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The Kondo problem for the anisotropic s-d exchange interaction is investigated in de­

taiL The scattering amplitude of a conduction electron is calculated in the most divergent 

approximation (Abrikosov's approximation). The importance of some types of terms over­

looked in the previous work by Miwa and Nagaoka is pointed out. By changing the degree 

of anisotropy of the exchange integral the behaviors of the obtained scattering amplitude­

especially the divergence difficulties-are examined. To see physical meaning of the diver­

gence difficulties the problem of the existence of the bound state realized as the ground state 

of this coupled many-body system is discussed by extending the Yosida-Okiji-Yoshimori 

theory to the anisotropic case. It is shown that the exact solution of the bound state can 

be obtained also for the anisotropic s-d interaction, and that the divergence difficulties stated 

above are closely connected with the existence of the bound state. 

§I. Introduction 

Since Kondo's work1
) on the resistance minimum of dilute alloys which has 

revealed an important many-body effect brought about by quantum mechanical 

fluctuations of a localized spin, a new stage has come in the investigation of 

the properties of alloys containing magnetic impurities. Owing to considerable 

theoretical and experimental studies directed toward understanding the physical 

origin of the many-body scattering as well as toward a determination of the ground 

state of this coupled many-body system, some aspects of the problem have already 

been clarified. 2
) Nevertheless we still have many problems left unsolved. 

Most of previous theoretical researches on dilute alloys with magnetic im­

purities have been performed on the basis of the following model: Conduction 

electrons are scattered by a magnetic impurity with its spin S. The interaction 

between conduction electrons and a localized spin is the isotropic s-d exchange 

interaction 

(1·1) 

where aka and ak~- are annihilation and creation operators of a conduction electron 

with wave vector k and spin a, and (J' is the Pauli spin operator. 

In this paper we investigate the Kondo problem of a more general model 

-the anisotropic s-d exchange interaction 
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602 H. Shiba 

(1·2) 

where the exchange integral J is a tensor. Diagonalizing the tensor J, we have 
from (1· 2) 

(1· 3) 

The anisotropic s-d interaction is interesting for several reasons, in particular, 
from purely theoretical viewpoints. This is more general than the isotropic s-d 
interaction (1·1) and includes the isotropic case as one of special cases. Even 
the Ising case (or classical limit), in which only one of JJJ, Jy and Jz is different 
from zero, is also one of limiting cases of (1· 3). The isotropic case has been 
studied by many authors. On the other hand, for the Ising case, the s-d in­
teraction is equivalent to a potential scattering without internal degrees of 
freedom, and the exact solution can be obtained easily. Therefore, if we succeed 
in solving the problem of the anisotropic s-d exchange interaction, we can further 
extend our understandings of the Kondo problem. In fact, taking the degree of 
anisotropy of the exchange integral as a controllable parameter, we can examine 
the importance of quantum effects due to a localized spin in detail. 

It is worthwhile to notice that the anisotropic s-d exchange interaction is 
not an artifact. If a magnetic impurity ion is subjected to a strong crystal field 
and the crystal field splitting is so large that we can safely restrict our discus­
sions within the ground multiplet, the s-d (or s-f) exchange interaction in this 
case has the same form as (1· 2), where S is regarded as an effective spin of 
the ground multiplet. 

The purpose of this paper is first to calculate the scattering amplitude of 
a conduction electron interacting with a localized spin by the anisotropic s-d 
interaction in the most divergent approximation (i.e. in the logarithmic accuracy). 
This is a natural extention of the calculation done for the isotropic s-d interac­
tion.3> Then we study the behavior of the scattering amplitude and discuss in 
which case the scattering amplitude is divergent, changing the degree of an­
isotropy. Such a kind of analysis has been performed previously by Miwa and 
Nagaoka. 4

> But unfortunately, contrary to the assertions of the authors, they 
overlooked some types of terms which should be taken into account within the 
logarithmic accuracy, as we will show later. This is the reason why we attack 
this problem anew. 

The second purpose is to study the ground state of conduction electrons 
coupled with a localized spin by the anisotropic s-d exchange interaction. The 
isotropic limit has been investigated by Yosida, Okiji and Y oshimori.5;-s) In 
particular Y oshimorF> has obtained the exact solution in the weak coupling limit, 
which shows that there exists singlet many-body bound state for the antifer-
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Anomalies and Bound State Due to the Anz'sotropzc s-d Exchange interaction 603 

romagnetic exchange interaction and no bound state for the ferromagnetic case. 

If we change continuously the degree of anisotropy of the exchange integral in 

the anisotropic s-d interaction, we have a variety of cases including the antifer­

romagnetic and ferromagnetic isotropic limits. Here arises a question we wish 

to answer in this paper: How does the existence of the bound state depend 

on the degree of anisotropy? For this purpose we extend the Yosida-Okiji­

Yoshimori theory to the more general case-the anisotropic s-d exchange inter­

action. 

In § 2 the scattering amplitude is calculated in the perturbation expansion 

based on Doniach's method. 9
> Here we confine ourselves to the calculations in 

logarithmic accuracy. The result is compared with that obtained by Miwa and 

Nagaoka. 4
> 

In § 3 we sum up all the most divergent terms in order to examine in detail 

in which case the obtained expression for the scattering amplitude is divergent. 

