
AD A125 290 ANOMALIES IN PARALLEL BRANCH AND BOUND ALGORITHMS(U I/
MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER SCIENCE
T LAI ET AL. DEC 82 TR-82-25 N00014-80-C-0650

UNCLASSIFIED F/G 12/1 NL

mmEmmmmmmEEnmmU Lmmmm

11111 1.0 0 12.2

11115 A=.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

Computer Science Department

136 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

Anomalies In Parallel

Branch-and-Bound Algorithms

by

Ten-Hiwang Lai and Sartaj Sahni

Technical Report 82-25

December 1982

Ifor ruSAi" r'Ae

disri ui,) i, A 98

Anomalies In Parallel ranch-end-Bumd Algorithms*

Ten-Hwang Lai and Sartaj Sahni

University of Minnesota

Abtract5-

Ale-consider the effects of parallelizing branh-ad-boun\ algorit by expand-

ing several live node;'simultaneously. It is shoirn that its quiteossible for a

parallel branch-and-bound algorithm using n processor$ to tae more time

than one using ni processors even though n1 < np. Furtherinore /it is also possi-

ble to achieve speedups that are in excess of the ratio nj/nj. Experimental

results with the 0/1 Knapsack and Traveling Salesperson problems are also

presented.

Key Wm and Phrass .

Parallel Algorithms, branch-and-bound, anomalous behavior.

• - - - _**,

DZ ."t i '" "f_. I
This research was supported in part by the Office of Naval Research under con-

tract N00014-80-C-0660.

1. IntrducUon

Branch-and-bound is a popular algorithm design technique that has been suc- OL

cessfully used in the solution of problems that arise in various fields (e.g.. com-,2'

binatorial optimization, artificial intelligence, etc.) fyiefy

describe the branch-and-bound method as used in the solution of combinatorial

optimization problems. Our terminology is from Horowiz and Sahni [74.

In a combinatorial optimization problem we are required to find a vector x

= (z1 z, z.) that optimizes some criterion function f(x) subject to a set C of

constraints. This constraint set may be partioned into two subsets: explicit and

implicit constraints. Implicit constraints specify how the zts must relate to

each other. Two examples are:

1) Ni !b

2) a~zI - az 2 .9 + az: = 6

Explicit constraints specify the range of values each zi can take. For exam-

ple:

1) ,t CO. 1

2) X, Z! 0

The set of vectors that satisfy the explicit constraints defines the solution

space. In a branch-and-bound approach this solution space is organized as a

graph which is usually a tree. This resulting organization is called a state space

graph (tree). All the state space graphs used in this paper are frees. So we shall

henceforth only refer to state space trees. Figure 1 shows a state space tree for

the case n = 3 and xi e 0, 11. The path from the root to some of the nodes (in

this case the leaves) defines an element of the solution apace. Nodes with this

property are called solution uodes. Solution nodes that satisfy the implicit con-

straints are called feasible solution nodes or ansuwer nodes. Answer nodes have

been drawn as double circles in Figure 1. The cost of an answer node is the value

of the criterion function at that node. In solving a combinatorial optimization

problem we wish to find a least cost ansuier node.

-

-3"

X2 *1 X 10 1 X 2 " X2=0

Fgur.e I A state space tree

For convenience we assume that we wish to minimize f(x). With every node

N in the state space tree, we associate a value I Wn(N) = minjf(Q) : Q is a feasible

solution node in the subtree NJ. (If there exists no such Q. then let f ft(N) =

co.)

While there are several types of branch-and-bound algorithms, we shall be

concerned only with the more popular least cost brwich-and-bowad (Icbb). In

this method a heuristic function g() with the following properties is used:

(P1) g(N) & f ft (N) for every node N in the state space tree.

(P2) g(N) = f(N) for solution nodes representing feasible solutions (i.e., answer

nodes).

-4-

(P-3) g(N) = - for solution nodes representing infeasible solutions.

(J4) g(N) g(P) if N is a child of P.

g() is called a bound6g function. lcbb generates the nodes in a state space

tree using g(). A node that has been genereated. can lead to a feasible solution,

and whose children haven't yet been generated is called a Uwe node. A list of live

nodes (generally as a heap) is maintained. In each iteration of the lcbb a live

node, N, with least g() value is selected. This node is called the current E-node.

If N is an answer node, it must be a least cost answer node. If N is not an answer

node, its children are generated. Children that cannot lead to a least cost

answer node (as determined by some heuristic) are discarded. The remaining

children are added to the list of live nodes.

The problem of parallelizing lcbb has been studied earlier [2 - 5, 13]. There

are essentially three ways to introduce parallelism into lcbb:

(1) Expand more than 1 E-node during each iteration.

