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AnoA: A Framework for Analyzing Anonymous
Communication Protocols
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Abstract. Anonymous communication (AC) protocols such as the widely used
Tor network have been designed to provide anonymity over the Internet to their
participating users. While AC protocols have been the subject of several security
and anonymity analyses in the last years, there still does not exist a framework
for analyzing these complex systems and their different anonymity properties in a
unified manner.

In this work we present AnoA: a generic framework for defining, analyzing, and
quantifying anonymity properties for AC protocols. In addition to quantifying the
(additive) advantage of an adversary in an indistinguishability-based definition,
AnoA uses a multiplicative factor, inspired from differential privacy. AnoA enables a
unified quantitative analysis of well-established anonymity properties, such as sender
anonymity, sender unlinkability, and relationship anonymity. AnoA modularly
specifies adversarial capabilities by a simple wrapper-construction, called adversary
classes. We examine the structure of these adversary classes and identify conditions
under which it suffices to establish anonymity guarantees for single messages in
order to derive guarantees for arbitrarily many messages. This then leads us
to the definition of Plug’n’Play adversary classes (PAC), which are easy-to-use,
expressive, and satisfy this condition. We prove that our framework is compatible
with the universal composability (UC) framework and show how to apply AnoA to a
simplified version of Tor against passive adversaries, leveraging a recent realization
proof in the UC framework.

Keywords. Anonymous Communication, Anonymity Metric, Relationship Ano-
nymity, Unlinkability

1 Introduction

Protecting individuals’ privacy in online communications has become a challenge of
paramount importance. A wide variety of privacy enhancing technologies, comprising
many different approaches, have been proposed to solve this problem. Among these,
anonymous communication (AC) protocols seek to protect users’ privacy by anonymizing
their communication over the Internet. Employing AC protocols has become increasingly
popular over the last decade. This popularity is exemplified by the success of the Tor
network (Tor Project).
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It is, however, often unclear how well such AC protocols actually protect the anonymity
of an individual’s network communication. This is due to AC protocols often being
complex decentralized cryptographic algorithms that require careful analyses for at least
partial security guarantees under restricted settings: there has been significant previous
work on analyzing the anonymity provided by various AC protocols, such as dining
cryptographers networks (DC-nets) (Chaum, 1988), Crowds (Reiter and Rubin, 1998),
mix networks (Mixnets) (Chaum, 1981), and onion routing (e.g., Tor) (Reed et al.,
1998). However, most of the previous work only consider a single anonymity property
for a particular AC protocol under a specific adversary scenario (Gierlichs et al., 2008;
Feigenbaum et al., 2007b; 2012), and previous frameworks (Syverson et al., 2000; Dı́az
et al., 2002; Serjantov and Danezis, 2002; Shmatikov, 2004; Mauw et al., 2004; Halpern
and O’Neill, 2005; Shmatikov and Wang, 2006; Dı́az, 2006; Hughes and Shmatikov, 2004)
do not consider the computational aspects of the cryptographic realization of AC.

We observe that a general approach to quantifying the anonymity provided by AC
protocols can pave the way for a unified analysis of various AC protocols, identifying
common and unique weaknesses of existing approaches, and help in developing novel
approaches to anonymous communication that circumvent these problems. Such a
general approach, however, is to provide means to analyze AC protocols under different
anonymity notions and various degrees of adversarial capabilities, as well as taking into
account computational risks presented by the deployed cryptography.

As the main contribution of this work, we present a novel anonymity analysis frame-
work AnoA. AnoA allows us to define anonymity properties in a unified and comparable
manner, with an anonymity definition based on indistinguishability of probabilistic
processes, inspired by similar notions utilized in different contexts, such as differential
indistinguishability (Backes et al., 2015a) for cryptography with imperfect random-
ness, differential privacy (Dwork, 2006; Dwork et al., 2006) or for privacy in statistical
databases. We adopt several strengths of these earlier differential indistinguishability
notions that are suited for reasoning about anonymity: (a) a strong adversary that
has maximal control over two different (adjacent) settings that it has to distinguish
and (b) an inherent quantitative aspect that does not only allow us to qualitatively,
but also quantitatively assess the anonymity provided by AC protocols, by bounding
distinguishability of probabilistic processes through additive, as well as multiplicative
factors.

The AnoA framework provides anonymity guarantees for various anonymity properties
such as sender anonymity, recipient anonymity, or sender unlinkability through explicit
anonymity functions α that formalize each of these anonymity notions in the AnoA
framework: guarantees determined through AnoA are then relative to the specific
anonymity function deployed. In contrast to previous work on anonymity properties,
AnoA formulates anonymity properties in a game-like notion, in which the adversary can
choose all messages sent through the network except a anonymity challenge message—
which results in a strong adversary.

Moreover, AnoA is compatible with simulation-based composability frameworks,
such as UC (Canetti, 2013), GNUC (Hofheinz and Shoup, 2013), IITM (Küsters and
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Tuengerthal, 2013), RSIM (Backes et al., 2007), or even time-sensitive variants, such as
TUC (Backes et al., 2014b). In particular, for all protocols that are securely abstracted
by an ideal functionality (Wikström, 2004; Camenisch and Lysyanskaya, 2005; Danezis
and Goldberg, 2009; Kate and Goldberg, 2010; Backes et al., 2012), our definitions allow
an analysis of these protocols in a purely information theoretical manner.

As a second contribution, we formalize the well-established notions of sender ano-
nymity, (sender) unlinkability, recipient anonymity and relationship anonymity in our
framework, by introducing appropriate anonymity functions. We discuss why our an-
onymity definitions accurately capture these notions, and show for sender anonymity,
(sender) unlinkability and recipient anonymity that our definition is equivalent to the
definitions from the literature. For relationship anonymity, we argue that previous
formalizations captured recipient anonymity rather than relationship anonymity, and we
discuss the accuracy of our formalization.

As a third contribution, we show how we can modify adversarial capabilities in our
anonymity game by a simple extension of AnoA with adversary classes: these adversary
classes function as a wrapper around the actual adversary, restricting the information
the adversary gains from the AC protocol, as well as the set of actions the adversary
is able to perform. These adversary classes allow us to represent more realistic and
practical adversaries and provide anonymity guarantees relative to these adversaries’
capabilities. We examine the structure of these adversary classes and provide insight into
the necessary conditions to allow these adversary classes to be composable. This then
leads us to the definition of Plug’n’Play adversary classes (PAC), which are easy-to-use
and allow for composition.

Finally, as the fourth contribution, we apply our framework to the practically relevant
AC protocol Tor. We leverage previous results that securely abstract Tor as an ideal
functionality (in the UC framework) (Backes et al., 2012). Then, we illustrate that
proving sender anonymity, sender unlinkability, and relationship anonymity against
passive adversaries boils down to a combinatorial analysis, purely based on the number
of corrupted nodes in the network. We further leverage our framework and analyze
the effect of a known countermeasure for Tor’s high sensitivity to compromised nodes:
the entry guards mechanism.We discuss that, depending on the scenario, using entry
guards can have positive or negative effect. This basic analysis has been used as a
stepping-stone for successful follow-up work, such as the real-time anonymity monitor
proposed in Backes et al. (2014a) and for analyzing the impact of different path selection
algorithms and different types of adversaries on Tor anonymity (Backes et al., 2015b).

Outline. We begin by discussing the related work in Section 2. After establishing
the basic notation used throughout the paper in Section 3, we introduce the AnoA
framework in Section 4 where we describe its basic structure and the main components.
In Section 5, we then provide formalizations of various anonymity notions in AnoA
before we discuss adversary classes and their properties in Section 6. Finally, we utilize
the AnoA formalization of anonymity to provide anonymity guarantees for the Onion
Routing (OR) protocol based on an analysis of an ideal functionality of the OR protocol
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in Section 7. In Section 8, we conclude the paper and give an outlook on possible future
directions. In the appendix, we provide full proofs of theorems stated in this paper, and
show that UC-realization preserves anonymity as defined in AnoA.

2 Related and Prior Work

Pfitzmann and Hansen (2010) develop a consistent terminology for various relevant
anonymity notions; however, their definitions lack formalism. Nevertheless, these informal
definitions form the basis of almost all recent anonymity analysis, and we also adopt
their terminology to validate the anonymity definitions in AnoA.

There have been analyses which focus on a particular AC protocol, such as Serjantov
and Danezis (2002); Dı́az (2006); Shmatikov and Wang (2006); Gierlichs et al. (2008)
for Mixnet, Bhargava and Palamidessi (2005); Andrés et al. (2011) for DC-net, Dı́az
et al. (2002); Shmatikov (2004) for Crowds, and Syverson et al. (2000); Mauw et al.
(2004); Feigenbaum et al. (2007a;b; 2012) for onion routing. Most of these study a
particular anonymity property in a particular scenario and are not flexible enough
to cover the emerging system-level attacks on the various AC protocols. Some of the
existing frameworks and analyses focus on changes in entropy Dı́az et al. (2002); Serjantov
and Danezis (2002); Shmatikov and Wang (2006); Dı́az (2006), which allows, but also
requires, to explicitly specify the adversary’s initial knowledge. (We refer the readers to
Feigenbaum et al. (2012, Sec. 5) for a detailed survey.)

Notably, there has been work on exploring metrics related to the multiplicative factor
in our anonymity definitions: Andrés et al. (2011) distinguish multiplicative leakage and
additive leakage (however, as alternatives, not in combination with each other). Their
approach is focused on concurrent systems and applied to the dining cryptographers
protocol. Moreover, Shmatikov Shmatikov (2004) defines the notions of “probable
innocence” and “possible innocence” – in terms of our metric, a multiplicative factor
quantifies the strength of “probable innocence”, while ensuring “possible innocence”,
whereas the distinguishing events rule out “possible innocence”.

The most recent result (Feigenbaum et al., 2012) among these by Feigenbaum,
Johnson and Syverson models the OR protocol in a simplified black-box abstraction,
and studies a notion of relationship anonymity which is slightly different from ours: here
the adversary wishes to identify the destination of a user’s message. As discussed in
Section 5.2, this relationship anonymity notion is slightly weaker than ours. Moreover,
their model is not flexible enough to extend to other system-level scenarios such as
fingerprinting attacks (Panchenko et al., 2011; Cai et al., 2012; Dyer et al., 2012).

Building on the work of Hevia and Micciancio (2008), Gelernter and Herzberg
published, concurrently with this work, an expressive framework that extends the work
of Hevia and Micciancio with active adversaries that adaptively send inputs (Gelernter
and Herzberg, 2013). They apply their methodology to obtain an impossibility result
for a strong combination of sender anonymity and unobservability, which they coin
“ultimate anonymity”. However, as in the work of Hevia and Micciancio, they only
consider qualitative anonymity notions (i.e., protocols that only allow a negligible chance
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of de-anonymizing users), which does not allow them to quantify the anonymity loss in
low-latency anonymous communication networks, such as Tor. Moreover, they do not
provide a mechanism, such as the adversary classes presented in this work, to flexibly
relax the strength of the adversary.

In 2013, the first version of AnoA (Backes et al., 2013) introduced the concept
of anonymity in terms of indistinguishability with a multiplicative factor. However,
the formal description was closer to differential privacy: it described AC protocols as
mechanisms running on databases of user actions. Thus, this version did not capture
interactive scenarios in a meaningful manner. Moreover, the adversary was fixed to a
Turing machine that sent two databases and then tried to distinguish between them. For
their variant of AnoA they showed single-challenge reducibility without the concept of
adversary classes. From this work we have only used the intuitive idea of a multiplicative
quantification for AC protocols, the UC realization proof for IND-ANO, and the example
application of AnoA to an idealized version of Tor.

In a follow-up in 2014, AnoA was extended to adaptive adversaries (Backes et al.,
2014a). They also introduced the concept of adversary classes as a means to adapt
the strength of the adversary to more realistic (real-world) scenarios, and analyzed
which properties an adversary class requires for the game to still provide single-challenge
reducibility. However, the main contribution of Backes et al. (2014a) was an application
of AnoA to a realistic instance of Tor, based on Tor’s real path selection algorithm and
its network status. From this work we adopt the adaptive description of AnoA, as well
as the underlying concept of (single-challenge reducible) adversary classes.

Recently, in an even more in-depth analysis, AnoA was again applied to Tor (Backes
et al., 2015b) for analyzing different variants of Tor’s path selection algorithm against a
variety of different structural adversaries. All these adversaries were described in terms
of (single-challenge reducible) adversary classes, which they derived from a relatively
general budget-adversary (see Example 7). From this work we only used the idea of
deriving (even more) general adversary classes, which can easily be instantiated.

3 Notation

Before we present AnoA, we briefly introduce some of the notation used throughout the
paper. We differentiate between two different kinds of assignments: a := b denotes a
being assigned the value b, and a← β denotes that a value is drawn from the distribution

β and a is assigned the outcome. In a similar fashion i
U← I denotes that i is drawn

uniformly at random from the set I.

Probabilities are given over a probability space which is explicitly stated unless it is

clear from context. For example Pr[b = 1 : b
U← {0, 1}] denotes the probability of the

event b = 1 in the probability space where b is chosen uniformly at random from the set
{0, 1}.

Our security notion is based on interacting Turing Machines (TM). We denote with
〈A|B〉 the interaction of two TMs A and B: the interaction starts with the activation
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of A and both machines activate each other by putting an input message in the other
machine’s input tape. The interaction ends when A produces an output.

In this paper we focus on computational security, i.e. all machines are computationally
bounded. More formally, we consider probabilistic, polynomial time TMs, which we
denote with ppt whenever required.

4 The AnoA Framework

AnoA quantifies how imperfect an anonymous communication protocol is compared to a
perfect anonymous channel that delivers all messages without leaking any information
about the communication. AnoA solely quantifies communication anonymity and does
not address privacy-loss via semantic means, e.g., if users sends its IP address to a
malicious server.

In the AnoA framework, we formalize anonymity through a challenge-response game,
where a challenger machine Ch (which internally runs a protocol Π) interacts with a ppt
adversary machine A. We assume a strong adversary that knows the behavior of all
protocol parties except for some specific challenges for which the adversary has to guess
correctly. As in other cryptographic definitions, we over-approximate the adversary’s
knowledge by assuming that the adversary A determines the inputs for the protocol
parties by sending instructions (i.e., which party S sends a message m to which recipient
R). The challenges are chosen by the adversary and constitute a pair of such instructions,
and the challenger chooses one of them, depending on a secret input of the challenger
(the challenge bit b). Naturally, the adversary, in addition, learns information from
observations made during execution of the protocol. These observations can include
intercepted messages through compromised parties in the network, traffic observations
on links between parties, and other types of leakage, and are formalized in Π. The
adversary wins the game if it is able to guess the challenge bit correctly.

For capturing different anonymity notions, the challenger internally processes chal-
lenge messages (red box inside Ch). How challenge messages are processed in detail
depends on the anonymity notion currently considered: e.g. for sender anonymity, a
specified message is sent to a specified recipient by one of two specified senders. The
anonymity provided by Π can now be measured by the advantage A has in guessing
which alternative Ch chose by observing the output of Π.

We over-approximate the capabilities of the adversary, which sometimes leads to
adversaries that are too strong. In order to capture more realistic or more specific
scenarios with weaker adversaries, we introduce restrictions, i.e., a machine that internally
runs another arbitrary machine (i.e., the adversary). We call this outer, restricting
machine C an adversary class.

