

n∑
j=1

∂

∂xj

[
1

|u|2
∂ui
∂xj
− p(x)[cof∇u]ij

]ϕi dx.

As this is true for every compactly supported ϕ an application of the fun-
damental lemma of the calculus of variations results that for each 1 ≤ i ≤ n we
have the equation:

|∇u|2

|u|4
ui +

n∑
j=1

∂

∂xj

[
1

|u|2
∂ui
∂xj
− p(x)[cof∇u]ij

]
= 0.

Proceeding formally or assuming that the desired solution u is at least twice
continuously differentiable an application of the Piola identity to the cofactor
term gives

|∇u|2

|u|4
ui +

n∑
j=1

[
∂

∂xj

(
1

|u|2
∂ui
∂xj

)
− [cof∇u]ij

∂p(x)

∂xj

]
= 0. (3.2)

Therefore expanding the derivative and rearranging terms allows us to write

0 =
|∇u|2

|u|4
ui +

n∑
j=1

[
1

|u|2
∂2ui
∂x2

j

− 2

|u|4
∂ui
∂xj

n∑
k=1

∂uk
∂xj

uk − [cof∇u]ij
∂p(x)

∂xj

]

=
|∇u|2

|u|4
ui +

n∑
j=1

[
1

|u|2
∂2ui
∂x2

j

− 2

|u|4
∂ui
∂xj

[∇utu]j − [cof∇u]ij
∂p(x)

∂xj

]
. (3.3)

Hence transferring the latter into vector notation with u = (u1, ..., un) we have

∆u

|u|2
+
|∇u|2

|u|4
u− 2

|u|4
∇u(∇u)tu = (cof∇u)∇p, (3.4)

and finally invoking the pointwise condition det∇u = 1 results in the system

(∇u)t

|u|2

[
∆u+

|∇u|2

|u|2
u− 2

|u|2
∇u(∇u)tu

]
= ∇p. (3.5)

The Euler-Lagrange system is thus equivalent to (3.5). This is the form of the
equation we shall deal with hereafter in the quest for finding extremising whirl
mappings of the distortion energy F over Aφ(X).
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4 Whirl mappings and the restricted F energy:
A glimpse at n = 3

As previously outlined in the introduction one of the principal aims of the this
paper is to consider and examine a particular class of geometrically motivated
incompressible self-mappings of the annulus X [onto itself] as possible solutions
to the nonlinear system (1.3). These mappings are hereafter called whirl map-
pings and by definition for n = 3 are required to admit the representation

u : x 7→ Q[g](ρ, z)x, (4.1)

where x = (x1, x2, x3), ρ =
√
x2

1 + x2
2 and for brevity and convenience we set

z = x3. Here Q is rotation valued, i.e., Q(·) ∈ SO(3), and additionally has the
specific block diagonal form

Q = Q[g](ρ, z) = diag(R[g], 1) R[g] =

[
cos g − sin g
sin g cos g

]
, (4.2)

where R is a planar rotation matrix and g = g(ρ, z) is called the whirl function.
The whirl functions g are defined on the half vertical open annulus Ω

Ω =

{
(ρ, z) ∈ R2 : ρ > 0 and a < r =

√
ρ2 + z2 < b

}
, (4.3)

whose closure upon a 2π rotation about the z-axis gives X. Also the curved
parts of the boundary are denoted by ∂Ωa and ∂Ωb respectively (see the figure
below).

z

ρ

∂Ωb

∂Ωa

Now it is not difficult to see that any whirl function g = g(ρ, z) lying in any
of the infinite family of functions class Fj defined by

Hj(Ω) =

{
g ∈W 1,2(Ω) : g = 0 on ∂Ωa, g = 2πj on ∂Ωb

}
, j ∈ Z, (4.4)

results in a corresponding whirl mapping u via (1.10) in the class of admissible
mappings Aφ(X). Indeed it is clear from the boundary conditions imposed on
g that u satisfies the identity boundary conditions required by Aφ(X). Ad-
ditionally referring to (4.1)-(4.2), u maps X onto itself and so it remains to
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establish the incompressibility constraint, i.e.,the determinant condition on ∇u.
To see this note firstly that by referring to (4.1)-(4.2) [see also (1.10)] we have
u(x1, x2, z) = (x1 cos g − x2 sin g, x1 sin g + x2 cos g, z) and so the gradient of u
in X can now be obtained by a straightforward differentiation hence giving

∇u =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 (4.5)

=

 cos g − x1(x1 sin g + x2 cos g)gρ/ρ − sin g − x2(x1 sin g + x2 cos g)gρ/ρ
sin g + x1(x1 cos g − x2 sin g)gρ/ρ + cos g + x2(x1 cos g − x2 sin g)gρ/ρ

0 0

−(x1 sin g + x2 cos g)gz
+(x1 cos g − x2 sin g)gz

1

 ,
or equivalently, referring to the explicit form of R[g](ρ, z) and using tensor
notation for brevity,

∇u(x) = diag(R[g], 1) + diag(Ṙ[g], 0)x⊗ (x1gρ/ρ, x2gρ/ρ, gz). (4.6)

Now by noting that the determinant is a quasiaffine function and so in particular
verifies the identity det(In + a⊗ b) = 1 + 〈a, b〉 for all vectors a, b ∈ Rn we can
write

det∇u(x) = det

(
diag(R[g], 1) + diag(Ṙ[g], 0)x⊗ (x1gρ/ρ, x2gρ/ρ, gz)

)
= det (diag(R[g], 1))×

× det

(
I3 + diag(R[g]t, 1) diag(Ṙ[g], 0)x⊗ (x1gρ/ρ, x2gρ/ρ, gz)

)
=1 + 〈diag(R[g]tṘ[g], 0)x, (x1gρ/ρ, x2gρ/ρ, gz)〉 = 1 (4.7)

where in deducing the last equality we have taken advantage of the fact that
the product matrix R[g]tṘ[g] is skew-symmetric hence forcing the inner product
term in the last line to vanishes. Next note that using (4.6) we have

|∇u|2 = tr[∇u]t[∇u] = 3 + ρ2(g2
ρ + g2

z), (4.8)

and so in particular g ∈W 1,2(Ω) =⇒ u = Q[g](ρ, z)x ∈W 1,2(X,R3). Hence in
conclusion by putting all the above together it follows that any whirl function g
of class Hj (j ∈ Z) results in a corresponding admissible whirl mapping u, i.e.,

g ∈Hj(Ω) =⇒ u = Q[g](ρ, z)x ∈ Aφ(X). (4.9)
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Using the same calculation the energy of the whirl mapping u = Q[g](ρ, z)x can
be seen to be given by

F[Q[g](ρ, z)x,X] =
1

2

∫
X

|∇Q[g](ρ, z)x|2

|Q[g](ρ, z)x|2
dx

=
1

2

∫
X

[3 + ρ2(g2
ρ + g2

z)]

|x|2
dx

= π

∫
Ω

[3 + ρ2(g2
ρ + g2

z)]

ρ2 + z2
ρ dρdz

= 6π ln(b/a) + π

∫
Ω

ρ3|∇g|2

ρ2 + z2
dρdz. (4.10)

As the logarithm term in the last line does not contribute to the variational
structure of the energy, in searching for extremisers g = g(ρ, z) to the above
and thus u to the F energy, it suffices to restrict solely to the quadratic energy
integral term in (4.10).

It is then seen that the resulting Euler-Lagrange equation to this fragment
of the energy over the space Hj(Ω) takes the form 5

EL[g; Ω,H] :=


div (ρ3(ρ2 + z2)−1∇g) = 0 in Ω,
g = 0 on ∂Ωa,
g = 2πj on ∂Ωb,
ρ3(ρ2 + z2)−1∂νg = 0 on ∂Ω\[∂Ωa ∪ ∂Ωb].

