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Abstract. We present an algorithm that determines the link center of a simple 

n-vertex polygon P in O(n log n) time. The link center of a simple polygon is the set 

of points x inside P at which the maximal link-distance from x to any other point 

in P is minimized. The link distance between two points x and y inside P is defined 

to be the smallest number of straight edges in a polygonal path inside P connecting 

x and y. Using our algorithm we also obtain an O(n log n)-time solution to the 

problem of determining the link radius of P. The link radius of P is the maximum 

link distance from a point in the link center to any vertex of P. Both results are 

improvements over the O(n 2) bounds previously established for these problems. 

1. Introduction 

This pape r  describes an  efficient a lgor i thm for de termining  the link center of a 

simple polygon.  The  l ink center  was first in t roduced by  Lenhar t  et al. [113]; we 

recall the definition. A path between a pa i r  of  poin ts  v and  w in a simple po lygon  

P is a po lygonal  line inside P connecti~ng v and w. The  link distance dL(v, w) between 

v and w is the min imum number  of segments (straight edges) required to  connect  

- . - . . -_ .=._ . .  
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Fig. I. A polygon P and its link center. 

v to w. The link center is now defined as the set of all points c in P for which the 
maximum link distance between c and any point in P is minimized; it is denoted 

by LC. See Fig. 1 for an illustration of the link center. 
The link-center problem has several potential applications. It could be applied 

to locating a transmitter so that the maximum number of retransmissions needed 

to reach any point in a polygonal region is minimized, or to choosing the best 

location for a mobile unit minimizing the minimum number of turns needed to 

reach any point in a polygonal region. 
Suri [15] first introduced the notion of link distance. As a result of intensive 

research on link-distance problems and on the related visibility problems (e.g., [8], 

[14], and [16"]), several new upper bounds have been established. In particular, a 

linear-time algorithm for computing the link distance between any pair of points 
in a triangulated polygon [15] has been developed (such a triangulation can now 

be determined in linear time by the recent result of Chazelle [5]). Suri [16] also 

gave an O(n log n)-time algorithm for calculating the link diameter of a simple 

n-vertex polygon P. Here the link diameter of P is the maximum link distance 

between any two points of P; the link diameter is realized between two vertices 

of P. It is denoted by D. 
As yet,' no efficient algorithm for the problem of finding the link center of a 

simple polygon has been designed. The best algorithm currently known for finding 

the link center has a worst-case time complexity of O(n ~) [10]. In their paper, 

Lenhart et ai. [10-] pose the problem of finding the link center (or at least one 
point inside) in subquadratic time. They also discuss the related problem of 

determining the link radius of a simple polygon. The link radius of P is the 

maximum link distance from a point in the link center to any vertex of P; it is 

denoted by R. The approach discussed in [10"] for determining the link radius has 
a worst-case run-time of O(n2). 

In contrast, recall that the geodesic distance is the minimum (Euclidean) length 

of a path between two points and a minimum oeodesic path is the shortest path 
connecting the points. A minimum link path and the minimum geodesic path 

connecting the same pair of points may be quite different as illustrated in Fig. 2. 

The notion of geodesic center is defined analogously to that of link center. The 

problem of finding the geodesic center has been solved in O(n log n) time in [12], 
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Fig. 2. A minimum link path (shaded) and the distinct minimum geodesic path (bold) connecting the 
vertices v and w. 

Solving link-distance problems seems to be more difficult than solving the 

corresponding problems using the geodesic distance measure. The difficulties stem 

from the fact that several minimum link paths may exist connecting a given pair 

of vertices, while the minimum geodesic path is always unique. 

In this paper we present an O(n log n) algorithm that finds the link center of 

any n-vertex simple polygon P. By applying our algorithm, we also obtain an 

O(n log n)-time solution to the problem of determining the link radius of P. A 

preliminary version of this paper has been presented in [7]. An alternate method 

has been developed by Ke [9]. 

This paper is organized as follows. In Section 2 we give some relevant 

background. In Section 3 we present an O(n log n)-time algorithm which de- 

termines a diagonal, called central diagonal, of P. (A diagonal of P is a segment 

inside P connecting two vertices of P.) It is shown that the link center is located 

in the vicinity of a central diagonal. In Section 4 we characterize regions whose 

intersection produces the link center and we describe the global structure of the 

algorithm. In Section 5 we show how to produce these regions efficiently. The 

knowledge of a central diagonal will aid in this. In Section 6 we describe the 

efficient computation of the link center as an intersection of these regions. Section 

7 gives some extensions and further applications of our techniques. 

2. Relevant Background and Notation 

2.1. Link Radius 

We first discuss the relationship between the problems of determining the link 

center and the link radius of a simple polygon. Let P be an n-vertex polygon. 

(Unless otherwise stated all polygons are simple and specified as a list of their 

vertices in counterclockwise order with no three consecutive collinear vertices.) 

The relation between the link radius and the link diahaeter of P is based on the 
following theorem. 

Theorem 2.1 [10]. For any polyoon P, the link radius R of P is either FD/2"] or 

['1)/2"] + 1, where O is the link diameter of P. 
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The link diameter can be found in O(n log n) time by a result in [16]. Theorem 

2.1 implies that any O(n log n) algorithm for constructing the link center which is 
based on knowledge of the exact value of R, i.e., the algorithm returns the empty 

set, can be used to find the link center in O(n log n) time (this has also been observed 

in [10]). In order to do this, first apply such an algorithm on P assuming that 
R = [-D/2-t. If R is equal to FD/2-] the algorithm produces the (nonempty) link 

center. Otherwise, apply the algorithm again, this time with R = I-D~2-] + 1. 

Corollary 2.2. The O(n log n) algorithm for finding the link center presented here 
implies an O(n log n)-time algorithm for determining the link radius of an n-vertex 

polygon. 

2. 2. Notation 

In this paper the following notation is used. The segment inside P joining two 
points a and b is denoted by segment(a, b) (or (a, b) for short). The visibility region 
of a point q in P is the set of all points z in P which are visible from q, i.e., for 

which segment(q, z) is contained in P. The boundary of the visibility region of q 

defines a polygon within P called the visibility polygon Vis(q, P) of q. For a given 
segment s and a point q in P, q is said to be visible from s if there exists at least 

one point z of s such that q is visible from z. The visibility region of a segment s 

in P consists of all points q in P visible from s; the boundary of the visibility 

region forms a polygon called visibility polygon Vis(s, P). As a generalization we 

define VisPol(d, i, X) to be the polygon containing all points of a polygon X at 

link distance at most i from d. Unless otherwise stated, VisPol(d, i) stands for 

VisPoi(d, i, P). 