The adversary A inside an adversary class C, the challenger Ch, and the protocol
Π are represented by interacting probabilistic, polynomial time (ppt) Turing machines.
The overall structure of the protocol simulation in AnoA is illustrated in Figure 1.
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Figure 1: The structure of the AnoA framework

The AnoA framework is de-
signed to also yield useful guar-
antees for imperfect AC proto-
cols (such as Tor) by quantifying
the imperfectness of an AC proto-
col. As our definition comprises
a (in)distinguishability game, we
could, in principle, simply con-
sider the additive distance be-
tween the advantage of an adver-
sary, as done in other computa-
tional indistinguishability defini-
tions. In order to achieve a quali-
tatively more accurate characteri-
zation, however, we also include a
multiplicative factor inspired by
differential privacy. In Section 4.5, we discuss various interpretations of this multiplicative
factor with regard to anonymity.

In this section we define and describe the separate parts of the AnoA framework, i.e.,
the three main components (protocol, challenger and adversary) and their interactions.

4.1 Protocol Model

Anonymous communication (AC) protocols are distributed protocols that enable multiple
users to anonymously communicate with multiple recipients. Formally, an AC protocol
is an interactive Turing machine.1 We associate a protocol with a user space U and a
recipient space R. Users’ actions are modeled as an input to the protocol and represented
in the form of an ordered input action. Each input action contains a sender S ∈ U
that sends a message m to a recipient R ∈ R, together with an identifier for a session
session .

A typical adversary in an AC protocol can compromise a certain number of parties.
We model such an adversary capability as static corruption: before the protocol execution
starts A may decide which parties to compromise.

Our protocol model is sufficiently generic for capturing multi-party protocols in
classical simulation-based composability frameworks, such as UC (Canetti, 2013), GNUC
(Hofheinz and Shoup, 2013), IITM (Küsters and Tuengerthal, 2013), RSIM (Backes
et al., 2007), or even time-sensitive variants, such as TUC (Backes et al., 2014b) (e.g.,
for capturing timing-related attacks). In particular, our protocol model comprises
ideal functionalities, trusted machines that are used in simulation-based composability
frameworks to define security. It is straightforward to construct a wrapper for such an
ideal functionality of an AC protocol that translates input tables to the expected input

1We stress that using standard methods, a distributed protocol with several parties can be represented
by one interactive Turing machine.
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of the functionality. We present such a wrapper for Tor in Section 7.

We assume that the protocol uses session IDs session to coordinate and relate
sessions of users with each other, i.e., that it tells the challenger for each message (or
each meta-data), from which session this was derived.

Moreover, we assume that the protocol provides two functions validateSender()
for validating that a given term S describes a valid sender and validateRecipient()
for validating that a given tuple (R,m) describes a valid recipient and a valid message
for this recipient.

4.2 Challenger

In AnoA, we model anonymity as a challenge-response game between a challenger that
simulates the protocol and an adversary that tries to de-anonymize users. The challenger
Ch(Π, α, n, b) allows the adversary to adaptively control user communication in the
network, up to an uncertainty of one bit for challenges, and is parametric in the following
parts: (i) the AC protocol Π to be analyzed, (ii) the so called anonymity function α,
that describes the specific variant of anonymity we are interested in (sender anonymity,
recipient anonymity, relationship anonymity), the number of challenges n the adversary
is allowed to issue, and the challenge bit b which determines the decision the challenger
takes in challenge inputs from the adversary. The implementation of Ch is illustrated in
Figure 2. In the following we describe Ch in detail.

Input Messages. On regular inputs of the form (Input, r = (S,R,m, session), ID) from
the adversary, Ch runs the protocol Π with input (r = (S,R,m, session), ID) without
altering it.

Challenge Messages. On challenges of the form (Challenge, r0, r1, (Ch,Ψ)), Ch first
checks the validity of the challenge before choosing the input rb based on its challenge
bit b. This validity check on the side concerns the form of ri: it has to contain
a valid sender (using validateSender()) and a valid message-recipient pair (using
validateRecipient()).

On the other side, the validity of the challenge tag Ψ has to be checked: First, it is
checked whether Ψ ∈ [1 . . . n] to make sure that the adversary does not issue too many
challenges. After that the state of the challenge with tag Ψ has to be determined: let
T be the set of all active challenges. If the adversary has not yet issued a challenge
with tag Ψ, the state is set to FRESH CHALLENGE and the challenge Ψ is added to T . If
Ψ is already active, i.e. Ψ ∈ T , the challenger checks whether it is already finished
(indicated by the CHALLENGE OVER state): if this is the case, the challenger returns ⊥ to
the adversary to indicate an invalid input.

If the challenge is valid, Ch runs α on the challenge inputs r0 and r1 together with
Ch’s challenge bit b and the current state of the challenge Ψ. The output of α is then
used as the input in which Π is run.
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Adaptive AnoA Challenger Ch(Π, α, n, b)

Upon message (Input, r = (S,R,m, session), ID)

RunProtocol(r, ID)

Upon message (Challenge, r0, r1, (Ch,Ψ))

if Ψ /∈ {1, . . . , n} ∨ ¬Validate(r0) ∨ ¬Validate(r1) then
output ⊥

else
if Ψ ∈ T then

Retrieve s := sΨ
if s = CHALLENGE OVER then
⊥

else
s := FRESH CHALLENGE
Add Ψ to T

Compute (r∗, sΨ)← α(s, r0, r1, b)
RunProtocol(r, (Ch,Ψ))

Upon message (Protocol, x, ID)

Run Π on the protocol message x. These messages may set pa-
rameters and corrupt or control parties, but do control communi-
cations of honest users.

Validate (r = (S,R,m, session)

output validateSender(S) ∧ validateRecipient(R,m)

RunProtocol(r = (S,R,m, session), ID)

if ¬∃y such that (session, y, ID) ∈ S then
Let s← {0, 1} k
Store (session, s, ID) in S.

else
s := y

Run Π on r = (S,R,m, s), i.e., let the (honest) user S send a
message m to the user R using the session s (if it exists; other-
wise create it). Forward all messages m that are sent by Π to the
adversary as (Answer for,m, ID).

Figure 2: Adaptive AnoA Challenger

to send another message with the same session ID. For many protocols, it is trivially distinguishable, whether two
messages are sent within one session or in separate sessions.

Protocol Messages. In addition to input and challenge messages, the adversary can also send protocol messages
of the form (Protocol, x, ID). The protocol messages contain meta messages sent to the protocol that allow the
adversary, e.g., to compromise network parties or network links and set other parameters of the protocol Π.

4.3 Adversary Model

In AnoA, the adversary A is modeled as a ppt TM that interacts with the challenger Ch(Π, α, n, b) described in
Section 4.2. Together with regular input messages, the adversary is allowed to issue up to n challenges that conform
with the requirements set by the anonymity function α. The goal of A is to break the anonymity provided by Π
by correctly guessing the challenge bit b used by Ch in computing α.

The adversary receives protocol output from the challenger, which includes all messages it is able to intercept
or see throughout the protocol execution. Depending on the definition of Π, A can additionally send protocol
messages to Π that allow A to compromise or control parties in the network, which models that the adversary
can (partially) compromise the network. To model adaptive scenarios, e.g., for protocols in which users answer
to messages, the adversary can adaptively construct its inputs to the challenger based on the history of outputs
observed.

Adversary Restrictions for Modeling Specific Scenarios. The amount of information gained by the ad-
versary completely depends on the leakage modeled by the protocol Π simulated by Ch. However, we might want
to vary the adversary’s capabilities without modifying the protocol, in order to provide anonymity guarantees not
only for the strongest possible, but also a possibly weaker adversary, e.g., by reducing the amount of information
the adversary has access to or the amount of control it has over the challenges.

To achieve this, we introduce the notion of adversary classes C: these adversary classes are essentially wrappers
around the actual adversary that allow us to filter the inputs the adversary sends to the challenger, as well as the
outputs of the protocol the adversary receives. In the following we will assume that we always have an adversary
class C wrapped around the actual adversary A and denote the resulting new adversary with C (A). The original
case without adversary classes can obviously be modeled by having an adversary class that simply forwards all
inputs and outputs without filtering them.

In Section 6.2, we formalize the restriction of adversaries with such adversary classes and present an important
sanity condition (which we call single-challenge reducibility). Moreover, we show a generic template for adversary
classes for which we prove that it always satisfies all desired properties (called Plug’n’Play adversary classes).

4.4 Anonymity

In AnoA, we quantify the anonymity provided by the protocol Π simulated by Ch(Π, α, n, b) in terms of the
advantage the adversary C(A) has in correctly guessing Ch’s challenge bit b. We measure this advantage in terms

6

Figure 2: Adaptive AnoA Challenger

We use challenge tags to allow the adversary to interleave several challenges that
are within different stages at the same time: e.g., the adversary might first start an
unlinkability challenge (with tag Ψ1). Before this challenge is CHALLENGE OVER, the
adversary might start another challenge (with another tag Ψ2) or continue the first one
(with Ψ1).

The idea behind distinguishing challenge sessions and other sessions is to avoid that
the adversary exploits the session mechanics for getting an unfair advantage. Consider
the following example: in a sender anonymity game, the adversary sends a challenge
that lets either Alice or Bob start a session. Then, the adversary instructs Alice to
send another message with the same session ID. For many protocols, it is trivially
distinguishable, whether two messages are sent within one session or in separate sessions.

Protocol Messages. In addition to input and challenge messages, the adversary can also
send protocol messages of the form (Protocol, x, ID). The protocol messages contain
meta messages sent to the protocol that allow the adversary, e.g., to compromise network
parties or network links and set other parameters of the protocol Π.

4.3 Adversary Model

In AnoA, the adversary A is modeled as a ppt TM that interacts with the challenger
Ch(Π, α, n, b) described in Section 4.2. Together with regular input messages, the
adversary is allowed to issue up to n challenges that conform with the requirements set
by the anonymity function α. The goal of A is to break the anonymity provided by Π
by correctly guessing the challenge bit b used by Ch in computing α.

The adversary receives protocol output from the challenger, which includes all
messages it is able to intercept or see throughout the protocol execution. Depending
on the definition of Π, A can additionally send protocol messages to Π that allow A
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to compromise or control parties in the network, which models that the adversary can
(partially) compromise the network. To model adaptive scenarios, e.g., for protocols in
which users answer to messages, the adversary can adaptively construct its inputs to the
challenger based on the history of outputs observed.

Adversary Restrictions for Modeling Specific Scenarios. The amount of information
gained by the adversary completely depends on the leakage modeled by the protocol Π
simulated by Ch. However, we might want to vary the adversary’s capabilities without
modifying the protocol, in order to provide anonymity guarantees not only for the
strongest possible, but also a possibly weaker adversary, e.g., by reducing the amount
of information the adversary has access to or the amount of control it has over the
challenges.

To achieve this, we introduce the notion of adversary classes C: these adversary
classes are essentially wrappers around the actual adversary that allow us to filter the
inputs the adversary sends to the challenger, as well as the outputs of the protocol the
adversary receives. In the following we will assume that we always have an adversary
class C wrapped around the actual adversary A and denote the resulting new adversary
with C (A). The original case without adversary classes can obviously be modeled by
having an adversary class that simply forwards all inputs and outputs without filtering
them.

In Section 6.2, we formalize the restriction of adversaries with such adversary classes
and present an important sanity condition (which we call single-challenge reducibility).
Moreover, we show a generic template for adversary classes for which we prove that it
always satisfies all desired properties (called Plug’n’Play adversary classes).

4.4 Anonymity

In AnoA, we quantify the anonymity provided by the protocol Π simulated by Ch(Π, α, n, b)
in terms of the advantage the adversary C(A) has in correctly guessing Ch’s challenge
bit b. We measure this advantage in terms of indistinguishability of random variables
(both additively and multiplicatively), where the random variables in question represent
the output of the interactions 〈C(A)|Ch(Π, α, n, 0)〉 and 〈C(A)|Ch(Π, α, n, 1)〉.

This approach is motivated by similar definitions presented under different con-
texts, e.g. differential indistinguishability (Backes et al., 2015a) for cryptography
with imperfect randomness, differential privacy (Dwork, 2008) for privacy in statistical
databases. Formally, we say that the protocol Π provides (α, n, ε, δ)-IND-ANO if the
indistinguishability between the random variables defined by 〈C(A)|Ch(Π, α, n, 0)〉 and
〈C(A)|Ch(Π, α, n, 1)〉 can be bounded by the multiplicative factor ε and the additive
factor δ.

Definition 1 ((n, ε, δ)-IND-ANO ). A protocol Π is (n, ε, δ, α)-IND-ANO for a class of
adversaries C, with ε ≥ 0 and 0 ≤ δ ≤ 1, if for all ppt machines A,

Pr [0 = 〈C(A(n))|Ch(Π, α, n, 0)〉] ≤enεPr [0 = 〈C(A(n))|Ch(Π, α, n, 1)〉] + enεnδ.



89

Anonymity Function. The anonymity guarantee we provide in AnoA is parametric in the
anonymity function α. This function encodes the specific anonymity notion we analyze,
e.g. sender anonymity, recipient anonymity, or relationship anonymity. The main purpose
of the anonymity function α is to validate challenges issued by the adversary for the
anonymity notion represented by α, and choose one of the challenge inputs based on the
challenger Ch’s challenge bit (cf. Section 4.2). We construct the anonymity functions for
different anonymity notions in Section 5.

4.5 Interpretation of Anonymity Guarantees

In Definition 1, we bound the distinguishability of 〈C(A|Ch(Π, α, n, 0)〉 and
〈C(A(n))|Ch(Π, α, n, 1)〉 by the additive factor δ and the multiplicative factor ε. In
the following we discuss suitable interpretations of these parameters.

Additive Factor. The additive factor δ gives us the probability with which the adversary
can actually distinguish both Ch(Π, α, n, 0) and Ch(Π, α, n, 1). Classic differential indistin-
guishability notions usually require that δ is negligible. However, these previous notions
also do not allow for an adversary that actively compromises the mechanism in question,
which we do require for the analysis of anonymous communication networks: the analysis
of AC protocols under partial compromisation naturally leads to a non-negligible δ,
which can be interpreted as the likelihood of a distinguishing event which allows the
adversary to break anonymity and identify the hiding party. In the analysis of Tor in
Section 7, our main effort will be put towards identifying such distinguishing events and
determining their likelihood.

Multiplicative Factor. Following the discussion of the multiplicative factor and its impact
on cryptographic guarantees presented by Backes, Kate, Meiser and Ruffing (Backes
et al., 2015a), we now discuss its impact in terms of anonymity.2 We refer the interested
reader to their work for more details. The multiplicative factor ε in Definition 1 allows
for qualitatively different analyses than a strictly additive advantage of the adversary.
It indicates the distinguishability of both random variables, i.e. Ch(Π, α, n, 0) and
Ch(Π, α, n, 1), under ideal conditions: it quantifies the leakage inherent to the analyzed
protocol Π, even against a passively observing adversary that does not compromise any
parts of the network but only knows of in- and out-going messages.

If the adversary has an advantage δ in distinguishing between two scenarios, e.g.,
two possible recipients of a message, this might stem from a chance of breaking the
cryptography involved in the protocol, i.e., by guessing a decryption key, or a chance to
entirely compromise relevant protocol parties. Generally, such an advantage can stem
from a certain probability of finding hard evidence or proof for the scenario. In contrast,
a (purely) multiplicative factor describes that the adversary has some advantage in
guessing the scenario, but is provably not able to find hard evidence or even proof. Thus,

2Backes et al. (2015a) also show that such a multiplicative eε can always be described in terms of
the additive δ. The converse, however, does not hold.
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if by introducing a relatively small multiplicative eε we can reduce δ accordingly, the
guarantee is more tight.

Example 1 (Multiplicative factor for recipient anonymity). Building upon AnoA,
Backes et al. (2014a) have shown that a multiplicative factor indeed helps to capture
non-distinguishing events for Tor (without the entry guard mechanics). They show that
especially for recipient anonymity, if different recipients require different ports, even
without compromised nodes Tor is slightly vulnerable to ISPs. However, this vulnerability
completely falls within ε.