Section 4 is devoted to investigation of the bound state due to the anisotropic 

s-d interaction. For simplicity we assume in this section that the exchange in­

tegral is axially symmetric (at least two of Jx, Jy and Jz are equal). It is shown 

that the bound state is determined by the extended Yosida-Yoshimori equation, 

which can be solved exactly. 

Conclusions are given in § 5. Relations of the results obtained in this paper 

with the recent paper by Anderson et aP0
> are also discussed briefly. 

§ 2. Perturbation expansion of the scattering ampliitude 

The importance of higher order terms in the perturbation expansion of the 

s-d problem comes mainly from quantum mechanical fluctuations of a localized 

spm. For this reason it is quite natural to expect that important terms in the 

perturbation expansion can be selected successfully by certain kinds of commutator 

expansion of a localized spin. In fact, Doniach9
> has given a formulation of the 

linked cluster expansion of the s-d interaction, which is in line with the spirit 

stated above. His method is effective even in the anisotropic s-d interaction. 

According to Doniach the t-matrix of the scattering of a conduction electron by 

a localized spin can be written in the form 

t (w) = N- 1 Vetr (w) [1-F (w) Verr (w) ]-\ (2 ·1) 

F (w) = N- 1 ~ (w- sk + io)- 1=:::- inp , ca~+o) 
/,; 

where p is the density of states of conduction electrons and Vefr (w) is the "effective 

potential", which corresponds to the sum of all "irreducible" diagrams. Com­

plicated problems of the Kondo effects are contained in Verr (u.>). Now we calcu­

late Veff (w) in the perturbation expansion of the anisotropic s-d interaction, 

following the prescription given by Doniach. Here we confine ourselves to 

calculations within the logarithmic accuracy. In other words we retain only the 
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604 H. Shiba 

most divergent terms in each order of the exchange integral. In Doniach's 
method the most divergent terms in the n-th order of the exchange interaction 
come from those which contain the (n -1) commutators of spin operators of an 
impurity. Without repeating details of the Doniach's method, we show the 
evaluation of Yerr(w) up to fourth order. 

(i) 1st order 

There is only one first-order term of Ve1r, which is shown 111 Fig. 1 (a). 

(2 ·2) 

(ii) 2nd order 

The second-order term of Yen· is also only one shown in Fig. 1 (b): 

(2 ·3) 

where e (t) is a step function defined by 

(a) (b) 

(c) (d) 

(e) 

Fig. 1. Some diagrams of the effective po­

tential Vefr(w) according to Doniach.9> 

(a): 1st order of the exchange integral, 

(b): 2nd order, (c) and (d): 3rd order, 

(e): 4th order. Diagrams (a), (b), (c) 

and (e) should be taken into account in 

the logarithmic accuracy, and the con­

tribution of the third order term corre­

sponding to (d) can be neglected in this 

approximation. 

for t>O 

for t<O 

and Go (t) is the free propagator of a con­

duction electron 

x [(I-f,.) e (t) - J,.e c- t) J. cz. 4) 

Performing integrations over t and k, we 

have from (2 · 3) 

V (2) C ) -- ( 1 I w I ) (2J J SJJ JJ eff W - - P n -]5- y z (J 

(2· 5) 

Here we have assumed for simplicity that 

the temperature is 0°K, and that the density 

of states of conduction electrons has the 

form 

P (e) ~" i ~ 

(iii) 3rd order 

for -D<c.<D 

otherwise. 

There are two types of graphs in this 

order, i.e. Figs. 1 (c) and (d). But (d) 

can be neglected in the most divergent ap­

proximation. The contribution of Fig. 1 
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Anomalies and Bound State Due to the Anz"sotropz'c s-d Exchange Interaction 605 

(c) is of the form 

vee:) (w) = J_cooo dteicot I-COCO dtlGo (t-tl) Go (tl) & (- Ji) (- Jj) (- Jk) 

x 6i6jok[6 (- t1) 6 (t1- t) [ [S\ Si], Si] 

+ 6 (- t) 6 (t- t 1) [ [S\ Si], S 1]]. (2 · 6) 

It should be noted here that the second term in the parenthesis vanishes because 

of the relation 

~ JiJjJkoio1ok[[Sk, Si],Si] =0. 
ijk 

Thus integrations over t and t1 lead to 

VeC:) (w)::::::::- ~ JiJ1Jkoi61ok (P ln 1;1) 
2 

[ [Sk, Si], Si] 

= - (P ln \;\) 
2 

[2Ja: (Jy2 + Jz2
) Sa:<fJ; 

+ 2Jy (J/ + JJ}) SYoY + 2Jz (Ja;2 + J/) sz<Jz] (2. 7) 

for T=0°K. 

Up to this order the situation is rather simple, but terms higher than the 

fourth order are quite complicated, as shown below. 