2.3. Techniques Used 

We use the following techniques developed for solving visibility problems inside 

any triangulated simple n-vertex polygon P: 

1. For any segment s in P, Vis(s, P) can be computed in O(n) time [8], 1-17]. 

2. Given a fixed edge e of P, P can be preprocessed in O(n) time so that, given 

any point x inside P, the subsegment of e of the points visible from x can 

be constructed in O(log n) time [81 [13]. 
3. A triangulated polygon P can be preprocessed in O(n) time so that, given 

any point x inside P and any direction u, the first point on the boundary of 

P hit by the ray in direction u from x can be computed in O(log n) time [8]. 
Such an operation is called a shooting query and the first segment of the ray 

inside P is called the shot. 

3. Locating a Region Containing the Link Center 

In this section we characterize a "small" region inside a given n-vertex polygon 

P which contains the link center of P. We can determine this region in O(n log 11) 



An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 135 

time. The region serves as an approximate location of the link center and guides 

the subsequent efficient search for the precise location of the link center. 

3.1. Notation 

We introduce some important notation. Let s be any segment in P. Then 

the covering radius CovRad(s, P) of s is defined by 

CovRad(s, P) = max min dL(q, p). 
peP q e s  

Let d be any edge of a given triangulation of P. For  the remainder of this 

section we denote the polygons defined by the partitioning of P induced 

by d as Pl(d) and P2(d). The coverin# difference of d in P is the value 

I CovRad(d, el(d)) - CovRad(d, e2(d))l. 
A diagonal with minimum covering difference among all diagonals induced by 

the given triangulation is called a central dia#onal. 

The covering radius pair of d, CR(d), is the pair of covering radii of d in P~(d) 

and P2(d). (When no ambiguity arises we use P1, P2, and CR instead of Pl(d), 

P2(d), and CR(tO, respectively.) 

3.2. Determinin# a Central Diagonal 

We first describe the location of the link center with respect to an arbitrary 

diagonal of P. Then we give an algorithm to find a central diagonal d of P and 

show that the link distance from d to any point of the link center is no more than 

two. Thus the region VisPol(d, 2, P) contains the link center and provides an 

approximate location of the link center. 

Lemma 3.1. Let d' be a diagonal of P for which CR(d') = (cl, c2), cl > c2. Then 

VisPol(d', R - c2 + 1, P) contains the link center of P. 

Proof. Let d' be the diagonal with CR(d') = (cD c2), cl > c2. Let P~, P2 be the 

subpolygons induced by d' such that CovRad(d', Pi) = ci, i = 1, 2. Assume that q 

is a point of the link center of P that does not belong to VisPol(d', R - c2 + 1, P). 

We first assume that Pl  is that polygon among P1 and P2 which contains q. Since 

CovRad(d', P2) = c2, there exists a point v of Pz such that dL(z, v) ~ c2 for each z 

on d'. Now construct a minimum link path p = (Pl . . . . .  Pk) from q = p~ to v = Pk- 

Since q is in P~ the path p intersects d', say at point z'. Furthermore, q is not in 

VisPol(d',R - c 2  + 1, P) and thus z' is on segment (Pi, Pt+l), for i > R - c 2  + 1. 

From dL(z',v)>c2 it follows that k > i + c  2 - 1 > ( R - c 2 + 1 ) + c  2 - 1 >  

R + 1. Hence q does not belong to the link center of P. 

Analogously, if we assume that P2 contains q, there exists a point v of P~ for 

which dL(q, v) > (R -- c 2 + I) + c~ -- 1 > R + 1 (The latter inequality holds since 

by assumption cl > c2.) []  
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L e m m a  3.2. The covering difference of  a central diagonal is at most one. 

Proof. Assume by contradict ion that  the covering difference for all edges of a 

given triangulation of the simple polygon P is at least two. Let A be a triangle of 

the tr iangulation containing at least one point, p, of the link center, denoted by 

LC. Denote  the covering radii of  the edges of  A as per Fig. 3. Since p is in LC it 

follows that  al ,  hi, and cl are no larger than R. Since R is the link radius at least 

one of  these covering radii is at least R - 1. Assume that cl = m a x { a ,  bl, c~}. 

Two cases arise: (1) cl = R - 1 and (2) cl = R. 

(1) Assume that c ~ = R - 1 .  By the initial assumption, c 2 > R + l  or 

c2 < R - 3 .  Consider the case c 2 > R + 1. The point p i~s in LC and thus 

c2 = R + 1. F r o m  cl = max{a 1, bl, c~} it follows that  both a~ and b~ are at most 

R -- 1. Now, side c sees each of  other  sides which contradicts that  c2 = R + 1. 

(The case where c2 < R - 3 is handled analogously to case (2)'below.) 

(2) Assume now that  cl = R. In the given triangulation of P the edge c is 

adjacent to another  triangle A' whose edges are called c, f, and g. Denote by Pc, 

P:, and Pg the subpolygons induced by c, f ,  and g, respectively, which are not 

containing A. (See Fig. 3 for an illustration.) Assume first that  CR(f )  or CR(g) 

equals (R, R -- 2), without loss of  generality say that CR( f )  = (R, R -- 2). Sub- 

polygon Pc (equal to P f, and Pg and A'), contains at least one more triangle than 

P:, and thus to complete the proof  in this case, we can apply induction on the 

number  of triangles of  Pc. 

Assume now that neither CR(f )  nor  CR(g) equals (R, R - 2). Without  loss of 

generality assume further that CovRad(f, P :) >_ CovRad(g, Pg). Let CR( f )  = 

(rl, rz), where r 1 = CovRad(f, P:) (as depicted in Fig. 3); then r 1 > R - 1. It is 

now straightforward to check that no pair (r~, rz) satisfying all of  the conditions 

I r l  - -  r21 > 2, (rl, r2) v ~ (R, R - 2), R -- 1 < rl < R, and R - 2 < r 2 exists. [ ]  

L e m m a  3.3. In any simple polygon with covering radius R there exists a central 

diagonal with a covering radius to either side being at least R - 1. 

