
Discrete Comput Geom 8:131-152 (1992)

G 6i try
© 1992 Springer-Verlag New York Inc.

An O(n log n) Algorithm for Computing the
Link Center of a Simple Polygon*

Hristo N. Djidjev, t Andrzej Lingas, 2 and J6rg-Rtidiger Sack a

t Department of Computer Science, Rice University,
P.O. Box 1892, Houston, TX 77251, USA
hristo@cs.rice.edu

2 Department of Computer Science, Lund University,
Box 118, S-22100 Lund, Sweden
andrzej@dna.lth.se

3 School of Computer Science, Carleton University,
Ottawa, Ontario K1S 5B6, Canada
sack@scs.carleton.ca

Abstract. We present an algorithm that determines the link center of a simple

n-vertex polygon P in O(n log n) time. The link center of a simple polygon is the set

of points x inside P at which the maximal link-distance from x to any other point

in P is minimized. The link distance between two points x and y inside P is defined

to be the smallest number of straight edges in a polygonal path inside P connecting

x and y. Using our algorithm we also obtain an O(n log n)-time solution to the

problem of determining the link radius of P. The link radius of P is the maximum

link distance from a point in the link center to any vertex of P. Both results are

improvements over the O(n 2) bounds previously established for these problems.

1. Introduction

This pape r describes an efficient a lgor i thm for de termining the link center of a

simple polygon. The l ink center was first in t roduced by Lenhar t et al. [113]; we

recall the definition. A path between a pa i r of poin ts v and w in a simple po lygon

P is a po lygonal line inside P connecti~ng v and w. The link distance dL(v, w) between

v and w is the min imum number of segments (straight edges) required to connect

- . - . . -_ .=._ . .

* The research of J.-R. Sack was supported by the Natural Sciences and Engineering Research
Council of Canada.

132 H.N. Djidjev, A. Lingas, and J.-R. Sack

Fig. I. A polygon P and its link center.

v to w. The link center is now defined as the set of all points c in P for which the
maximum link distance between c and any point in P is minimized; it is denoted

by LC. See Fig. 1 for an illustration of the link center.
The link-center problem has several potential applications. It could be applied

to locating a transmitter so that the maximum number of retransmissions needed

to reach any point in a polygonal region is minimized, or to choosing the best

location for a mobile unit minimizing the minimum number of turns needed to

reach any point in a polygonal region.
Suri [15] first introduced the notion of link distance. As a result of intensive

research on link-distance problems and on the related visibility problems (e.g., [8],

[14], and [16"]), several new upper bounds have been established. In particular, a

linear-time algorithm for computing the link distance between any pair of points
in a triangulated polygon [15] has been developed (such a triangulation can now

be determined in linear time by the recent result of Chazelle [5]). Suri [16] also

gave an O(n log n)-time algorithm for calculating the link diameter of a simple

n-vertex polygon P. Here the link diameter of P is the maximum link distance

between any two points of P; the link diameter is realized between two vertices

of P. It is denoted by D.
As yet,' no efficient algorithm for the problem of finding the link center of a

simple polygon has been designed. The best algorithm currently known for finding

the link center has a worst-case time complexity of O(n ~) [10]. In their paper,

Lenhart et ai. [10-] pose the problem of finding the link center (or at least one
point inside) in subquadratic time. They also discuss the related problem of

determining the link radius of a simple polygon. The link radius of P is the

maximum link distance from a point in the link center to any vertex of P; it is

denoted by R. The approach discussed in [10"] for determining the link radius has
a worst-case run-time of O(n2).

In contrast, recall that the geodesic distance is the minimum (Euclidean) length

of a path between two points and a minimum oeodesic path is the shortest path
connecting the points. A minimum link path and the minimum geodesic path

connecting the same pair of points may be quite different as illustrated in Fig. 2.

The notion of geodesic center is defined analogously to that of link center. The

problem of finding the geodesic center has been solved in O(n log n) time in [12],

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 133

Fig. 2. A minimum link path (shaded) and the distinct minimum geodesic path (bold) connecting the
vertices v and w.

Solving link-distance problems seems to be more difficult than solving the

corresponding problems using the geodesic distance measure. The difficulties stem

from the fact that several minimum link paths may exist connecting a given pair

of vertices, while the minimum geodesic path is always unique.

In this paper we present an O(n log n) algorithm that finds the link center of

any n-vertex simple polygon P. By applying our algorithm, we also obtain an

O(n log n)-time solution to the problem of determining the link radius of P. A

preliminary version of this paper has been presented in [7]. An alternate method

has been developed by Ke [9].

This paper is organized as follows. In Section 2 we give some relevant

background. In Section 3 we present an O(n log n)-time algorithm which de-

termines a diagonal, called central diagonal, of P. (A diagonal of P is a segment

inside P connecting two vertices of P.) It is shown that the link center is located

in the vicinity of a central diagonal. In Section 4 we characterize regions whose

intersection produces the link center and we describe the global structure of the

algorithm. In Section 5 we show how to produce these regions efficiently. The

knowledge of a central diagonal will aid in this. In Section 6 we describe the

efficient computation of the link center as an intersection of these regions. Section

7 gives some extensions and further applications of our techniques.

2. Relevant Background and Notation

2.1. Link Radius

We first discuss the relationship between the problems of determining the link

center and the link radius of a simple polygon. Let P be an n-vertex polygon.

(Unless otherwise stated all polygons are simple and specified as a list of their

vertices in counterclockwise order with no three consecutive collinear vertices.)

The relation between the link radius and the link diahaeter of P is based on the
following theorem.

Theorem 2.1 [10]. For any polyoon P, the link radius R of P is either FD/2"] or

['1)/2"] + 1, where O is the link diameter of P.

134 H.N. Djidjev, A. Lingas, and J.-R. Sack

The link diameter can be found in O(n log n) time by a result in [16]. Theorem

2.1 implies that any O(n log n) algorithm for constructing the link center which is
based on knowledge of the exact value of R, i.e., the algorithm returns the empty

set, can be used to find the link center in O(n log n) time (this has also been observed

in [10]). In order to do this, first apply such an algorithm on P assuming that
R = [-D/2-t. If R is equal to FD/2-] the algorithm produces the (nonempty) link

center. Otherwise, apply the algorithm again, this time with R = I-D~2-] + 1.

Corollary 2.2. The O(n log n) algorithm for finding the link center presented here
implies an O(n log n)-time algorithm for determining the link radius of an n-vertex

polygon.