(iv) 4th order 

In the most divergent approximation it is sufficient to take into account only 

the diagram shown in Fig. 1 (e), which corresponds to the contribution 

VeC:) (w) = s:co dtei'"t s s_:dt1dt2Go (t- t1) Go (t1- t2) Go (t2) 

x ~ C -Ji) C -Jj) C -Jk) ( -J~) <Jiojok<J~ 
ijkl 

x (6 (- t2) 6 (t2- t1) 6 (t1- t) [ [ [S~, Sk], Si], Si] 

+ 6 (- t2) 6 (t2- t) 6 (t- t 1) [ [ [S~, S k], Si], Si] 

+6(-t1)6(t1-t2)6(t2-t) [[[S~, Si], Sk], Si] 

+6(-t1)6(t1-t)6(t-t2) [[[S~, Si], Si], Sk] 

+6( -t)6(t-t1)6Ct1-t2) [[[S~, Si], Si], Sk] 

+ 6( -t)6(t-t2)6(t2-t1) [[[S~, Si], Sk], S 1]J. (2·8) 

As the third term in the parenthesis is identically equal to zero, we perform 

integrations over t, t 1 and t 2 in five terms except the third. After elementary 

calculations we find that at T= 0°K 

VeCJ) (uJ) ::::::::~ JiJjJkJ~oi<Jiok<J~ 
ijkE 
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which is equal to 

H. Shiba 

+ ~ (PIn J~lr [ [ [S 1
·, Sk], Si], Sj] 

+ ~ (p ln_l~lr[[[S 1 ·, Sj], Si], Sk] 

- ~ (plnl~r[[[Sl,Si],Sj],Sk] 

+~(PIn 1;1) 
3

[[[Sl, Si], Sk], Sj]], (2 ·9a) 

+ (terms in which x, y and z are changed cyclically). (2 · 9b) 

Arranging terms, we obtain 

+ (terms in which x, y and .z are changed cyclically) J. (2 · 9c) 

Here a comment on the complex situation in the anisotropic s-d interaction 
may be useful. One may notice at once that for the isotropic case, J)J=J11 =Jz, 
all the terms except for the first in (2 · 9a) or (2 · 9b) are cancelled out. This 
makes circumstances in the isotropic case quite simple, because it is only the 
same type of terms as the first term in the parenthesis of (2 · 9a) that should 
be taken into account in the most divergent approximation. According to this 
observation Doniach9

) has summed up all the most divergent terms of Verr (w) 
for the isotropic: s-d interaction, which is found to be a geometrical series. On 
the other hand, for the anisotropic case, four terms in (2 · 9a) (from the second 
to the fifth term) different from the first term in the type of spin commutators 
does contribute, as seen above. In this connection we recall the work by Miwa 
and Nagaoka, 4

) who have calculated the effective potential Ve~r (w) for the ani­
sotropic s-d interaction in the most divergent approximation. But they have taken 
into account only the terms, the type of which is the same as the first term in 
(2 · 9a), and overlooked many other terms that cannot be neglected in the loga­
rithmic accuracy. Up to third order their results and ours are the same. But 
terms higher than the fourth order are different between these. 
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Anomalies and Bound State Due to the Anisotropic s-d Exchange Interaction 607 

Summing up (2 · 2), (2 · 5), (2 · 7) and (2 · 9c), we find that 

+ _!J 1 (AJ 2 '-J2-LJ2) ( 1 /wl)
3 

···] 
3 

1rz'± .n' 11; z P n--D + 

+ (terms in which x, y, and z are changed cyclically). (2 ·10) 

From (2 ·1) and (2 ·10) the t-matrix in the most divergent approximation averaged 

over the direction of the localized spin is given by 

(2 ·11) 

where Eq. (2 ·10) should be substituted for "Vetr (w). The symbol (- · ·) AV denotes 

the average over the direction of a localized spin. In the isotropic limit of the 

exchange integral Eq; (2 ·11) is nothing but the expression for the t-matrix 

obtained by Abrikosov3
) and Doniach.9

l 

Here one may ask the following question: What is the closed-form expres­

sion for the effective potential "Vetr(w) in (2 ·10)? Our answer \Vill be given in 

the following section. 

§ 3. Summation of the most divergent terms for the 

scattering amplitude 

In order to sum up all the most divergent terms for the anisotropic s-d in­

teraction and to obtain the expression of the closed form, Abrikosov's method 3
l 

is more convenient than Doniach's in the previous section, although both give 

the same final results. In his original paper Abrikosov has performed an analy­

sis of the scattering amplitude due to the isotropic s-d interaction in the most 

divergent approximation. If we make a close examination of his analysis, we 

find that a greater part of his discussions are applicable also to the anisotropic 

s-d interaction only with slight modifications. 

In accordance with Abrikosov, let us calculate the vertex function r af3,a'fJ' (w) 

(TafJ,a'W (w) in Abrikosov's original notation) in the logarithmic accuracy. The 

vertex function r afJ,a'fF (w) is nothing but the scattering amplitude of the scat­

tering process, in which a conduction electron with energy w and spin a is 

scattered elastically into the state \vith spin a' and at the same time a localized 

spin is flipped from {3 to (3'. In the most divergent approximation, r atS,a'fJ' (w) is 

equivalent to the effective potential Veff'(w) defined in the previous section. For 

the anisotropic s-d interaction r afJ,a'fJ' is given, in the most divergent approxi­

mation, as the solution of the integral equation 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

3
/3

/6
0
1
/1

9
2
4
9
6
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



608 H. Shiba 

'( a~,a'(F (t) = - :L; Ji(J~a,SJ[3' 
i=J:, y, z 

where t=pln(D/Iwl). Solving Eq. (3·1) by the iteration method up to the 

fourth order of the exchange integral, we find that taf3,a'/3' is the same as Eq. 