(2) Evaluate g() and determine feasibility in parallel.

(3) Use parallelism in the selection of the next E-node(s).

Wah and Ma [13] exclusively consider (1) above (though they point out (2)

and (3) as possible sources of parallelism). If p processors are available then q

- mnip, number of live nrodesl live nodes are selected as the next set of E-nodes

(these are the q live nodes with smallest g() values). Let g,,t be the least g

value among these q nodes. If any of these E-nodes is an answer node and has g(

) value equal to g &, then a least cost answer node has been found. Otherwise all

q E-nodes are expanded and their children added to the list of live nodes. Each

such expansion of q E-node counts as one iteration of the parallel lcbb. For any

given problem instance and g. let l(p) denote the number of iterations needed

when p processors are available. Intuition suggests that the following might be

true about (p):

(H) (n 1) t I(nj) whenever n! < ne

(12) njg 2
1(nTL) II

- ',," --

In Section 2. we show that neither of these two relations is in fact valid.

Even if the g()s are restricted beyond (P1) - (P4), these relations do not hold.

The experimental results provided in Section 3 do. however, show that (I1) and

(12) can be expected to hold "most" of the time.

Wah and Ma [13] experimented with the vertex cover problem using 26, 0 t

k!9 6 processor. Their results indicate that 1(1)/I(p) ! p. Our experiments with

the 0/1-Knapsack and Traveling Salesperson problems indicate that 1(1)/I(p) ! p

only for "small" values of p (say p ! 16).

2. ome Thearem For Parallel &anch-ndBound

As remarked in the introduction, several anomalies occur when one parallelizes

branch-and-bound algorithms by using several E-nodes at each iteration. In this

section we establish these anomalies under varying constraints for the bounding

function g(). First, it should be recalled that the g() functions typically used

(eg. for the knapsack problem, traveling salesperson problem, etc. cf. [7]) have

the following properties:

(a) g(N) ; g(M) whenever N is a child of node M. Thus, the g() values along any

path from the root to a leaf form a nondecreasing sequence.

(b) Several nodes in the state space tree may have the same g() value. In fact,

many nonsolution nodes may have a g() value equal to f*. This is particu-

larly true of nodes that are near ancestors of solution nodes.

In constructing example state space trees, we shall keep (a) in mind. None

of the trees constructed will violate (a) and we shall not explictly make this

point in further discussion. The first result we shall establish is that it is quite

possible for a parallel branch-and-bound using n 2 processors to perform much

worse than one using a fewer number nj of processors.

Theorem 1: Let nj < ng. For any k > 0, there exists a problem instance such

that kl(ni) < 1(n2).

Pft : Consider a problem instance with the state space tree of Figure 2. All

nonleaf nodes have the same g() value equal to f, the f value of the least cost

answer node (node A). When ni processors are available, one processor expands

the root and generates its nj + 1 children. Let us suppose that on iteration 2,

the left ,ij nodes on level 2 get expanded. Of the n t children generated n, - 1

-6-

got bounded and only one remains live. On iteration 3 the remaining live node

on level 2 (B) and the one on level 3 are expanded. The level 3 node leads to the

solution node and the algorithm terminates with l(nj) = 3.

level

2

3

* "3k-i
A, levels

~-- --- k-

FiLgre 2.: Instance for Theorem 1

When n processors are available, the root is expanded on iteration I and all

nj + 1 live nodes from level 2 get expanded on iteration 2. The result is n2 + 1

live nodes on level 3. Of these, only nz can be expanded on iteration 3. These ng

could well be the rightmost n2 nodes. And iterations 4, 5. 3k could very well

be limited to the rightmost subtree of the root. Finally in iteration 3k + 1, the

least cost answer node a is generated. Hence,](ns) = 3k + 1 and kl(ni) < 1(n2).
(I

In the above construction, all nodes have the same g() value, f'. While this

might seem extreme, property (b) above states that it is not unusual for real g-

""...

-7-

functions to have a value f* at many nodes. The example of Figure 2 does serve

to illustrate why the use of additional processors may not always be rewarding.

The use of an additional processor can lead to the development of a node N

(such as node B of Figure 2) that looks "promising" and eventually diverts all or

a significant number of the processors into its subtree. When a fewer number of

processors are used, the upper bound U at the time this "promising" node is to

get expanded might be such that U g(N) and so N is not expanded when a

fewer number of processors are available.

The proof of Theorem 1 hinges on the fact that g(N) may equal f* for many

nodes (independent of whether these nodes are least cost answer nodes or not).