2. 2. Notation

In this paper the following notation is used. The segment inside P joining two
points a and b is denoted by segment(a, b) (or (a, b) for short). The visibility region
of a point q in P is the set of all points z in P which are visible from q, i.e., for

which segment(q, z) is contained in P. The boundary of the visibility region of q

defines a polygon within P called the visibility polygon Vis(q, P) of q. For a given
segment s and a point q in P, q is said to be visible from s if there exists at least

one point z of s such that q is visible from z. The visibility region of a segment s

in P consists of all points q in P visible from s; the boundary of the visibility

region forms a polygon called visibility polygon Vis(s, P). As a generalization we

define VisPol(d, i, X) to be the polygon containing all points of a polygon X at

link distance at most i from d. Unless otherwise stated, VisPol(d, i) stands for

VisPoi(d, i, P).

2.3. Techniques Used

We use the following techniques developed for solving visibility problems inside

any triangulated simple n-vertex polygon P:

1. For any segment s in P, Vis(s, P) can be computed in O(n) time [8], 1-17].

2. Given a fixed edge e of P, P can be preprocessed in O(n) time so that, given

any point x inside P, the subsegment of e of the points visible from x can

be constructed in O(log n) time [81 [13].
3. A triangulated polygon P can be preprocessed in O(n) time so that, given

any point x inside P and any direction u, the first point on the boundary of

P hit by the ray in direction u from x can be computed in O(log n) time [8].
Such an operation is called a shooting query and the first segment of the ray

inside P is called the shot.

3. Locating a Region Containing the Link Center

In this section we characterize a "small" region inside a given n-vertex polygon

P which contains the link center of P. We can determine this region in O(n log 11)

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 135

time. The region serves as an approximate location of the link center and guides

the subsequent efficient search for the precise location of the link center.

3.1. Notation

We introduce some important notation. Let s be any segment in P. Then

the covering radius CovRad(s, P) of s is defined by

CovRad(s, P) = max min dL(q, p).
peP q e s

Let d be any edge of a given triangulation of P. For the remainder of this

section we denote the polygons defined by the partitioning of P induced

by d as Pl(d) and P2(d). The coverin# difference of d in P is the value

I CovRad(d, el(d)) - CovRad(d, e2(d))l.
A diagonal with minimum covering difference among all diagonals induced by

the given triangulation is called a central dia#onal.

The covering radius pair of d, CR(d), is the pair of covering radii of d in P~(d)

and P2(d). (When no ambiguity arises we use P1, P2, and CR instead of Pl(d),

P2(d), and CR(tO, respectively.)

3.2. Determinin# a Central Diagonal

We first describe the location of the link center with respect to an arbitrary

diagonal of P. Then we give an algorithm to find a central diagonal d of P and

show that the link distance from d to any point of the link center is no more than

two. Thus the region VisPol(d, 2, P) contains the link center and provides an

approximate location of the link center.

Lemma 3.1. Let d' be a diagonal of P for which CR(d') = (cl, c2), cl > c2. Then

VisPol(d', R - c2 + 1, P) contains the link center of P.

Proof. Let d' be the diagonal with CR(d') = (cD c2), cl > c2. Let P~, P2 be the

subpolygons induced by d' such that CovRad(d', Pi) = ci, i = 1, 2. Assume that q

is a point of the link center of P that does not belong to VisPol(d', R - c2 + 1, P).

We first assume that Pl is that polygon among P1 and P2 which contains q. Since

CovRad(d', P2) = c2, there exists a point v of Pz such that dL(z, v) ~ c2 for each z

on d'. Now construct a minimum link path p = (Pl Pk) from q = p~ to v = Pk-

Since q is in P~ the path p intersects d', say at point z'. Furthermore, q is not in

VisPol(d',R - c 2 + 1, P) and thus z' is on segment (Pi, Pt+l), for i > R - c 2 + 1.

From dL(z',v)>c2 it follows that k > i + c 2 - 1 > (R - c 2 + 1) + c 2 - 1 >

R + 1. Hence q does not belong to the link center of P.

Analogously, if we assume that P2 contains q, there exists a point v of P~ for

which dL(q, v) > (R -- c 2 + I) + c~ -- 1 > R + 1 (The latter inequality holds since

by assumption cl > c2.) []

136 H.N. Djidjev, A. Lingas, and J.-R. Sack

L e m m a 3.2. The covering difference of a central diagonal is at most one.

Proof. Assume by contradict ion that the covering difference for all edges of a

given triangulation of the simple polygon P is at least two. Let A be a triangle of

the tr iangulation containing at least one point, p, of the link center, denoted by

LC. Denote the covering radii of the edges of A as per Fig. 3. Since p is in LC it

follows that al , hi, and cl are no larger than R. Since R is the link radius at least

one of these covering radii is at least R - 1. Assume that cl = m a x { a , bl, c~}.

Two cases arise: (1) cl = R - 1 and (2) cl = R.

(1) Assume that c ~ = R - 1 . By the initial assumption, c 2 > R + l or

c2 < R - 3 . Consider the case c 2 > R + 1. The point p i~s in LC and thus

c2 = R + 1. F r o m cl = max{a 1, bl, c~} it follows that both a~ and b~ are at most

R -- 1. Now, side c sees each of other sides which contradicts that c2 = R + 1.

(The case where c2 < R - 3 is handled analogously to case (2)'below.)

(2) Assume now that cl = R. In the given triangulation of P the edge c is

adjacent to another triangle A' whose edges are called c, f, and g. Denote by Pc,

P:, and Pg the subpolygons induced by c, f , and g, respectively, which are not

containing A. (See Fig. 3 for an illustration.) Assume first that CR(f) or CR(g)

equals (R, R -- 2), without loss of generality say that CR(f) = (R, R -- 2). Sub-

polygon Pc (equal to P f, and Pg and A'), contains at least one more triangle than

P:, and thus to complete the proof in this case, we can apply induction on the

number of triangles of Pc.

Assume now that neither CR(f) nor CR(g) equals (R, R - 2). Without loss of

generality assume further that CovRad(f, P :) >_ CovRad(g, Pg). Let CR(f) =

(rl, rz), where r 1 = CovRad(f, P:) (as depicted in Fig. 3); then r 1 > R - 1. It is

now straightforward to check that no pair (r~, rz) satisfying all of the conditions

I r l - - r21 > 2, (rl, r2) v ~ (R, R - 2), R -- 1 < rl < R, and R - 2 < r 2 exists. []

L e m m a 3.3. In any simple polygon with covering radius R there exists a central

diagonal with a covering radius to either side being at least R - 1.

Fig. 3. Notation of Lcmma 3.2.