(4.11)

Note that the equation in the last line above is a result of the whirl function g
being free on the boundary segment ∂Ω\[∂Ωa∪∂Ωb]. In what follows a function
g is referred to as a classical solution to (4.11) iff g ∈ C2(Ω)∩C1(Ω) and (4.11)
is satisfied in the usual pointwise sense. Note that the divergence and gradient
operators here refer to the (ρ, z) plane, i.e.,

div

(
ρ3∇g
ρ2 + z2

)
= ∂ρ

(
ρ3gρ
ρ2 + z2

)
+ ∂z

(
ρ3gz
ρ2 + z2

)
. (4.12)

5 No non-trivial whirl solutions u = Q[g](ρ, z)x
to the system (1.3)-(3.5) for n = 3

The aim of this section is to show that in three dimensions there are no critical
points of the F energy in the form of whirl mappings except for the trivial iden-
tity mapping. The route we follow here is firstly to explicitly compute the solu-
tion to the restricted Euler-Lagrange equation as given above by (4.11) and then
to show that for each j ∈ Z this solution is unique. The ultimate aim of proving
the non-existence of non-trivial whirl solutions to the full Euler-Lagrange (3.5)
then comes down to showing that the whirl mappings corresponding to these
explicit solutions do not grant solutions to the system (3.5).

5Note that for n = 2 the restricted Euler-Lagrange equation takes the form ġ(ρ)+ρg̈(ρ) = 0
with the boundary conditions of g(a) = 0 and g(b) = 2πk while ρ ≡ r.
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Proposition 5.1. The restricted Euler-Lagrange equation (4.11) has a unique
classical solution g = g(ρ, z; j) for each fixed j ∈ Z given explicitly by

g(ρ, z) =
2πjb

b− a

[
1− a√

ρ2 + z2

]
, (ρ, z) ∈ Ω, j ∈ Z. (5.1)

Proof. That g as given above has the required degree of regularity for a classical
solution is evident. For the uniqueness part suppose that g1, g2 are solutions to
this boundary valued problem. Then g = g1− g2 is a classical solution to (4.11)
with zero boundary conditions. Therefore applying the divergence theorem and
taking into account the boundary condition on g gives∫

Ω

div

(
ρ3g∇g
ρ2 + z2

)
dρdz =

∫
Ω

{
ρ3|∇g|2

ρ2 + z2
+ g div

(
ρ3∇g
ρ2 + z2

)}
dρdz

=

∫
Ω

ρ3|∇g|2

ρ2 + z2
dρdz =

∫
∂Ω

ρ3g∇g · ν
ρ2 + z2

dσ = 0.

Note that in view of g1, g2 being classical solutions to (4.11) the vector field
U = (ρ2 + z2)−1ρ3g∇g lies in C1(Ω,R3) ∩ C(Ω,R3) with divU ∈ L1(Ω) and
this justifies the application of the divergence theorem. Therefore,∫

Ω

ρ3|∇g|2

ρ2 + z2
dρdz =

∫
Ω

div

(
ρ3g∇g
ρ2 + z2

)
dρdz = 0. (5.2)

Now as ρ > 0 for ρ ∈ Ω and |∇g|2 ≥ 0 it follows from (5.2) that g ≡ c for
some constant c and due to the zero boundary conditions this gives g ≡ 0 which
in turn implies g1 ≡ g2. Hence the solution g to (4.11) for fixed j ∈ Z is unique.
It remains to show that g = g(ρ, z) as given by (5.1) is a solution to (4.11) and
this follows from direct calculations. Inded, since here we have,

gρ =
∂g

∂ρ
=

2πjab

b− a
ρ

(ρ2 + z2)3/2
, gz =

∂g

∂z
=

2πjab

b− a
z

(ρ2 + z2)3/2
, (5.3)

it is evident that

div

(
ρ3∇g
ρ2 + z2

)
=

∂

∂ρ

ρ3gρ
ρ2 + z2

+
∂

∂z

ρ3gz
ρ2 + z2

=
2πjab

b− a

[
∂

∂ρ

ρ4

(ρ2 + z2)5/2
+

∂

∂z

ρ3z

(ρ2 + z2)5/2

]
.

Then as a result we can write and verify that

∂

∂ρ

ρ4

(ρ2 + z2)5/2
+

∂

∂z

ρ3z

(ρ2 + z2)5/2
=

4ρ3

(ρ2 + z2)5/2
− 5ρ5

(ρ2 + z2)7/2
+

+
ρ3

(ρ2 + z2)5/2
− 5ρ3z2

(ρ2 + z2)7/2
= 0.

Thus it follows at once that the vector field ρ3∇g/(ρ2 +z2) is divergence free
in Ω and so in conclusion g as given by (5.1) is the unique solution to (4.11).
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We are in a position to prove that in three dimensions there are no non-trivial
solutions to the Euler-Lagrange system (3.5) in the form of whirl mappings.

Theorem 5.1. There are no non-trivial critical points of F over Aφ(X) in the
form of a whirl mapping when n = 3.

Proof. We begin by deriving the formulation of the full Euler-Lagrange equation
in terms of the whirl function g for an assumed whirl mapping u = Q[g](ρ, z).
Towards this end we make note of the useful differential identities

(∇u)(∇u)tu = Qx+ 〈∇g, x〉Q̇x, (5.4)

|∇u|2|u|−2 = (3 + ρ2|∇g|2)|x|−2, (5.5)

∆u = 2ρ−1gρQ̇x+ ∆gQ̇x+ |∇g|2Q̈x. (5.6)

Therefore using (5.4)−(5.6) and referring to the Euler-Lagrange system (3.5)
a basic calculation gives

∆u+
|∇u|2

|u|2
u− 2

|u|2
∇u(∇u)tu =

(
2gρ
ρ

+ ∆g − 2〈∇g, x〉
|x|2

)
Q̇x+ |∇g|2Q̈x

+
1 + ρ2|∇g|2

|x|2
Qx. (5.7)

Now since we have ∆g = ∆ρ,zg+gρ/ρ where the ∆ρ,z denotes the Laplacian
with respect to the (ρ, z) variables and ∆ with respect to the (x1, x2, z) variables
we can rewrite this as

∆u+
|∇u|2

|u|2
u− 2

|u|2
∇u(∇u)tu =

(
3gρ
ρ

+ ∆ρ,zg −
2〈∇g, x〉
|x|2

)
Q̇x+ |∇g|2Q̈x

+
1 + ρ2|∇g|2

|x|2
Qx. (5.8)

However recall that,

div

(
ρ3∇g
ρ2 + z2

)
=
ρ3∆ρ,zg

ρ2 + z2
+

(
3ρ2

ρ2 + z2
− 2ρ4

(ρ2 + z2)2

)
gρ −

2ρ3xgz
(ρ2 + z2)2

= 0.

Thus dividing both sides by ρ3/(ρ2 + z2) and taking the negative terms to one
side gives

∆ρ,zg +
3gρ
ρ

= 2

(
ρgρ + zgz
|x|2

)
= 2
〈∇ρ,zg, (ρ, z)〉

|x|2
,

where ∇ρ,z denotes the gradient with respect to the (ρ, z) variables. Now since
〈∇g, x〉 = 〈∇ρ,zg, (ρ, z)〉 we obtain,

∆ρ,zg +
3gρ
ρ

= 2

(
ρgρ + zgz
|x|2

)
= 2
〈∇g, x〉
|x|2

.
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Hence referring to (5.7)-(5.8) and using the above calculations we can write

∆u+
|∇u|2

|u|2
u− 2

|u|2
∇u(∇u)tu =

(
3gρ
ρ

+ ∆ρ,zg −
2〈∇g, x〉
|x|2

)
Q̇x+

+ |∇g|2Q̈x+
1 + ρ2|∇g|2

|x|2
Qx

= |∇g|2Q̈x+
1 + ρ2|∇g|2

|x|2
Qx. (5.9)

Upon multiplying (5.9) by (∇u)t|u|−2 and referring to (3.5) we obtain after
some cancellation that,

∇p =

 p,1
p,2
p,3

 =
(∇u)t

|u|2

[
∆u+

|∇u|2

|u|2
u− 2

|u|2
∇u(∇u)tu

]

=
(∇u)t

|u|2

[
|∇g|2Q̈x+

1 + ρ2|∇g|2

|x|2
Qx

]

=
1

|x|4

(1− z2|∇g|2)x1

(1− z2|∇g|2)x2

(1 + ρ2|∇g|2)z

 = ∇
(
− 1

2|x|2

)
+
|∇g|2

|x|4

−z2x1

−z2x2

ρ2z

 .
Now evidently a necessary condition for the solvability of the above system

for a pressure field p, is for the vector field on the right to be curl-free. This is
therefore seen to leads to the system of equations

∇×∇p = 0 ⇐⇒ ∇×

∇
(
− 1

2|x|2

)
+
|∇g|2

|x|4

−z2x1

−z2x2

ρ2z

 = 0 (5.10)