If we require the use of g-functions that can have the value f* only for least cost

answer nodes, then Theorem 1 is no longer valid for all combinations of n1 and

nt1 , n1 < ng. In particular, if nI = 1 then the use of more processors never

increases the number of iterations (Theorem 2).

Dsfnition: A node N is critical iff g(N) < f*.

Theorem 2: If g(N) s f* whenever N is not a least cost answer node, then I(1) >

I(n) for n > 1.

Proof: When the number of processors is 1, only critical nodes and least cost

answer nodes can become E-nodes (as whenever an E-node is to be selected

there is at least one node N with g(N) - f* in the list of live nodes). Furthermore,

every critical node becomes an E-node by the time the branch-and-bound algo-

rithm terminates. Hence, if the number of critical nodes is m, 1(1) = m.

When n > 1 processors are available, some noncritical nodes may become

E-nodes. However, at each iteration, at least one of the E-nodes must be a criti-

cal node. So, (n) i m. Hence, 1(1) t l(n). [1

When nj s 1, a degradation in performance is possible with n2 > n1 even if

we restrict the g()s as in Theorem 2.

Theorem a Assume that g(N * f" whenever N is not a least cost answer node.

Let 1 < n < ns and k > 0. There exists a problem instance such that l(n 1) + k !

-8-

Proof: Figures 3(a) and 3(b) show two identical subtrees T. Assume that all

nodes have the same g() value and are critical. The numbers inside each node

give the iteration number in which that node becomes an E-node when n1 pro-

cessors are used (Figure 3(a)) and when nz processors are used (Figure 3(b)).
Other evaluation orders are possible. However, the ones shown in Figures 3(a)

and 3(b) will lead to a proof of this theorem.

We can construct a larger state space tree by connecting together k copies

of T (Figure 3(c)). The B node of one copy connects to the A node (root) of the

next. Each triangle in this figure represents a copy of T. The least cost answer

node is the child of the B node of the last copy of T. It is clear that for the state

space tree of Figure 3(c), (nj) = jk while l(ng) = (j + 1)k. Hence, 1(n1) + k =

I(n 2). []

The assumption that g(N) s f* when N is not a least cost answer node is not
too unrealistic as it is often possible to modify typical g()s so that they satisfy

this requirement. The example of Figure 3 has many nodes with the same g()

value and so we might wonder what would happen if we restricted the g()s so

that only least cost answer nodes can have the same g() value. This restriction

on g() is quite severe and, in practice, it is often not possible to guarantee that

the g(in use satisfies this restriction. However, despite the severity of the res-

triction one cannot guarantee that there will be no degradation of performance

using n 2 processors when nj < n 2 < 2(n, - 1). We have unfortunately been
unable to extend our result of Theorem 4 to the case when n2 I t 2(n, - 1). So, it

is quite possible that no degradation is possible when the number of processors

is (approximately) doubled and g() is restricted as above.

Theorem 4: Let nj < n2 < 2(n, -1) and let k > 0. There exists a g() and a prob-

lem instance that satisfy the following properties:

(a) g(NI) Y g(N2) unless both of N, and Nq are least cost answer nodes.

(b) I(nI) + k 1(R2).

Proof: Consider the state space tree of Figure 4(a). The number outside each

node is its g() value while the numler Inside a node gives the iteration in which

-i

A9

AA

2 *.. .2 2

nin

"22

5A

((C)

niue3 ntnc o hoe

that~~~ noei\h)@oe hnv~poesrsaeue.I aesi~poesr

iteatinones the toad vlu-node B.hen n processors are avaitlabl j roesors 4

ng<2n - 1), the iteration numbers are as given in Figure 4(b). This time 5
iterations are needed, Combining k copies of this tree and setting the g()

values in eachL copy to be different from those in other copies yields the tree of

Figure 4(c). For this tree, we see that 1(nj) + k = (n2). [

re....

(a)A

A(c

((C)

Figure 4: Instance for Theorem 4

-11-

The remaining results we shall establish in L. section are concerned with

the maximum improvement in performance one can get in going from nj to n2

processors, nj < n2. Generally, one would expect that the performance can

increase by at most n 2 / nj. This is not true for branch-and-bound. In fact,

Theorem 5 shows that using g()s that satisfy properties (a) and (b), an

unbounded improvement in performance is possible. The reason for this is

much the same as for the possibil'ity of an unbounded loss in performance. The

additional processors might enable us to improve the upper bound quickly

thereby curtailing the expansion of some of the nodes that might get expanded

without these processors.

Theorem 5: Let nj < n2 . For any k > n 2/nI, there exists a problem instance for

which l(n)/ I(n 2) t k > n 2/nI.