The reason for this observation is as follows. An ISP can always see the entry node.
If two recipients with different ports are selected, different subsets of nodes can be chosen
as exit nodes. This discrepancy translates to different probabilities for the entry nodes as
well (as exit nodes are chosen first and the choice of entry nodes slightly depends on the
chosen exit node), resulting in a multiplicative factor.

The analysis of the Tor protocol we present in Section 7 is very basic and thus
only considers a multiplicative factor of ε = 0. More involved analyses that take into
account Tor’s path selection and adversarial infrastructure, and thus produces anonymity
guarantees with non-zero multiplicative factors, can be found in follow up work by Backes
et al. (Backes et al., 2014a; 2015b).

This concludes the introduction of the AnoA framework. In the subsequent section
we present the formalization of various anonymity notions in the AnoA framework.

5 Anonymity Notions

In this section we present a variety of anonymity notions for AnoA. These notions
are represented as anonymity functions that describe the challenges in the game-based
definition between our challenger (see Figure 2) and the adversary. First we describe
rather simple anonymity functions for challenges consisting of individual messages, before
describing more complex notions (e.g., for communication sessions).

5.1 Single-Message Anonymity

Many protocols consider anonymity on a per-message basis. For such protocols, we
define anonymity in terms of individual messages. As we show in Section 5.3, this in not
a particularly strong restriction, since anonymity for an individual challenge (i.e., for
one message) implies anonymity for several messages, for a large class of adversaries.

Sender Anonymity

Sender anonymity characterizes the anonymity of users against a malicious server. In
contrast to other notions from the literature, we define sender anonymity as the inability
of an observer to decide which of two self-chosen users have been communicating.
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αSA(s, (S0, R0,m0, session0), (S1, , , ), b) :

if s 6= FRESH CHALLENGE then
output ⊥

else
output ((Sb, R0,m0, session0),CHALLENGE OVER)

αUL(s, (S0, R0,m0, session0), (S1, , , ), b) :

if s == CHALLENGE OVER then
output ⊥

else if s == (Sx0
, Sx1

) then

output ((Sxb , R0,m0, 2),CHALLENGE OVER)

else if s == FRESH CHALLENGE then

x
U← {0, 1}

r∗ := (Sx, R0,m0, 1)
s∗ := (Sx, S1−x)
output (r∗, s∗)

αRA(s, (S0, R0,m0, session0), ( , R1,m1, ), b) :

if s 6= FRESH CHALLENGE ∨ |m0| 6= |m1| then
output ⊥

else
output ((S0, Rb,mb, session0),CHALLENGE OVER)

αREL(s, (S0, R0,m0, session0), (S1, R1,m1, ), b) :

if s 6= FRESH CHALLENGE or |m0| 6= |m1| then
output ⊥

a← {0, 1}
if b == 0 then

output ((Sa, Ra,m0, 1), s := CHALLENGE OVER)
else

output ((Sa, R1−a,m0, 1), s := CHALLENGE OVER)

Figure 3: The (single-message) anonymity functions.

different probabilities for the entry nodes as well (as exit nodes are chosen first and the choice of entry nodes slightly
depends on the chosen exit node), resulting in a multiplicative factor.

The analysis of the Tor protocol we present in Section 7 is very basic and thus only considers a multiplicative
factor of ε = 0. More involved analyses that take into account Tor’s path selection and adversarial infrastructure,
and thus produces anonymity guarantees with non-zero multiplicative factors, can be found in follow up work by
Backes et al. [7, 4].

This concludes the introduction of the AnoA framework. In the subsequent section we present the formalization
of various anonymity notions in the AnoA framework.

5 Anonymity Notions

In this section we present a variety of anonymity notions for AnoA. These notions are represented as anonymity
functions that describe the challenges in the game-based definition between our challenger (see Figure 2) and the
adversary. First we describe rather simple anonymity functions for challenges consisting of individual messages,
before describing more complex notions (e.g., for communication sessions).

5.1 Single-Message Anonymity

Many protocols consider anonymity on a per-message basis. For such protocols, we define anonymity in terms of
individual messages. As we show in Section 5.3, this in not a particularly strong restriction, since anonymity for an
individual challenge (i.e., for one message) implies anonymity for several messages, for a large class of adversaries.

5.1.1 Sender Anonymity

Sender anonymity characterizes the anonymity of users against a malicious server. In contrast to other notions
from the literature, we define sender anonymity as the inability of an observer to decide which of two self-chosen
users have been communicating.

We formalize our notion of sender anonymity with the definition of an anonymity function αSA as depicted
in Figure 3. Basically, αSA selects one of two possible challenge users and makes sure that the users cannot be
distinguished by the chosen recipient(s) or message(s).

Definition 1 (Sender anonymity). A protocol Π provides (ε, δ)-sender anonymity if it is (1, αSA, ε, δ)-IND-ANO for
αSA as defined in Figure 3.

Example 2 (Sender anonymity). The adversary A decides that it wants to use users Alice and Bob in the sender
anonymity game. It sends a challenge (Challenge, (Alice, evilserver.com, m, session), (Bob, evilserver.com,
m, session), 1) for sending some message m of A’s choice to a (probably corrupted) recipient evilserver.com.
The anonymity function αSA now chooses (depending on the challenge bit) one of the two senders and outputs the
corresponding command to the protocol.
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We formalize our notion of sender anonymity with the definition of an anonymity
function αSA as depicted in Figure 3. Basically, αSA selects one of two possible challenge
users and makes sure that the users cannot be distinguished by the chosen recipient(s)
or message(s).

Definition 1 (Sender anonymity). A protocol Π provides (ε, δ)-sender anonymity if it
is (1, αSA, ε, δ)-IND-ANO for αSA as defined in Figure 3.

Example 2 (Sender anonymity). The adversary A decides that it wants to use users
Alice and Bob in the sender anonymity game. It sends a challenge (Challenge, (Alice,
evilserver.com, m, session), (Bob, evilserver.com, m, session), 1) for sending some
message m of A’s choice to a (probably corrupted) recipient evilserver.com. The anonym-
ity function αSA now chooses (depending on the challenge bit) one of the two senders
and outputs the corresponding command to the protocol.

Recipient Anonymity

Recipient anonymity characterizes that the recipient of a communication remains anony-
mous, even to observers that have knowledge about the sender in question. Our notion of
recipient anonymity is defined analogously to sender anonymity: the anonymity function
selects one of two possible recipients for a message. To account for possibly different
message requirements for different recipients but to still counter attacks based on the
pattern of those messages, the anonymity function checks whether the messages have
the same length.

Definition 2. A protocol Π provides (ε, δ)-recipient anonymity if it is (1, αRA, ε, δ)-
IND-ANO for αRA as defined in Figure 3.

Trivial Attacks Against Recipient Anonymity. In a website fingerprinting attack, the
attacker checks traffic features (e.g., volume and direction changes) of the response, which
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in many cases is unique as recent studies show (Panchenko et al., 2011; Cai et al., 2012).
Such a trivial attack is possible against any low-latency anonymous communication
protocol and should hence be excluded for quantifying the anonymity guarantees of
a low-latency anonymous communication protocol. Thus, we suggest restricting the
responses to “similar responses” (i.e., responses of the same length and pattern) that do
not trivially identify the recipient of the initial message. In Section 7.2 we describe how
we restrict such responses for our analysis of the Tor protocol.

Sender Unlinkability

Sender unlinkability characterizes that it is hard to distinguish two messages sent by the
same sender from two messages sent by different senders. A protocol satisfies sender
unlinkability if for any two messages, the adversary cannot determine whether these
messages are sent by the same user (Pfitzmann and Hansen, 2010). We require that
the adversary does not know whether two challenge messages come from the same user
or from different users. We formalize this intuition by letting the adversary send two
challenge messages for one challenge. The first challenge message defines the possible
senders of the messages. From those, one (random) sender is chosen and stored as the
active sender, while the other sender is stored as alternative sender. For the second
challenge message, depending on the challenge bit, either the active sender of the
challenge sends the second message, or the alternative sender. This is formalized in the
anonymity function αUL as defined in Figure 3.

As before, we say a protocol Π fulfills sender unlinkability, if no adversary A can
sufficiently distinguish Ch(Π, αUL, 0) and Ch(Π, αUL, 1). This leads to the following
concise definition.

Definition 3 (Sender unlinkability). A protocol Π provides (ε, δ)-sender unlinkability if
it is (1, αUL, ε, δ)-IND-ANO for αUL as defined in Figure 3.

Example 3 (Sender unlinkability). The adversary A decides that it wants to use users
Alice and Bob in the unlinkability game. It sends a challenge message (Challenge, (Alice,
m,R, session), (Bob,m,R, session),Ψ). The anonymity function randomly selects one
of the senders, say, Bob, and instructs him to send message m to the recipient R. So
far, the adversary cannot break unlinkability, as only one random sender was used.

Later, A sends another challenge message (Challenge, ( ,m,R, session), ( , , ),Ψ)
for the same challenge Ψ. Now the behavior is different for different challenge bits: If
the challenge bit b is zero, the anonymity function will reuse the same sender as for the
first message (Bob). Otherwise, it will instruct Alice to send the second message.

Relationship Anonymity

A protocol satisfies relationship anonymity, if for any communication, the adversary
cannot determine sender and recipient of this communication at the same time (Pfitzmann
and Hansen, 2010). We model this property by letting the anonymity function αREL

choose one of two possible senders and one of two possible recipients for a given challenge.
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We then group the four possible combinations in two sets (one defined by the adversary
and one modified by the anonymity function) and let the adversary guess from which
set the communication came.

More formally, the anonymity function αREL, as defined in Figure 3, chooses either
one of the given challenge actions of the adversary (for b = 0) or creates a modified
version of one of the challenge actions (for b = 1): it selects the sender of one action, but
message and recipient from another action. Moreover, the anonymity function makes
sure that the possible messages are of the same length (to exclude obvious distinctions).

We say that Π fulfills relationship anonymity, if no adversary can sufficiently distin-
guish Ch(Π, αREL, 1, 0) and Ch(Π, αREL, 1, 1).

Definition 4 (Relationship anonymity). A protocol Π provides (ε, δ)-relationship ano-
nymity if it is
(1, αREL, ε, δ)-IND-ANO for αREL as defined in Figure 3.

Example 4 (Relationship anonymity). The adversary A decides that it wants to use
users Alice and Bob and the recipients Charly and Eve in the relationship anonymity
game. It wins the game if it can distinguish between the scenario “0” where Alice sends
m1 to Charly or Bob sends m2 to Eve and the scenario “1” where Alice sends m2 to
Eve or Bob sends m1 to Charly. Only one of those four possible instructions will be fed
to the protocol.

A sends a challenge message (Challenge, (Alice,Charly,m, session), (Bob,Eve,m,
session),Ψ) to Ch. The anonymity function αREL then randomly selects a sender a ∈
{Alice,Bob}, say Alice. Then, depending on the challenge bit b, the function outputs ei-
ther (Alice,Charly,m1, session) as specified by A (for b = 0), or (Alice,Eve,m2, session)
as a modified instruction (for b = 1).

5.2 Anonymity Function Soundness

In this section, we relate the (single-message) anonymity notions defined above to classic
definitions directly derived the seminal work by Pfitzmann and Hansen (2010). We
examplarily show that for sender anonymity and sender unlinkability, we can translate our
definitions to the classic definitions (and vice versa), whereas for relationship anonymity
we discuss crucial differences and their implications for the respective anonymity notions.

Sender Anonymity

The notion of sender anonymity is introduced in Pfitzmann and Hansen (2010) as follows:

Anonymity of a subject from an adversary’s perspective means that the
adversary cannot sufficiently identify the subject within a set of subjects,
the anonymity set.

From this description, we formalize their notion of sender anonymity in the anonymity
function αSA

c shown in Figure 4. This anonymity function then allows us to define the
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notion of δ-sender anonymity, which states that, given a message m sent to a recipient
R, the advantage of the adversary to guess the right sender from the user space U can
be bound by δ.

Definition 5 (δ-sender anonymity). A protocol Π with user space U of size N has
δ-sender anonymity if for all ppt-adversaries A

Pr
[
u∗ = u | u∗ = 〈A|Ch(Π, αSA

c, 1, u)〉 , u U← U
]
≤ 1

N
+ δ,

where the anonymity function αSA
c as defined as in Figure 4.

This definition is quite different from our own definition with the anonymity function
αSA. While αSA requires A to simply distinguish between two possible outcomes,
Definition 5 requires A to correctly guess the right user from the user space U . Naturally,
αSA is stronger than the definition above. Indeed, we can quantify the gap between
the definitions: Lemma 1 states that an AC protocol satisfying (0, δ)-sender anonymity
implies that this AC also provides δ-sender anonymity.

Lemma 1 (Sender anonymity). For all protocols Π over a (finite) user space U of size
N it holds that if Π provides (0, δ)-sender anonymity, then Π also provides δ-sender
anonymity as in Definition 5.

Proof Outline. We show the contraposition of the lemma: an adversary A that breaks
sender anonymity, can be used to break IND-ANO for αSA. We construct an adversary
B against IND-ANO for αSA by choosing the senders of the challenge rows at random,
running A on the resulting game, and outputting the same as A. For A the resulting
view is the same as in the sender anonymity game; hence, B has the same success
probability in the IND-ANO game as A in the sender anonymity game.

In the converse direction, we lose a factor of 1
N in the reduction, where N is the

size of the user space. If an AC protocol Π provides δ-sender anonymity, we only get
(0, δ ·N)-sender anonymity for Π.

Lemma 2. For all protocols Π over a (finite) user space U of size N it holds that if Π
provides δ-sender anonymity, then Π also provides (0, δ ·N)-sender anonymity.

Proof Outline. We show the contraposition of the lemma: an adversary A that breaks
IND-ANO for αSA, can be used to break δ-sender anonymity. We construct an adversary
B against sender anonymity by running A on the sender anonymity game and outputting
the same as A. If the wishes of A for the challenge senders coincide with the sender that
the challenger chose at random, the resulting view is the same as in the IND-ANO game
for αSA; hence, B has a success probability of δ/N in the sender anonymity game if A
has a success probability of δ in the IND-ANO game for αSA.
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αSA
c(s, ( , R0,m0, session0))

if s 6= FRESH CHALLENGE then
output ⊥

else

u
U← U

output ((Su, R0,m0, session0),CHALLENGE OVER)

αUL
c(s, ( , R0,m0, session0), b) :

if s == CHALLENGE OVER then
output ⊥

else if s == Sx then
if b == 1 then

output ((Sx, R0,m0, 2),CHALLENGE OVER)
else

u
U← U \ {x}

output ((Su, R0,m0, 2),CHALLENGE OVER)
else if s == FRESH CHALLENGE then

u
U← U

r∗ := (Su, R0,m0, 1)
s∗ := Su
output (r∗, s∗)

Figure 4: The anonymity functions for the classic anonymity definitions.

5.2.2 Unlinkability

The notion of unlinkability is defined in [39] as follows:

Unlinkability of two or more items of interest (IOIs, e.g., subjects, messages, actions, ...) from an
adversary’s perspective means that within the system (comprising these and possibly other items), the
adversary cannot sufficiently distinguish whether these IOIs are related or not.

Again, we formalize this notion in our model. We leave the choice of potential other items in the system completely
under adversary control. Also, the adversary controls the “items of interest” (IOI) by choosing when and for
which recipient/messages he wants to try to link the IOIs. Formally, we define a game between a challenger
Ch(Π, αUL

c, 1, b), using the anonymity function αUL
c depicted in Figure 4, and an adversary A as follows: among

regular message inputs, A can send a first challenge that contains the first message of the unlinkability challenge
to be sent through the network. The anonymity function αUL

c then chooses one (random) user u as the sender
and sends the message through the network, while remembering this sender in its state.