⇐⇒
∂

∂x2

[
x1(g2

ρ + g2
z)

]
− ∂

∂x1

[
x2(g2

ρ + g2
z)

]
= 0, (5.11)

∂

∂x1

(
ρ2|∇g|2

|x|4
z

)
− ∂

∂z

(
−z

2|∇g|2

|x|4
x1

)
= 0, (5.12)

∂

∂x2

(
ρ2|∇g|2

|x|4
z

)
− ∂

∂z

(
−z

2|∇g|2

|x|4
x2

)
= 0. (5.13)

Next upon writing x1 = ρ cosφ and x2 = ρ sinφ and invoking the differential
identities,

∂

∂x1
=
x1

ρ

∂

∂ρ
− x2

ρ2

∂

∂φ
,

∂

∂x2
=
x2

ρ

∂

∂ρ
+
x1

ρ2

∂

∂φ
, (5.14)

it is a straightforward matter to verify that the latter two equations in the
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above, namely, (5.12) and (5.13), transform into

x1z

ρ

∂

∂ρ

(
ρ2|∇g|2

|x|4

)
+ x1

∂

∂z

(
z2|∇g|2

|x|4

)
= 0, (5.15)

x2z

ρ

∂

∂ρ

(
ρ2|∇g|2

|x|4

)
+ x2

∂

∂z

(
z2|∇g|2

|x|4

)
= 0. (5.16)

The above set of transformed equations after expanding out the brackets and
some basic calculations is seen to reduce into the single equation

ρ
∂|∇g|2

∂ρ
+ z

∂|∇g|2

∂z
= 0. (5.17)

We now examine if the whirl function g as given by (5.1) verifies the above
condition at least for X\{ρ ≡ 0}. Indeed a basic calculation gives

g2
ρ + g2

z =

(
2πjab

b− a

)2
1

(ρ2 + z2)2
, (5.18)

and subsequently

∂

∂ρ

[
(g2
ρ + g2

z)

]
= −4

ρ|∇g|2

ρ2 + z2
,

∂

∂z

[
(g2
ρ + g2

z)

]
= −4

z|∇g|2

ρ2 + z2
. (5.19)

Therefore by substituting into the expression on the left in (5.17) it follows that

ρ
∂|∇g|2

∂ρ
+ z

∂|∇g|2

∂z
=− 4|∇g|2 6= 0, if j 6= 0. (5.20)

Thus as claimed there are no critical points of the F energy in the form of a
whirl mapping other than the identity mapping corresponding to g = 0.

6 L1-local minimisers and the homotopy classes
of Aφ(X) for n = 2

Having dealt with the problem of non-existence in three dimensions we now turn
to the other end of our analysis and consider the case n = 2. Here by referring to
the earlier discussion on enumeration and classification of the homotopy classes
of Aφ(X) we begin writing

Aφ(X) =
⋃
j∈Z
Aj(X), (6.1)

where the sets on the right, hereafter the homotopy classes, are defined by

Aj(X) =

{
u ∈ Aφ(X) : deg(u|u|−1) = j

}
, j ∈ Z, (6.2)

and are pairwise disjoint. This is possible since any u ∈ Aφ(X) has a continuous
representative in A, again denoted by u, which in turn is a consequence of the
Lebesgue type monotonicity of u and degree theory (cf., e.g., [26]).
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Proposition 6.1. The jth homotopy class Aj(X) with j ∈ Z is W 1,2-sequentially
weakly closed. Furthermore for u ∈ Aj(X) and s > 0 there exists δ = δ(u, s) > 0
such that

{v : F[v] < s} ∩ BL
1

δ (u) ⊂ Aj(X) (6.3)

where BL1

δ (u) = {v ∈ Aφ(X) : ||v − u||L1 < δ}.

Proof. Fix j ∈ Z and pick (uk : k ≥ 1) ⊂ Aj(X) so that uk ⇀ u in W 1,2(X,R2).

Then by a classical result of Reshetnyak det∇uk
?
⇀ det∇u (as measures) and

so u ∈ Aφ(X) while uk → u uniformly on X gives by Proposition 2.1 u ∈ Aj(X).
For the second assertion one can argue indirectly. Indeed assuming the contrary
there exists u ∈ Aj(X), s > 0 and (vk : k ≥ 1) such that

vk ∈ Aφ(X),
||vk − u||L1 → 0,
F[vk,X] < s,
while vk /∈ Aj(X).

(6.4)

However by passing to a subsequence (not re-labeled) vk ⇀ u in W 1,2(X,R2)
and as above vk → u uniformly on X. Therefore again by Proposition 2.1,
vk ∈ Aj(X) for large enough k which is a contradiction.

Theorem 6.1. (Local minimisers) Let X = X[a, b] ⊂ R2 and for j ∈ Z consider
Aj(X) as defined by (6.2). Then there exists u = u(x; j) ∈ Aj(X) such that

F[u,X] = inf
v∈Aj(X)

F[v,X]. (6.5)

Furthermore for each such minimiser u there exists δ = δ(u) > 0 such that
F[u,X] ≤ F[v,X] for all v ∈ Aφ(X) satisfying ||u− v||L1 < δ. Thus u is a local
minimiser of F in Aφ(X) with respect to the L1-metric.

Proof. Fix j ∈ Z and pick (vk : k ≥ 1) ⊂ Aj(X) an infimizing sequence:

F[vk,X] ↓ α := inf
v∈Aj(X)

F[v,X]. (6.6)

Then as α < ∞ and a ≤ |v(x)| ≤ b for all v ∈ A(X) it follows that by passing
to a subsequence (not re-labeled) vk ⇀ u in W 1,2(X,R2) and uniformly in X
where by the above discussion u ∈ Aj(X). Now∣∣∣∣∫

X

|∇vk|2

|vk|2
−
∫
X

|∇vk|2

|u|2

∣∣∣∣ ≤ ∫
X

|∇vk|2
∣∣∣∣ 1

|vk|2
− 1

|u|2

∣∣∣∣→ 0 (6.7)

together with ∫
X

|∇u|2

|u|2
≤ lim

∫
X

|∇vk|2

|u|2
(6.8)

gives the desired lower semicontinuity of the distortion energy F on Aφ(X), i.e.,

F[u,X] =

∫
X

|∇u|2

2|u|2
≤ lim

∫
X

|∇vk|2

2|vk|2
= limF[vk,X] (6.9)

16



and so α ≤ F[u] ≤ lim inf F[vk] ≤ α and therefore u as required is a minimiser.
To justify the second assertion fix j ∈ Z and u as above and with s = 1+F[u]

pick δ > 0 as in the previous proposition. Then any v ∈ A with ||u− v||L1 < δ
verifies F[u] ≤ F[v] as otherwise F[v] < F[u] < s gives v ∈ Aj(X) and hence in
view of u being a minimiser, F[v] ≥ F[u] which is a contradiction.

7 Rotational symmetry of an infinitude of L1-
local minimisers via symmetrisation for n = 2

The goal of this section is to strengthen and further improve the results of the
previous section by showing that when n = 2 there is an infinitude of L1-local
minimisers of the distortion energy F over Aφ(X) in the form of whirl mappings.
We do this by invoking a symmetrisation argument, a consequence of which is
that each homotopy class Aj(X) (j ∈ Z) has a unique mapping u = uj (a whirl)
that minimises F over Aj(X). This mapping uj is in fact the one given by

uj : x =

[
x1

x2

]
7→
[
cos gj(r) − sin gj(r)
sin gj(r) cos gj(r)

] [
x1

x2

]
, (7.1)

where the corresponding whirl function g = gj has the explicit description

gj(x) = 2πj
log(r/a)

log(b/a)
, a ≤ r ≤ b, (7.2)

for j ∈ Z and r =
√
x2

1 + x2
2. Firstly we observe that whirl mappings defined

generally by u(x) = Q[g](r)x with x ∈ X and for Q(·) ∈ SO(2) are rotationally
symmetric, specifically,

Ru(Rtx) = RQ[g](r)Rtx = Q[g](r)x, (7.3)

for every R ∈ SO(2) as SO(2) is commutative. This therefore combined with uj
being an L1-local minimisers of F in particular means that F has an infinitude
of rotationally symmetric L1-local minimisers. We now verify that the mapping
uj lies in Aj(X). For this to be the case we must show that the whirl mapping
uj satisfies the incompressible constraint det∇uj = 1 for a.e. x ∈ X and that

deg(uj |uj |−1) =
1

2π

∫ b

a

uj × (uj)r
|uj |2

dr = j. (7.4)