Fig. 3. Notation of Lcmma 3.2. 
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Proof. Let d be a central diagonal of P with the covering radius pair (cl, c2); 

assume that c t > c 2. Then from Lemma 3.2 it follows that cl - c2 < 1. Since R 

is the link radius neither c 1 > R and c 2 > R nor cl < R -- 2 and c 2 < R - 2 are 

possible. Therefore it will be enough to prove that (cl, c2)#  ( R -  1, R -  2). 

Although a triangulation edge d may exist with the covering radius pair (R - 1, 

R - 2), we will show that d could not minimize the value cl - c2. Assume the 

contrary, i.e., let the covering difference of any edge of the triangulation be at least 

one and let d be a central diagonal with the covering radius pair (R - 1, R - 2). 

For any triangulation edge e, let P(e) be the subpolygon of P determined by e 

with the greater covering radius from e. Let d' be a triangulation edge with the 

covering radius pair (R - 1, R - 2) such that no other edge d" with the covering 

radius pair equal to (R - 1, R - 2) and P(d") c P(d') exists. 

Assume for ease of notation that d' is vertical. Without loss of generality let 

the covering radii to the left be R -- 2 and to the right be R - 1. Let the triangle 

adjacent to d' and to the right of d' have edges d', dr, and db. For one of dr or db, 

say dr, the covering radius pair is (R 1, R2) with R~e {R - 1, R - 2}, i = 1, 2, and, 

since d' minimizes the value Ict - c21, Rt # R2. Let R~ be the covering radius of 

d r with respect to the subpolygon induced by dr that contains d' and let R 2 be the 

other covering radius. In case R~ equals R -  2 the argument is repeated by 

replacing d' by d,. Consider now the second case, R~ = R - 1 and R 2 = R - 2. 

Then d b cannot be an edge of the polygon. Otherwise, any point in the triangle 

would reach all other points in at most R - 1 links. This contradicts the defini- 

tion of R. Thus db is an edge of the triangulation and has the covering radius 

pair ( R * , R -  1), where R* is either R -  1 or R - 2 .  In the former case we 

obtain a contradiction to the fact that the covering difference of any edge is 

at least one; the latter case contradicts the choice of d' (we should have chosen db 

instead of d'). [ ]  

L e m m a  3.4. The polygon VisPol(d, 2, P) of a central diagonal d contains the link 

center of the simple polygon P. 

Proof Let d be a central diagonal of P. By Lemma 3.3, the covering radius of 

d to either side is at least R -- 1. By Lemma 3.1, VisPol(d, R - (R - 1) + 1, P) = 

VisPol(d, 2, P) contains the link center. (In case the minimum covering radius 

is R, VisPol(d, 1, P) contains the link center.) [ ]  

The proof of Lemma 3.3 provides a method for finding a central diagonal of  

a simple polygon. Algorithm 3.1 given below determines a central diagonal d of  

P more efficiently, in O(n log n) time. The algorithm uses the dual graph of the 

triangulation graph of P. The dual graph T of a triangulation of P is constructed 

by associating a vertex of T for each triangle of the triangulation of P and joining 

a pair of vertices if their corresponding triangles share an edge of the triangulation 

of P. T is a binary tree and a one-to-one correspondence exists between the edges 

of T and the internal edges of the triangulation of P. (See [4], [8], and [10] for 

other algorithms based on this idea.) We use the following well-known fact stated, 

e.g., in [11] and [6]. 
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Lemma 3.5. For any binary tree T with n vertices there exists an edge of T whose 

removal divides T into two subtrees of no more than 2n/3 + 1 vertices each. Such an 

edge can be found in O(n) time. 

We now state the algorithm for finding a central diagonal of a simple polygon. 

Aigodthm 3.1. Finding a central diagonal 

Input: A simple polygon and its triangulation T' 

Output: A central diagonal d 

If the triangulation T' consists of a single edge 

then output this edge and stop 

else find an edge d of the triangulation of P whose corresponding edge 

in T' divides T' into two subtrees Tl and T2 each containing no 

more than 2IV(T')[/3 + 1 vertices, where V(T') denotes the 

vertex set of T' and I V(T')I denotes its cardinality. 

Compute the covering radii c 1, c2 of d and assume that c~ > Cz. 
Let T~ be the subtree corresponding to that subpolygon induced by 

d whose covering radius is ci and let T2 be the other subtree of T'. 

If  c2 > R - 1 then stop 

else apply the algorithm recursively for T' = T~. 

The correctness and the time complexity of Algorithm 3.1 are established in 

the following theorem. 

Theorem 3.6. In O(n log n) time Aloorithm 3.1 finds a central diagonal d for any 

n-vertex simple polyoon P. 

Proof. First we establish the time complexity of Algorithm 3,1. Let T be the tree 

corresponding to the triangulation of P. We perform Algorithm 3.1 initially letting 
T' equal T. Since the covering radii of an edge of a triangulation of P can be 
determined in linear time [16], each of the O(log n) iterations of the algorithm 
takes O(n) time. (Note that in general P is different from the polygon associated 
with T'.) This yields an O(n log n)-time bound on the running time of Algorithm 

3.1. It remains to establish the correctness of the algorithm. Every time Algorithm 

3.1 is recursively called it holds that c2 = min{cl, c2} < R - 2. Each diagonal of 
that subpolygon of P determined by c2 has covering radius pair (c~, c[) where 

min{c'~, c[} < R - 2. By Lemma 3.3 such a diagonal cannot be a central diagonal. 

Thus the portion of P corresponding to T2 does not contain a central diagonal. 

Consequently, Algorithm 3.1 correctly examines only T1 for any subsequent 

iteration. [] 

Since the visibility polygon from a segment can be computed in linear time, 

Corollary 3.7 follows by Lemma 3.4 and Theorem 3.6. 