At a later point, the A then sends the second challenge, which contains the second message that either is or is
not linked to the first challenge message. The anonymity function, based on the challenge bit b, uses the same user
u as the sender of the second message or chooses a new user u′ 6= u as the second sender. The adversary wins the
game if he is able to distinguish whether the same user was chosen for both challenges (i.e. the IOIs are linked).

Definition 6 (δ-sender unlinkability). A protocol Π with user space U has δ-sender unlinkability if for all ppt-
adversaries A

∣∣Pr [b = 0 : b← 〈A|Ch(Π, αUL
c, 1, 0)〉]− Pr [b = 0 : b← 〈A|Ch(Π, αUL

c, 1, 1)〉]
∣∣ ≤ δ

where the anonymity function αUL
c is as defined in Figure 4.

We show that our notion of sender unlinkability using the adjacency function αUL is much stronger than the
δ-sender unlinkability Definition above: (0, δ)-sender unlinkability for an AC protocol directly implies δ-sender
unlinkability; we do not lose any anonymity.

Lemma 3 (sender unlinkability). For all protocols Π over a user space U it holds that if Π has (0, δ)-sender un-
linkability, Π also has δ-sender unlinkability as in Definition 6.

Proof Outline. We show the contraposition of the lemma: an adversary A that breaks sender unlinkability, can be
used to break IND-ANO for αUL. We construct an adversary B against IND-ANO for αUL by choosing the senders of
the challenge rows at random, running A on the resulting game, and outputting the same as A. For A the resulting
view is the same as in the sender unlinkability game; hence, B has the same success probability in the IND-ANO

game for αUL as A in the sender unlinkability game.

For the converse direction, however, we lose a factor of roughly N2 for our δ. Similar to the sender anonymity
case, showing that a protocol provides δ-sender unlinkability only implies that the protocol provides (0, δ ·N(N−1))-
sender unlinkability.
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Unlinkability

The notion of unlinkability is defined in Pfitzmann and Hansen (2010) as follows:

Unlinkability of two or more items of interest (IOIs, e.g., subjects, messages,
actions, ...) from an adversary’s perspective means that within the system
(comprising these and possibly other items), the adversary cannot sufficiently
distinguish whether these IOIs are related or not.

Again, we formalize this notion in our model. We leave the choice of potential other
items in the system completely under adversary control. Also, the adversary controls the
“items of interest” (IOI) by choosing when and for which recipient/messages he wants to
try to link the IOIs. Formally, we define a game between a challenger Ch(Π, αUL

c, 1, b),
using the anonymity function αUL

c depicted in Figure 4, and an adversary A as follows:
among regular message inputs, A can send a first challenge that contains the first message
of the unlinkability challenge to be sent through the network. The anonymity function
αUL

c then chooses one (random) user u as the sender and sends the message through
the network, while remembering this sender in its state.

At a later point, the A then sends the second challenge, which contains the second
message that either is or is not linked to the first challenge message. The anonymity
function, based on the challenge bit b, uses the same user u as the sender of the second
message or chooses a new user u′ 6= u as the second sender. The adversary wins the
game if he is able to distinguish whether the same user was chosen for both challenges
(i.e. the IOIs are linked).

Definition 6 (δ-sender unlinkability). A protocol Π with user space U has δ-sender
unlinkability if for all ppt-adversaries A

∣∣Pr [b = 0 : b← 〈A|Ch(Π, αUL
c, 1, 0)〉]− Pr [b = 0 : b← 〈A|Ch(Π, αUL

c, 1, 1)〉]
∣∣ ≤ δ

where the anonymity function αUL
c is as defined in Figure 4.
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We show that our notion of sender unlinkability using the adjacency function αUL is
much stronger than the δ-sender unlinkability definition above: (0, δ)-sender unlinkability
for an AC protocol directly implies δ-sender unlinkability; we do not lose any anonymity.

Lemma 3 (sender unlinkability). For all protocols Π over a user space U it holds that
if Π has (0, δ)-sender unlinkability, Π also has δ-sender unlinkability as in Definition 6.

Proof Outline. We show the contraposition of the lemma: an adversary A that breaks
sender unlinkability can be used to break IND-ANO for αUL. We construct an adversary
B against IND-ANO for αUL by choosing the senders of the challenge rows at random,
running A on the resulting game, and outputting the same as A. For A the resulting
view is the same as in the sender unlinkability game; hence, B has the same success
probability in the IND-ANO game for αUL as A in the sender unlinkability game.

For the converse direction, however, we lose a factor of roughly N2 for our δ. Similar
to the sender anonymity case, showing that a protocol provides δ-sender unlinkability
only implies that the protocol provides (0, δ ·N(N − 1))-sender unlinkability.

Lemma 4 (sender unlinkability). For all protocols Π over a user space U of size N it
holds that if Π has δ-sender unlinkability as in Definition 6, Π also has (0, δ ·N(N − 1))-
sender unlinkability.

Proof Outline. We show the contraposition of the lemma: an adversary A that breaks
IND-ANO for αUL, can be used to break sender unlinkability. We construct an adversary
B against sender unlinkability by running A on the sender unlinkability game and
outputting the same as A. If the senders from the challenge from of A coincide with the
senders that the challenger chose at random, the resulting view is the same as in the
IND-ANO game for αUL; hence, B has a success probability of δ/N(N − 1) in the sender
unlinkability game if A has a success probability of δ in the IND-ANO game for αUL.

Relationship Anonymity

While for sender anonymity and sender unlinkability our notions coincide with the
definitions used in the literature, we find that for relationship anonymity, many of the
interpretations from the literature are not accurate. In their Mixnet analysis, Shmatikov
and Wang (2006) define relationship anonymity as ‘hiding the fact that party A is
communicating with party B’. Feigenbaum et al. (2007b) also take the same position in
their analysis of the Tor network. However, in the presence of such a powerful adversary,
as considered in this work, these previous notions collapse to recipient anonymity since
they assume knowledge of the potential senders of some message.

We consider the notion of relationship anonymity as defined in Pfitzmann and Hansen
(2010): the anonymity set for a message m comprises the tuples of possible senders
and recipients; the adversary wins by determining which tuple belongs to m. However,
adopting this notion directly is not possible: an adversary that gains partial information
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αsSA(s, (S0, R0,m0, ), (S1, , , ), b) :

if s = FRESH CHALLENGE ∨ s = (S0, S1, R0) then
output ((Sb, R0,m0, 1), (S0, S1, R0))

αsRA(s, (S0, R0,m0, ), ( , R1,m1, ), b) :

if |m0| = |m1| ∧ (s = FRESH CHALLENGE ∨ s = (S0, R0, R1))
then

output ((S0, Rb,mb, 1), (S0, R0, R1))

αsREL(s, (S0, R0,m0, ), (S1, R1,m1, ), b) :

if |m0| 6= |m1| then
output ⊥

if s = FRESH CHALLENGE then
a← {0, 1}

else if ∃x. s = (S0, S1, R0, R1, x) then
a := x

if b=0 then
output ((Sa, Ra,ma, 1), (S0, S1, R0, R1, a))

else
output ((Sa, R1−a,m1−a, 1), (S0, S1, R0, R1, a))

αUL(s, (S0, R0,m0; session0), (S1, ,m1, ), b) :

if m1 = Stage1 then
t := Stage1

else
t := Stage2

if s = FRESH CHALLENGE then
a← {0, 1}
output ((Sa, R0,m0, 1), (S0, S1, R0,⊥, t, a))

else if ∃x. s = (S0, S1, R0,⊥, Stage1, x) then
a := x
output ((Sa, R0,m0, 1), (S0, S1, R0,⊥, t, a))

else if ∃x. s = (S0, S1, R0,⊥, Stage2, x) ∨ s =
(S0, S1, R0, R1, Stage2, x) then
a := x
if b = 0 then

output ((Sa, R0,m0, 2), (S0, S1, R0, R1, Stage2, a))
else

output ((S1−a, R0,m0, 2), (S0, S1, R0, R1, Stage2, a))

Figure 5: The session anonymity functions

Lemma 4 (sender unlinkability). For all protocols Π over a user space U of size N it holds that if Π has δ-sender
unlinkability as in Definition 6, Π also has (0, δ ·N(N − 1))-sender unlinkability.

Proof Outline. We show the contraposition of the lemma: an adversary A that breaks IND-ANO for αUL, can be
used to break sender unlinkability. We construct an adversary B against sender unlinkability by running A on the
sender unlinkability game and outputting the same as A. If the senders from the challenge from of A coincide with
the senders that the challenger chose at random, the resulting view is the same as in the IND-ANO game for αUL;
hence, B has a success probability of δ/N(N − 1) in the sender unlinkability game if A has a success probability
of δ in the IND-ANO game for αUL.

5.2.3 Relationship Anonymity

While for sender anonymity and sender unlinkability our notions coincide with the definitions used in the literature,
we find that for relationship anonymity, many of the interpretations from the literature are not accurate. In their
Mixnet analysis, Shmatikov and Wang [44] define relationship anonymity as ‘hiding the fact that party A is
communicating with party B’. Feigenbaum et al. [26] also take the same position in their analysis of the Tor
network. However, in the presence of such a powerful adversary, as considered in this work, these previous notions
collapse to recipient anonymity since they assume knowledge of the potential senders of some message.

We consider the notion of relationship anonymity as defined in [39]: the anonymity set for a message m comprises
the tuples of possible senders and recipients; the adversary wins by determining which tuple belongs to m. However,
adopting this notion directly is not possible: an adversary that gains partial information (e.g. if he breaks sender
anonymity), also breaks the relationship anonymity game, all sender-recipient pairs are no longer equally likely.
Therefore we think that approach via the adjacency function gives a better definition of relationship anonymity
because the adversary needs to uncover both sender and recipient in order to break anonymity.

5.3 Session Anonymity Notions

Some anonymous communication protocols handle messages from users not individually, but in sessions consisting
of a multitude of messages, without significantly harming the anonymity. For such protocols (such as Tor), we
define variants of the anonymity notions from above for sessions. A pseudocode description of the anonymity
functions can be found in Figure 5.

Note that these notions allow for optimized guarantees, i.e., guarantees that are stronger than the ones derived
by transforming single-message games guarantees into multiple-message games in a generic manner (see Theorem 1
in Section 6.2 for this generic result).

Session Sender Anonymity. For session sender anonymity, we make sure that all messages that belong to
the same challenge have have the same sender. The challenger makes sure that they additionally have the same
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Figure 5: The session anonymity functions.

(e.g. if he breaks sender anonymity), also breaks the relationship anonymity game, all
sender-recipient pairs are no longer equally likely. Therefore we think that approach via
the adjacency function gives a better definition of relationship anonymity because the
adversary needs to uncover both sender and recipient in order to break anonymity.

5.3 Session Anonymity Notions

Some anonymous communication protocols handle messages from users not individually,
but in sessions consisting of a multitude of messages, without significantly harming the
anonymity. For such protocols (such as Tor), we define variants of the anonymity notions
from above for sessions. A pseudocode description of the anonymity functions can be
found in Figure 5.

Note that these notions allow for optimized guarantees, i.e., guarantees that are
stronger than the ones derived by transforming single-message games guarantees into
multiple-message games in a generic manner (see Theorem 1 in Section 6.2 for this
generic result).

Session Sender Anonymity. For session sender anonymity, we make sure that all messages
that belong to the same challenge have the same sender. The challenger makes sure that
they additionally have the same session ID. We do not restrict the number of messages
per challenge (but the protocol might restrict the number of messages per session).

Session Recipient Anonymity. For session recipient anonymity, we make sure that all
messages that belong to the same challenge have the same sender, and for single-message
recipient anonymity we check that both messages have the same length.
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Session Relationship Anonymity. Relationship anonymity describes the anonymity of a
relation between a user and the recipients, i.e., an adversary cannot find out both the
sender of a message and the recipient.

Session Sender Unlinkability. Our notion of session sender unlinkability allows the
adversary (for every challenge) to first run arbitrarily many messages in one session
(Stage1) and then arbitrarily many messages in another session (Stage2). In each
session there is only one sender used for the whole session (that is chosen at random
when the first challenge message for this challenge is sent), but depending on b, either
the same or the other user is used for the second session.

6 Adversary Classes

AnoA assumes a strong attacker that can choose the user’s inputs and—depending on
the protocol—receives the responses from the servers. Moreover, the adversary can freely
compromise protocol parties and networks links. Many AC protocols, such as Tor or
I2P do not offer perfect anonymity and even offer only little anonymity against such
powerful adversaries. However, by restricting the adversary’s capabilities, we can analyze
a multitude of realistic scenarios and give meaningful guarantees.

Technically, the adversary’s capabilities can be restricted by constructing a wrapper
around the actual adversary. Since such a wrapper that internally runs an attacker
models an entire class of adversaries, we call such a wrapper an adversary class. In
this section, we give examples for adversary classes, construct a general template for
adversary classes (Plug’n’Play adversary classes), and identify sanity conditions for
adversary classes, called single-challenge reducibility. For a single-challenge reducible
adversary class it suffices to show anonymity bounds for a single challenge to immediately
derive bounds for more challenges.

6.1 Defining Adversary Classes

An adversary class is a ppt wrapper that restricts the adversary A in two dimensions:
(a) in its possible output behavior, and thus, in its knowledge about the world and (b)
in its possible observations, and thus in its ability to gain insights about leakage. The
following example shows a scenario in which an (unrestricted) adaptive adversary might
be too strong.

Example 5 (Tor with entry guards). Consider the AC protocol Tor with so-called entry
guards. Every user selects only one entry node (his guard) that serves as the entry node
of every circuit. A new guard is chosen only after several months. As a compromised
entry node is fatal for the security guarantees that Tor can provide, the concept of entry
guards helps in reducing the risk of choosing a malicious node. However, if such an entry
guard is compromised the impact is more severe since an entry guard is used for a large
number of circuits.
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An adaptive adversary can choose its targets adaptively and thus perform the following
attack. It (statically) corrupts some nodes and then sends (polynomially) many messages
(Input, r = (S, , , )) for different users S, until one of them, say Alice, chooses a
compromised node as its entry guard. Then A proceeds by using Alice and some other
user in a challenge. As Alice will use the compromised entry guard again, the adversary
trivially wins the game.

Although this extremely successful attack is not unrealistic (it models the fact
that if there are compromised entry guards, then some users will likely use them and
consequently they will be de-anonymized), it might not depict the attack scenario that we
are interested in. Thus, we define an adversary class that makes sure that the adversary
cannot choose its targets. Whenever the adversary starts a new challenge for (session)
sender anonymity, the adversary class draws two users at random and places them into
the challenge messages of this challenge.

Definition 7. An adversary class is defined by a ppt machine C(·) that encapsulates the
adversary A. It may filter and modify all outputs of A to the challenger in an arbitrary
way, withhold them or generate its own messages for the challenger. Moreover it may
communicate with the adversary.

We say that a protocol is secure against an adversary class C(·), if it is secure against
all machines C(A), where A is an arbitrary ppt machine.

6.2 Single-Challenge Reducible Adversary Classes

In this section we show that adaptive IND-ANO against adversaries that only use one
challenge immediately implies adaptive IND-ANO against adversaries that use more than
one challenge. The quantitative guarantees naturally depend on the number of challenges.