It is a straightforward matter to observe that for any whirl mapping u its
gradient ∇u takes the form

∇u(x) = Q[g](r) +
ġ

r
Q̇[g](r)x⊗ x, (7.5)

and therefore in virtue of Qt[g]Q̇[g] being skew-symmetric we have

det

(
Q[g](r) +

ġ

r
Q̇[g](r)x⊗ x

)
= detQ[g] det

(
I2 +

ġ

r
Qt[g]Q̇[g]x⊗ x

)
= 1 +

ġ

r
〈Qt[g]Q̇[g]x, x〉 = 1. (7.6)
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Thus whirl mappings satisfy the required incompressibility constraint. Next
by referring to earlier discussion a straightforward calculation here results in the
identity (u× ur)|u|−2 = ġ(r) and therefore [note that g ∈W 1,2(a, b)]

deg(uj |uj |−1) =
1

2π

∫ b

a

uj × (uj)r
|uj |2

dr =
1

2π

∫ b

a

ġj(r) dr =
gj(b)− gj(a)

2π
.

Thus using the explicit form of the whirl function gj from (7.2) it follows at
once that,

deg(uj |uj |−1) =
1

2π

∫ b

a

ġj(r) dr = j. (7.7)

Next the whirl mapping uj from (7.1) is a critical point of F over Aφ(X).
Indeed this follows by substituting for u in the full Euler-Lagrange (3.5) and
showing that the right-hand side as required is a gradient. A straightforward
calculation with u = uj here gives

∇p =
(∇u)t

|u|2

[
∆u+

|∇u|2

|u|2
u− 2

|u|2
∇u(∇u)tu

]
=

1

|x|2
[ġj + rg̈j ] (∇u)tQ̇[g]

x

|x|

=
2πj

r2

[
d

dr
+ r

d2

dr2

]
log(r/a)

log(b/a)
(∇u)tQ̇[g]

x

|x|
= 0. (7.8)

Hence uj are solutions to the full Euler-Lagrange equation (3.5) and are thus
critical points of F over Aφ(X) as claimed. Additionally it is not hard to prove
(as seen earlier in the case n = 3) that uj is the unique whirl mapping in Aj(X)
which satisfies the full Euler-Lagrange, and hence is a critical point of F over
Aj(X).

The goal is now to prove that uj is the unique minimiser of F in Aj(X) for
each j ∈ Z. To do this the idea is to first prove that for each u ∈ Aj(X) there
exists a whirl map ū ∈ Aj(X) satisfying

F[u,X] ≥ F[ū,X] (7.9)

with equality only possible if u is a whirl mapping. This would then imply
that any minimiser must be a whirl mapping and since uj is also the unique
minimiser amongst all whirl mappings we conclude that any minimiser must
coincide with uj and therefore the minimiser is unique. [Note that Theorem 6.1
guarantees the existence of at least one minimiser u ∈ Aj(X).] Towards this
end we find it more convenient to use polar co-ordinates and write

u : (r, θ) 7→ (f, θ + g), a ≤ r ≤ b, (7.10)

or more specifically, for the cartesian counterparts, 6

u : x 7→
[
f cos(θ + g)
f sin(θ + g)

]
, x ∈ X, f = f(x), g = g(x). (7.11)

6Note that the lifting above is possible since each u ∈ Aφ(X) has a continuous representa-
tive and u = φ on ∂X.
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Here f, g ∈ W 1,2(X) ∩C(X), as u ∈ Aφ(X), with f(x) = a when |x| = a and
f(x) = b when |x| = b. At times we shall abuse notation and write f, g as
functions of (r, θ) in place of x. The identity boundary conditions of u dictates
that g(a, θ) = 2πk1 and g(b, θ) = 2πk2 for some k1, k2 ∈ Z. Note also that
g(r, θ) = g(r, θ + 2π) and f(r, θ) = f(r, θ + 2π). Now if u ∈ Aj(X) then,

2πj =

∫ b

a

u× ur
|u|2

dr =

∫ b

a

gr(r, θ) dr = g(b, θ)− g(a, θ) = 2π(k2 − k1),

as j = deg(u/|u|) which in turn is the winding number of the continuous closed
curve γθ(r) = (cos(θ + g), sin(θ + g)) for any θ ∈ [0, 2π]. Since a shift of g by a
constant 2πk for k ∈ Z does not change u we can assume without loss generality
from now on that g(a, θ) = 0 and g(b, θ) = 2πj. In the forthcoming proposition
we introduce a particular rearrangement for functions defined on an annulus
that relates to the classical Schwarz rearrangement (see, e.g., [15]).

Definition 7.1. (Annular rearrangement) Let X = X[a, b] ⊂ R2 be an annulus
as before and 0 ≤ f ∈ C(X) with f = 0 on |x| = a. The annular rearrangement
f? of f is the radially symmetric function defined for x ∈ X by

f?(x) = α− h](x), α = sup
X

f. (7.12)

Here h] denotes the Schwarz rearrangement of the function h = α − f in Bb,
with f regarded as extended to Bb by zero off X, that is,

h =

{
α− f on X,

α on Ba.
(7.13)

Let us briefly recall for the ease of the reader that in this two dimensional
context the Schwarz rearrangement of a function h ∈ L1(Bb) is defined by,

h](x) = sup
t
{t ≥ 0 : |At[h]| > π|x|2}, (7.14)

for x ∈ Bb and where At[h] = {x ∈ Bb : h(x) > t}. We now state and prove
a proposition that is the counterpart of the Polya-Szegö inequality for annular
rearrangements. This will assist us in proving the main result of the section.

Proposition 7.1. Let 0 ≤ f ∈ W 1,2(X) ∩C(X), f = 0 on |x| = a and f = α
on |x| = b with α as in (7.12). Then the annular rearrangement f? of f satisfies
f? ∈W 1,2(X), f? = 0 on |x| = a, f? = α on |x| = b and∫

X

|∇f |2 dx ≥
∫
X

|∇f?|2 dx. (7.15)

Proof. Firstly as h ∈ W 1,2
0 (Bb) we have h] ∈ W 1,2

0 (Bb) and thus f? ∈ W 1,2(X)
with f?(x) = α on |x| = b. Furthermore as for the weak derivatives we have the
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R R

Figure 1: The image illustrates how the annular rearrangement for functions
transforms their super-level sets. Indeed the rearrangement R : f 7→ f? spreads
the super-level sets At[f ] = {x ∈ X : f > t} around X and make them annularly
symmetric.

a.e. relation

∇h =

{
−∇f on X,

0 on Ba,
(7.16)

we obtain after utilising the well known Polya-Szegö inequality for Schwarz
rearrangements (see, e.g., [15]) that∫

X

|∇f |2 dx =

∫
Bb

|∇h|2 dx ≥
∫
Bb

|∇h]|2 dx =

∫
X

|∇f?|2 dx, (7.17)

which gives (7.15). Finally since |{x ∈ Bb : h = α}| ≥ πa2 we obtain by the
definition of the Schwarz rearrangement that h](x) = α for x ∈ Ba which in
turn gives that f?(x) = 0 when |x| = a.

With this proposition now at hand we are in a position to prove the main
result of this section on the minimality of whirl mappings in homotopy classes.

Theorem 7.1. For u ∈ Aj(X) there exists a whirl mapping ū ∈ Aj(X) defined
by u(x) = Q[ḡ](r)x (x ∈ X) with associated whirl function ḡ ∈ W 1,2(X) such
that 7

F[ū,X] ≤ F[u,X]. (7.18)

If u is not a whirl mapping the energy inequality (7.18) is strict.