Corollary 3.7. In O(n logn) time a diayonal d can be identified such that the link 

center is contained in the polygon VisPol(d, 2, P). 
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4. The Algorithm 

As we recall, in Section 4.1, Lenhart et al. show that the link center of P can be 

computed as the intersection of a particular set of subpolygons, called neighbor- 

hood polygons, of P. The total size of these polygons does not allow for an efficient, 

i.e., O(n log n), solution to compute this intersection. Thus, in Section 4.2 we define 

a smaller set of subpolygons whose intersection still gives the link center, but 

which can be identified and intersected efficiently. To accomplish this we use the 

central diagonal obtained in Section 3 which provides us with an approximate 

location of the link center. In Section 4.3 we give an outline of the entire algorithm 

to compute the link center. The details of the algorithm are subsequently discussed 

in Section 5. 

4.1. Neighborhood Polygons 

We restate some notation and two facts from [10]. The k-neighborhood about a 
point z in P is defined by 

Nk(Z) = {Z' ~ PIdL(z, z') < k}. 

Fact 4.1 [10]. Let i _> 1 and let v be a point of P. The Ni(v ) region is a subpolygon 

of P whose vertices all lie on the boundary of P and whose edges are of the 
following two types: 

(1) a (portion of an) edge of P; 

(2) a segment (r, z) connecting a reflex vertex r of P to a point z on the boundary 
of P. 

Fact 4.2 [10]. The link center of a polygon P is the intersection of the sets NR(v) 
over all convex vertices v of P, where R is the link radius of P. 

From Lemma 3.4 it follows that to compute the link center it suffices to find 

the intersection over all convex vertices of P at distance at least R - 3 from a 
central diagonal. 

4.2. Boundary Seffment Polygons 

Assume that we have executed Algorithm 3.1 and obtained a central diagonal d 

of P. Using a linear-time segment-visibility algorithm (e.g., [8]) we determine the 

polygon VisPoi(d, 1). In linear time we can construct the window tree W as 

introduced by Suri [16]. We first recall the constructive definition. 

On the boundary of VisPot(d, I), several segments, called lids of P, that do not 

belong to the boundary of P may exist. Each lid divides P into two subpolygons, 

the one which does not contain VisPol(d, 1) is called a pocket of P. In each of 
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Fig. 4. 

for vertex v: 
s= (a, b) is the 1-BS 
s'=(e, f) is the 2-BS 

P(s', v) 

link center 
v 

I l lustrat ion of definit ions of  i-BS for i = 1, 2 and  the co r re spond ing / -ne ighborhood  polygons.  

these pockets we recursively compute the polygon visible from the respective lid. 

Now we associate with each of these visibility polygons a node of a tree W, where 

two nodes are connected by an arc if and only if their associated polygons share 

a lid. We define the node corresponding to VisPol(d, 1) to be the root of I4:. This 

tree W is the window tree of d. To simplify the notation we identify the node of 

W representing a polygon by the polygon itself. The polygons (associated with 

nodes) of W are called regions of P. 

Let r be a reflex vertex of P and let (r, zl), (r, z2) be two edges of some Ni(v) 

region. We refer to (r, zt) as the clockwise Ni-boundary segment of r if the vertex 

r appears between z2 and z 1 on a clockwise traversal of the boundary of the 

corresponding Ni region starting at z 2. The edge (r, z2) is then referred to as the 

counterclockwise N:boundary segment of r. The following definitions are illustrated 

in Fig. 4. Let s be a boundary segment from some Nj(v) region, j _> 1, partitioning 

P into two subpolygons. The subpolygon containing vertex v is referred to as 

P(s, v), or simply P(s) if no ambiguity arises. Let d be some (fixed) central diagonal 

of P. For any convex vertex v of P and edge s on the boundary of Ni(v), s is called 

an i-boundary segment, an i-BS for short, (for v) if 

(a) i < R and v lies in a subpolygon of P induced by s different from VisPol(d, 2), 

o r  

(b) i < R and s belongs to VisPol(d, 2). 

For  the computation of the link center we use some i-BSs and the polygons P(s) 

instead of the regions N~(v). If s is an i-BS for v, then P(s, v) is called the i-BS 
polygon for v induced by s. It is clear from the above definitions that P(s, v) ~ Ni(v). 

We refer to the i-BSs, for the same i, as BSs of the same generation. If for some v 

and i there is a single i-BS for v, then the i-BS is denoted by bi(v) and the i-BS 

polygon is denoted by P(bi(v)). To simplify the notations we define bo(v) = v and 

P(v) = v for any vertex v. 

From the definitions of link center and Nk-region Corollary 4.3 follows. 

Corollary 4.3. Let k be an integer in [0, R]. A point z belongs to the link center 

of  a polygon P if and only i f  the link distance between z and all polygons Nk(V) is 

< R -- k, for all convex vertices v. 

To gain in efficiency compared with the O ( n  2) link-center algorithm of [10] we 
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use the k-BS polygons P(bk(v)) instead of the neighborhood regions Nk(v). Theorem 

4.5 stated below justifies this approach. 

First we argue that certain BSs are irrelevant for the computation of the link 

center. Assume that two k-BSs of the same generation are incident to the same 

reflex vertex r. Then one of the corresponding k-BS polygons will contain the 

other and the one contained can be removed from further consideration (Fact 4.2 

and the definition of i-BS). More generally, for any two segments of the same 

generation for which one of the corresponding polygons contains the other, the 

same argument holds (i.e., one can be removed). Assume now that two BSs are 

incident to a common reflex vertex, but they are from different generations. As 

before, the lower generation BS can be removed since the polygon corresponding 

to its BS successor will always contain that polygon corresponding to the higher 

generation BS. 

Formally, we define a partial order on the set of all BSs as 

S 1 ~_~ $ 2 if Sl and s2 are BSs for which P(St) D_ P(S2). 

The minimal elements with respect to this partial order are called relevant BSs 

and all other BSs are called irrelevant. 

Lemma 4.4. Let k be an integer in [0, R]. A point z belongs to the link center of 

a polygon P if and only if the link distance between z and the polygons P(s) is <_ R - k 

for any relevant k-BS s. 

Proof. (=~) Follows from Corollary 4.3 and the fact that P(b,(v)) ~_ Ni(v). 

(~)  The result is established by induction on k. 