For adversaries that are not restricted by an adversary class the multi-challenge
generalization holds and yields similar guarantees as for differential privacy: both ε
and δ increase linearly in the number of challenges, just as for differential privacy a
larger distance between databases linearly increases them. The intuition behind this
generalization is similar to comparable guarantees for differential privacy, as long as the
protocol is oblivious to whether it was instructed by a challenge or an input message. Any
additional challenge can increase the advantage of an adversary (linearly), but cannot
allow the adversary to perform attacks that were impossible without this additional
challenge. Intuitively, if there was a strong attack against the protocol that required
k ≥ 2 challenges, then the adversary could simulate this attack although it only sends
one challenge message: The adversary randomly samples a challenge bit bA and then
simulates the first k − 1 challenge messages by computing the anonymity function on
them, using bA as the challenge bit, and sending the resulting messages as an input
messages. Finally, it sends the last challenge as in the original attack. If the guess of
the challenge bit was correct, the protocol receives exactly the same messages in this
1-challenge-attack as it receives in the original k-challenge-attack. Consequently, the
attack can be performed. Adversary classes, however, can treat challenge messages in
a special way such that anonymity guarantees established for a single challenge tag
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cannot be generalized to several challenge tags. Hence, by restricting the adversary the
number of challenges (sent by the adversary) can allow for new attacks instead of linearly
increasing the advantage. The next example illustrates this problem.

Example 6 (Non-single-challenge reducible adversary class). Consider the following
adversary class Cnc. The adversary class relays all input messages to the challenger and
replaces the messages of the first challenge by (say) random strings or error symbols. The
adversary class simply relays all messages to the challenger except for the ones belonging
to the first challenge.

Every protocol, even if completely insecure, will be IND-ANO secure for one challenge
for the class Cnc (as the adversary cannot gain any information about the bit b of the
challenger), but it might not necessarily be secure for more than one challenge.

Requirements for Single-Challenge Reducibility

We show that single-challenge reducibility can be achieved if the adversary can—despite
potential modifications of the adversary class—cause the same protocol behavior with
inputs messages as with challenge messages. More precisely, we require that the entire
behavior of the adversary class, the challenger and the protocol on challenges can be
simulated by an adversary that guesses the challenge bit correctly and sends inputs
instead. To this end, we introduce a machine S, called the challenge-simulator that sits
between the adversary and the adversary class and that simulates challenge messages
(sent by the adversary) with input messages.

Technically, we compare the normal scenario Real(C↔A) with the challenger, the
adversary class, and the adversary to the scenario Sim(C↔S↔A) with the challenger, the
adversary class, the challenge simulator, and the adversary. We consider not only the
case where all challenge messages are simulated with input messages, but also all cases
in which only parts of the challenge messages are simulated. Hence, we require a family
of challenge simulators, indexed by a sequence z of n pairs (zi, bi). If zi = dontsimulate,
the challenge simulator S does not simulate the challenge messages of the ith challenge
tag. If zi = simulate, the challenge simulator simulates the challenge messages of
the ith challenge tag as if the challenge recommendation bit bi was the challenge bit.
Construction 1 describes both scenarios in detail.

Construction 1. Consider the following two scenarios:

• Real(C↔A)(b, n): A communicates with C and A communicates with Ch(b, n) (as
protocol). The bit of the challenger is b and the adversary may send challenge tags
in {1, . . . , n}.

• Sim
(C↔S↔A)
Sz

(b, n): A communicates with Sz that in turn communicates with C
and A communicates with Ch(b, n) (as protocol).The bit of the challenger is b and
the adversary may send challenge tags in {1, . . . , n}.

In the proof, we use the simulator in an intricate hybrid argument. For that argument,
we additionally need that a simulation using the wrong bit for some challenges can still
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simulate other challenges for the correct bit in an indistinguishable manner. For a given
challenge bit b and for any pair of simulator indices z, z′ the following holds: whenever z
differs from z′ in the simulation bit (zi 6= z′i) for some position i and zi = simulate, the
corresponding challenge recommendation bit bi = b is consistent with the challenge bit.

Definition 8 (Consistent simulator index). A simulator index (for n challenges) is a bit-

string z = [(z1, b1), . . . , (zn, bn)] ∈ {0, 1}2n. A pair of simulator indices z, z′ ∈ {0, 1}2n
(for n challenges) is consistent w.r.t. b if

∀i ∈ {1, . . . , n} s.t. zi 6= z′i.(zi = simulate⇒ bi = b) ∧ (z′i = simulate⇒ b′i = b).

Additionally, we require that the adversary class must not initiate challenges on
its own, though it can drop challenges (reliability). Moreover, the adversary class is
independent from the actual challenge tags per se, i.e., it does not interpret the challenge
tags in a semantic way (alpha-renaming).

Definition 9 (Condition for adversary class). An adversary class C is single-challenge
reducible for an anonymity function α, if the following conditions hold:

1. Reliability: C(A) never sends a message (Challenge, , ,Ψ) to the challenger
before receiving a message (Challenge, , ,Ψ) from A with the same challenge tag
Ψ.

2. Alpha-renaming: C does not behave differently depending on the challenge tags
Ψ that are sent by A except for using it in its own messages (Challenge, , ,Ψ)
to the challenger and in the (otherwise empty) message (Answer for, ,Ψ) to A.
More formally, for every permutation Π on N, we define CΠ as the machine that
replaces all challenge tags Ψ within messages reaching C by Π(Ψ) and all messages
sent from C containing a challenge tag Ψ by Π−1(Ψ) and that otherwise simulates
C. For all such machines, CΠ behaves exactly as C, i.e., for each input, its outputs
have the same distribution.

3. Simulatability: For every n ∈ N and every list z = [(z1, b1), . . . , (zn, bn)] ∈
{0, 1}2n there exists a machine Sz such that:

(a) For every i ∈ {1, . . . , n}, the following holds: if zi = simulate, then Sz never
sends a message (Challenge, , , i) to C.

(b) The games Real(C↔A)(b, n) and Sim
(C↔S↔A)
Szreal

(b, n), as defined below are
computationally indistinguishable, where zreal = [(dontsimulate, ), . . . ,
(dontsimulate, )] ∈ {0, 1} 2n for Sz and C.

(c) for all consistent simulator indices z, z′ ∈ {0, 1}2n (see Definition 8) the

scenarios Sim
(C↔S↔A)
Sz

(b, n) and Sim
(C↔S↔A)
Sz′

(b, n) (see Construction 1) are
indistinguishable.
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Single-Challenge Reducibility Enables Multi-Challenge Generalization

Theorem 1. For every protocol Π, every anonymity function α, every n ∈ N and
every adversary class C(A) that is single-challenge reducible for α. Whenever Π is
(1, ε, δ)-IND-ANO for C(A), with ε ≥ 0 and 0 ≤ δ ≤ 1, then Π is (n, n·ε, n·enε ·δ)-IND-ANO
for C(A).

Proof outline. We show the composability theorem by induction over n. We assume the
theorem holds for n and compute the anonymity loss between the games Real(C↔A)(0, n+
1), where we have b = 0 and Real(C↔A)(1, n+ 1), where we have b = 1 via a transition
of indistinguishable, or differentially private games.

We start with Real(C↔A)(0, n + 1) and introduce a simulator that simulates one
of the challenges for the correct bit b = 0. We apply the induction hypothesis for the
remaining n challenges (this introduces an anonymity loss of (n · ε, n · enε · δ)). The
simulator still simulates one challenge for b = 0, but the bit of the challenger is now
b = 1. We then simulate all remaining n challenges for b = 1 and thus introduce a
game in which all challenges are simulated. As the bit of the challenger is never used in
the game, we can switch it back to b = 0 again and remove the simulation of the first
challenge. We can apply the induction hypothesis again (we lose (ε, δ)) and switch the
bit of the challenger to b = 1 again. In this game, we have one real challenge (for b = 1)
and n simulated challenges (also for b = 1). Finally, we remove the simulator again and
yield Real(C↔A)(1, n+ 1).

We refer to Section 8 for a formal proof.

6.3 Plug’n’Play Adversary Classes

Proving single-challenge reducibility can be tedious and lengthy. Therefore, we develop a
template for adversary classes (the Plug’n’Play template) and show that every adversary
class that can be expressed in this template is single-challenge reducible.

The Plug’n’Play (PnP) template forwards all input messages from the adversary and
starts for every challenge tag a new submachine, called a challenge machine, with a fresh
memory. In particular, none of the challenge machines shares memory with any other
part of the adversary class. The template only allows these challenge machines to send
messages to the challenger. Additionally, the template includes a provision for blocking
messages in both directions via a so-called filter machine that generalizes limitations on
compromisation such as a budget adversary (Backes et al., 2015b). In the direction from
the adversary to the challenger, the filter machine only is applied to Protocol messages,
not to input messages or challenge messages. Given such a challenge machine M and a
filter F , we construct a PnP adversary class PACM,F as follows.

Definition 10 (Plug’n’Play Adversary Class). For two ppt machines M , the challenge
machine, and F , the filter, we define the Plug’n’Play adversary class PACM,F as follows.

1. Initialize F .
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2. Whenever A sends a message (Protocol, x), simulate F on x until it halts and
outputs a message m′ or an error symbol ⊥. If it outputs a message m′, send
(Protocol,m′) to the challenger.

3. Whenever A sends a message (Input, r, (A, x)) for any values r and x, relay this
message to the challenger.

4. Whenever A sends a message m = (Input, r, (Ch,Ψ)) or m = (Challenge, r0, r1,
(Ch,Ψ)), run MΨ on m, as below.

5. Whenever Ch sends a message m = (Answer for, x, id), first simulate F on
(Answer for, x,⊥) until it outputs a message m′ = (Answer for, x′, ), or an
error symbol ⊥. Then proceed as follows:

• If id == (Ch,Ψ) for some (known) value Ψ, run MΨ on (Answer for, x′,⊥),
as described below.

• Otherwise id == (A, N); forward (Answer for, x′, (A, N)) to A.

Running MΨ on a message m.

• If MΨ was not initialized so far (i.e., if a message with ID (Ch,Ψ) is received for
the first time), initialize a new instance of the machine M as MΨ.

• Then / otherwise simulate MΨ on m (without its message ID), until it out-
puts a message m′ and relay m′, depending on its structure: to A (if m′ =
(Answer for, , )), or to Ch (otherwise). In both cases, replace the message ID by
(Ch,Ψ).

Theorem 2. The Plug’n’Play adversary class is composable, i.e., all guarantees shown
for 1 challenge scale linearly for multiple challenges.

We refer to Section 8 for a proof.

Remark 1. It is, theoretically, possible to compose adversary classes by nesting them
into each other or by sequentially applying them. However, such a nested composition of
adversary classes is then not necessarily single-challenge reducible in terms of Definition
9: The fact that answers from the challenger either are filtered twice (for adversary
IDs and consequently for answers to the simulator) or input to a challenge-machine M
in between the two filters can cause the simulation to fail. We could restrict the filter
machine F to only apply to challenge messages, which would make such a composition
possible, but this would also restrict the versatility of our PAC adversary class.

We rather focus on an easy-to-use PAC adversary class in which the machines
themselves can be combinations of different interesting restrictions for the adversary.

Example 7. The following examples for adversary classes show the expressiveness of
our PAC adversary class.
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(Interactive) profile adversaries: We set F to the identity machine (simply forwarding
all inputs) and M to a profile machine that comprises of multiple different user
profiles. Upon initialization with a message (Challenge,m1,m2, ) the machine
initializes two different profiles Pm1

and Pm2
in parallel. Consequently, M feeds all

messages from the challenger into the profiles and outputs their answers as Input

messages (if they are equal) or Challenge messages, if they are not equal.

Fixed-user adversaries: We want the adversary to only select two predefined senders
S1, S2 and/or two predefined recipients R1, R2 for its challenges. Consequently,
we set F to the identity machine (simply forwarding all inputs) and define M as
follows: M blocks all messages of the form (Input, , ) and replaces all messages
(Challenge, (Sx,m,Rx), (Sy,m,Ry), ) by (Challenge, (S1,m,R1), (S2,m,R2), ).
This is a generalization of the MATor-adversary classes (Backes et al., 2014a;
2015b).

Compromisation adversaries: We want to restrict the parties the adversary can compro-
mise (in any arbitrary way, possibly depending on previous compromisation).We
set M to the identity machine (simply forwarding all inputs) and F to the following
machine: Whenever F receives a message (Protocol, compromise X), F only for-
wards the message if A is allowed to compromise party X. This is a generalization
of the budget adversary (Backes et al., 2015b).

Example 8 (Metadata Adversary Classes). Metadata adversary classes hide the re-
sponses of the protocol from the adversary. This class of adversaries can be represented
as a specific class of Plug’n’Play adversary classes. We solely restrict the challenge
machine M to be of the form that they internally run an arbitrary machine M ′ and
forward all messages from and to M ′ except for messages that M ′ intends to send to the
adversary. Those messages are simply dropped.

A metadata adversary class is a Plug’n’Play adversary class such that the challenge
machine M is of the following form:

• For every challenge tag φ, an instance Mφ has an arbitrary submachine M ′.

• Upon being called with a message m call M ′ with m.

• Whenever M ′ wants to forward a message to the adversary, block this message.
Forward all messages that M ′ wants to send to the challenger.

Limitations. Our PAC adversary class is very versatile, but disallows adversary classes
of the following types:

• Adversary classes that disallow or significantly restrict the adversary in sending
messages of the form (Input, , ). Such adversary classes are rarely single-challenge
reducible, and if they are, the respective proof has to be tailored to the adversary
class.
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• Adversary classes that transfer information between challenges in any way. Such
adversary classes can, e.g., keep state in between different challenges or define
consistent profiles that can be used for several circuits. Although such adversary
classes may be of interest, they are typically not (in general) single-challenge
reducible, as their key feature lies in challenges that depend upon each other.

7 Analyzing Tor Anonymity

The onion routing (OR) (Reed et al., 1998) network Tor (Tor Project) is the most
successful anonymity technology to date: hundreds of thousands individuals all over the
world use it today to protect their privacy over the Internet. Naturally, Tor is our first
choice for applying our AnoA framework.

We start our discussion by briefly describing the Tor protocol (Dingledine et al.,
2004) and its UC definition (Backes et al., 2012). We then formally prove (ε, δ)-IND-ANO
for Tor’s UC definition and quantify anonymity provided by the Tor network in terms
of the anonymity properties defined in Section 5. Finally, we consider a selection of
system-level attacks (e.g., traffic analysis) and adaptations (e.g., entry guards) for Tor,
and analyze their effects on Tor’s anonymity guarantees.

Note that, in the following, we present only a very basic analysis of the anonymity
provided by Tor. A more sophisticated analysis that takes into account Tor’s path
selection algorithms and different adversarial capabilities can be found in follow up
work (Backes et al., 2015b).

7.1 Tor – The OR Network

An OR network such as Tor (Dingledine et al., 2004) consists of a set of OR nodes (or
proxies) that relay traffic, a large set of users and a directory service that maintains and
provides cryptographic and routing information about the OR nodes. Users utilize the
Tor network by selecting a sequence of OR nodes and creating a path, called a circuit,
over this set. This circuit is then used to forward the users’ traffic and obscure the
users’ relationship with their destinations. It is important that an OR node cannot
determine the circuit nodes other than its immediate predecessor and successor. In
the OR protocol, this is achieved by wrapping every message in multiple layers of
symmetric-key encryption. Symmetric keys are agreed upon between each OR node in
the circuit and the user during the circuit construction phase.