Proof. Firstly by a straightforward calculation using the polar representation of
u we have

|∇u|2 = |∇f |2 +
f2

r2
(1 + 2gθ) + f2|∇g|2, (7.19)

where as before r = |x| and we have set gθ = ∇g · x⊥ = ∇g · (−x2, x1). Hence
it is evident that the distortion energy can be written as

F[u,X] =
1

2

∫
X

|∇u|2

|u|2
dx =

1

2

∫
X

[
|∇f |2

f2
+

1 + 2gθ
r2

+ |∇g|2
]
dx. (7.20)

7The whirl function ḡ as will be seen below is a suitably modified monotone rearrangement
of g. As a result ū is also a monotone whirl mapping on X.
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We now consider each of the three terms in the above integral separately.
Indeed regarding the first term, using the coarea formula for Sobolev functions
(see, e.g., [7, 16]) we can write∫

X

|∇f |
f2

dx =

∫ b

a

∫
{x∈X:f(x)=t}

dH1 dt

t2
. (7.21)

Next since f = |u| ∈ W 1,2(Bb) (here Bb = {|x| < b} and we have extended
u by identity inside Ba = {|x| < a}) the set Dt = {|u(x)| ≤ t} ⊂ Bb is of finite
perimeter for almost every t ∈ (a, b). In virtue of u being incompressible and
hence measure-preserving in this two dimensional setting, we have |Dt| = |Bt|.
Therefore by an application of the isoperimetric inequality in the context of sets
of finite perimeter (see, e.g., [7, 10] for terminology and notation) we have the
chain of relations

H1 ({x ∈ X : f(x) = t}) = H1(∂?Dt) ≥ H1(∂?Bt) = H1 (∂Bt) = 2πt, (7.22)

for a.e. a ≤ t ≤ b where as usual ∂? denotes the reduced boundary. Thus
returning to (7.21) we obtain, in light of the above inequality, the lower bound∫

X

|∇f |
f2

dx =

∫ b

a

∫
{x∈X:f(x)=t}

dH1 dt

t2

≥
∫ b

a

∫
{x∈X:|x|=t}

dH1 dt

t2

≥
∫ b

a

H1(∂Bt)
dt

t2
= 2π ln(b/a). (7.23)

Now upon noting the equimeasurablity of the two functions f and |x| (i.e., that
|{x ∈ X : f(x) > t}| = |{x ∈ X : |x| > t}|) with a ≤ f(x) ≤ b on X we find
that, 8 ∫

X

1

f2
dx = 2π ln(b/a). (7.24)

Thus by an application of Hölder inequality and putting the above together we
arrive at the following lower bound on the first term in (7.20):∫

X

|∇f |2

f2
dx ≥ 2π ln(b/a), (7.25)

with equality occurring in (7.25), due to the equality case of the isoperimetric
inequality, iff f(x) ≡ |x|, that is, when u is a whirl mapping. Hence we have

8Alternatively the identity (7.24) can be seen as an application of Theorem 5.34 on page
145 in [11] for the mappings u ∈ Aφ(X). Note that in the notation of [11] E = X and
N(u,X, y) = 1 for a.e. y ∈ X with N(u,X, y) = 0 otherwise. Additionally in the notation of
[11] let v(x) = |x|−2χX then the stated theorem gives the desired result.
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that (7.18) is strict if u is not a whirl mapping. Next we note that the second
term on the right in (7.20) verifies∫

X

1 + 2gθ
r2

dx = 2π ln(b/a), (7.26)

and hence by a further reference to (7.20) we can write

F[u,X] =
1

2

∫
X

|∇u|2

|u|2
dx =

1

2

∫
X

[
|∇f |2

f2
+

1 + 2gθ
r2

+ |∇g|2
]
dx

≥ 2π ln(b/a) +
1

2

∫
X

|∇g|2 dx.

Finally we are left with the proof of the following inequality

1

2

∫
X

|∇g|2 dx ≥ 1

2

∫
X

|∇ḡ|2 dx, (7.27)

for some whirl function ḡ associated with g in a way that ḡ ∈W 1,2(X) is radial,
ḡ = 0 on ∂Xa and ḡ = 2πj on ∂Xb . Towards this end we offer two different
approaches.

Approach 1. (Annular rearrangement) In this approach we firstly put h =
min(|g|, 2π|j|). Then h ∈ W 1,2(X) ∩C(X), 0 ≤ h ≤ 2π|j| in X and h = |g| on
∂X, while

1

2

∫
X

|∇g|2 dx ≥ 1

2

∫
X

|∇h|2 dx. (7.28)

Thus to prove (7.27) it is enough to show that there exists a radial ḡ ∈W 1,2(X)
with the described boundary conditions such that

1

2

∫
X

|∇h|2 dx ≥ 1

2

∫
X

|∇ḡ|2 dx. (7.29)

Now in order to prove (7.29) we simply recall from Proposition 7.1 that h? ∈
W 1,2(X) with h?(x) = 0 when |x| = a and h?(x) = 2π|j| when |x| = b. Fur-
thermore, by (7.15),

1

2

∫
X

|∇h|2 dx ≥ 1

2

∫
X

|∇h?|2 dx. (7.30)

As a result the stated Polya-Szegö inequality combined together with (7.28) give

1

2

∫
X

|∇g|2 dx ≥ 1

2

∫
X

|∇h|2 dx ≥ 1

2

∫
X

|∇h?|2 dx =
1

2

∫
X

|∇ḡ|2 dx (7.31)

where depending on the sign of j ∈ Z we have set

ḡ =

{
h?, j ≥ 0

−h?, j ≤ 0.
(7.32)
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This therefore gives (7.27) as required. Note that the difference in choice of ḡ for
j ≥ 0 and j ≤ 0 is due to the fact that h?(b) = 2π|j| and we wish to construct
a ḡ such that ḡ(b) = 2πj. Therefore as ḡ(a) = 0 and ḡ(b) = 2πj it is plain to
see that the whirl mapping ū ∈ Aj(X) if u ∈ Aj(X). In particular,

deg(ū|ū|−1) =
1

2π

∫ b

a

ū× (ū)r
|ū|2

dr =
1

2π

∫ b

a

˙̄g(r) dr =
ḡ(b)− ḡ(a)

2π
= j (7.33)

and so we have reached our desired conclusion.

Approach 2. (Averaging) In this approach we find a desired ḡ ∈ W 1,2(a, b)
with ḡ(a) = 0 and ḡ(b) = 2πj which satisfies (7.27) by averaging the initial
function g ∈W 1,2(X). To this end let

ḡ(r) =
1

2π

∫ r

a

∫ 2π

0

∂g

∂r
(r, θ) drdθ, (7.34)

which gives that ḡ(a) = 0 and

2πḡ(b) =

∫ b

a

∫ 2π

0

∂g

∂r
(r, θ) drdθ =

∫
X

∇g · x

|x|2
dx

=

∫
∂X

g
x

|x|2
· ν dH1, (7.35)

with ν denoting the unit outward normal on ∂X and g in (7.35) being understood
in the sense of traces. Therefore as g = 0 when |x| = a and g = 2πj when |x| = b
it follows that ḡ(b) = 2πj. Furthermore, by (7.34) it is plain that ḡ ∈W 1,2(a, b)
and an application of Jensen’s inequality gives,∣∣∣∣∂ḡ∂r

∣∣∣∣2(r) ≤ 1

2π

∫ 2π

0

|∇g|2dθ, (7.36)

for almost every r ∈ (a, b). This in turn gives the desired inequality (7.27).
Thus summerising, upon using either approach, we obtain a ḡ ∈ W 1,2(a, b)

with ḡ(a) = 0 and ḡ(b) = 2πj which satisfies (7.27). Therefore defining the
whirl mapping ū by setting ū(x) = Q[ḡ]x for x ∈ X with ḡ resulting from either
of the approaches, gives, upon using the corresponding inequalities,

F[u,X] ≥ 2π ln (b/a) +
1

2

∫
X

|∇g|2 dx ≥ 2π ln (b/a) +
1

2

∫
X

|∇ḡ|2 dx = F[ū,X].

This therefore concludes the proof.

Remark 7.1. The above result asserts that for each u ∈ Aj(X) (j ∈ Z) there
is a corresponding whirl mapping ū ∈ Aj(X) with strictly less F-energy if u is
not a whirl mapping. Thus any minimiser of F in the homotopy class Aj(X) is
a whirl mapping and as the restriction of F to whirl mappings in Aj(X) admits
a unique minimiser we conclude that the minimiser of F in Aj(X) is unique. In
particular the (rotationally symmetric) whirl minimiser of F in Aj(X) is indeed
an L1-local minimiser of F in Aφ(X).
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Using the above theorem one can establish similar minimising properties on
whirl mappings for a variety of closely related energies. The following is one
such example whose integrand is Dirichlet type and replaces |∇u|2/|u|2 with
|∇u|2/|x|2. (See also the footnotes in the introduction.)