Let k = 0. Since the link distance between a point z in the link center and any 

vertex v in P is at most R the result follows in this case by having defined P(bo(v)) 

to be v. For  the induction let k be chosen so that 0 _< k < R. Assume that if the 

link distance between some point z* and the polygon P(s) is _ < R -  k for any 

relevant k-BS s, then z* belongs to the link center of P. Assume now that the link 

distance between some point z and the polygon P(s) is _< R -- k - 1 for any relevant 

(k + 1)-BS s. Consider an arbitrary relevant k-BS s'. By the definition of a BS and 

a relevant BS there exists a relevant (k + 1)-BS s" such that 

max min dr(z', z") < 1. 
z"E P(g') z'~P(s') 

Then by the last assumption the link distance between z and the polygon P(s') is 

< R -  k. Since s' was chosen arbitrarily, the link distance between z and the 

polygon P(s) is ~ R -  k for any relevant k-BS s. Then from the inductive 

assumption it follows that z belongs to the link center. []  

It now follows: 

Theorem 4.5. The link center of a polygon P is the intersection of VisPol(d, 2) with 

the sets P(bR(v)) over relevant bR(v) for all convex vertices v of P, where R is the link 

radius of P. 
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4.3. Outline of  the Al,qorithm 

In Algorithm 4.1 we outline the computation of the link center of P; the algorithm 

is shown to take O(n log n) time. Where indicated in the algorithm some steps are 

discussed in detail in Sections 5 and 6. 

Algorithm 4.1. Outline of the algorithm for finding the link center 

Input: A triangulated simple polygon P 

Output: The link center of P 

1. Find the link diameter D by the algorithm from [16]. Choose 

R := FD/27 (the smaller of the two possible values given by Theorem 

2.1). 

2. Find a central diagonal d by applying Algorithm 3.1. 

3. Construct the window tree of P with respect to d in O(n) time [16]. 

4. Produce a postorder numbering (see, e.g., [1]) of the vertices of the 

window tree. 

Let R 1 . . . . .  Rj be the ordering of the regions of P corresponding 

to the numbering of the vertices of the window tree. Rj is the 

visibility polygon from d and R k, Rk+ 1 . . . . .  Rj -- 1 are the children 

of Rj. (Notice that according to this ordering all children of a 

region R~ will precede R i in the region sequence. (See Fig. 5.)) 

5.1. For i :=  1 to k - 1 apply Algorithm 5.1 given below to find all 

relevant BSs, s, incident with reflex vertices in Ri, so that P(s) does 

not intersect Rk w • • - w Rj. 

5.2. For i :=  k to j apply Algorithm 5,1 given below to find all relevant 

BSs, s, incident with reflex vertices in Ri. 

{Steps 5.1 and 5.2 specify the order in which to compute the BSs.} 

6. Find the intersection of the boundary polygons determined by the 

relevant R-BSs using Algorithm 6.1. 

7, If  the intersection region computed in Step 6 is empty then 

repeat Steps 2-6 choosing R := I-D~2-] + 1 (the other possible value 

of R). 

Fig. 5. A possible ordering of the regions for Step 4. 
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5. Determining/-Boundary Segments Efficiently 

In this section we discuss the efficient computa t ion  of all i-BSs. For  this consider 

an arbi trary,  but  fixed, region U of  the window tree with lid I together  with the 

children polygons of U. Call the entire polygon so formed U +. Therefore U + is 

that por t ion  of the VisPol(l, 2, P) that  lies on the same side of  I as does U. Assume 

that all children of the node corresponding to U have been processed (inductively). 

Let i - 1 be the max imum index on the BSs produced so far that  intersects U + 

(see Algori thm 4.1). It is easy to notice that  any BS in U + of generation i - 4 or 

below can be omit ted from consideration. We assume first that  all relevant BSs 

in U + are relevant (i - 1)-BSs leaving the generalization to (i - 2), (i - 3)-BSs to 

the end of this section. 

We describe an algori thm to compute  all relevant i-BSs incident to reflex 

vertices of  U that  are of type (a) (as per the definition of i-BS given in Section 

4.2). The algori thm is shown to require O(l U + Ilogl U + I) time. Each reflex vertex 

in P is examined O(1) times. Thus the total  time taken to find all i-BSs (counter- 

clockwise and clockwise) for each reflex vertex in P is bounded by O(n log n). 

Without loss of generality we discuss only the determinat ion of counterclockwise 

i-BSs simply referred to here as i-BSs. 

For  any reflex vertex r in U there might be as many  as 1U + I relevant (i - 1)-BSs 

that are visible from r. In L e m m a  5.2 we first show that  at most  one relevant 

( i -  1)-BS needs to be considered to compute  the relevant i-BS incident to r (if 

any). In L e m m a  5.3 we show how to determine the relevant i-BS incident to r 

given the unique relevant (i - 1)-BS. A given (i - 1)-BS can produce relevant i-BSs 

incident to several reflex vertices in U. The  efficient computa t ion  of all such i-BSs 

is described in Algori thms 5.1-5.3. 

5.1. Determining the Unique ( i -  1)BS that Generates a Relevant i-BS 

and Determining the i-BS from the ( i -  1)BS 

Let sz = (h, hi) be a relevant i-BS where tt, ht are the endpoints  of  an edge of some 

N~(v) polygon. By definition of  i-BS the interior of  Ni(v) is to the right of st and 

s z is oriented from fi to hr. Then t~ is called the tail of  st and h t is called its head. 

Assume that  the ( i -  1)-BSs of U + are cyclically sorted, i.e., for s~ = (h, ht) and 

sj = (t~, h~), st is said to be less than sj if hi occurs before hj on a counterclockwise 

traversal of  U + starting at some tail. Not ice  that  since the BSs are relevant, it is 

not possible that  st # s~ and hx = hj. Produce  a sorted cyclic list. 

The first (i - 1)-BS (in the cyclic ordering) for a given reflex vertex r (where r 

belongs to the clockwise polygonal  chain f rom the tail to the head of the (i - 1)-BS) 

is called the first ( i -  1)-BS for r. (See Fig. 6 for an illustration.) We say that  a 

relevant (i - 1)-BS, bi-l(v), contributes to the ith generation at reflex vertex r if a 

relevant i-BS, b~(v), is incident to r. 

A segment Sk may be the first ( i -  1)-BS for many  reflex vertices; we denote 

the set of all such reflex vertices by Rk. It  is easy to see that  the following 
observation holds. 
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h h 
3 2 

Fig. 6. A reflex vertex r and segments sl = (t~, h~) cyclically sorted from r. The segment s 1 = (tl, hi) 

is the relevant i-BS for r. 