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 137

Proof. Let d be a central diagonal of P with the covering radius pair (cl, c2);

assume that c t > c 2. Then from Lemma 3.2 it follows that cl - c2 < 1. Since R

is the link radius neither c 1 > R and c 2 > R nor cl < R -- 2 and c 2 < R - 2 are

possible. Therefore it will be enough to prove that (cl, c2)# (R - 1, R - 2).

Although a triangulation edge d may exist with the covering radius pair (R - 1,

R - 2), we will show that d could not minimize the value cl - c2. Assume the

contrary, i.e., let the covering difference of any edge of the triangulation be at least

one and let d be a central diagonal with the covering radius pair (R - 1, R - 2).

For any triangulation edge e, let P(e) be the subpolygon of P determined by e

with the greater covering radius from e. Let d' be a triangulation edge with the

covering radius pair (R - 1, R - 2) such that no other edge d" with the covering

radius pair equal to (R - 1, R - 2) and P(d") c P(d') exists.

Assume for ease of notation that d' is vertical. Without loss of generality let

the covering radii to the left be R -- 2 and to the right be R - 1. Let the triangle

adjacent to d' and to the right of d' have edges d', dr, and db. For one of dr or db,

say dr, the covering radius pair is (R 1, R2) with R~e {R - 1, R - 2}, i = 1, 2, and,

since d' minimizes the value Ict - c21, Rt # R2. Let R~ be the covering radius of

d r with respect to the subpolygon induced by dr that contains d' and let R 2 be the

other covering radius. In case R~ equals R - 2 the argument is repeated by

replacing d' by d,. Consider now the second case, R~ = R - 1 and R 2 = R - 2.

Then d b cannot be an edge of the polygon. Otherwise, any point in the triangle

would reach all other points in at most R - 1 links. This contradicts the defini-

tion of R. Thus db is an edge of the triangulation and has the covering radius

pair (R * , R - 1), where R* is either R - 1 or R - 2 . In the former case we

obtain a contradiction to the fact that the covering difference of any edge is

at least one; the latter case contradicts the choice of d' (we should have chosen db

instead of d'). []

L e m m a 3.4. The polygon VisPol(d, 2, P) of a central diagonal d contains the link

center of the simple polygon P.

Proof Let d be a central diagonal of P. By Lemma 3.3, the covering radius of

d to either side is at least R -- 1. By Lemma 3.1, VisPol(d, R - (R - 1) + 1, P) =

VisPol(d, 2, P) contains the link center. (In case the minimum covering radius

is R, VisPol(d, 1, P) contains the link center.) []

The proof of Lemma 3.3 provides a method for finding a central diagonal of

a simple polygon. Algorithm 3.1 given below determines a central diagonal d of

P more efficiently, in O(n log n) time. The algorithm uses the dual graph of the

triangulation graph of P. The dual graph T of a triangulation of P is constructed

by associating a vertex of T for each triangle of the triangulation of P and joining

a pair of vertices if their corresponding triangles share an edge of the triangulation

of P. T is a binary tree and a one-to-one correspondence exists between the edges

of T and the internal edges of the triangulation of P. (See [4], [8], and [10] for

other algorithms based on this idea.) We use the following well-known fact stated,

e.g., in [11] and [6].

138 H.N. Djidjev, A. Lingas, and J.-R. Sack

Lemma 3.5. For any binary tree T with n vertices there exists an edge of T whose

removal divides T into two subtrees of no more than 2n/3 + 1 vertices each. Such an

edge can be found in O(n) time.

We now state the algorithm for finding a central diagonal of a simple polygon.

Aigodthm 3.1. Finding a central diagonal

Input: A simple polygon and its triangulation T'

Output: A central diagonal d

If the triangulation T' consists of a single edge

then output this edge and stop

else find an edge d of the triangulation of P whose corresponding edge

in T' divides T' into two subtrees Tl and T2 each containing no

more than 2IV(T')[/3 + 1 vertices, where V(T') denotes the

vertex set of T' and I V(T')I denotes its cardinality.

Compute the covering radii c 1, c2 of d and assume that c~ > Cz.
Let T~ be the subtree corresponding to that subpolygon induced by

d whose covering radius is ci and let T2 be the other subtree of T'.

If c2 > R - 1 then stop

else apply the algorithm recursively for T' = T~.

The correctness and the time complexity of Algorithm 3.1 are established in

the following theorem.

Theorem 3.6. In O(n log n) time Aloorithm 3.1 finds a central diagonal d for any

n-vertex simple polyoon P.

Proof. First we establish the time complexity of Algorithm 3,1. Let T be the tree

corresponding to the triangulation of P. We perform Algorithm 3.1 initially letting
T' equal T. Since the covering radii of an edge of a triangulation of P can be
determined in linear time [16], each of the O(log n) iterations of the algorithm
takes O(n) time. (Note that in general P is different from the polygon associated
with T'.) This yields an O(n log n)-time bound on the running time of Algorithm

3.1. It remains to establish the correctness of the algorithm. Every time Algorithm

3.1 is recursively called it holds that c2 = min{cl, c2} < R - 2. Each diagonal of
that subpolygon of P determined by c2 has covering radius pair (c~, c[) where

min{c'~, c[} < R - 2. By Lemma 3.3 such a diagonal cannot be a central diagonal.

Thus the portion of P corresponding to T2 does not contain a central diagonal.

Consequently, Algorithm 3.1 correctly examines only T1 for any subsequent

iteration. []

Since the visibility polygon from a segment can be computed in linear time,

Corollary 3.7 follows by Lemma 3.4 and Theorem 3.6.

Corollary 3.7. In O(n logn) time a diayonal d can be identified such that the link

center is contained in the polygon VisPol(d, 2, P).

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 139

4. The Algorithm

As we recall, in Section 4.1, Lenhart et al. show that the link center of P can be

computed as the intersection of a particular set of subpolygons, called neighbor-

hood polygons, of P. The total size of these polygons does not allow for an efficient,

i.e., O(n log n), solution to compute this intersection. Thus, in Section 4.2 we define

a smaller set of subpolygons whose intersection still gives the link center, but

which can be identified and intersected efficiently. To accomplish this we use the

central diagonal obtained in Section 3 which provides us with an approximate

location of the link center. In Section 4.3 we give an outline of the entire algorithm

to compute the link center. The details of the algorithm are subsequently discussed

in Section 5.

4.1. Neighborhood Polygons

We restate some notation and two facts from [10]. The k-neighborhood about a
point z in P is defined by

Nk(Z) = {Z' ~ PIdL(z, z') < k}.