Corollary 7.1. For u ∈ Aj(X) there exists a whirl mapping ū = Q[ḡ](r)x
(x ∈ X) in Aj(X) such that,

G[ū,X] =

∫
X

|∇ū|2

|x|2
dx ≤

∫
X

|∇u|2

|x|2
dx = G[u,X]. (7.37)

Furthermore inequality is strict if u is not a whirl mapping.

Proof. The proof of this corollary is a consequence of Theorem 7.1 above and
the fact that mappings u ∈ Aφ(X) are Sobolev homeomorphisms. In particular
it is shown in [17] (when n = 2) that u ∈ Aj(X) is Sobolev homeomorphisms
with u−1 ∈ A−j(X) and,

∇u(u−1(x)) = (∇u−1(x))−1, (7.38)

for almost every x ∈ X. Then,

F[u,X] =

∫
X

|∇u|2

|u|2
=

∫
X

|∇u(u−1(x))|2

|x|2
dx, (7.39)

where in the last equality we have applied a change of variables formula from
[12] (cf. Theorem 1.8, pp. 280). Now since we know from Theorem 7.1 that
F[ū,X] ≤ F[u,X] we obtain as a result∫

X

|∇ū(ū−1(x))|2

|x|2
dx ≤

∫
X

|∇u(u−1(x))|2

|x|2
dx. (7.40)

Now an application of (7.38) along with the identity |A| = |A−1| for any 2× 2
matrix with det A = 1 we obtain,∫

X

|∇ū−1(x)|2

|x|2
dx ≤

∫
X

|∇u−1(x)|2

|x|2
dx. (7.41)

Finally noting that ū−1 = Q(−ḡ)x ∈ A−j(X) is whirl mapping gives our desired
result.

8 Whirl mappings in higher dimensions n ≥ 3
and a decomposition of the restricted F-energy

In line with what was done earlier we now move on to the higher dimensional case
and investigate whether suitable generalisations of whirl mappings can serve as
critical points of the energy F[u,X] over Aφ(X) and formulate the counterparts
of the results for n = 2 and n = 3 in this context. Towards this end let us begin
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by asserting that a whirl mappings is a continuous self-map of the annulus X
onto itself agreeing with the identity mapping φ on the boundary ∂X and having
the form

u(x) = Q(ρ1, . . . , ρd)x, x ∈ X. (8.1)

Here x = (x1, ..., xn) ∈ X = X[a, b] and for 1 ≤ j ≤ d when n is even, indeed
n = 2d, and 1 ≤ j ≤ d−1 when n is odd, indeed n = 2d−1, we have introduced
and denoted the 2-plane variables

ρj =
√
x2

2j−1 + x2
2j . (8.2)

Furthermore for convenience and uniformity in notation we set ρd = xn when
n = 2d − 1. Next the continuous mapping Q : Ωn ⊂ Rd → SO(n) here has as
its domain of definition the closure of the semi-annular region

Ωn = {ρ = (ρ1, . . . , ρd) ∈ Rd+ : a < |ρ| =
√
ρ2

1 + ...+ ρ2
d < b}, (8.3)

when n = 2d and

Ωn = {ρ = (ρ1, . . . , ρd) ∈ Rd−1
+ × R : a < |ρ| =

√
ρ2

1 + ...+ ρ2
d < b}, (8.4)

when n = 2d−1 respectively. Now in keeping with the earlier lower dimensional
definition of whirl mappings we require u to be invariant under a fixed maximal
torus in SO(n). Indeed we demand any whirl mapping u to be invariant under
the subgroup T ⊂ SO(n) of all planar rotations in the (x2j−1, x2j)-planes with
j ranging as described above. It is well known that here T is a maximal torus
in SO(n) and as such is maximally commutative. This therefore fixes the range
of Q and gives Q ∈ C(Ωn,T), since if u is invariant under T, then

Ru(Rtx) = RQ(ρ)Rtx = Q(ρ)x = u(x), ∀x ∈ X,∀R ∈ T, (8.5)

and so for each ρ ∈ Ωn, Q(ρ) commutes with T, which by definition of T being
maximal commutative implies that Q(ρ) ∈ T. Note that in the above we have
used the fact that ρ(Rx) = ρ for all R ∈ T. In conclusion the whirl mapping
take the form

u(x) = Q(ρ1, ..., ρd)x, ρ = (ρ1, ..., ρd) ∈ Ωn, x ∈ X,

where the mapping Q = Q(ρ1, ..., ρd) admits the specific block diagonal matrix
form as given by Q(ρ1, ..., ρd) = diag(R[g1], ...,R[gd]), that is,

Q(ρ1, ..., ρd) =


R[g1](ρ) 0 · · · 0 0

0 R[g2](ρ) · · · 0 0
...

...
. . .

...
...

0 0 · · · R[gd−1](ρ) 0
0 0 · · · 0 R[gd](ρ)

 (8.6)
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when n = 2d and likewise (and only with the exception of the last block)
Q(ρ1, ..., ρd) = diag(R[g1], ...,R[gd−1], 1), that is,

Q(ρ1, ..., ρd) =


R[g1](ρ) 0 · · · 0 0

0 R[g2](ρ) · · · 0 0
...

...
. . .

...
...

0 0 · · · R[gd−1](ρ) 0
0 0 · · · 0 1

 (8.7)

when n = 2d− 1. Note that in both the above cases we have for suitable real-
valued whirl functions gj = gj(ρ1, ..., ρd) on Ωn the description of the 2 × 2
rotation blocks R[gj ] as in (4.2).

Now to see if and when whirl mappings are admissible mappings, that is, u as
in (8.1) with Q as formulated above lies in Aφ(X), we first check the boundary
condition u ≡ φ on ∂X, for u = Q(ρ1, ..., ρd)x. It is easily seen that this will be
so subject to the whirl functions gj satisfying gj(ρ) = 2πkb for ρ ∈ ∂(Ωn)b and
gj(ρ) = 2πka on ∂(Ωn)a, where ka, kb ∈ Z. We note that here and below ∂(Ωn)a
and ∂(Ωn)b denote the segments of the boundary ∂Ωn where |ρ| takes on the
values a and b respectively. Next we note that upon a further differentiability
assumption on the SO(n)-valued map Q we have

∇u = Q+

d∑
j=1

Q,jx⊗∇ρj . (8.8)

Here Q,j denotes the partial derivative of Q = Q(ρ1, ..., ρd) with respect to
the ρj variable. Therefore to verify the incompressibility constraint we proceed
by directly calculating

det∇u = det

Q+

d∑
j=1

Q,jx⊗∇ρj

 = det

In +

d∑
j=1

QtQ,jx⊗∇ρj

 = 1,

(8.9)

where the last equality follows from the set of identities 〈QtQ,jx,∇ρi〉 = 0 for
1 ≤ i, j ≤ d. Indeed to elaborate further we recall the relation

det

In +

d∑
j=1

aj ⊗ bj

 = 1, (8.10)

for when the set of vectors (ai), (bj) satisfy the mutual orthogonality relations
〈ai, bj〉 = 0 for 1 ≤ i, j ≤ d. Under these assumptions the above identity follows
upon invoking the basic properties of the determinant function and a standard
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induction argument on d. Finally arguing as above we have

|∇u|2 = tr
[
∇u(∇u)t

]
= tr

Q+

d∑
j=1

Q,jx⊗∇ρj

Qt +

d∑
j=1

∇ρj ⊗Q,jx


= tr

In +

d∑
j=1

[Q,jx⊗Q∇ρj +Q∇ρj ⊗Q,jx] +

d∑
j=1

Q,jx⊗Q,jx


= n+

d∑
j=1

|Q,jx|2 +

d∑
j=1

tr (Q,jx⊗Q∇ρj +Q∇ρj ⊗Q,jx) . (8.11)

Now as here we evidently have the identity

tr (Q,jx⊗Q∇ρj) = tr (Q∇ρj ⊗Q,jx) = 〈Q∇ρj , Q,jx〉 = 〈∇ρj , QtQ,jx〉 = 0,

it follows that the third term on the right in (8.11) vanishes and therefore we can
rewrite (below we introduce s = d when n = 2d and s = d− 1 when n = 2d− 1)

|∇u|2 = n+

d∑
j=1

|Q,jx|2 +

d∑
j=1

tr (Q,jx⊗Q∇ρj +Q∇ρj ⊗Q,jx)