Tor was designed to guarantee anonymity against partially global adversaries, i.e.,
adversaries that do not only control some OR nodes but also a portion of the network.
However, an accurate anonymity quantification is not possible without formally modeling
the OR protocol and its adversary. In an earlier work, a formal UC definition (an ideal
functionality For) for the OR network was presented, and a practical cryptographic
instantiation was proposed (Backes et al., 2012). We employ this ideal functionality For

for instantiating the AnoA framework.
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Wrapper Envu for onion proxy Pu:

Upon input (R,m, sid)

if lastsession = (sid , C) then
send message (send, C, (R,m)) to Pu

else
P ← RandomParties(Pu)
send message (cc,P) to Pu
wait for response (created, C)
lastsession := (sid , C)
send message (send, C, (r,m)) to Pu

RandomParties(Pu):

l
R← {1, . . . , n}

N := {1, . . . , n}
for j = 1 to l do

ij
R← N

N := N \ {ij}
return (Pu, Pi1 , . . . , Pil)

Dummy-adversary in For:

Upon message m from Fnet or For

send m to the challenger
reflect the message m back to sender

The recipient wrapper Envr:

Upon message (R,m, sid) from machine P

send (P,m, sid) to the recipient R

Upon message (P,m, sid) from recipient R

send (m, sid) to the protocol machine P

Figure 6: Extensions to For for AnoA-Analysis.

Symmetric keys are agreed upon between each OR node in the circuit and the user during the circuit construction
phase.

Tor was designed to guarantee anonymity against partially global adversaries, i.e., adversary’s that do not only
control some OR nodes but also a portion of the network. However, an accurate anonymity quantification is not
possible without formally modeling the OR protocol and its adversary. In an earlier work, a formal UC definition
(an ideal functionality For) for the OR network was presented, and a practical cryptographic instantiation was
proposed [8]. We employ this ideal functionality For for instantiating the AnoA framework.

Remark 2. Our protocol model strengthens the adversarial control by allowing the adversary to receive all messages
that users would receive. However, for correctly quantifying anonymity, we cannot forward messages related to
challenges to the adversary. If we did, e.g., recipient anonymity would be trivially broken, as soon as the two
recipients give different responses. In Section 8, we describe a generic solution to this trivial attack by introducing
a class of meta-data attackers that do not get responses from the protocol.

7.2 Excluding Website Fingerprint Attacks

As a low-latency AC network, Tor does not provide any protection against attacks that are based on traffic feature,
such as direction changes, volume changes. In order to be able to quantify the recipient or relationship anonymity
of Tor, we hence exclude website fingerprinting attacks by introducing a set of fingerprinting free webservers and
introduce an adversary class that only forwards the traffic patterns to the adversary by replacing the content with
constant-0 bit-strings.

Definition 11 (Direct connection protocol). Given a set of machines S, the direct connection protocol DiS sends,
upon a message (S,m,R, id) from the challenger, the message (m, id) to R on behalf of S over the network channel,
however without leaking anything. Upon a response (r, id) from R, DiS forwards (r, id) to the challenger.

Definition 12 (Website Fingerprinting Free Servers). A pair P0, P1 of machine is single-request website finger-
printing free if for any pair of messages m0,m1 ∈ {0, 1}∗ such that |m0| = |m1| if Pi (i ∈ {0, 1}) is sent the network
message mi then for the network response ri of Pi, we have that |r0| = |r1|.

A set S of machines is a set of single-request website fingerprinting free servers if any pair of machines
P0, P1 ∈ S is single-request website fingerprinting free.

Definition 13 (Traffic pattern leakage adversary class). A traffic pattern leakage adversary class is a Plug’n’Play
adversary class such that the challenge machine M is of the following form:
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Figure 6: Extensions to For for AnoA-Analysis.

Remark 2. Our protocol model strengthens the adversarial control by allowing the
adversary to receive all messages that users would receive. However, for correctly
quantifying anonymity, we cannot forward messages related to challenges to the adversary.
If we did, e.g., recipient anonymity would be trivially broken, as soon as the two recipients
give different responses. In Section 8, we describe a generic solution to this trivial attack
by introducing a class of meta-data attackers that do not get responses from the protocol.

7.2 Excluding Website Fingerprint Attacks

As a low-latency AC network, Tor does not provide any protection against attacks that
are based on traffic feature, such as direction changes or volume changes. In order to
be able to quantify the recipient or relationship anonymity of Tor, we hence exclude
website fingerprinting attacks by introducing a set of fingerprinting free webservers and
introduce an adversary class that only forwards the traffic patterns to the adversary by
replacing the content with constant-0 bit-strings.

Definition 11 (Direct connection protocol). Given a set of machines S, the direct
connection protocol DiS sends, upon a message (S,m,R, id) from the challenger, the
message (m, id) to R on behalf of S over the network channel, however without leaking
anything. Upon a response (r, id) from R, DiS forwards (r, id) to the challenger.

Definition 12 (Website Fingerprinting Free Servers). A pair P0, P1 of machine is
single-request website fingerprinting free if for any pair of messages m0,m1 ∈ {0, 1}∗
such that |m0| = |m1| if Pi (i ∈ {0, 1}) is sent the network message mi then for the
network response ri of Pi, we have that |r0| = |r1|.
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A set S of machines is a set of single-request website fingerprinting free servers if
any pair of machines P0, P1 ∈ S is single-request website fingerprinting free.

Definition 13 (Traffic pattern leakage adversary class). A traffic pattern leakage
adversary class is a Plug’n’Play adversary class such that the challenge machine M is of
the following form:

• For every challenge tag φ, an instance Mφ has an arbitrary submachine M ′.

• Upon being called with a message m call M ′ with m.

• Whenever M ′ outputs a message m′ = (Answer for,m, id), send (Answer for,
0|m|, id). If m′ is of different form output m′.

7.3 Anonymity Analysis

We start our Tor analysis with a brief overview of the For functionality and refer the
readers to Backes et al. (2012) for more details. For presents the OR definition in the
message-based state transitions form, and defines sub-machines for all OR nodes in the
ideal functionality. These sub-machines share a memory space in the functionality for
communicating with each other. For assumes an adversary who might possibly control
all communication links and destination servers, but cannot view or modify messages
between uncompromised parties due to the presence of secure and authenticated channels
between the parties. In For these secure channels are realized by having each party
store their messages in the shared memory, and create and send corresponding handles
〈P, Pnextt, h〉 through the network. Here, P and Pnext are the sender and the recipient
of a message respectively and h is a handle, or pointer, for the message in the shared
memory. Only messages that are visible to compromised parties are forwarded to A.

We consider a partially global, passive adversary for our analysis using AnoA, i.e.,
A decides on a subset of nodes before the execution, which are then compromised. The
adversary A then only reads intercepted messages, but does not react to them.

Tor sets a time limit (of ten minutes) for each established circuit. However, the UC
framework does not provide a notion of time. For models such a time limit by only
allowing a circuit C to transport at most a constant number (say ttlC ) of messages.

In the context of onion routing, we interpret an input message r = (S,R,m, sid) as
a message that is transmitted through the OR-network, where m is the message sent
from the user S to the recipient R in the session that corresponds to the session with ID
sid . The number of messages per session is bounded by ttlC .

In order to make For compatible with our IND-ANO definition, we require an additional
wrapper functionality, which processes the input forwarded from the challenger Ch. This
functionality is defined in Figure 6. Envu receives any input from the challenger which
had u as its user. If a circuit with session id sid already exists, the message is directly
sent. Otherwise, Envu initiates the circuit construction for a new session and sends the
message contained through this circuit.
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Messages intercepted by compromised nodes are sent to a network adversary Fnet

described in Figure 6. Fnet forwards all intercepted messages to the challenger, who
in turn forwards them to A. Technically, the reflected messages should be of the form
〈P, Pnext, h〉 with the message handle h corresponding to the reflected message so that For

can continue with the computation. To simplify matters we just assume that everything
works out correctly at this point.

Another exception are messages which are supposed to be sent to a recipient by
the exit node, but would normally be sent to the adversary instead since For does not
contain the machines representing recipients. To alleviate this, we add another wrapper
Envr which mediates the communication between the OR-protocol and the recipients R
that are represented by ppt Turing machines. Envr internally simulates the execution
of For and the recipient machines and redirects all messages between those parties.
Figure 6 defines the recipient wrapper Envr.

We show that the Tor analysis can be based on a distinguishing event D, which has
already been identified in the first onion routing anonymity analysis by Syverson et al.
(2000, Fig. 1). The key observation is that the adversary can only learn about the sender
or recipient of some message if he manages to compromise the entry- or exit-node of the
circuit used to transmit this message. We define the distinguishing event Dα for each of
the anonymity notions defined in section 5.

(Session) Sender Anonymity (αsSA). Let DαsSA be the event that the entry-node
of the challenge session is compromised by A. This allows A to determine the
sender of the challenge session and therefore break sender anonymity.

(Session) Recipient Anonymity (αsRA). Let DαsRA be the event that the exit-node
of the challenge session is compromised by A. This allows A to determine the
recipient of the challenge session and therefore break recipient Anonymity.

(Session) Sender Unlinkability (αsUL). Let DαsUL
be the event that A successfully

compromises the entry nodes for both challenge sessions in the unlinkability game.
This allows A to determine whether the sessions are linked or not, and hence break
the unlinkability game.

(Session) Relationship Anonymity (αsREL). Let DαsREL
be the event that A suc-

cessfully compromises entry- and exit-node of the challenge session. This allows
him to link both sender and recipient of the session.

We first prove Lemma 5. It captures anonymity provided by For in case D does not
happen. We then use Lemma 5 to prove (ε, δ)-IND-ANO for For in general.

We introduce random strings ρ and ρCh as additional input to the adversary and the
challenger respectively. This allows us to handle them as deterministic machines and
simplifies the proof for Lemma 5. Accordingly, all subsequent probabilities are taken
over those random strings.

Lemma 5. Let ρ, ρCh
U← {0, 1}p(η). Given an adjacency function α ∈ {αsSA, αsRA, αsUL,

αsREL}, it holds that



109

Pr
[
〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0 | ¬Dα(ρCh, ρ); ρ, ρCh

U← {0, 1}p(η)
]

=Pr
[
〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | ¬Dα(ρCh, ρ); ρ, ρCh

U← {0, 1}p(η)
]
.

We refer to Section 8 for the proof. With this result we obtain (ε, δ)- IND-ANO for
For by simple manipulation of equations.

Theorem 3. For is (0, δ) - IND-ANO for α ∈ {αsSA, αsRA, αsUL, αsREL}, i.e

Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0] ≤ Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0] + δ

with δ = Pr[Dα(ρCh, ρ)].

We refer to Section 8 for a proof. Here δ is exactly the probability for the event Dα
that allows A to distinguish between both scenarios. Interestingly, we get the parameter
value ε = 0. This implies that as long as Dα does not happen, For provides perfect
anonymity for its users.

7.4 Anonymity Quantification

We evaluate the guarantees provided by Theorem 3 and consider further results we can
derive from it for the special case of sender anonymity.

Distinguishing Events

We compute the probability of the distinguishing event D by counting the observations.
For an OR network of n OR nodes such that k of those are compromised, probabilities
associated with the various anonymity notions are as follows, where for recipient ano-
nymity and relationship anonymity website fingerprinting sets of servers and the traffic
pattern adversary class (see Section 7.2) are assumed:

Sender session Anonymity (αsSA). Pr[DαsSA ] = 1− (n−1
k )

(nk)
= k

n .

Recipient session Anonymity (αsRA). Pr[DαsRA
] = 1− (n−1

k )
(nk)

= k
n .

Sender session Unlinkability (αsUL). Pr[DαsUL
] =

(
k
n

)2
.

Relationship session Anonymity (αsREL). Pr[DαsREL
] =

(n−2
k−2)
(nk)

= k(k−1)
n(n−1) .

Note that the above analysis and the underlying model assume all OR nodes to be
identical, and can perform all roles. Respecting OR node operators’ legal boundaries,
the real-world Tor network allows OR nodes to function in specific roles. To some extent,
this simplifies A’s task of identifying entry- or exit-nodes for circuits.
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Multiple Challenges. In this section we considered the number of allowed challenges
to be set to n = 1. However, scenarios in which the adversary can use more than one
challenge can directly be derived by application of Theorem 1.

Adversary classes. The analysis of Tor conducted in this section does not explicitly
mention adversary classes (cf. Definition 7). However, since a ppt adversary class C(·)
applied to a ppt adversary is again a ppt adversary, naturally, the analysis holds for
arbitrary adversary classes.

Link Corruption. Link corruption is not explicitly covered in this example analysis. We
refer to the full example analysis (Backes et al., 2013) for a description of how to encode
links.

7.5 Traffic Analysis Attacks

Many of the known attacks on Tor nowadays depend on so called side-channel information,
i.e. throughput and timing information an adversary might gather while watching traffic
routed through the Tor network. Since the UC framework does not allow time-sensitive
attacks, traffic analysis is outside of the scope of this example analysis. However, due to
the strong adversary we deploy, we can still cover traffic analysis attacks such as traffic
correlation by making suitable assumptions.

In a traffic correlation attack, the adversary observes traffic going out from the sender
and into the receiver and tries to correlate them based on different features like volume,
direction or inter-packet delay (O’Gorman and Blott, 2009; Wang et al., 2002). We
model these attacks by over-approximating the adversary. We allow adversaries that
only send a single challenge. If the adversary controls the links or nodes that are needed
for a traffic correlation attack, i.e., the entry and exit node or the link from the user to
the entry node and the link from the exit node to the server, then the adversary can
correlate the traffic.

8 Conclusion & Future Work

In this paper we have presented AnoA, a generic and versatile framework for formally
quantifying the anonymity provided by AC protocols. Together with the description of
our framework we have presented novel, strong variants of well-studied anonymity notions,
such as sender anonymity, sender unlinkability, recipient anonymity and relationship
anonymity based on computational indistinguishability in the spirit of (computational)
differential privacy. We have shown that our definitions of anonymity guarantees
accurately model prominent notions in the literature.

Moreover, we have presented adversary classes, an intuitive concept of weakening
the adversary in order to analyze more realistic attack scenarios. We have shown that
for the anonymity notions defined in AnoA and for many adversary classes it suffices to
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analyze anonymity in a one-challenge-only game. We have found and defined a property
which we coin Single-challenge reducibility that an adversary class must fulfill for this
result to hold and we have even defined an easy to use structure for adversary classes,
called Plug’n’Play adversary classes (PAC) that describe a wide variety of interesting
adversary classes and that all are single-challenge reducible.

We have shown how to apply AnoA to an AC protocol by conducting an example-
analysis of the Tor network. We have validated the inherent imperfection of the current
Tor even under idealistic assumptions, and we have given quantitative guarantees for the
different notions of anonymity against passive adversaries that statically corrupt nodes.
In succession to our analysis, Backes et al. utilized AnoA to perform an extended, more
thorough analysis of Tor that takes into account Tor’s actual path selection algorithm as
well as its current network status (Backes et al., 2014a; 2015b).

So far, all analyses that utilize the AnoA framework analyze the Tor network and are
restricted to passive adversaries. Consequently, the next steps include to analyze Tor’s
anonymity against more powerful (active) adversaries and to also apply AnoA to other
AC protocols, such as Mixnets (Chaum, 1981) and the DISSENT system (Corrigan-Gibbs
and Ford, 2010). Moreover, AnoA purposefully is oblivious to the semantic leakage
of information within messages. We will investigate a generic way to combine AnoA’s
anonymity analysis of an AC protocol with semantical analyses of user behavior.



112

References
Andrés, E., Miguel, Palamidessi, C., Sokolova, A., and Van Rossum, P. (2011). “Informa-

tion Hiding in Probabilistic Concurrent Systems.” Journal of Theoretical Computer
Science (TCS), 412(28): 3072–3089.

Backes, M., Goldberg, I., Kate, A., and Mohammadi, E. (2012). “Provably Secure and
Practical Onion Routing.” In Proc. 26st IEEE Symposium on Computer Security
Foundations (CSF), 369–385.