Fact 4.1 [10]. Let i _> 1 and let v be a point of P. The Ni(v) region is a subpolygon

of P whose vertices all lie on the boundary of P and whose edges are of the
following two types:

(1) a (portion of an) edge of P;

(2) a segment (r, z) connecting a reflex vertex r of P to a point z on the boundary
of P.

Fact 4.2 [10]. The link center of a polygon P is the intersection of the sets NR(v)
over all convex vertices v of P, where R is the link radius of P.

From Lemma 3.4 it follows that to compute the link center it suffices to find

the intersection over all convex vertices of P at distance at least R - 3 from a
central diagonal.

4.2. Boundary Seffment Polygons

Assume that we have executed Algorithm 3.1 and obtained a central diagonal d

of P. Using a linear-time segment-visibility algorithm (e.g., [8]) we determine the

polygon VisPoi(d, 1). In linear time we can construct the window tree W as

introduced by Suri [16]. We first recall the constructive definition.

On the boundary of VisPot(d, I), several segments, called lids of P, that do not

belong to the boundary of P may exist. Each lid divides P into two subpolygons,

the one which does not contain VisPol(d, 1) is called a pocket of P. In each of

140 H . N . Djidjev, A. Lingas, and J.-R. Sack

Fig. 4.

for vertex v:
s= (a, b) is the 1-BS
s'=(e, f) is the 2-BS

P(s', v)

link center
v

I l lustrat ion of definit ions of i-BS for i = 1, 2 and the co r re spond ing / -ne ighborhood polygons.

these pockets we recursively compute the polygon visible from the respective lid.

Now we associate with each of these visibility polygons a node of a tree W, where

two nodes are connected by an arc if and only if their associated polygons share

a lid. We define the node corresponding to VisPol(d, 1) to be the root of I4:. This

tree W is the window tree of d. To simplify the notation we identify the node of

W representing a polygon by the polygon itself. The polygons (associated with

nodes) of W are called regions of P.

Let r be a reflex vertex of P and let (r, zl), (r, z2) be two edges of some Ni(v)

region. We refer to (r, zt) as the clockwise Ni-boundary segment of r if the vertex

r appears between z2 and z 1 on a clockwise traversal of the boundary of the

corresponding Ni region starting at z 2. The edge (r, z2) is then referred to as the

counterclockwise N:boundary segment of r. The following definitions are illustrated

in Fig. 4. Let s be a boundary segment from some Nj(v) region, j _> 1, partitioning

P into two subpolygons. The subpolygon containing vertex v is referred to as

P(s, v), or simply P(s) if no ambiguity arises. Let d be some (fixed) central diagonal

of P. For any convex vertex v of P and edge s on the boundary of Ni(v), s is called

an i-boundary segment, an i-BS for short, (for v) if

(a) i < R and v lies in a subpolygon of P induced by s different from VisPol(d, 2),

o r

(b) i < R and s belongs to VisPol(d, 2).

For the computation of the link center we use some i-BSs and the polygons P(s)

instead of the regions N~(v). If s is an i-BS for v, then P(s, v) is called the i-BS
polygon for v induced by s. It is clear from the above definitions that P(s, v) ~ Ni(v).

We refer to the i-BSs, for the same i, as BSs of the same generation. If for some v

and i there is a single i-BS for v, then the i-BS is denoted by bi(v) and the i-BS

polygon is denoted by P(bi(v)). To simplify the notations we define bo(v) = v and

P(v) = v for any vertex v.

From the definitions of link center and Nk-region Corollary 4.3 follows.

Corollary 4.3. Let k be an integer in [0, R]. A point z belongs to the link center

of a polygon P if and only i f the link distance between z and all polygons Nk(V) is

< R -- k, for all convex vertices v.

To gain in efficiency compared with the O (n 2) link-center algorithm of [10] we

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 141

use the k-BS polygons P(bk(v)) instead of the neighborhood regions Nk(v). Theorem

4.5 stated below justifies this approach.

First we argue that certain BSs are irrelevant for the computation of the link

center. Assume that two k-BSs of the same generation are incident to the same

reflex vertex r. Then one of the corresponding k-BS polygons will contain the

other and the one contained can be removed from further consideration (Fact 4.2

and the definition of i-BS). More generally, for any two segments of the same

generation for which one of the corresponding polygons contains the other, the

same argument holds (i.e., one can be removed). Assume now that two BSs are

incident to a common reflex vertex, but they are from different generations. As

before, the lower generation BS can be removed since the polygon corresponding

to its BS successor will always contain that polygon corresponding to the higher

generation BS.

Formally, we define a partial order on the set of all BSs as

S 1 ~_~ $ 2 if Sl and s2 are BSs for which P(St) D_ P(S2).

The minimal elements with respect to this partial order are called relevant BSs

and all other BSs are called irrelevant.

Lemma 4.4. Let k be an integer in [0, R]. A point z belongs to the link center of

a polygon P if and only if the link distance between z and the polygons P(s) is <_ R - k

for any relevant k-BS s.

Proof. (=~) Follows from Corollary 4.3 and the fact that P(b,(v)) ~_ Ni(v).

(~) The result is established by induction on k.

Let k = 0. Since the link distance between a point z in the link center and any

vertex v in P is at most R the result follows in this case by having defined P(bo(v))

to be v. For the induction let k be chosen so that 0 _< k < R. Assume that if the

link distance between some point z* and the polygon P(s) is _ < R - k for any

relevant k-BS s, then z* belongs to the link center of P. Assume now that the link

distance between some point z and the polygon P(s) is _< R -- k - 1 for any relevant

(k + 1)-BS s. Consider an arbitrary relevant k-BS s'. By the definition of a BS and

a relevant BS there exists a relevant (k + 1)-BS s" such that

max min dr(z', z") < 1.
z"E P(g') z'~P(s')

Then by the last assumption the link distance between z and the polygon P(s') is

< R - k. Since s' was chosen arbitrarily, the link distance between z and the

polygon P(s) is ~ R - k for any relevant k-BS s. Then from the inductive

assumption it follows that z belongs to the link center. []

It now follows:

Theorem 4.5. The link center of a polygon P is the intersection of VisPol(d, 2) with

the sets P(bR(v)) over relevant bR(v) for all convex vertices v of P, where R is the link

radius of P.

142 H.N. Djidjev, A. Lingas, and J.-R. Sack

4.3. Outline of the Al,qorithm

In Algorithm 4.1 we outline the computation of the link center of P; the algorithm

is shown to take O(n log n) time. Where indicated in the algorithm some steps are

discussed in detail in Sections 5 and 6.