(2 ·10). Here we solve Eq. (3 ·1) exactly. For this purpose we put 

Substituting (3 · 2) into (3 ·1), we easily obtain 

rx(t) = -Ja:+2 itdsry(s)rz(s), 

r:11 (t) = -.7;,+2 itdsr.:(s)ra:(s), 

tz(t) = -Jz+2 itdsr.v(s)r11 (s). 

Equation (3 · 3) can be transformed into differential equations 

dr11 (t) 

dt 

dr:.: (t) 

dt 

(3·2) 

(3·3) 

(3·4) 

with the initial conditions ri (0) = -Ji (i = x, y, z). First we note that the relation 

[rx(t)]2-Jx2= [r:y(t)J-Jy2 

= [rz (t) ]2 -Jz2 (3 · 5) 

holds. Thus it IS sufficient only to solve a differential equation for the quantity 

f(t) defined by 

(3·6) 

The differential equation for f(t) has the form 

(3·7) 

where the definitions of parameters eh e4 and e3 are 
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Anomalies and Bound State Due to the Anisotropic s-d Exchange Interaction 609 

{ 

e1=-~(-2J}+Jy
2
+J/), 

C2 = l (Jx
2 
-2Jy2 + J/), 

e3 = l (Jx2 +Jy2
- 2J/). (3 ·8) 

The initial condition for Eq. (3 · 7) is f(O) = 0, as can be seen from Eq. (3 · 6). 

The solution of the differential Equation (3 · 7), which satisfies this initial con­

dition, is given by 

f(t) =fP(2(t-tc)), (3 ·9) 

where 5:P(z:) IS the Weierstrassian elliptic function, 11
) and tc IS defined as 

(3 ·10) 

Here the sign ± means that of ( -JxJyJz). Thus the mathematical properties 

of f(t) as a function of t is completely determined from those of fP (z). Important 

properties of fP (z) for later discussions are as follows. 

(i) fP (z) is a doubly periodic function with periods 2(1)1 and 2rv 2, and has double 

poles at the points z=Qmn=2m(1)1+2n(1)2 (m, n: integer) as 

(3 ·11) 

where ~;m means that in the summation the term corresponding to m = n = 0 IS 

omitted. 

(ii) If e1, e2 and e3 are real as m our case, we can take (1)1 as real and (1) 2 as 

imaginary in the form 

(3 ·12) 

where eM(em) is the maximum (minimum) of e1, e2 and e3. 

(iii) The Weierstrassian elliptic function fP(z) is related with the Jacobian 

elliptic function, for instance, sn (z, k) by 

fP (z) = e1 + e3- e1 
sn2 (zJ e3 - e1, k) ' 

(3 ·13) 

where k = J (e2- e1) / (e3- e1) . 

Making use of these relations, we can discuss the behavior of the scattering 

amplitude for the anisotropic s-d interaction. First we study in which case the 

scattering amplitude in the logarithmic accuracy is divergent. The conditions 

for f(t) not to have poles on positive real axis of t(=p ln(D/1(1)1)), + oo>t>O, 
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610 H. Shiba 

are the following: (I) The real period Uh goes to infinity and (2) tc<O. From 

(3 ·10) and (3 ·12) these conditions mean that f(t) has no pole on the positive 

real axis of t, when (1) one of 

and 

-XYmodel---~--- XYmodel-. 
ohP 

/ 

isotropic 
antiferro 

ontiferro 

IT 
Fig. 2. Behaviors of the scattering amplitude 

for the axially symmetric s-d exchange in­

teraction CJ:e=Jy=JJJ. The scattering 

amplitude in the most divergent approxi­

mation has poles on the positive real axis 

of t(=pln(D/Iwi)) except in the hatched 

region, where Jz2iJ_Li is satisfied, and in 

is satisfied and (2) J?;~ 1 Jz>o. In par­

ticular, for the axially symmetric case 

J?;=Jy=Jj_, f(t) has no pole on the posi­

tive real axis of t, when both Jz2> Jj_ 

and Jz>O are satisfied, or when Jz<O 

and J1. = 0 are satisfied. Otherwise f(t) 

has poles. This result is shown in Fig. 2. 

If at least one of the two conditions 

is not satisfied, f(t) has double poles on 

the positive real axis of t. From the de­

finition of t and Eq. (3 ·11) we find that 

the largest energy, at which the scatter­

ing amplitude diverges, is given by 

and 

I U) I= De-<"'1 +tc)/p 

for J?JJ1fJz<O 

(3 ·14a) 

for J":J1,Jz>O, 

(3·14b) 

where W1 is defined by (3 ·12). The quan-

tities tc and W1 are expressed, in general, 

in terms of elliptic integral. It will be 

the antiferromagnetic Ising case. shown in the following section that the 

energies given by (3 ·14a) and (3 ·14b) are equal to the binding energy of the 

collective bound state realized as the ground state of our system. 