Backes, M. and Jacobi, C. (2003). “Cryptographically Sound and Machine-Assisted
Verification of Security Protocols.” In Proceedings of 20th International Symposium
on Theoretical Aspects of Computer Science (STACS), 675–686.

Backes, M., Kate, A., Manoharan, P., Meiser, S., and Mohammadi, E. (2013). “AnoA:
A Framework for Analyzing Anonymous Communication Protocols.” In Computer
Security Foundations Symposium (CSF), 2013 IEEE 26th, 163–178. IEEE.

Backes, M., Kate, A., Meiser, S., and Mohammadi, E. (2014a). “(Nothing else) MATor
(s): Monitoring the Anonymity of Tor’s Path Selection.” In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security , 513–524.
ACM.

Backes, M., Kate, A., Meiser, S., and Ruffing, T. (2015a). “Secrecy without Perfect
Randomness: Cryptography with (Bounded) Weak Sources.” In Proceedings of
the 13th International Conference on Applied Cryptography and Network Security,
(ACNS’15).

Backes, M., Manoharan, P., and Mohammadi, E. (2014b). “TUC: Time-sensitive and
Modular Analysis of Anonymous Communication.” In Proc. 27th IEEE Computer
Security Foundations Symposium (CSF), 383–397. IEEE.

Backes, M., Meiser, S., and Slowik, M. (2015b). “Your Choice MATor (s).” Proceedings
on Privacy Enhancing Technologies, 2016(2): 40–60.

Backes, M., Pfitzmann, B., and Waidner, M. (2007). “The Reactive Simulatability
(RSIM) Framework for Asynchronous Systems.” Information and Computation,
205(12): 1685–1720.

Bhargava, M. and Palamidessi, C. (2005). “Probabilistic Anonymity.” In CONCUR,
171–185.

Cai, X., Zhang, X. C., Joshi, B., and Johnson, R. (2012). “Touching from a Distance:
Website Fingerprinting Attacks and Defenses.” In Proc. 19th ACM Conference on
Computer and Communication Security (CCS), 605–616.

Camenisch, J. and Lysyanskaya, A. (2005). “A Formal Treatment of Onion Routing.”
In Advances in Cryptology — CRYPTO, 169–187.

Canetti, R. (2013). “Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols.” Cryptology ePrint Archive, Report 2000/067.



113

Chaum, D. (1981). “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms.” Communications of the ACM , 4(2): 84–88.

— (1988). “The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability.” J. Cryptology , 1(1): 65–75.

Corrigan-Gibbs, H. and Ford, B. (2010). “Dissent: Accountable Anonymous Group
Messaging.” In Proc. 17th ACM Conference on Computer and Communication Security
(CCS), 340–350.

Danezis, G. and Goldberg, I. (2009). “Sphinx: A Compact and Provably Secure Mix
Format.” In Proc. 30th IEEE Symposium on Security and Privacy , 269–282.

Dı́az, C. (2006). “Anonymity Metrics Revisited.” In Anonymous Communication and
its Applications.

Dı́az, C., Seys, S., Claessens, J., and Preneel, B. (2002). “Towards Measuring Anonymity.”
In Proc. 2nd Workshop on Privacy Enhancing Technologies (PET), 54–68.

Dingledine, R., Mathewson, N., and Syverson, P. (2004). “Tor: The Second-Generation
Onion Router.” In Proc. 13th USENIX Security Symposium (USENIX), 303–320.

Dwork, C. (2006). “Differential Privacy.” In ICALP (2), 1–12.

— (2008). “Differential Privacy: A Survey of Results.” In TAMC , 1–19.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). “Calibrating Noise to Sensi-
tivity in Private Data Analysis.” In Proc. 10th Theory of Cryptography Conference
(TCC), 265–284.

Dyer, K. P., Coull, S. E., Ristenpart, T., and Shrimpton, T. (2012). “Peek-a-Boo, I Still
See You: Why Efficient Traffic Analysis Countermeasures Fail.” In Proc. 33th IEEE
Symposium on Security and Privacy , 332–346.

Feigenbaum, J., Johnson, A., and Syverson, P. F. (2007a). “A Model of Onion Routing
with Provable Anonymity.” In Proc. 11th Conference on Financial Cryptography and
Data Security (FC), 57–71.

— (2007b). “Probabilistic Analysis of Onion Routing in a Black-Box Model.” In Proc.
6th ACM Workshop on Privacy in the Electronic Society (WPES), 1–10.

— (2012). “Probabilistic Analysis of Onion Routing in a Black-Box Model.” ACM
Transactions on Information and System Security (TISSEC), 15(3): 14.

Gelernter, N. and Herzberg, A. (2013). “On the limits of provable anonymity.” In Proc.
12th ACM Workshop on Privacy in the Electronic Society (WPES), 225–236.

Gierlichs, B., Troncoso, C., Dı́az, C., Preneel, B., and Verbauwhede, I. (2008). “Revis-
iting a Combinatorial Approach toward Measuring Anonymity.” In Proc. 7th ACM
Workshop on Privacy in the Electronic Society (WPES), 111–116.



114

Halpern, J. Y. and O’Neill, K. R. (2005). “Anonymity and Information Hiding in
Multiagent Systems.” Journal of Computer Security , 13(3): 483–512.

Hevia, A. and Micciancio, D. (2008). “An Indistinguishability-Based Characterization
of Anonymous Channels.” In Proc. 8th Privacy Enhancing Technologies Symposium
(PETS), 24–43.

Hofheinz, D. and Shoup, V. (2013). “GNUC: A New Universal Composability Framework.”
Journal of Cryptology , 1–86.

Hughes, D. and Shmatikov, V. (2004). “Information Hiding, Anonymity and Privacy: a
Modular Approach.” Journal of Computer Security , 12(1): 3–36.

Kate, A. and Goldberg, I. (2010). “Using Sphinx to Improve Onion Routing Circuit
Construction.” In Proc. 14th Conference on Financial Cryptography and Data Security
(FC), 359–366.
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A. Proofs for Single-Challenge Reducibility

A.1 Proof for Theorem 1

Proof. We will show this theorem inductively. Assume that Π is (i, i ·ε, eiε · i ·δ)-IND-ANO.
We show that Π is also (i+ 1, (i+ 1) · ε, e(i+1)·ε(i+ 1) · δ)-IND-ANO.

Let A be an adversary that sends at most i+ 1 challenges. To do so, we construct
several games:

• Game: G0 is the normal game Real(C↔A)(0, i + 1) with up to i + 1 challenges
where b = 0.

• Game: G1 is an intermediate game Sim
(C↔S↔A)
Szreal

(0, i+ 1). Here every message
from A to C(A) (and otherwise) goes through the simulator Szreal. However,
this simulator does not need to simulate anything, as there are still up to i + 1
challenges and b = 0.

Claim: G0 and G1 are computationally indistinguishable.

Proof: By item 3b Definition 9 the simulator Szreal exists and the games are
indistinguishable.

• Game: G2 is an intermediate (hybrid) game Sim
(C↔S↔A)
Sz

(0, i + 1) with b = 0
and fixed Input messages instead of the challenge with tag i + 1 (so there
are at most i challenges left). This is done by using the simulator Sz for z =
[(dontsimulate, ), . . . , (dontsimulate, ), (simulate, 0)] ∈ {0, 1} i+ 1, i.e., the sim-
ulator simulates the i+ 1st challenge for b = 0.

Claim: G1 and G2 are computationally indistinguishable.

https://www.torproject.org/
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Proof: By item 3 of Definition 9, we know that the simulator Sz exists. Since
the simulator Sz from G2 uses the correct bit bi+1 = 0 for the simulated challenge,
Item 3c of Definition 9 implies that the games are indistinguishable.

• Game: G3 is the intermediate (hybrid) game Sim
(C↔S↔A)
Sz

(1, i + 1) where the
simulator stays Sz but the challenger changes to b = 1.

Claim: G2 and G3 are (iε, eiεiδ)-indistinguishable.

Proof: The adversary Sz(A) makes at most i queries with challenge tags in
{1, . . . , i}. From the reliability property of the adversary class (item 1 of Definition
9) we know that thus C(Sz(A)) uses at most i challenge tags in {1, . . . , i}. The
claim immediately follows from the induction hypothesis: Π is (i, i ·ε, i ·δ)-IND-ANO.

• Game: G4 is a game Sim
(C↔S↔A)
Sz′

(1, i + 1) where the simulator Sz′ with z′ =
[(simulate, 1), . . . , (simulate, 1), (simulate, 0)] simulates all challenges fromA. For
the challenge tags 1 to i, Sz′ simulates the challenges for b1 = . . . = bi = 1, whereas
for the tag i+ 1 it still simulates it for bi+1 = 0. The challenger uses b = 1.

Claim: G3 and G4 are computationally indistinguishable.

Proof: Since the simulator Sz′ from G4 uses the correct bit b1 = . . . = bi = 1 for
the challenges that are not simulated in Sz, Item 3c of Definition 9 implies that
the games are indistinguishable.

• Game: G5 is the game Sim
(C↔S↔A)
Sz′

(0, i+ 1) where we use the same simulator
Sz′ but we have b = 0 again.

Claim: G4 and G5 are computationally indistinguishable.

Proof: Since there are no challenge messages (everything is simulated, as by item
3a Sz′ does not send any messages (Challenge, , ,Ψ)), changing the bit b of the
challenger does not have any effect. Hence, the games are indistinguishable.

• Game: G6 is the game Sim
(C↔S↔A)
Sz′′

(0, i+ 1) where we use the simulator Sz′′ with
z′′ = [(simulate, 1), . . . , (simulate, 1), (dontsimulate, )]. In other words, we do
not simulate the challenge for i+ 1 with bi+1 = 0, but we use the challenger again
(also with b = 0).

Claim: G5 and G6 are computationally indistinguishable.

Proof: Since the simulator Sz′ from G5 uses the correct bit bi+1 = 0 for the
simulated challenge (which the simulator Sz′′ does not simulate), Item 3c of
Definition 9 implies that the games are indistinguishable.

• Game: G7 is Sim
(C↔S↔A)
translator(Sz′′ )

(0, i+ 1) where we build around the simulator Sz′′

an interface translator(·) that translates the challenge tag from i+ 1 to 1 and vice
versa in all messages (Challenge, , ,Ψ) from Sz′′ to C(A) and in all messages
(Answer for, ,Ψ) from C(A) to Sz′′ ..

Claim: G6 and G7 are information theoretically indistinguishable.

Proof: Item 2 of Definition 9 requires that the renaming of challenge tags does
not influence the behavior of C(A). It also does not influence the behavior of the
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challenger (by definition) or the protocol (that never sees challenge tags). Thus,
the games are indistinguishable.

• Game: G8 is the game Sim
(C↔S↔A)
translator(Sz′′ )

(1, i+ 1) where the simulator is defined

as in G7 but b = 1.

Claim: G7 and G8 are (ε, δ) indistinguishable.

Proof: By assumption of the theorem, the protocol Π is (1, ε, δ)-IND-ANO for C(A).
Moreover, by definition of z′′ and by item 3a, the adversary translator(Sz′′(A)) only
uses at most one challenge tag, namely the tag 1. From the reliability property of
the adversary class (item 1 of Definition 9) we know that thus C(translator(Sz′′(A)))
uses only the challenge tag 1. Thus, G7 and G8 are (ε, δ) indistinguishable.

• Game: G9 is Sim
(C↔S↔A)
Sz′′

(1, i + 1) where we remove the translation interface
again.

Claim: G8 and G9 are information theoretically indistinguishable.

Proof: As before, Item 2 of Definition 9 requires that the renaming of challenge
tags does not influence the behavior of C(A). It also does not influence the behavior
of the challenger (by definition) or the protocol (that never sees challenge tags).
Thus, the games are indistinguishable.

• Game: G10 is the normal game Real(C↔A)(1, i+ 1) where b = 1.

Claim: G9 and G10 are computationally indistinguishable.

Proof: Since Sz′′ uses the correct bit b1 = . . . = bi = 1 for all simulations, we can
replace it with Szreal, that, in turn, is indistinguishable from Real(C↔A)(1, i+ 1).

We slightly abuse notation in writing Pr [0 = A(G0)] for Pr [0 = 〈C(A(n))|Ch(Π, α, n, 0)〉],
Pr [0 = A(G1)] for Pr [0 = 〈C(Sz(b,A(n)))|Ch(Π, α, n, 0)〉], etc..
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Pr [0 = A(G0)]

≤ Pr [0 = A(G1)] + µ1

≤ Pr [0 = A(G2)] + µ2 + µ1

≤ eiεPr [0 = A(G3)] + eiεiδ + µ2 + µ1

≤ eiεPr [0 = A(G4)] + eiε(µ3 + iδ) + µ2 + µ1

≤ eiεPr [0 = A(G5)] + eiε(µ4 + µ3 + iδ) + µ2 + µ1

≤ eiεPr [0 = A(G6)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= eiεPr [0 = A(G7)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

≤ eiε(eεPr [0 = A(G8)] + δ) + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= e(i+1)εPr [0 = A(G8)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

= e(i+1)εPr [0 = A(G9)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)εPr [0 = A(G10)] + e(i+1)εµ6 + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)εPr [0 = A(G10)] + e(i+1)ε(i+ 1)δ.

A.2 Proof for Theorem 2

Proof. We start the proof by showing that any Plug’n’Play adversary class allows for
single-challenge reducibility.

• Alpha-Renaming: The Plug’n’Play adversary class PACM,F uses challenge tags
Ψ exactly for one purpose: for handling one instance of a machine M per challenge.
The behavior of the machines F and M is not affected by Ψ (simply because they
never see them). Thus, for any permutation on the challenge tags, the adversary
class will have exactly the same behavior.

• Reliability: Note that the challenger never initializes challenges, i.e., will never
send any message containing (Ch,Ψ) before receiving a message containing (Ch,Ψ).
By construction, PACM,F only sends messages with ID (Ch,Ψ) when MΨ outputs
them. However, PACM,F invokes MΨ only if it (before) receives a message with ID
(Ch,Ψ). Since the challenger cannot send a message with this ID before receiving
a message with this ID, PACM,F only initializes and invokes MΨ if the adversary
has send a message with ID (Ch,Ψ) before. Thus, PACM,F is reliable.

• Simulatability: We construct the following general simulator S:

– S initialized a set of known IDs I := ∅.
– Whenever S receives any message m = (. . . , ID), where ID = (Ch,Ψ) with
zΨ = don’t simulate, S forwards the message.
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– Whenever S receives any message m = (. . . , ID), where ID = (A, x), s.t.
∀z.(z, x) /∈ I, S forwards the message.

– Whenever S receives any message m = (. . . , ID), where ID = (Ch,Ψ) with
zΨ = simulate (for the bit bΨ), behave as follows:

∗ If MΨ was not initialized so far (i.e., if a message with ID (Ch,Ψ) is
received for the first time), initialize a new instance of the machine M as
MΨ. Moreover, draw a new nonce N and add (Ψ, N) to I.

∗ Then / otherwise simulate MΨ on m (without its message ID), until it
outputs a message m′ and relay m′, depending on its structure:

· If m′ = (Answer for, , ), relay m′ to A, but replace the ID with
(Ch,Ψ).

· If m′ = (Input, , ), relay m′ to Ch, but replace the ID with (A, N).

· If m′ = (Challenge, r0, r1, ), compute r∗ := α(r0, r1, bΨ) and send
(Input, r∗, (A, N)) to Ch.

– Whenever S receives any message m = (. . . , ID), where ID = (A, x), s.t.
∃z.(z, x) ∈ I, S runs MΨ and handles its output as above.

We consequently show that the general simulator S satisfies all conditions from
Definition 9, Item 3.