Algorithm 4.1. Outline of the algorithm for finding the link center

Input: A triangulated simple polygon P

Output: The link center of P

1. Find the link diameter D by the algorithm from [16]. Choose

R := FD/27 (the smaller of the two possible values given by Theorem

2.1).

2. Find a central diagonal d by applying Algorithm 3.1.

3. Construct the window tree of P with respect to d in O(n) time [16].

4. Produce a postorder numbering (see, e.g., [1]) of the vertices of the

window tree.

Let R 1 Rj be the ordering of the regions of P corresponding

to the numbering of the vertices of the window tree. Rj is the

visibility polygon from d and R k, Rk+ 1 Rj -- 1 are the children

of Rj. (Notice that according to this ordering all children of a

region R~ will precede R i in the region sequence. (See Fig. 5.))

5.1. For i := 1 to k - 1 apply Algorithm 5.1 given below to find all

relevant BSs, s, incident with reflex vertices in Ri, so that P(s) does

not intersect Rk w • • - w Rj.

5.2. For i := k to j apply Algorithm 5,1 given below to find all relevant

BSs, s, incident with reflex vertices in Ri.

{Steps 5.1 and 5.2 specify the order in which to compute the BSs.}

6. Find the intersection of the boundary polygons determined by the

relevant R-BSs using Algorithm 6.1.

7, If the intersection region computed in Step 6 is empty then

repeat Steps 2-6 choosing R := I-D~2-] + 1 (the other possible value

of R).

Fig. 5. A possible ordering of the regions for Step 4.

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 143

5. Determining/-Boundary Segments Efficiently

In this section we discuss the efficient computa t ion of all i-BSs. For this consider

an arbi trary, but fixed, region U of the window tree with lid I together with the

children polygons of U. Call the entire polygon so formed U +. Therefore U + is

that por t ion of the VisPol(l, 2, P) that lies on the same side of I as does U. Assume

that all children of the node corresponding to U have been processed (inductively).

Let i - 1 be the max imum index on the BSs produced so far that intersects U +

(see Algori thm 4.1). It is easy to notice that any BS in U + of generation i - 4 or

below can be omit ted from consideration. We assume first that all relevant BSs

in U + are relevant (i - 1)-BSs leaving the generalization to (i - 2), (i - 3)-BSs to

the end of this section.

We describe an algori thm to compute all relevant i-BSs incident to reflex

vertices of U that are of type (a) (as per the definition of i-BS given in Section

4.2). The algori thm is shown to require O(l U + Ilogl U + I) time. Each reflex vertex

in P is examined O(1) times. Thus the total time taken to find all i-BSs (counter-

clockwise and clockwise) for each reflex vertex in P is bounded by O(n log n).

Without loss of generality we discuss only the determinat ion of counterclockwise

i-BSs simply referred to here as i-BSs.

For any reflex vertex r in U there might be as many as 1U + I relevant (i - 1)-BSs

that are visible from r. In L e m m a 5.2 we first show that at most one relevant

(i - 1)-BS needs to be considered to compute the relevant i-BS incident to r (if

any). In L e m m a 5.3 we show how to determine the relevant i-BS incident to r

given the unique relevant (i - 1)-BS. A given (i - 1)-BS can produce relevant i-BSs

incident to several reflex vertices in U. The efficient computa t ion of all such i-BSs

is described in Algori thms 5.1-5.3.

5.1. Determining the Unique (i - 1)BS that Generates a Relevant i-BS

and Determining the i-BS from the (i - 1)BS

Let sz = (h, hi) be a relevant i-BS where tt, ht are the endpoints of an edge of some

N~(v) polygon. By definition of i-BS the interior of Ni(v) is to the right of st and

s z is oriented from fi to hr. Then t~ is called the tail of st and h t is called its head.

Assume that the (i - 1)-BSs of U + are cyclically sorted, i.e., for s~ = (h, ht) and

sj = (t~, h~), st is said to be less than sj if hi occurs before hj on a counterclockwise

traversal of U + starting at some tail. Not ice that since the BSs are relevant, it is

not possible that st # s~ and hx = hj. Produce a sorted cyclic list.

The first (i - 1)-BS (in the cyclic ordering) for a given reflex vertex r (where r

belongs to the clockwise polygonal chain f rom the tail to the head of the (i - 1)-BS)

is called the first (i - 1)-BS for r. (See Fig. 6 for an illustration.) We say that a

relevant (i - 1)-BS, bi-l(v), contributes to the ith generation at reflex vertex r if a

relevant i-BS, b~(v), is incident to r.

A segment Sk may be the first (i - 1)-BS for many reflex vertices; we denote

the set of all such reflex vertices by Rk. It is easy to see that the following
observation holds.

144 H . N . Djidjev, A, Lingas, and J.-R. Sack

h h
3 2

Fig. 6. A reflex vertex r and segments sl = (t~, h~) cyclically sorted from r. The segment s 1 = (tl, hi)

is the relevant i-BS for r.

Observation 5.1. All sets R k of those reflex vertices in U for which s k is the first

(i - 1)-BS for all relevant BSs s k in U can be determined in O(I U + l) time.

Furthermore, the sets Rk lie on nonoverlapping chains on the boundary of U.

As mentioned above we assume first that all BSs entering the particular region

U of the window tree are (i - 1)-BSs for some i > 0, i.e., they are from the same

generation. For this situation, we now discuss how to compute the i-BSs. In the

next two lemmas we show how the relevant i-BSs can be identified.

Note that, for i = 1 (the basis of our iterative construction), the 0-BSs for a vertex

v equals v. We can see this as the special case of a BS which is degenerated to a

single point.

Unless otherwise stated, all polygonal chains mentioned are counterclockwise.

We denote the polygonal chain from a boundary point a of P to a boundary point

b of P by CHa(a, b). (The index Q is omitted when no ambiguity arises.)

Polygon(a, b) stands for the chain CH(a, b) closed by adding the segment(b, a)

assuming that segment(b, a) together with CH(a, b) form a simple polygon.

Lemma 5.2. I f a reflex vertex r is incident to a relevant i-BS, then r sees its first

(i -- 1)-BS.

Proof. Assume that r does not see its first (i - 1)-BS, s, for vertex v and that the

BS which contributes to the ith generation at r is s' = b~_ l(w), w # v. Then r sees

s'. Let the relevant i-BS incident to r be bl(w) = (r, z"). Let s = (t, h) and s' = (t', h').