Observation 5.1. All sets R k of those reflex vertices in U for which s k is the first 

( i -  1)-BS for all relevant BSs s k in U can be determined in O(I U + l) time. 

Furthermore, the sets Rk lie on nonoverlapping chains on the boundary of U. 

As mentioned above we assume first that all BSs entering the particular region 

U of the window tree are (i - 1)-BSs for some i > 0, i.e., they are from the same 

generation. For  this situation, we now discuss how to compute the i-BSs. In the 

next two lemmas we show how the relevant i-BSs can be identified. 

Note that, for i = 1 (the basis of  our iterative construction), the 0-BSs for a vertex 

v equals v. We can see this as the special case of a BS which is degenerated to a 

single point. 

Unless otherwise stated, all polygonal chains mentioned are counterclockwise. 

We denote the polygonal chain from a boundary point a of P to a boundary point 

b of P by CHa(a, b). (The index Q is omitted when no ambiguity arises.) 

Polygon(a, b) stands for the chain CH(a, b) closed by adding the segment(b, a) 

assuming that segment(b, a) together with CH(a, b) form a simple polygon. 

Lemma 5.2. I f  a reflex vertex r is incident to a relevant i-BS, then r sees its first 

(i -- 1)-BS. 

Proof. Assume that r does not see its first (i - 1)-BS, s, for vertex v and that the 

BS which contributes to the ith generation at r is s' = b~_ l(w), w # v. Then r sees 

s'. Let the relevant i-BS incident to r be bl(w) = (r, z"). Let s = (t, h) and s' = (t', h'). 

(See Fig. 7 for an illustration.) Now let p be a point on s' that is visible from r 

and has the minimum distance to h' among all such points. Assume without loss 

of generality that p # h'. Then there exist points z' and z on CH(r, h') and CH(h', z") 

collinear with r, z" and visible from r, respectively. Since s is the first (i - 1)-BS 

for r, then s lies inside the counterclockwise polygon(r, z'). Let b~v) be any i-BS of 

v. We now show that P(b~w)) ~_ P(bi(v)), which contradicts the assumption that 

bt(w) is a relevant i-BS. Assume that there exists a point q ~ P(b,(v)) - P(b,(w)). Then 

some segment (q, f )  exists interior to P such that f ~ P(b~_ l(v)). The segment (q, f )  
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z' 

. $' w 

t' 

z" 

Fig. 7. Illustration of the proof of Lemma 5.2. If r is not visible from s, then no point from 

Polygon(z", . . . .  r) can be visible from s and r could not contribute to the link center. 

intersects bi(w), whence q would lie in Potygon(z", r). Hence, f is in Polygon(z, z") 

and therefore f cannot be in P(bl- l(v)) which contradicts our assumption. []  

When a reflex vertex contributes to the link center its contribution can be 

determined using Lemma 5.3 below. To state the lemma we need some notation. 

Let s = (t, h) be the first (i - 1)-BS for r. Let p be the point on s that is visible 

from r and has minimum Euclidean distance from h (among all such points). Then 

the segment(r, p) is called the extremal segment for r and s. Let (r, z) be a (directed) 

segment interior to a polygon connecting a reflex vertex r to a boundary point z. 

Then the back-extension for (r, z) is the longest internal segment originating at r 

and directed oppositely to (r, z). 

Lemma 5.3. Let s = (t, h) be the first (i - 1)-BS for r and assume that s is visible 

from r. Then the back-extension of  the extremal segment is the i-BS incident to r (if 

it exists). 

Proof. Let p be the endpoint of the extremal segment for r and s (other than r). 

Assume that p ~ h. Then there exists a vertex z on (open) CH(h, r) collinear with 

r and h. It is easy to see that the segment (r, z") lies on the boundary of VisPol(s, 1). 

Let segment(r, z") be the back-extension for segment(r, z) and let segment(p, z') be 

the back-extension for segment(p, z). Suppose that segment(r, z") is not the BS for 

r. (See Fig. 8 for an illustration.) Then there exists another segment s ' =  seg- 

ment(t', h') producing a smaller counterclockwise angle at r. Observe first that s' 

does not intersect the ray originating at r toward p. Otherwise, the visibility 

polygon of s' would include segment(r, z"). 

Thus both endpoints of s' are on one of these chains: 

(a) CH(r, z') which contradicts the assumption that s is the first (i - 1)-BS for 

r, o r  
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Fig. 8. 

Z' 

Illustration of Lemma 5.3. The back-extension (r, z") of the extremal segment (r, p). 

(b) CH(z', z) which means s' is not visible from r, a contradiction, or 

(c) CH(z, r) which contradicts the choice of angle. 

The contradictions show that (r, z") is the BS for r. [] 

5.2. Computin 9 Relevant Boundary Segments 

Let U be some arbitrary, but fixed, region of the window tree. We still assume 

that all BSs necessary for the computa t ion of i-BS for reflex vertices in U are 

(i - 1)-BSs of the region U ÷, where U ÷ is the polygon formed by U together with 

its children polygons in the window tree. Algorithm 5.1 below gives a sketch of 

the construction of all relevant i-BSs; the details are subsequently given in 

Algorithms 5.2 and 5.3. The output  of Algorithm 5.1 is used in Algorithm 6.1, the 

determination of the boundary  o f  the link center, discussed in Section 6. For  ease 

of description, we assume each region of the window tree is retriangulated 

separately. 

Algorithm 5.1. Construct ion of the relevant i-BSs 

Input: A region U of  the window tree; all relevant (i - 1)-BSs of  U ÷ of  

the window tree, where U ÷ is the polygon formed by U together with 

its children polygons 

Output: All relevant i-BSs incident to reflex vertices in U generated from 

the (i - 1)-BSs entering U ÷ 

1. sort the (i - 1)-BSs cyclically starting at some tail of a segment; 

2. let 5 = s t . . . . .  Slast be the sorted list so produced;  

3. for Sk := sl to sl~t do 

Determine the set Ek of all reflex vertices in U for which SR is a 

relevant (i -- 1)-BS; 

for each reflex vertex r in Ek do 

compute  the relevant i-BS incident to r; {details given below in 

Algorithms 5.2 and  5.3} 
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By Observation 5.1 all sets IRk can be determined in O(I U + l) time. In this section 

we address the determination of the relevant i-BSs for all reflex vertices in IRk. By 

Lemma 5.3 a boundary segment for a reflex vertex r in IR k is the back-extension 

of an extremal segment for r and s k. To compute  the extremal segments for all 

reflex vertices r in IR k efficiently we construct a polygon S k in which we compute 

the extremal segments. The extremal segments computed in S k are identical to 

those produced in P, but are more efficiently determined. The construction is as 

follows. 