– Item 3a: Let z ∈ {0, 1}2n be any simulator index and i ∈ {1, . . . , n}, s.t.,
zi = simulate. Then by construction Sz intercepts all messages with ID (Ch, i)
and feeds them into a simulated machine Mi. Whenever this machine outputs
a message (Challenge, , , ), S replaces it by (Input, r∗, (A, N)) for some
nonce N , where r∗ := α(r0, r1, bΨ). Furthermore, S never introduces messages
of the type (Challenge, , , (Ch, j)) for any j: it only forwards messages of
this form if they are sent by A and if zj = don’t simulate. Thus, S never
sends a message (Challenge, , , (Ch, i)).

– Item 3b: The simulator Szreal forwards all messages it receives. It never
intercepts messages with ID (Ch, i) for any i and consequently, the set I is
empty. Thus, it never intercepts messages with an ID (A, x) for any x either.
Thus, Szreal

– Item 3c: We now show that our simulator correctly simulates challenges (if
the bit within its index is correct). Let n be the number of allowed challenges,

let b be the bit of the challenger and let z, z′ ∈ {0, 1}2n such that

∀i ∈ {1, . . . , n} s.t. zi 6= z′i.(zi = simulate⇒ bi = b) ∧ (z′i = simulate⇒ b′i = b).

We now show that the gamed Sim
(C↔S↔A)
Sz

(b, n) and Sim
(C↔S↔A)
Sz′

(b, n) (as
in Definition 9) are indistinguishable.

We begin with noticing that both our generic simulator and the adversary
class do not share state between different ID’s: Their behavior on messages
( , ID) does not in any way depend on any communication or computation
on messages ( , ID′) for any other ID′. Consequently, we can analyze their
behavior for each ID separately.
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We furthermore assume that there are indexes i ∈ {1, . . . , n} s.t. zi 6= z′i.
Let i be such an index and let us assume w.l.o.g., that zi = simulate. The
difference in behavior covers exactly the messages with ID = (Ch, i) by A.3

To simplify the proof we can thus assume that there is exactly one difference
(for index i).

Whenever a message with ID = (Ch, i) is sent by A to Sz′ , the simulator simply
forwards the message to PACM,F , which, in turn, feeds it to the machine
Mi. Analogously, Sz initializes a machine Mi and feeds it all such messages.
Whenever in the game with Sz′ the challenger replies to the adversary with
a message (Answer for, x, (Ch, i)), PACM,F also feeds it to Mi. If these
messages instead (as in the game with Sz) have the ID (A, N) for any nonce
N , then PACM,F simply forwards them and Sz feeds them into its machine
Mi.

We proceed by an inductive proof over all messages sent to and received by
Mi.

The first message must originate from A, as the challenger never initializes
challenges (i.e., it never sends messages (Ch, i) without receiving such messages

before). Before A sends such a message, the two games Sim
(C↔S↔A)
Sz

(b, n)

and Sim
(C↔S↔A)
Sz′

(b, n) are information theoretically indistinguishable (the
simulators do not behave differently). For this first message m, Sz now creates
a fresh nonce N for translating the challenge ID and then initializes the ma-
chine Mi with m. Analogously, Sz′ simply forwards the message to PACM,F

that initializes Mi with m. Both machines will behave indistinguishably,
as they are initialized with the same message. The games only differ if Mi

outputs a message (Challenge, r0, r1, ). In Sim
(C↔S↔A)
Sz′

(b, n) this message
is sent to Ch which, since this is a challenge message, applies the anonymity
function α to it (using challenge bit b) and forwards the resulting message to

the protocol. In Sim
(C↔S↔A)
Sz

(b, n), the simulator applies α to it (using the
same challenge bit b) and forwards the resulting message as (Input, r∗, (A, N)
to PACM,F , which forwards the message to Ch, which, since this is an input
message, directly forwards it to the protocol.4

Let us assume that at any point further on in the game(s), where the machine(s)
Mi behaved indistinguishably and (so far) the challenger(s) also behaved
indistinguishably. Then, by the same argument as above, the machine Mi

will again behave indistinguishably (or it entails a distinguisher for the
aforementioned indistinguishability). Again, the games only are structurally
different if Mi outputs a message (Challenge, r0, r1, ), but this message will
be transformed to a message r∗ for Π that is the same for both games.

3Technically, Sz translates the communication regarding this challenge ID to (A, N) when commu-
nicating to the challenger, for a random nonce N . The messages with ID = (A, N) are of course also
affected.

4Technically, the challenger handles sessions in both cases, once for ID (Ch, i), once for ID (A, N).
Its behavior may only differ if there was a message with ID (A, N) before, or afterwards sent by the
real adversary A, but this occurs with negligible probability only.
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This concludes the proof.

B Leveraging UC Realizability

Our adversary model in AnoA is strong enough to capture well-known simulation-based
composability frameworks (e.g., UC (Canetti, 2013), IITM (Küsters and Tuengerthal,
2013) or RSIM (Backes et al., 2007)). In Section 7 we apply AnoA to a model in the
simulation-based universal composability (UC) framework. In this section, we briefly
introduce the UC framework and then prove that Differential Privacy (and therefore
also IND-ANO ) are preserved under realization. This preservation allows for an elegant
crypto-free anonymity proof for cryptographic AC protocols with AnoA.

The UC framework allows for a modular analysis of security protocols. In the
framework, the security of a protocol is defined by comparing it with a setting in which
all parties have a direct and private connection to a trusted machine that provides the
desired functionality. As an example consider an authenticated channel between two
parties Alice and Bob. In the real world Alice calls a protocol that signs the message
m to be communicated. She then sends the signed message over the network and Bob
verifies the signature. In the setting with a trusted machine T , however, we do not need
any cryptographic primitives: Alice sends the message m directly to T . T in turn sends
m to Bob, who trusts T and can be sure that the message is authentic. The trusted
machine T is called the ideal functionality.

Security in the UC framework is defined as follows: A real protocol is secure if an
execution of this real protocol is indistinguishable from an execution of the corresponding
ideal functionality. Here, indistinguishability is defined in terms binary random variables
which represent the output of the probabilistic real protocol and ideal functionality.

Definition 14 (Indistinguishability (Canetti)). Two binary distribution ensembles X
and Y are indistinguishable, denoted X ≈ Y if for every c ∈ N there is a η0 ∈ N such
that for all η > η0 and all x we have that

|Pr[X(η, x)] = 1− Pr[Y (η, x)] = 1| < δ′ = η−c

The Real World. For the process in the real world we introduce the random variable
RealΠ,A,D(η, x) which captures the interaction of a protocol Π with an adversary A,
observed by a distinguisher D.RealΠ,A,D will denote the ensemble of all those distribu-
tions. Note that as we try to argue about IND-ANO , our input x will be a tuple of inputs
(x0, x1).

The Ideal World. Similarly, we introduce the random variable IdealF,S,D(η, x) which
captures the interaction of an ideal functionality F , a simulator S and the distinguisher.
IdealF,S,D will again denote the ensemble of such random variables.

If the execution of a real protocol is indistinguishable from the execution of the corre-
sponding ideal functionality, we say that the protocol UC-realizes the ideal functionality.
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Definition 15 (Realization in UC). A protocol Π UC-realizes an ideal functionality F
if for every ppt adversary A of Π there exists a ppt simulator S such that for every ppt

distinguisher D it holds that

RealΠ,A,D ≈ IdealF,S,D

B.1 Preservation of Differential Privacy

UC-realization does not only allow us to prove the security of the real protocol given
a trivially secure ideal functionality, but also allows to lift security guarantees proven
for the realized protocol to the realizing protocol: given the realization of a (ε, δ)-
differentially-private ideal functionality by a protocol Π, we get differential privacy for Π
as well. This result is motivated by the ideas presented in the result of integrity property
conservation by simulation-based indistinguishability shown by Backes and Jacobi (2003,
Thm. 1).

Theorem 4. If Π UC-realizes an (ε, δ)-dp functionality F then Π is (ε,∆)-dp with
∆ = δ + δ′ for some negligible value δ′.

Proof. Given an (ε, δ)-dp functionality F , assume Π UC-realizes F , but Π is not (ε,∆)-dp,
i.e. there exist an adversary A and two inputs x0 and x1 s.t.

Pr[A(Π(x1)) = 1] > eεPr[A(Π(x0)) = 1] + ∆

such that ∆ ≥ δ + δ′ for a non negligible value δ′. We construct the following ppt

distinguisher D that uses A in order to separate Π from F :

1. choose b
R← {0, 1} uniformly at random

2. send xb through the network

3. depending on the output b∗ of the adversary:

(a) if the adversary returns b∗ = b, decide that you observed (Π, A) and output 1

(b) otherwise decide that you observed (F , S) and output 0.

We now bound the probabilities Pr[RealΠ,A,D(η, (x0, x1)) = 1] and Pr[IdealF,S,D(η, (x0, x1)) =
1] as required for the lemma. We will use the expressions AbRealΠ,D and SbIdealF,D to
denote the output of the adversary and simulator respectively during the execution after
the distinguisher decided on a specific b ∈ {0, 1}. Using the assumption that Π is not
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(ε,∆)-differentially private, the first expression computes to

Pr[RealΠ,A,D(η, (x0, x1)) = 1]

= Pr[AbRealΠ,D = b]

= Pr[A1
RealΠ,D = 1] · Pr[D chooses x1] + Pr[A0

RealΠ,D = 0] · Pr[D chooses x0]

= Pr[A(Π(x1)) = 1] · Pr[b = 1|b R← {0, 1}] + Pr[A(Π(x0)) = 0] · Pr[b = 0|b R← {0, 1}]

=
1

2
(Pr[A(Π(x1)) = 1] + Pr[A(Π(x0)) = 0])

>
1

2
(Pr[A(Π(x0)) = 1]eε + ∆ + Pr[A(Π(x0)) = 0])

=
1

2
(Pr[A(Π(x0)) = 1]eε + ∆ + 1− Pr[A(Π(x0)) = 1])

=
1

2
((eε − 1) Pr[A(Π(x0)) = 1] + ∆ + 1)

≥1

2
(1 + ∆) .

(1)
Using the (ε, δ)-differential privacy of F , the second expression can be bound as follows

Pr[IdealF,S,D(η, (x0, x1)) = 1]

= Pr[SbIdealF,D = b]

= Pr[S1
IdealF,D = 1] · Pr[D chooses x1] + Pr[S0

IdealF,D = 0] · Pr[D chooses x0]

= Pr[S(F(x1)) = 1] · Pr[b = 1|b R← {0, 1}] + Pr[S(F(x0))) = 0] · Pr[b = 0|b R← {0, 1}]

=
1

2
(Pr[S(F(x1)) = 1] + Pr[S(F(x0)) = 0])

≤1

2
(Pr[S(F(x0)) = 1]eε + δ + Pr[S(F(x0)) = 0])

=
1

2
((1− Pr[S(F(x0)) = 0])eε + δ + Pr[S(F(x0)) = 0])

=
1

2
(eε + (1− eε) Pr[S(F(x0)) = 0] + δ)

≤1

2
(eε + 1− eε + δ)

=
1

2
(1 + δ) .

(2)
Putting Equations 1 and 2 together, we then get

Pr[RealΠ,A,D(η, (x0, x1)) = 1]− Pr[IdealF,S,D(η, (x0, x1)) = 1] >
1

2
(∆− δ) =

1

2
δ′

for a non negligible value δ′

2 . Hence D is a ppt machine distinguishing (A,Π) from (S,F)
with more than negligible probability, contradicting the UC-realization of F by Π (cf
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Definition 15). Therefore our initial assumption is wrong and Π is (ε,∆)-differentially
private.

In the same vein as above, we can also show that IND-ANO is preserved by UC real-
ization. As a consequence of this result, it suffices to apply AnoA to ideal functionalities:
transferring the results to the real protocol weakens the anonymity guarantees only by a
negligible amount.

Corollary 1. Let Π be (ε, δ)-IND-ANO and Π be a protocol. If Π UC-realizes Π then Π
is (ε,∆)-IND-ANO with ∆ = δ + δ′ for some negligible value δ′.

The above result, in combination with an ideal functionality for an AC protocol, is
useful for analyzing the AC protocol with respect to our strong anonymity definitions.
In the next section, we exemplify the approach by using an ideal functionality for
Tor (Backes et al., 2012), showing that the anonymity analysis of Tor boils down to a
purely combinatorial analysis.

C Proofs for the Example Analysis

C.1 Proof for Lemma 5

Proof. We fix the random string ρCh. This in turn fixes the circuits through which For

sends each message. As circuits are drawn independently from the messages transmitted,
For draws the same set of circuits to transmit either of the challenge inputs. The
adversary A only observes messages of the form m = (h, P1, P2[, P3, . . . , Pk,m

′]) that
contain the following information:

a) which party P in For the message m comes from,

b) which party P ′ in For the message m is sent to,

c) which circuit was used by the circuit-ID (cid),

d) if the following nodes are compromised: P3, . . . , Pk

e) if the exit node node or the link from the exit node to the server is compromised:
the message that is sent.

Observe that the message m′ is the same in both scenarios and the handles h are freshly
chosen and, hence, do not leak any information about the path or the sender.

For α ∈ {αsSA, αsUL}, we know that by ¬Dα the adversary does not compromise
the entry node, or the link from the user to the entry node. Let R ⊆ {0, 1}p(η)

be the subset of all random strings ρ, for which 〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0. As
〈A(ρ)|Ch(For, α, 1, b, ρCh)〉 behaves deterministically, we know that exactly for every ρ ∈
R, 〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0, as both Ch(For, α, 1, 0, ρCh) and Ch(For, α, 1, 1, ρCh)
forward the same messages to A.
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If α = αsREL, A might learn partial information by compromising either entry- or
exit-node. But this only allows him to reduce the set of possible input tables to two,
each of which could have been selected by only one of the challengers. By the same
argument as above, if we fix ρ, A returns the same value, regardless of which challenger
he interacts with. Hence A does not learn about the challenger’s decision, and we get
for any random string ρCh

Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0 | ¬Dα(ρCh, ρ), ρCh]

=Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | ¬Dα(ρCh, ρ), ρCh] .
(3)

As the probabilities are the same for any random string ρCh, we then get

Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0 | ¬Dα(ρCh, ρ)]

=
1

2p(η)
·

∑
ρCh∈{0,1}p(η)

Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0 | ¬Dα(ρCh, ρ), ρCh]

=
1

2p(η)
·

∑
ρCh∈{0,1}p(η)

Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | ¬Dα(ρCh, ρ), ρCh]

=Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | ¬Dα(ρCh, ρ)] .

C.2 Proof for Theorem 3

Proof.

Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0]

=Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0 | Dα(ρCh, ρ)] · Pr[Dα(ρCh, ρ))]

+ Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0 | ¬Dα(ρCh, ρ)] · Pr[¬Dα(ρCh, ρ)]

=Pr [〈A(ρ)|Ch(For, α, 1, 0, ρCh)〉 = 0 | Dα(ρCh, ρ), ρCh] · Pr[Dα(ρCh, ρ)]

+ Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | ¬Dα(ρCh, ρ), ρCh] · Pr[¬Dα(ρCh, ρ)]

≤Pr[Dα(ρCh, ρ)] + Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | ¬Dα(ρCh, ρ), ρCh] · Pr[¬Dα(ρCh, ρ)]

≤Pr[Dα(ρCh, ρ)] + Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | ¬Dα(ρCh, ρ), ρCh] · Pr[¬Dα(ρCh, ρ)]

+ Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0 | Dα(ρCh, ρ), ρCh] · Pr[Dα(ρCh, ρ)]

= Pr[Dα(ρCh, ρ)] + Pr [〈A(ρ)|Ch(For, α, 1, 1, ρCh)〉 = 0] .
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