(See Fig. 7 for an illustration.) Now let p be a point on s' that is visible from r

and has the minimum distance to h' among all such points. Assume without loss

of generality that p # h'. Then there exist points z' and z on CH(r, h') and CH(h', z")

collinear with r, z" and visible from r, respectively. Since s is the first (i - 1)-BS

for r, then s lies inside the counterclockwise polygon(r, z'). Let b~v) be any i-BS of

v. We now show that P(b~w)) ~_ P(bi(v)), which contradicts the assumption that

bt(w) is a relevant i-BS. Assume that there exists a point q ~ P(b,(v)) - P(b,(w)). Then

some segment (q, f) exists interior to P such that f ~ P(b~_ l(v)). The segment (q, f)

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 145

z'

. $' w

t'

z"

Fig. 7. Illustration of the proof of Lemma 5.2. If r is not visible from s, then no point from

Polygon(z", r) can be visible from s and r could not contribute to the link center.

intersects bi(w), whence q would lie in Potygon(z", r). Hence, f is in Polygon(z, z")

and therefore f cannot be in P(bl- l(v)) which contradicts our assumption. []

When a reflex vertex contributes to the link center its contribution can be

determined using Lemma 5.3 below. To state the lemma we need some notation.

Let s = (t, h) be the first (i - 1)-BS for r. Let p be the point on s that is visible

from r and has minimum Euclidean distance from h (among all such points). Then

the segment(r, p) is called the extremal segment for r and s. Let (r, z) be a (directed)

segment interior to a polygon connecting a reflex vertex r to a boundary point z.

Then the back-extension for (r, z) is the longest internal segment originating at r

and directed oppositely to (r, z).

Lemma 5.3. Let s = (t, h) be the first (i - 1)-BS for r and assume that s is visible

from r. Then the back-extension of the extremal segment is the i-BS incident to r (if

it exists).

Proof. Let p be the endpoint of the extremal segment for r and s (other than r).

Assume that p ~ h. Then there exists a vertex z on (open) CH(h, r) collinear with

r and h. It is easy to see that the segment (r, z") lies on the boundary of VisPol(s, 1).

Let segment(r, z") be the back-extension for segment(r, z) and let segment(p, z') be

the back-extension for segment(p, z). Suppose that segment(r, z") is not the BS for

r. (See Fig. 8 for an illustration.) Then there exists another segment s ' = seg-

ment(t', h') producing a smaller counterclockwise angle at r. Observe first that s'

does not intersect the ray originating at r toward p. Otherwise, the visibility

polygon of s' would include segment(r, z").

Thus both endpoints of s' are on one of these chains:

(a) CH(r, z') which contradicts the assumption that s is the first (i - 1)-BS for

r, o r

146 H.N. Djidjev, A. Lingas, and J.-R. Sack

Fig. 8.

Z'

Illustration of Lemma 5.3. The back-extension (r, z") of the extremal segment (r, p).

(b) CH(z', z) which means s' is not visible from r, a contradiction, or

(c) CH(z, r) which contradicts the choice of angle.

The contradictions show that (r, z") is the BS for r. []

5.2. Computin 9 Relevant Boundary Segments

Let U be some arbitrary, but fixed, region of the window tree. We still assume

that all BSs necessary for the computa t ion of i-BS for reflex vertices in U are

(i - 1)-BSs of the region U ÷, where U ÷ is the polygon formed by U together with

its children polygons in the window tree. Algorithm 5.1 below gives a sketch of

the construction of all relevant i-BSs; the details are subsequently given in

Algorithms 5.2 and 5.3. The output of Algorithm 5.1 is used in Algorithm 6.1, the

determination of the boundary o f the link center, discussed in Section 6. For ease

of description, we assume each region of the window tree is retriangulated

separately.

Algorithm 5.1. Construct ion of the relevant i-BSs

Input: A region U of the window tree; all relevant (i - 1)-BSs of U ÷ of

the window tree, where U ÷ is the polygon formed by U together with

its children polygons

Output: All relevant i-BSs incident to reflex vertices in U generated from

the (i - 1)-BSs entering U ÷

1. sort the (i - 1)-BSs cyclically starting at some tail of a segment;

2. let 5 = s t Slast be the sorted list so produced;

3. for Sk := sl to sl~t do

Determine the set Ek of all reflex vertices in U for which SR is a

relevant (i -- 1)-BS;

for each reflex vertex r in Ek do

compute the relevant i-BS incident to r; {details given below in

Algorithms 5.2 and 5.3}

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 147

By Observation 5.1 all sets IRk can be determined in O(I U + l) time. In this section

we address the determination of the relevant i-BSs for all reflex vertices in IRk. By

Lemma 5.3 a boundary segment for a reflex vertex r in IR k is the back-extension

of an extremal segment for r and s k. To compute the extremal segments for all

reflex vertices r in IR k efficiently we construct a polygon S k in which we compute

the extremal segments. The extremal segments computed in S k are identical to

those produced in P, but are more efficiently determined. The construction is as

follows.

We denote the minimum Euclidean length path inside a polygon from a point

a" to a point h" by path(a", b"). Let (a, b) be a lid of a region U of the window tree

((a, b) 4-- d) and let U ÷ be U plus its children polygons. Let r f , rz be the reflex

vertices in ~k listed in (counterclockwise) polygonal order starting at the head of

the (i - 1)-BS determining ~k.

The polygons S k are now constructed as hourglasses (slightly generalized) as

used in [8]. More specifically, Sk is composed of the shortest paths path(Ilk, r f) and

path(r~, tk) , the chain CH~.~ (r f, r~), and the segment s k. The segment s k serves as

the base from which the hourglass is constructed. See Algorithm 5.2 for a

description and refer to Fig. 9 for an illustration of the procedure.

In case the shortest paths path(h k, r I) and path(rt, tk) share one or more edges,

we notice (analogously to [8]) that no reflex vertex on the chain CHv, (rf, r~) can

see its first segment Sk.

Algorithm 5.2. Construct Sk

Input: All relevant segments s k together with their relevant reflex vertex

sets ~k

Output: All polygons S k

for each pair (Sk, ~k) in polygonal order sorted by the tails of sk do

let r r , . . . , r~ denote the chain of reflex vertices in IRk;

compute p~ as path(hk, rf);

compute P2 as path(r~, tk) ;

if Pl and P2 share one or more edges then

remove S~ from consideration;

polygon Sk is formed by connecting p~, CHu(rf, rt), P2, and the segment

(tk, hk).

a ~ hk

S k

tk

Fig. 9. Construction of S~-polygons for efficient determination of back-extensions.