Before we discuss some limiting cases, we will give expression:; for the 

scattering amplitude in terms of the Jacobian elliptic functions, which may be 

convenient for later purposes. Using the relation (3 ·13) and the definition of 

ei, (3 · 8), we have 
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Anomalies and Bound State Due to the Anisotropic s-d Exchange Interaction 611 

r 2= (J.2-J2) dn
2
(2(t-tc) .JJ;:.-=-J}, k) 

11 
x z sn2(2(t-tc) .JJ3}-Jz2

, k) ' 

rz2 = (.J1:2- Jz2)- en: (2 (t- tc) .J J<- J<, k) ' (3 ·15) 

sn (2 (t- tc) .J J1; -Jz, k) 

where k=.J(J-/-J1/)I(J11

2 -Jz2
). Here use has been made of the definitions of 

cn(z,k) and dn(z,k) 

J cn
2 (z, k) = 1- sn2 (z, k), 

t dn2 (z, k) = 1- k2 sn2 (z, k). (3 ·16) 

Of course it should be noted that there exist other ways of expressing ri m 

terms of the Jacobian elliptic functions. Now we will turn to the study of 

limiting cases. 

(1) the axially symmetric case (Jc=J11 =Jj_) 

In this case the modulus k in (3 ·14) is equal to zero. Thus, noting the 

properties 

sn (z, 0) =sin z, en (z, 0) = cos z, 

dn(z, 0) =1 (3 ·17) 

and calculating tc from Eq. (3 ·10) explicitly, we have 

r.7J (t) = r 11 (t) = r 1_ (t) 

_ ..jj'i-~-.]2 _ sgn (Jj_Jz) 

- J_- z sin (tan~ 1 ( .J Ji ~jz 2 I --J___:._z)---2-.J---:·]]_ -~J/·t) 

rz (t) = .J J]_ -J:/ cot (tan-1 .J:/~7- 2.../Jf-J~ft) (3 ·18) 

r.v (t) = r11 (t) = r j_ (t) 

= JJ~ 2-= Jf --- ---------------~---~~~=({_~Jz) _____ ==c~,-7.~---
• sinh (tanh-1 

( J Jz2
- JJ_ I -Jz) - 2J Jz2 -"--Ji t) 

(3 ·19) 

for J 2

2> J]_. In (3 ·18) tan- 1 means the principal value, i.e. - n/2<tan~
1
x<nl2. 

From (3 ·18) and (3 ·19) one may notice the difference between the two cases 

JJ_>Jz2 and Jz 2>JJ_. 

(2) the isotropic case (Jj_ = Jz = J) 

This is a special case of the axially symmetric exchange interaction. We 

can easily obtain from (3 ·18) or (3 ·19) 
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612 H. Shiba 

1 
'C 1_ (t) = 'Cz (t) = ----~-, 

-1/J-2t 
(3 ·20) 

which is nothing but the result found by Abrikosov.3
) 

(3) the Ising case (Jj_ = 0) 

Setting Jj_ ->0 in (3 ·19), we have 

1
-r.L(t) =0, 

'Cz (t) = -Jz • (3. 21) 

Divergence difficulties of the scattering amplitude for the positive real value 
of t ( + oo >t>O) suggest that something real and physical must occur. In the 
next section we will study the ground state of conduction electrons and a localized 
spin coupled by the anisotropic s-d interaction and find the intimate connections 
between the divergence difficulties and the many-body bound state realized as 
the ground state of this system. 

§ 4. Round state 

To consider the physical meaning of the divergence of the scattering amp­
litude found in the previous section and what it suggests, we study the ground 
state-the collective bound state due to the anisotropic s-d exchange interaction 
-following the formulation of Yosida, Okiji and Yoshimori. 5

) .... s) The wave func­
tion of the ground state ?JI is expanded as 

(4 ·1) 

where x13 IS the eigenfunction of the impurity spin, and (/j0 denotes the Fermi 
vacuum. The coefficients Ta 13 , Ta

1
a

2
a 313 , • • • are determined from the Schrodinger 

equation. Eliminating higher order coefficients Ta
1
a

2
asfh Ta

1
a

2
a

3
a

4
a 513 , • • • by iteration 

with the use of the relations derived by the Schrodinger equation, we can reduce 
the equation for Ta 13 (E) to the integral equation 

+ ~ p rD dE' Ka(3,a'(3' ( E + E'- E) Ta'/3' ( c') = 0' 
a' {3' Jo (4·2) 

where E is the anomalous part of the ground state energy E (the binding energy): 
E =fiE+ E with the normal part iJE, which can be obtained by the ordinary 
perturbation expansion. We calculate the kernel Kaf3,a'f3' (E) in the logarithmic 
accuracy. One way is to perform iteration directly. The other is based on 
Nakajima's observation

12
> that the kernel Kap,a'/3' (E) is tightly connected with 
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Anomalies and Bound State Due to the Anisotropic s-d Exchange .Interaction 613 

the scattering amplitude calculated by Abrikosov. 3
) The latter is more convenient 

than the former for the present purpose. Nakajima's arguments have been done 

for the isotropic s-d interaction. But close examinations show that an analogous 

relation 

Kaf3,a'f3' (E) =- A~J,a'/3' (t), 

t=p In D 
E 

(4·3) 

h ld f h . . d . . h Ac2) ( ) • • o s or t e amsotrop1c s- mteractwn, w ere af3,a'/3' t IS a quantity corre-

sponding to A<2
) in Abrikosov's paper :3

) 

Here ri (t) is the vertex function calculated in the previous section m the loga­

rithmic accuracy. 