We denote the minimum Euclidean length path inside a polygon from a point 

a" to a point h" by path(a", b"). Let (a, b) be a lid of  a region U of the window tree 

((a, b) 4-- d) and let U ÷ be U plus its children polygons. Let r f ,  . . . .  rz be the reflex 

vertices in ~k listed in (counterclockwise) polygonal order starting at the head of 

the (i - 1)-BS determining ~k. 

The polygons S k are now constructed as hourglasses (slightly generalized) as 

used in [8]. More specifically, Sk is composed of the shortest paths path(Ilk, r f) and 

path(r~, tk) , the chain CH~.~ (r f, r~), and the segment s k. The segment s k serves as 

the base from which the hourglass is constructed. See Algorithm 5.2 for a 

description and refer to Fig. 9 for an illustration of the procedure. 

In case the shortest paths path(h k, r I) and path(rt, tk) share one or more edges, 

we notice (analogously to [8]) that no reflex vertex on the chain CHv,  (rf, r~) can 

see its first segment Sk. 

Algorithm 5.2. Construct  Sk 

Input: All relevant segments s k together with their relevant reflex vertex 

sets ~k 

Output: All polygons S k 

for each pair (Sk, ~k) in polygonal order sorted by the tails of sk do 

let r r , . . . ,  r~ denote the chain of reflex vertices in IRk; 

compute  p~ as path(hk, rf); 

compute  P2 as path(r~, tk) ; 

if Pl and P2 share one or more edges then 

remove S~ from consideration; 

polygon Sk is formed by connecting p~, CHu(rf, rt), P2, and the segment 

(tk, hk). 

a ~ hk 

S k 

tk 

Fig. 9. Construction of S~-polygons for efficient determination of back-extensions. 
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Lemma 5.4. All polygons S k can be constructed in total O(n log n) time. 

Proof. Let s k be the segment corresponding to Rk, i.e., the first segment for the 

reflex vertices r I . . . . .  r~. Note first that since ry and r~ are in U and t k and tt are 

in U ÷ the paths Pl and P2 lie in U ÷. If  rl, r2, and r 3 are reflex vertices so that r 2 

is located between rl and r 3 counterclockwise and Sk is the first segment for rl 

and r3, then clearly Sk is the first segment also for s2. Thus for different ~k the 

chains r s . . . .  , rt are disjoint; likewise are the paths path(rz, tk). Now, any reflex 

vertex on P2 may belong to at most one other polygon Sk,. For this, consider a 

reflex vertex r that lies on the two shortest paths, path(hk, r}) and path(hk,, r jr,). If 

r lies on the counterclockwise chain from h k to r I ,  then r cannot lie on another 

counterclockwise chain for some hk,, r r'- The vertex r may, however, lie on some 

path path(hk,, ry,) if the path lies on the clockwise chain from r r, to hk,. By the 

definition of first segment, r can then lie on at most one such path path(hk,, rl,). 

By using the algorithm given in [8] which runs in time O(log n + size of the path 

constructed) it follows that the total time complexity is O(n log n) for all O(n) 

shortest paths so constructed. []  

To compute extremal segments in P for each r in ff~k, it suffices to compute the 

extremal segments inside the polygon Sk. To see this we observe the following: 

each polygon Sk is a subpolygon of P; thus if two points are visible in Sk they are 

visible in P. Furthermore, all vertices of Sk are vertices of P except for hk. 

We have established the correctness of the following lemma. 

Lemma 5.5. The extremal segment for each r in ~k (with respect to its relevant 

segment Sk = (tk, hk)) as computed in Sk is identical to that computed in P. 

Therefore the BSs for all reflex vertices contributing to the link center can be 

determined by the following algorithm in O(n log n) time. The correctness of the 

algorithm follows from the above. 

Algorithm 5.3. Compute boundary segments 

Input: The polygons Sk and the pairs (Sk, Rk) 

Output: The boundary segments for each reflex vertex contributing to 

the link center 

1. for each subpolygon Sk do 

2. preprocess Sk for shooting toward sk 

3. for each r in R~ do 

4. find extremal segment for (r, sk) in Sk, 

5. determine the back-extension by shooting in P, and output it as 

a boundary segment for r. 

5.3. Computing the Relevant Boundary Segment (General Case) 

We have shown how to construct i-BSs given that any BS entering a region U is 

an (i - 1)-BS. Now consider the case that  for some convex vertex v one of its BSs 
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enters U "earlier," i.e., some k-BS intersects U for k < i - 1. The lemmas presented 

so far in this section are easily adapted to that situation. 

Consider a particular region U of the window tree and assume that all children 

of its corresponding node have been processed (as in Section 4). Let m be the 

maximum index on BSs produced that intersect the region. Suppose first that all 

such BSs are m-BSs. Then we have the case considered above. Next assume that 

not all BSs are m-BSs. Clearly, all k-BSs for k < m - 3 are not relevant BSs. This 

holds since the covering radius of any such segment s' in U is three and thus U 

is contained in P(s'). 

For  those BSs s' which are (m -- 2)-BSs we perform Algorithm 5.1 to obtain 

( m -  1)-BSs (if any). Then we take these and all other ( m -  1)-BSs and apply 

Algorithm 5.1 again to obtain m-BSs. These are then treated together with the 

original m-BSs as discussed above. 

Thus we get: 

Theorem 5.6. The BSs for all reflex vertices contributing to the link center can be 

determined in O(n log n) time. 

We have completed the main task for solving the problem of determining the 

link center, i.e., to identify the BSs contributing to the link center. For  completeness 

we include, in Section 6, an algorithm for computing the link center from the BSs 

determined in Theorem 5.6. 