148 H, N, Djidjev, A. Lingas, and J.-R. Sack

Lemma 5.4. All polygons S k can be constructed in total O(n log n) time.

Proof. Let s k be the segment corresponding to Rk, i.e., the first segment for the

reflex vertices r I r~. Note first that since ry and r~ are in U and t k and tt are

in U ÷ the paths Pl and P2 lie in U ÷. If rl, r2, and r 3 are reflex vertices so that r 2

is located between rl and r 3 counterclockwise and Sk is the first segment for rl

and r3, then clearly Sk is the first segment also for s2. Thus for different ~k the

chains r s , rt are disjoint; likewise are the paths path(rz, tk). Now, any reflex

vertex on P2 may belong to at most one other polygon Sk,. For this, consider a

reflex vertex r that lies on the two shortest paths, path(hk, r}) and path(hk,, r jr,). If

r lies on the counterclockwise chain from h k to r I , then r cannot lie on another

counterclockwise chain for some hk,, r r'- The vertex r may, however, lie on some

path path(hk,, ry,) if the path lies on the clockwise chain from r r, to hk,. By the

definition of first segment, r can then lie on at most one such path path(hk,, rl,).

By using the algorithm given in [8] which runs in time O(log n + size of the path

constructed) it follows that the total time complexity is O(n log n) for all O(n)

shortest paths so constructed. []

To compute extremal segments in P for each r in ff~k, it suffices to compute the

extremal segments inside the polygon Sk. To see this we observe the following:

each polygon Sk is a subpolygon of P; thus if two points are visible in Sk they are

visible in P. Furthermore, all vertices of Sk are vertices of P except for hk.

We have established the correctness of the following lemma.

Lemma 5.5. The extremal segment for each r in ~k (with respect to its relevant

segment Sk = (tk, hk)) as computed in Sk is identical to that computed in P.

Therefore the BSs for all reflex vertices contributing to the link center can be

determined by the following algorithm in O(n log n) time. The correctness of the

algorithm follows from the above.

Algorithm 5.3. Compute boundary segments

Input: The polygons Sk and the pairs (Sk, Rk)

Output: The boundary segments for each reflex vertex contributing to

the link center

1. for each subpolygon Sk do

2. preprocess Sk for shooting toward sk

3. for each r in R~ do

4. find extremal segment for (r, sk) in Sk,

5. determine the back-extension by shooting in P, and output it as

a boundary segment for r.

5.3. Computing the Relevant Boundary Segment (General Case)

We have shown how to construct i-BSs given that any BS entering a region U is

an (i - 1)-BS. Now consider the case that for some convex vertex v one of its BSs

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 149

enters U "earlier," i.e., some k-BS intersects U for k < i - 1. The lemmas presented

so far in this section are easily adapted to that situation.

Consider a particular region U of the window tree and assume that all children

of its corresponding node have been processed (as in Section 4). Let m be the

maximum index on BSs produced that intersect the region. Suppose first that all

such BSs are m-BSs. Then we have the case considered above. Next assume that

not all BSs are m-BSs. Clearly, all k-BSs for k < m - 3 are not relevant BSs. This

holds since the covering radius of any such segment s' in U is three and thus U

is contained in P(s').

For those BSs s' which are (m -- 2)-BSs we perform Algorithm 5.1 to obtain

(m - 1)-BSs (if any). Then we take these and all other (m - 1)-BSs and apply

Algorithm 5.1 again to obtain m-BSs. These are then treated together with the

original m-BSs as discussed above.

Thus we get:

Theorem 5.6. The BSs for all reflex vertices contributing to the link center can be

determined in O(n log n) time.

We have completed the main task for solving the problem of determining the

link center, i.e., to identify the BSs contributing to the link center. For completeness

we include, in Section 6, an algorithm for computing the link center from the BSs

determined in Theorem 5.6.

6. Processing the Boundary Segments To Obtain the Boundary of the

Link Center

The set of counterclockwise and the clockwise BSs of the reflex vertices computed

in the previous sections contains all edges of the link center (some BSs are not

collinear with any edges of the link center). To compute the link center from the

BSs we apply the following algorithm.

Algorithm 6.1. Determining the boundary of the link center

Input: A simple polygon P, the polygon V:= VisPol(d, 2), a list of all

reflex vertices in V, and their boundary segments.

Output: The link center of P

Let R = r I r~ast be the list of all reflex vertices of V(given in clockwise

order).
Denote by s~. i and si, 2 the counterclockwise and the clockwise boundary

segments of ri, respectively.

LCB:= boundary of V (initialization of Link Center Boundary);

for j:= 1 to 2 do
{j = 1 corresponds to a clockwise traversal and j = 2 corresponds to

a counterclockwise traversal}

direct the edges of V and LCB according to c;

150 H.N. Djidjev, A. Lingas, and J.-R. Sack

for i := 1 to last do

if r~ is not removed then r := r~;

else {compute the first intersection point r of s~,~ and LCB}

z 1 := delete[rJ;
z 2 == the second endpoint of the most recently inserted segment

in LCB;
find the intersection point p of s~,~ with the boundary of V;

if p ECHv(z3_j, z i) then skip the current /-step {s~,j is not

relevant for LCB}
r..= the intersection point of si,~ with CHLcB(Z3_j, z j);

{since CHLcB(Z3 -i, z j) is convex, r can be located by binary search

in log(n) time}

e := the edge of LCB incident with r in direction c;

remove e from LCB;
delete[first endpoint of e] := r;

repeat

e := next edge of LCB in direction c;

remove e from LCB;
delete[first endpoint of e] := r;

if s~,j intersects e then

compute the intersection point z of s~.j and e;

if shotv(Z, r) = segment(z, r) then

{e is the edge from LCB hit by si.j (see proof of Lemma

6.1 below)}

insert segment(r, z) and segment(z, v(e)) in LCB,
where v(e) is the endpoint of e that is in orientation c from

z;

until (a portion of) s~,j has been inserted in LCB

[,emma 6.1. Algorithm 6.1 computes the intersection of the regions determined by

the BSs and its time complexity is O(n log n).

Proof. Denote by B the boundary of V. Without loss of generality we consider

the clockwise direction, i.e., j = 1. In the repeat-loop of Algorithm 6.1, the edges

of B are examined in a clockwise direction until an edge e is discovered which

intersects with some BS s i j at a point z. Next the algorithm checks whether e is

visible in P from r in direction si, j. For this, a shot toward r is made originating

at point z. Assume that this shot reaches r. In this case, we claim that e is the

edge from the link center boundary LCB "hit" by s~.j. To prove this we need to

show that before the ith iteration fo r j = 1, r~ is visible from e in V in the direction

opposite to sj, 1 if and only if r~ is visible from e in the polygon V' determined by

LCB. The following cases exist:

(i) The shot s* = shotv(Z, ri) intersects an edge of both V and V'. Then r~ is

not visible in V or in V'.