To solve the integral Equation ( 4 · 2) we transform it into a differential 

equation.7) This procedure is found to be powerful not only for the isotropic 

s-d interaction, but also for the anisotropic one. For this purpose let us introduce 

the function Ga 13 (E) defined as 

(4·5) 

Then we can reduce Eq. ( 4 · 2) to a differential equation for Ga/3 (E). First we 

note that within the logarithmic accuracy the term with the kernel Kaf3,a'f3' can 

be approximated as follows :7),s) 

i nd 'K ( ' E"'"')r ( ') JDd ,dKaf3,a'f3'(E'-E) ·G ( ') 
0 

E af3,a'f3' E + E - a'/3' E :::::::::- E a'/3' E • 
E dE' 

(4· 6) 

Substituting ( 4 · 5) and ( 4 · 6) into ( 4 · 2) and differentiating both sides of ( 4 · 2) 

with respect to E, we have a differential equation for Ga 13 (E): 

where u = p ln (D I ( E- E)). Boundary conditions for ( 4 · 7) are 

Ga/3 (O) = 0 

and 

(4·7) 

(4 ·Sa) 

(4·8b) 

Now we change the variable from E to u = p ln (D I ( E- E)). Equations ( 4 · 7), 
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614 H. Shiba 

(4·8a) and (4·8h) are transformed into the equations for ga 13 (u) defined as 

YafJ(u) =GafJ(E), i.e. 

d
2

gl!_fl(u)- 'E 'E ri(u)ri(u)(a[6iui[a")((1[SjSilt1")ga,w(u) =0 
du2 i,.f a'{J' 

(4·9) 

with the boundary conditions 

(4·10) 

where 

~ 1 D 
u=pn~-~. 

-E 

So far our discussions are applicable quite generally for the anisotropic s-d 

interaction. Hereafter we assume for simplicity that the exchange integral is 

axially symmetric, i.e. Jx = J 11 = J .L and that the spin of the impurity atom S is 

equal to 1/2. Under these assumptions the coupled equations ( 4 · 9) are separated 

into the following: 

f
d

2

Utt; ( 2() 1 2( )) _ 0 -;i~?.-- ft u + 4 rz u Yrr- , 

l d 
2 

(g H ± g '-T) ( ± r _~_ ( u) r ~ ( u) + 
4

1 
r z 2 

( u) ) (g u ± g tr) = 0 , 
dzi 

(4·1la) 

(4·11b) 
(4·11c) 

where Yrr, Yn + g~T and gH correspond to the states with the total spm Stotal = 1 

and its z-component sl~otal = 1, 0, -1, gH- Ytr a singlet with stotal = 0. As the wave 

function Yu obeys the same equation as ( 4 ·1la), we omit it. The quantities 

r_~_(u) and rz(u) in (4·11a)"--'(4·11c) have already been obtained in the previous 

section ( (3 ·18) or (3 ·19)). 

First we will study the case J_~ > J/. To simplify the differential equations 

(4·11a)"-'(4·11c) let us introduce a new variable x defined by x=cos(y-y0), 

where 

( 4 ·12) 

and 

( 4 ·13) 

Substituting the expressions for r _1_ (u) and rz (u), (3 ·18), into Eqs. ( 4 ·1la) r-J 

( 4 ·11c), we can rewrite these in terms of a new varia hie in the form 
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Anomalies and Bound State Due to the Anz'sotropic s-d Exchange Interaction 615 

f 
[ d 2 

x d x
2 + 4 J 

dx2 + x 2 - I dx -T6 (x2 -1)2 gtt=O' 

l [ !!_~ + _ ___:£__ _ _!]___- :z:_~_!_~x~_~n y_~.l;,)J (g.l ± g.~.t) = o . 
dx2 x 2 

- 1 dx 16 ( x 2 
- 1 Y 1

" 

(4·14a) 

(4·14b) 

(4·14c) 

Solutions of these equations can easily be found. From Eq. ( 4, ·14a) we have 

1 [ s:Jj d , J 
gtt = (1- xY18 (1 + xY18 A

1 + B 1 
(1- x') 11 ~1 + x'Y14 

(4·15a) 

and from (4·14b) and (4·14c) 

gH + g,\.t = -{i+-~~~~ [ A2 + B2 SJ; dx' J 
(1- x'Y14 (1 + xY14 

' 

(4·15b) 

s;~ dx' J 
(1 - x'Y14 (1 + x'Y14 

(4·15c) 

for the case sgn (JJ_Jz) >O. For sgn (JJ_Jz) <O, gt!. + g.\.t and gH- g.\.t should be inter­

changed. In ( 4 ·15a) "'-' ( 4 ·15c) the constants A 1, B1, · · ·, B 3 are determined from the 

boundary conditions ( 4 ·10). Eliminating these constants Ab Bb · · ·, B 3 in this 

way, we obtain our final results for the case sgn (JJ_Jz) >O as follows: 

gtt(x) =gttCxo) 