Proof: Simply consider the state space tree of Figure 5(a). All nodes have the

same g() value, f*. Assume that when nj processors are used, the nj nodes at

the left end of level i become E-nodes on iteration i, 2 ! i 1c 2k. Hence, I(n 1)

2k + 1. When n 2 > n, processors are used, I(n 2) = 2 (Figure 5(b)) and
l(ntl)/I(n2) > k. [

As in the case of Theorem 2, we can show that when g(N) 0 f* whenever N is

not a least cost answer node, 1(1)/I(n) t- n.

Theorem 6: Assume that g(N) io f whenever N is not a least cost answer node.
l(1)/(n)!9 n for n > 1.

Proof: From the proof of Theorem 2, we know that 1(1) = m where m is the

number of critical nodes. Since all critical nodes must become E-nodes before

the branch-and-bound algorithm can terminate, l(n) Li m/n. Hence, 1(1)/1(n) !

n.

When 1 < n1 < n 2 and g(N) is restricted as above, l(nj)/l(n2) can exceed

nt2 /n, but cannot exceed n 2 .

Theorem 7: Assume that g(N) 0 f* whenever N is not a least cost answer node.

Let 1 < nj < n 2 . The following are true:

ELL

-- -12-

2 .. 2 2k+
2 ... 2 2

ni ni

(a)
(b)

Figure 5: Instance for Theorem 5

(1) I(nj)/J(n2) 2g no.

(2) There exists a problem instance for which l(nl)/I(n2) > n2/n1.

Proof: (1) From Theorems 2 and 6, we immediately obtain:

1(n) = 1(n) '() -g.no
(-n2) 1(1) 1(n 2) ~

(2) For simplicity, we assume that k = no / nj is an integer. Consider the

state space tree of Figure 6. The g() value of all nodes other than the one

representing the least cost answer is less than f*. The number inside (outside) a

node is the iteration in which it is the E-node when nj (no) processors are used.

We see that l(n) = n 2 (k + i) + 1 and (no) n + 2. Hence,

V ,~.M,

+ 13

0

M +
E-

4$

* 0

CY +

cv)

-~g ng + 2u+

27 -a - - .

-14-

In order to determine the frequency of anomalous behavior described in the

previous section, we simulated a parallel branch-and-bound with 26 processors

for k = 0, 1, 2, 9. Two test problems were used: 0/1-Knapsack and Traveling

Salesperson. These are described below.

O/1-Kmpstick:

In this problem we are given n objects and a knapsack with capacity M. Object i

has associated with it a profit pt and a weight uh. We wish to place a subset of

the n objects into the knapsack such that the knapsack capacity is not exceeded

and the sum of the profits of the objects in the knapsack is maximum. Formally,

we wish to solve the following problem:

maximize N t

subject to 2Rt i M, zi V 10, 11.

Horowitz and Sahni [7] describe two state space trees that could be used to

solve this problem. One results from what they call the fixed tuple size formula-

tion. This is a binary tree such as the one shown in Figure 7(a) for the case n =

3. The other results from the variable tuple size formulation This is an n-ary

tree. When n = 3. the resulting tree is as in Figure 7(b). The bounding function

used is the same as the one described in [7]. Since the bounding function

requir4 that objects be ordered such that pt / u" p t+ / uk1 , 1 i < n, we

generated our test data by first generating random uits. The pis were then com-

puted from the uh s by using a random nonincreasing sequence f 1, 2. f., and

the equation pi = J'f u. We generated 100 instances with n = 50 and 60

instances with n = 100. These 160 instances were solved using the binary state

space tree described above. (We also tried the n-ary state space tree but found

that it would take several weeks of computer time to complete our simulation.

The reason it will take so much time is that when n-ary state space trees are

used a great number of nodes will be generated and the queue of live nodes will

exceed the capacity of main memory and has to be moved to the secondary

storage. In our program, it is time consumming to maintain a queue of live

- 15-

12 3

2 3 3

(a) binary tree (b) 3-ary tree

PRgure 7

nodes that must be partly stored in secondary storage.)

Table 1 gives the average values for I(p), 1(1)/l(p) and I(p)/I(2p). From

Table 1. we see that when n = 50,](1)/I(p) is significantly less than p for p > 2.

The observed improvement in performance is not as high as one might expect.

Similarly, the ratio J(p)/I(2p) drops rapidly to I and is acceptable only for p = 1

and 2 (see also Figure 8). In none of the 100 instances tried for n = 50 did we

observe anomalous behavior. Le., it was never the case that l(p) < i(2p) or that

(p) > 21(2p).