= n+

d∑
j=1

|Q,jx|2 = n+

d∑
j=1

s∑
k=1

(gk),jρ
2
k

= n+

s∑
k=1

|∇gk|2ρ2
k. (8.12)

Therefore using the above expansion for the square Hilbert-Schmidt norm of
∇u and after integration over X we have that∫

X

|∇u|2 dx− n|X| =
s∑

k=1

∫
X

|∇gk|2ρ2
k dx

= (2π)s
∫

Ωn

s∑
k=1

|∇gk|2ρ2
k

s∏
j=1

ρj dρ

≤ bs+2(2π)s
s∑

k=1

∫
Ωn

|∇gk|2 dρ <∞, (8.13)

provided for each 1 ≤ k ≤ s we have gk ∈ W 1,2(Ωn). In a similar manner it is
seen that the F energy associated with a whirl mapping u takes the form

F[u,X]− n

2

∫
X

|x|−2 dx =
2sπs

2

∫
Ωn

s∑
k=1

|∇gk|2
ρ2
k

|x|2
s∏
j=1

ρj dρ

=
2sπs

2

s∑
k=1

Hk[gk,Ωn] =
2sπs

2
H[g,Ωn], (8.14)
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where in the penultimate identity we have introduced the auxiliary quadratic
energies Hk (1 ≤ k ≤ s) and their direct sum the H energy given by

H[g,Ωn] =

s∑
k=1

Hk[gk,Ωn]. (8.15)

Here we are using the notation g = (g1, ..., gs) and each quadratic energy sum-
mand Hk has the explicit form

Hk[g,Ωn] =

∫
Ωn

|∇g|2 ρ
2
k

|x|2
s∏
j=1

ρj dρ =

∫
Ωn

|∇g|2ωk(ρ) dρ, (8.16)

where we have set ωk(ρ) = ρ2
k

∏s
j=1 ρj/|x|2 noting that |x|2 =

∑d
j=1 ρ

2
j . Now

since in the formulation of the F energy (8.14), each individual energy summand
Hk depends only on the whirl function g = gk, in the analysis of the resulting
Euler-Lagrange equation we can focus on each of the summands Hk separately
and independently. Now the admissible class of functions for each of the energies
Hk is given by

H (Ωn) =
⋃
j∈Z

Hj(Ωn), (8.17)

where for each fixed j ∈ Z the function space Hj(Ωn) on the right is given by

Hj(Ωn) =

{
g ∈W 1,2(Ωn) : g = 0 on ∂(Ωn)a, g = 2πj on ∂(Ωn)b

}
. (8.18)

Seeking critical points of the F energy in the form of whirl mappings now leads
to the formulation of the Euler-Lagrange equation associated with Hk over each
Hj(Ωn) which is given by

EL[g; Ωn,Hk] :=


div (ωk(ρ)∇g) = 0 ρ ∈ Ωn,

g = 0 ρ ∈ ∂(Ωn)a,

g = 2πj ρ ∈ ∂(Ωn)b,

ω(ρ)∂νg = 0 ρ ∈ ∂Ωn\[∂(Ωn)a ∪ ∂(Ωn)b]

(8.19)

Proposition 8.1. For each 1 ≤ k ≤ s and j ∈ Z the Euler-Lagrange equation
(8.19) has a unique smooth solution g = g(ρ) = g(ρ1, ..., ρn) given explicitly by

g(ρ) = 2πj
an−2bn−2

bn−2 − an−2

 1

an−2
− 1(√∑d

i=1 ρ
2
i

)n−2

 , ρ ∈ Ωn, j ∈ Z.

(8.20)
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Proof. Firstly the proof for uniqueness works exactly as in the case n = 3 and
the details are left to the reader. We are left with verifying that g as given
by (8.20) satisfies (8.19). As the boundary conditions on all three boundary
segments are clearly satisfied in what follows we focus on the first equation in
(8.19), namely, the verification of the fact that the vector field ωk(ρ1, ..., ρd)∇g
is divergence free in Ωn for 1 ≤ k ≤ s. Towards this end note that

∂ρlg(ρ) = 2πj
(n− 2)an−2bn−2

bn−2 − an−2

ρl(√∑d
i=1 ρ

2
i

)n , 1 ≤ l ≤ d, (8.21)

and from now on cn = (2πj(n− 2)an−2bn−2)/(bn−2 − an−2).

Due to the subtle differences in the calculations we treat the cases of n even
and n odd separately. In the first case where we consider n = 2d upon using
(8.21) and setting Uk ≡ ωk(ρ1, ..., ρd)∇g we can write

divUk =cn

d∑
r=1

∂

∂ρr

ρ2
k

d∏
j=1
j 6=r

ρj
ρ2
r(∑d

i=1 ρ
2
i

)d+1


=cn


d∑

r=1
r 6=k

ρ2
k

d∏
j=1
j 6=r

ρj
∂

∂ρr

ρ2
r(∑d

i=1 ρ
2
i

)d+1
+

d∏
j=1
j 6=k

ρj
∂

∂ρk

ρ4
k(∑d

i=1 ρ
2
i

)d+1


=cn


d∑

r=1
r 6=k

ρ2
k

∏d
j=1,j 6=r ρj(∑d
i=1 ρ

2
i

)d+1

2ρr −
(2n+ 2)ρ3

r(∑d
i=1 ρ

2
i

)
+

∏d
j=1,j 6=k ρj(∑d
i=1 ρ

2
i

)d+1
×

×

4ρ3
k −

(2d+ 2)ρ5
k(∑d

i=1 ρ
2
i

)
 . (8.22)

Therefore, it is plain that,

divUk =cn


d∑
r=1

ωk(ρ)(∑d
i=1 ρ

2
i

)d
2− (2d+ 2)ρ2

r(∑d
i=1 ρ

2
i

)
+ 2

ωk(ρ)(∑d
i=1 ρ

2
i

)d


=
cnωk(ρ)(∑d
i=1 ρ

2
i

)d {(2d− (2d+ 2)) + 2} = 0. (8.23)

Thus we have that (8.20) solves (8.19) and is thus the unique solution in the even
dimensional case n = 2d. In the second case n = 2d−1 the main difference stems
from ρd = xn and here the calculations proceed by setting Uk = ωk(ρ1, ..., ρd)∇g
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and writing

divUk =cn


d−1∑
r=1

∂

∂ρr

ρ2
k

d−1∏
j=1
j 6=r

ρj
ρ2
r(∑d

i=1 ρ
2
i

)d+1/2

+

+ ρ2
k

d−1∏
j=1

ρj
∂

∂ρd

 ρd(∑d
i=1 ρ

2
i

)d+1/2


 = cn × (I + II). (8.24)

Then

I =
1(∑d

i=1 ρ
2
i

)1/2

d−1∑
r=1

∂

∂ρr

ρ2
k

d−1∏
j=1
j 6=r

ρj
ρ2
r(∑d

i=1 ρ
2
i

)d
+

+

d−1∑
r=1

∂

∂ρr

 1(∑d
i=1 ρ

2
i

)1/2


ρ2

k

d−1∏
j=1
j 6=r

ρj
ρ2
r(∑d

i=1 ρ
2
i

)d


= I1 + I2, (8.25)

where the term I1 simplifies to

I1 =

d−1∑
r=1

ωk(ρ)(∑d
i=1 ρ

2
i

)d−1/2

2− 2dρ2
r(∑d

i=1 ρ
2
i

)
+ 2

ωk(ρ)(∑d
i=1 ρ

2
i

)d−1/2

=
ωk(ρ)(∑d

i=1 ρ
2
i

)d−1/2

(
2d− 2d

∑d
i=1 ρ

2
i − ρ2

d∑d
i=1 ρ

2
i

)
= 2d

ωk(ρ)ρ2
d(∑d

i=1 ρ
2
i

)d+1/2
, (8.26)

and I2 is given by,

I2 = −
d−1∑
r=1

ωk(ρ)ρ2
r(∑d

i=1 ρ
2
i

)d+1/2
= − ωk(ρ)(∑d

i=1 ρ
2
i

)d+1/2

(
d−1∑
r=1

ρ2
r

)
. (8.27)

Then it can be easily seen via a straightforward calculation that

II =
ωk(ρ)(∑d

i=1 ρ
2
k

)d−1/2

(
1− (2d+ 1)ρ2

d∑d
i=1 ρ

2
i

)
. (8.28)

Hence by putting the above calculations and derivations together it is seen at
once that

divUk =cn × (I + II)

=
cnωk(ρ)(∑d
i=1 ρ

2
k

)d−1/2

(
1−

(2d+ 1)ρ2
d − 2dρ2

d +
∑d−1
r=1 ρ

2
r∑d

i=1 ρ
2
i

)
= 0. (8.29)

30



Therefore (8.20) is also the unique solution to (8.19) when n = 2d− 1.