(4·16a) 

(gH + g.\.t) (x) = (gu + g.\.t) (xo) 

2- x 0 (1 + x)3
1

8 fx dx' 

4 (1- Xo2
) (1- xY18 x (1- x')l/4 (1 + x')5

1
4 

X------~--------------- -

1 2- Xo (1 + XoY18 r:JJo dx' ' 

(1- XoY18 (1 + Xo)
318 + 4 (1- Xo 2) (1- x 0Y

18 
Jx (1- x')114 (1 + x')514 

(4·16b) 

(gu-gH) (x) = (gu-gH) (xo) 

- 2 - Xo (1 - x Y 18 fx dx' 

4 (1- x 0
2

) (1 + xY18 x (1- x'Y14 (1 + x'Y14 

X - ---~------------------- ---------· --------··------------- ... --------------------- -· ----------------------

1 -2- Xo (1- Xo)3
/

8 r~o dx' ' 

(1- xoY18 (1 + xa)318 + 4(}"=--. xa2-) -(1 + xoY18 Jx (1- x1 )514 (1 + x'Y14 

(4·16c) 

where x 0 and x are defined by 
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616 H. Shiba 

Xo=cos Yo= !Jz/JJ..I, (4·17) 

x=cos(y-yo) = cos(2uv'J1-J~ 2 -tan-1 v'Jf~zjzz) 

-2---2 D 1 v'Jf-J:f 
=cos (2-/JJ.. -Jz pIn --=-.E--tan- -Jz )- (4 ·18) 

Setting x = x 0 in ( 4 ·16a) /'-../ ( 4 ·16c), we find the equations to determine the binding 
energy E: 

tor Utt(x), 

2- Xo (1 + Xo) 3
1

8 r:"o dx' 
4 (1- Xo 2

) (1- x 0)1!8 J:c (1- x')l/4 (1 + x')5
1

4 

1 , 2- Xo (1 + Xo)318 rxo dx' 
_(_1 ___ x_o_Y_18-(1 + xaY18 + 4 (1- Xo 2) (1- xa) 118 J:c -ci-=-~-,)1/ 4 -(I--t--:;;-'y 5 ; 4 -

1= 
(4·19b) 

for Uu(x) +g~t(x), 

- 2- Xo (1 - x 0)318 sxo dx' 
4 (1 - Xo2

) (1 + x 0)
118 x (1 + x')l/4 (1 - x'Y14 

1 - 2 - Xo (1 - Xo)318 rxo dx' 
(1- x

0
)118 (1 + x

0
)318 + 4 (1- x

0
2) (1 + x

0
)118 J:c (.i_-t_-:;;,-)if4(i-_:___-_;;;)514-

1-
(4·19c) 

for Uu (x) - Utt (x). Equations ( 4 ·19a) /'-../ ( 4 ·19c) have solutions, only when the in­
tegral in each equation diverges. Thus we come to the following conclusions: 

i) Equation ( 4 ·19a) has no solution. 
ii) The solution of Eq. (4·19b) is x= -1, i.e. 

(4 · 20a) 

or 

~ 1 1 vJI-J~f E= -D exp[-;c-=-2----=?;-((2n+ 1) rc+ tan- )]. 2vJJ.. -Jz P -Jz 
(4. 20b) 

(n =integer) 

Deriving the integral equation for the bound state, ( 4 · 2) and ( 4 · 3), we assumed 
that the s-d exchange interaction is so weak that J1.p, Jzp~1 and IEJ/D~l. 
Further the kernel K ( E + E'- E) should not be divergent for positive values of 
E and E'. From these conditions the following is found to be the only one that 
may be allowed as a bound state in (4·20b): 
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Anomalies and Bound State Due to the Anisotropic s-d Exchange Interaction 617 

(4·21) 

for Jz>O. 

iii) The solution of Eq. ( 4 ·19c) is x= 1, i.e. 

----,--- D .J]';_ -J;2-
cos (2.JJi -Jz2 p ln-E~-tan- 1 ----J--) =1, 

, - ~ - z I 
(4 · 22a) 

or 

~ [ 1 ( 1 .J]l - J/) J 
E= -D exp -2JJY=J:ip 2nn+tan- --=~ . (4·22b) 

(n =integer) 

From the same reason as m ii) the solution that may be allowed m ( 4 · 22b) Is 

the following: 

(4·23) 

for Jz<O. 

For the solutions with n>1 in (4·20b) and (4·22b) the kernel K(E+ E' -E) 

calculated in the most divergent approximation diverges at a certain value of E 

and E'. Thus the energies with n>1 may suggest possible existence of the 

excited resonance state for I J1.l >I Jz I, although it is not known for certain because 

of our approximation for the integral kernel. 

So far we have discussed in detail bound states for the case of sgn (Jl.Jz) >O. 

If sgn (Jl.Jz) <O, it is sufficient only to interchange gH + g!.t and gH- gJ.i in the 

above results. 