(ii) s* intersects an edge f belonging to the set of edges ofB-LCB O.e., B without

An O(n log n) Algorithm for Computing the Link Center of a Simple Polygon 151

LCB). Then r~ is not visible in V. Moreover, there exists a segment t of

LCB inside V that cuts off a portion of B containing f. Then s* cannot see

r~ in V' because of (at least) t. Then r~ is not visible in V'.

(iii) s* does not intersect an edge of B. Assume that s* intersects an edge t of

LCB. As e appears on LCB before t, the endpoints of t are between the

second endpoint of e and r (clockwise). Therefore s* hits another edge, edge

w, of LCB-B (let t and w be the first two such edges). However, the angle

between any two consecutive edges from LCB-B is convex. Thus there exist

edges of B-LCB on CHv(w, t). It follows that s* intersects some chain of

B. The contradiction shows that s* does not intersect LCB and thus r~ is

visible both in V and in V'. The correctness of the iteration for j = 2 is

proved in an analogous way.

Notice that we cannot directly shoot from r to LCB to locate the desired edge e,

since LCB changes dynamically and such shooting cannot be performed efficiently.

Instead, in Algorithm 4.5 we do the shooting in V polygon, which requires only

O(log n) time after linear-time preprocessing of V.

We give an upper bound on the time complexity of Algorithm 6.1. Denote

nl = number of edges inserted in LCB < 2 , (number of reflex vertices of V)

= O (n) ;

n 2 = number of edges removed from LCB < (number of vertices of V) + n 1

= O(n) ;

n 3 = number of intersections computed < na + n2 = O(n);

n 4 = number of shots produced < number of reflex vertices of V = O(n).

Then the time required by Algorithm 6.1 does not exceed

n I ,O(1) + n2*O(1) + n3*O(1) + n4*O(log n) = O(n log n). []

The results from this paper can be summarized in the following theorem.

Theorem 6.2. For any simple n-vertex polygon P the link center and the link radius

of P can be determined in O(n log n) time.

7. Extensions

A central link segment in an n-vertex simple polygon P is a segment s of P that

.minimizes the number min~ s maxp~a dist(q, p), where dist(q, p) is the link distance

m P between two points p, q of P. Constructing the central link segment has

applications in finding an optimal location of a robot in a polygonal region and

in solving the problem of determining the minimum value k for which a given

polygon is k-visible from some segment. The technique presented in this paper has

been used in the design of an O(n log n)-time algorithm for finding a central link

segment in P; see [2]. (An alternate method is suggested in [9].)

We can generalize the problem of computing a link center of a simple polygon

as follows. Let P be a simple polygon. Let Z be a set of points and let S be a set

152 H.N. Djidjev, A. Lingas, and J.-R. Sack

of segments both located on the boundary of P. Let the sizes of S and Z be linear

in the number n of vertices of P. Then the first algorithm described here can be

adapted for finding the set of points in P which minimize the maximum link

distance to all points in S and in P.

The algorithms presented here can also be used to solve the problem of

determining the external link center of a polygon, i.e., that region(s) of the exterior

of P for which each point inside the region minimizes the maximum (exterior) link

distance to all points of P [3].

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ultman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.
2. L. Alexandrov, H. Djidjev, and J.-R. Sack, Finding a central link segment of a simple polygon in

O(n log n) time, Technical Report TR-89-7, Bulgarian Academy of Sciences, May 1989; also
Technical Report SCS-TR-163, School of Computer Science, Carleton University.

3. L. Alexandrov, H. Djidjev, and J.-R. Sack, Finding the external link center of a simple polygon,

unpublished manuscript, April 1990.
4. B. ChazeUe, A theorem on polygon cutting with applications, Proc~ 23rd Annual IEEE Symp. on

Foundations of Computer Science, 1982, pp. 339-349.
5. B. Chazelle, Triangulating a simple polygon in linear time, Proc. 31st Annual IEEE Symposium

on Foundations of Computer Science, 1990, pp. 220-230.
6. H. Djidjev, Linear algorithms for graph separation problems, Proc. S W A T '88, Lecture Notes in

Computer Science, Vol. 318, Springer-Verlag, Berlin, pp. 216-221.
7. H. N. Djidjev, A. Lingas, and J.-R. Sack, An O(n log n) algorithm for computing a link center in

a simple polygon, Proc. STACS "89, Paderborn, February 1989, Lecture Notes in Computer

Science, Vol. 349, Springer-Verlag, Berlin, pp. 96-107.
8. L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algorithms for

visibility and shortest path problems inside triangulated simple polygons, Algorithmica 2 (1987),

209-233.
9. Y. Ke, An efficient algorithm for link distance problems inside a simple polygon, Proc. ACM Syrup.

on Computational Geometry, Saarbriicken, June 1989, pp. 69-78.
10. W. Lenhart, R. Pollack, J.-R. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides, and

C. Yap, Computing the link center of a simple polygon, Discrete and Computational Geometry 3(3)

(1988), 281-293.
11. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM Journal on Applied

Mathematics 36 (1979), 177-189.
12. R. Pollack, G. Rote, and M. Sharir, Computing the geodesic center of a simple polygon, Discrete

and Computational Geometry 4(6) (1989), 611-626.
13. L-R. Sack, Movability of polygons in the plane, Proc. STACS "85, Saarbrficken, January 1985,

Lecture Notes in Computer Science, Vol. 182, Springer-Verlag, Berlin, pp. 310-321; Robotica 5

(1987), 55-63.
14. J.-R. Sack, and S. Suri, An optimal algorithm for detecting weak visibility of a polygon, IEEE

Transactions on Computers 39(10) (1990), 1213-1219.
15. S. Suri, A linear time algorithm for minimum link paths inside a simple polygon, Computer Vision,

Graphics, and Image Processing 35 (1986), 99-110.
16. S. Suri, Minimum link paths in polygons and related problems, Ph.D. Thesis, I~partment of

Computer Science, Johns Hopkins University, August 1987.
17. G. T. Toussaint, Shortest path solves edge-to-edge visibility in a polygon, Technical Report

SOCS-84.39, McGill University, Montreal, 1985.

Received September 26, 1990, and in revised form August 26, 1991.