6. Processing the Boundary Segments To Obtain the Boundary of the 

Link Center 

The set of counterclockwise and the clockwise BSs of the reflex vertices computed 

in the previous sections contains all edges of the link center (some BSs are not 

collinear with any edges of the link center). To compute the link center from the 

BSs we apply the following algorithm. 

Algorithm 6.1. Determining the boundary of the link center 

Input: A simple polygon P, the polygon V:= VisPol(d, 2), a list of all 

reflex vertices in V, and their boundary segments. 

Output: The link center of P 

Let R = r I . . . . .  r~ast be the list of all reflex vertices of V(given in clockwise 

order). 
Denote by s~. i and si, 2 the counterclockwise and the clockwise boundary 

segments of ri, respectively. 

LCB:= boundary of V (initialization of Link Center Boundary); 

for j:= 1 to 2 do 
{j = 1 corresponds to a clockwise traversal and j = 2 corresponds to 

a counterclockwise traversal} 

direct the edges of V and LCB according to c; 
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for i := 1 to last do 

if r~ is not removed then r := r~; 

else {compute the first intersection point r of s~,~ and LCB} 

z 1 := delete[rJ; 
z 2 == the second endpoint of the most recently inserted segment 

in LCB; 
find the intersection point p of s~,~ with the boundary of V; 

if p ECHv(z3_j, z i) then skip the current /-step {s~,j is not 

relevant for LCB} 
r..= the intersection point of si,~ with CHLcB(Z3_j, z j); 

{since CHLcB(Z3 -i, z j) is convex, r can be located by binary search 

in log(n) time} 

e := the edge of LCB incident with r in direction c; 

remove e from LCB; 
delete[first endpoint of e] := r; 

repeat 

e := next edge of LCB in direction c; 

remove e from LCB; 
delete[first endpoint of e] := r; 

if s~,j intersects e then 

compute the intersection point z of  s~.j and e; 

if shotv(Z, r) = segment(z, r) then 

{e is the edge from LCB hit by si.j (see proof of Lemma 

6.1 below)} 

insert segment(r, z) and segment(z, v(e)) in LCB, 
where v(e) is the endpoint of e that  is in orientation c from 

z; 

until (a portion of) s~,j has been inserted in LCB 

[ ,emma 6.1. Algorithm 6.1 computes the intersection of the regions determined by 

the BSs and its time complexity is O(n log n). 

Proof. Denote by B the boundary of V. Without loss of generality we consider 

the clockwise direction, i.e., j = 1. In the repeat-loop of Algorithm 6.1, the edges 

of  B are examined in a clockwise direction until an  edge e is discovered which 

intersects with some BS s i j  at  a point z. Next the algorithm checks whether e is 

visible in P from r in direction si, j. For this, a shot toward r is made originating 

at point z. Assume that this shot reaches r. In this case, we claim that e is the 

edge from the link center boundary LCB "hit" by s~.j. To prove this we need to 

show that before the ith iteration fo r j  = 1, r~ is visible from e in V in the direction 

opposite to sj, 1 if and only if r~ is visible from e in the polygon V' determined by 

LCB. The following cases exist: 

(i) The shot s* = shotv(Z, ri) intersects an edge of both V and V'. Then r~ is 

not visible in V or in V'. 

(ii) s* intersects an edge f belonging to the set of  edges ofB-LCB O.e., B without 
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LCB). Then r~ is not visible in V. Moreover, there exists a segment t of 

LCB inside V that cuts off a portion of B containing f. Then s* cannot see 

r~ in V' because of (at least) t. Then r~ is not visible in V'. 

(iii) s* does not intersect an edge of B. Assume that s* intersects an edge t of 

LCB. As e appears on LCB before t, the endpoints of t are between the 

second endpoint of e and r (clockwise). Therefore s* hits another edge, edge 

w, of LCB-B (let t and w be the first two such edges). However, the angle 

between any two consecutive edges from LCB-B is convex. Thus there exist 

edges of B-LCB on CHv(w, t). It follows that s* intersects some chain of 

B. The contradiction shows that s* does not intersect LCB and thus r~ is 

visible both in V and in V'. The correctness of the iteration for j = 2 is 

proved in an analogous way. 

Notice that we cannot directly shoot from r to LCB to locate the desired edge e, 

since LCB changes dynamically and such shooting cannot be performed efficiently. 

Instead, in Algorithm 4.5 we do the shooting in V polygon, which requires only 

O(log n) time after linear-time preprocessing of V. 

We give an upper bound on the time complexity of Algorithm 6.1. Denote 

nl = number of edges inserted in LCB < 2 , (number  of reflex vertices of V) 

= O ( n ) ;  

n 2 = number of edges removed from LCB < (number of vertices of V) + n 1 

= O(n) ;  

n 3 = number of intersections computed < na + n2 = O(n); 

n 4 = number of shots produced < number of reflex vertices of V = O(n). 

Then the time required by Algorithm 6.1 does not exceed 

n I ,O(1) + n2*O(1) + n3*O(1) + n4*O(log n) = O(n log n). [] 

The results from this paper can be summarized in the following theorem. 

Theorem 6.2. For any simple n-vertex polygon P the link center and the link radius 

of P can be determined in O(n log n) time. 

7. Extensions 

A central link segment in an n-vertex simple polygon P is a segment s of P that 

.minimizes the number min~  s maxp~a dist(q, p), where dist(q, p) is the link distance 

m P between two points p, q of P. Constructing the central link segment has 

applications in finding an optimal location of a robot in a polygonal region and 

in solving the problem of determining the minimum value k for which a given 

polygon is k-visible from some segment. The technique presented in this paper has 

been used in the design of an O(n log n)-time algorithm for finding a central link 

segment in P; see [2]. (An alternate method is suggested in [9].) 

We can generalize the problem of computing a link center of a simple polygon 

as follows. Let P be a simple polygon. Let Z be a set of points and let S be a set 
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of segments both located on the boundary of P. Let the sizes of S and Z be linear 

in the number n of vertices of P. Then the first algorithm described here can be 

adapted for finding the set of points in P which minimize the maximum link 

distance to all points in S and in P. 

The algorithms presented here can also be used to solve the problem of 

determining the external link center of a polygon, i.e., that region(s) of the exterior 

of P for which each point inside the region minimizes the maximum (exterior) link 

distance to all points of P [3]. 
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