Now we will turn to t,he case Jz2> Jl. In this case we substitute into the 

differential equations ( 4 ·1la) rv ( 4 ·11c) the expressions for r 1. (t) and rz (t) (3 ·18) 

instead of (3 ·17) and solve them in the same way as for Jl > J/. Analogous 

calculations lead to the following equations to determine the binding energy E 

for this case with the definition of x 0 and x, 

{ 

Xo= IJl./Jzl>l, 

~ 2 z D -1 .JJ/-Jl 
x=cosh(2.JJ -J pln-""--tanh ~-----) 

z l. -E -Jz ' 

(4·24) 

(4·25) 

1 ~ _ _ __ 4 c'"'~"-:: 1)_ C:r"::: 1)'~(:ro ± ])'1" [_ V=: 1 )~~.x:'_-1:: ~)'!' __ _ _ 

(xa -lY} (xa + 1Y18 -4-(x~()_ __ iY (x
0 
-l)lf; (x

0 
+ 1)118 s:o (x' -l)e;:x' + 1)114 

(4·26a) 
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618 H. Shiba 

for Utt (x), 

for Uu (x) - UJ.t (x). Here we have made the assumption of sgn (Jj_Jz) >O. For 
the case sgn (Jj_Jz) <O, Uu + gH and Uu- gH should be changed with each other. 
The solutions of equations ( 4 · 26a) rv ( 4 · 26c) can be found easily. 

i) Equations (4·26a) and (4·26b) have no solution. 
ii) The solution of ( 4 · 26c) is x= 1, i.e. 

E ~ - D exp [- Z-.JJ/~J{P tanh_, {J~ ./f] (4 ·27) 

for Jz<O. 

IEI/D~I. 

When Jz>O, we are faced with an apparently unphysical situation 
Therefore for the case J;,>O it should be omitted. 

Thus we have obtained the exact solutions of collective bound states for 
the anisotropic (axially symmetric) s-d interaction, which are summarized in 
Table I for convenience. The sign of Jj_ is not important, because it changes 

Table I. Binding energy E for the anisotropic s-d interaction. The bound state with the 
binding energy given below is the solution of gu+gu when Jj_>O and mJ.-gtJ, when Jj_<O. 

0 

only the phase factor of the wave function. These results may be regarded as 
an extention of the calculations by Yosida, Okiji and Yoshimoriol~Bl to the an­
isotropic case, and show that the binding energy is tightly connected with the 
divergence of the scattering amplitude obtained in the previous section. 

Let us examine some limiting cases. 
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Anomalies and Bound State Due to the Anz'sotropic s-d Exchange Jnteractz'on 619 

i) the isotropic limit (J .1. = Jz = J) 

This case can be obtained either from J1 > J/ or from Jz2> Jl by a limiting 

procedure. Both calculations give the same result, as a matter of course: a singlet 

bound state for the antiferromagnetic exchange (J <O) with the binding energy 

(4·28) 

and no bound state for the ferromagnetic coupling. This is nothing but the 

result previously obtained by Yoshimori.7) In fact, for the isotropic case the 

quantities x 0 and x in (4·19a)"-'(4·19c) or (4·26a)"-'(4·26c) are nearly equal 

to unity and integrations can be performed explicitly. Then these: equations are 

found to be the same as those obtained by Yoshimori as equations, which de­

termine the binding energy of the bound state due to isotropic s-d interaction. 

ii) the XY model (Jz = 0) 

This is obtained from the case Jl > Jz 2 by setting Jz--'>0. The binding 

energy is given by 

(4·29) 

irrespective of the sign of J.1.. 

iii) the Ising limit (J.1. = 0) 

This is a limiting case of the calculation for J/> Jl. There exists no bound 

state. This is quite natural because of nonexistence of quantum effects. 

§ 5. Conclusions 

In this paper we have investigated the scattering amplitude in the most 

divergent approximation and the many-body bound state due to the anisotropic 

s-d interaction in order to extend our know ledge on the Kondo problem. We 

have succeeded in obtaining the exact solution of the bound state for the an­

isotropic s-d interaction, and have found that the divergence difficulty of the 

scattering amplitude calculated in the logarithmic accuracy and the collective 

bound state of the coupled system of conduction electrons and a localized spin 

are closely connected even in the anisotropic s-d exchange model as in the 

isotropic case. One of the important conclusions of this paper we wish to 

emphasize is that from a viewpoint such as that of the Kondo problem the aniso­

tropic (axially symmetric) s-d interaction can be separated into three cases: 

i) jJ.l..j >jJzl' 

ii) IJzl>IJ.l..l 

iii) IJzi>IJ.l..l 

and 

and 
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620 H. Shiba 

as shown in Fig. 2. Within each case the difference of the degree of anisotropy 

does not change the essential properties of solutions. But between two cases, 

for example i) and ii), the behaviors of the scattering amplitude and the bound 

state are qualitatively different. This result is analogous to that of the recent 

paper by Anderson et al,l 0
) in which it is proved that a scaling law holds in 

each region of Fig. 2. Detailed discussions of the relation between our calcu­

lations and the theory by Anderson et al. will be left for a future study. 
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