Remark 8.1. Upon writing r =
√
x2

1 + ...+ x2
n =

√
ρ2

1 + ...+ ρ2
d it is easily

seen that for each fixed j ∈ Z the solution g = gj as given by (8.20) to (8.19)
can be expressed with a slight abuse of notation as

gj(ρ1, ..., ρd) = gj(r) = d(j)− c(j)

rn−2
, (8.30)

with the coefficients c(j) and d(j) given by

c(j) = 2πj
an−2bn−2

bn−2 − an−2
, d(j) = 2πj

bn−2

bn−2 − an−2
. (8.31)

Thus for every j = (j1, ..., js) ∈ Zs there is a critical point of H in the form
g = (gj1(r), ..., gjs(r)) with a corresponding whirl mapping of the specific form
u(x) = Q(r)x, x = (x1, ..., xn) ∈ X with Q ∈ C∞([a, b],T) as in (8.6) and (8.7).

9 Higher dimensional whirls as solutions to the
Euler-Lagrange system (1.3)-(3.5) for n ≥ 3

The goal of this section is to prove Theorem 9.1 below which is the higher
dimensional counterpart of what was seen earlier for n = 2 and n = 3.

Theorem 9.1. Consider the energy F[u,X] over the space of admissible map-
pings Aφ(X) with the associated system of Euler-Lagrange equations (3.5). Then
the following hold:

• (n even) Here (3.5) admits an infinitude of plane-symmetric whirl map-
pings as solutions. These are solutions in the form u = Q[g](r)x with Q
as in (8.6) and g1 = · · · = gn/2 = g with the whirl function g given by
(8.20)

• (n odd) The only whirl solution to (3.5) is the identity mapping u = φ.

Proof. This follows by direct verification. First recall that the system of Euler-
Lagrange equations takes the form

(∇u)t

|u|2

[
∆u+

|∇u|2

|u|2
u− 2

|u|2
∇u(∇u)tu

]
= ∇p. (9.1)

The proof now comes to showing that when u is a whirl mapping as described
in the last remark the resulting left hand side in (9.1) is a gradient only when
the conditions given in the theorem on g = (g1, ..., gd) are met. Towards this
end we first note that for such u we have

Q̇ =
BQ

rn−1
, Q̈ = −

[
(n− 1)B − r2−nB2

] Q
rn
, (9.2)
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where the n× n skew-symmetric matrix B has the specific block-diagonal form

B = diag(c1J , ..., cd−1J , cdJ ), n = 2d, (9.3)

and

B = diag(c1J , ..., cd−1J , 0), n = 2d− 1, (9.4)

for suitable scalars c1, ..., cd−1, cd and J = R[π/2], that is the rotation matrix
by angle g = π/2. Now after a set of lengthy but straightforward calculations
starting with u = Q(r)x as described we have

∇u = Q+ r2−nBQθ ⊗ θ,
(∇u)t = Qt + r2−nθ ⊗BQθ,

|∇u|2 = tr[(∇u)(∇u)t] = n+
|BQθ|2

r2(n−2)
, (9.5)

and subsequently

∆u =

[
(n+ 1)B

rn−1
− r

(
(n− 1)B

rn
− B2

r2n−2

)]
Qθ =

[
2B

rn−1
+

B2

r2n−3

]
Qθ. (9.6)

Likewise we obtain the following where for the ease of notation we shall write
ω = Qθ

∇u(∇u)t

|u|2
u =

1

r

[
Q+ r2−nBω ⊗ θ

] [
Qt + r2−nθ ⊗Bω

]
ω

=
1

r

[
I +

Bω ⊗ θQt +Qθ ⊗Bω
rn−2

+
Bω ⊗Bω
r2n−4

]
ω

=
1

r

[
I +

Bω ⊗ ω + ω ⊗Bω
rn−2

+
Bω ⊗Bω
r2n−4

]
ω

=
1

r
(I + r2−nB)ω. (9.7)

Note that in concluding the last identity here we have used the basic relations
〈ω, ω〉 = 〈Qθ,Qθ〉 = 1 and 〈Bω, ω〉 = 0 in virtue of B being skew-symmetric.
Now using (9.5)

∆u+
|∇u|2

|u|2
u =

[
2
B

rn−1
+

B2

r2n−3
+

1

r

(
n+
|Bω|2

r2n−4

)
I

]
ω, (9.8)

and so together with (9.7) and (9.8) we obtain

∆u+
|∇u|2

|u|2
u− 2

∇u(∇u)t

|u|2
u =

[
B2 + |Bω|2I

r2n−3
+
n− 2

r
I

]
ω. (9.9)
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Finally another calculation using (9.5) results in

(∇u)t

|u|2
(9.9) =

1

r2

[
Qt +

θ ⊗Bω
rn−2

] [
B2 + |Bω|2I

r2n−3
+
n− 2

r
I

]
ω

= Qt
[
B2 + |Bω|2I

r2n−1
+
n− 2

r3
I

]
ω +

(θ ⊗Bω)B2ω

r3n−3

= Qt
[
B2 + |Bω|2I

r2n−1
+
n− 2

r3
I

]
ω. (9.10)

Notice that the last equality here results from (θ ⊗Bω)B2ω = 〈Bω,B2ω〉θ = 0
as B is skew-symmetric. Now

|Bω|2 = |BQθ|2 = |Bθ|2 =
d∑
i=1

c2i
ρ2
i

r2
. (9.11)

As B and Q are block diagonal with each corresponding block commuting.
Additionally we have that,

∇
(
|Bx|2

|x|2n

)
= −2

B2x

|x|2n
− 2n

|Bx|2x
|x|2n+2

(9.12)

Therefore (9.10) can be written as,

(∇u)t

|u|2
(9.9) = ∇

(
− |Bx|

2

2n|x|2n

)
+
n− 1

n

B2x

|x|2n
+∇

(
−n− 2

|x|

)
. (9.13)

By inspection it is evident that (9.13) is a gradient iff the term B2|x|−2Nx is a
gradient. However since

x

|x|2n
= ∇

(
− 1

2n|x|2n−2

)
, (9.14)

and B2 is diagonal: B2 = diag(c21, . . . , c
2
d) upon invoking the curl-free constraint

on gradients it is easily verified that this can happen only if all the entries of B2

are equal, i.e., c21 = c22 = · · · = c2d. But when n = 2d− 1 we have cd = 0 giving
B = 0 and so the only whirl mapping satisfying the Euler-Lagrange equation is
the identity mapping. In contrast when n = 2d the condition c21 = c22 = · · · = c2d
corresponds to g1 = · · · = gd = g and we use (8.30).
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[16] J. Malý, D. Swanson, W. Ziemer, The co-area formula for Sobolev map-
pings, Trans. Amer. Math. Soc., Vol. 355, 2003, pp. 477-492.

[17] C. Morris, A. Taheri, On the Uniqueness and Monotonicity of Energy
Minimisers in Homotopy Classes and Related Problems, Submitted, 2017.

[18] C.B. Morrey. Multiple Integrals in the Calculus of Variations, Classics in
Mathematics, Vol. 130, Springer, 1966.

34



[19] Y.G. Reshetnyak, Space Mappings with Bounded Distortion, Translations
of Mathematical Monographs, Vol. 73, AMS, 1989.

[20] S. Rickman, Quasiregular Mappings, A Series of Modern Surveys in Math-
ematics, Vol. 26, Springer, 1993.

[21] M.S. Shahrokhi-Dehkordi, A.Taheri, Generalised twists, stationary loops
and the Dirichlet energy over a space of measure preserving maps, Calc.
Var. & PDEs, Vol. 35, 2009, pp. 191-213.

[22] M.S. Shahrokhi-Dehkordi, A. Taheri, Generalised twists, SO(n), and the
p-energy over a space of measure preserving maps, Annales de l’Institut
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