When n = 100. the ratio 1(1)/i(p) is significantly less than p for p > 8 (see

also Figure 9). Of the 60 instances run, 6 (or 10%) exhibited anomalous behavior.

For all 6 of these there was at least one p for which (p) > 21(2p). There was only

one case where l(p) < I(Op). The values of I(p), 1(1)/l(p), and l(p)/l(2p) for these

7x

-16-

n 50 n 1 00

p I(p) (1 .((p) /(1) /2)

1 363 1.00 1.6 2814 1.0o 2.19
2 188 1.87 1.68 1351 2.19 1.85
4 106 3.17 1.42 754 3.69 1.75
8 70 4.66 1.22 402 6.47 1.60

16 56 5.97 1.09 232 10.58 1.35
32 51 6.84 1.03 162 14.94 1.22
64 50 7.23 1.00 126 19.35 1.14

128 50 7.26 1.00 108 23.68 1.05
256 50 7.26 1.00 102 25.84 1.02
512 50 7.26 1.00 100 27.06 1.01

1024 50 7.26 100 27.68

Table 1: Experimental results (knapsack)

six instances is given in Table 2. It is striking to note the instance for which

](1)/1(2) = 14.6 and I(2)/I(4) = 0. 15.

The 7r velin Salesperson Problem:

Here we are given an n vertex undirected complete graph. Each edge is
assigned a weight. A tour is a cycle that includes every vertex (i.e., it is a Hamil-

tonian cycle). The cost of a tour is the sum of the weights of the edges on the

tour. We wish to find a tour of minimum cost.

The branch-and-bound strategy that we used is a simplified version of the

one proposed by Held and Karp [6]. Vertex 1 is chosen as the start vertex.

There are n - 1 possibilities for the next vertex and n - 2 for the preceding vertex

(assume n > 2). This leads to (n - 1)(n - 2) sequences of 3 vertices each. Half of

these may be discarded as they are symmetric to other sequences. Any

sequence with an edge having infinite weight may also be discarded. Paths are

expanded one vertex at a time using the set of vertices adjacent to the end of

the path. A lower bound for the path (, I i t 4*) is obtained by computing the

cost of the minimum spanning tree for 11, 2. ni - |I, to 61 and adding an

edge from each of tj, and 1* to this spanning tree in such a way that these edges

connect to the two nearest vertices in the spanning tree.

A * ..

M-17

8

6

2

1 2 4& 8 16 32 64 128 256 512

ps number of processors

0 P
1 2 4& 8 16 32 64e 128 256 512

ps number of processors

Figure-8: Knapsack with 50 objects

In our experiment with the traveling salesperson problem we generated 45
inhtances each havUng 20 vertices. The weights were assigned randomly. How-
ever, each edge had a finte weight with probability 0.35. Use of a much higher
probability results in instances that take years of computer time to solve by the

30

20

10

1 2 '4 8 16 32 64 128 256 512 1024

p, number of processors

2

1 2 4 8 16 32 64 128 256 512

p, number of processors

Figure 9: Knapsack with 100 objects

branch-and-bound method.

p I - 19-

1 2131 1.00 1.79
2 1191 1.79 3.23
4 533 4.00 1.49
a 357 5.97 2.01

16 178 11.97 1.09

1 1009 1.00 2.19
2 481 2.19 1.57

1 21593 1.00 1.99
8 3060 7.06 2.04

16 1503 14.37 1.81

1 4119 1.00 2.03
2 2034 2.03 2.06
4 987 4.17 1.84

1 5251 1.00 3.04
2 1725 3.04 1.90
4 909 5.78 1.41
a 646 8.13 1.74

18 372 14.12 2.01
32 185 28.38 1.42

1 7510 1.00 14.64
2 513 14.64 0.15
4 3346 2.24 2.85
8 1174 6.40 2.23

16 527 14.25 0.95
32 52 13.61 1.71

Table 2: Data exhibiting anomalous behavior

Those 45 instances were solved using p = 2, 0 ! k 9 9 processors. The
average values of 1(p), 1(1)/I(p), and l(p)/1(2p) are tabulated in Table 3. As can
be seen. for p!S 32 the average value of 1(1)/l(p) is quite close to p and the aver-
age value of l(p)/l(2p) is quite close to 2 (see also Figure 10). No anomalies were
observed for any of these 45 instances.

-7 7 A

-20-

p I(p) (1) ,(.)

1 3974 1.000 1.996
2 1989 1.996 1.990
4 996 3.973 1.976
8 500 7.849 1.943

16 252 15.256 1.873
32 129 28.685 1.753
64 68 51.126 1.609

128 39 85.378 1.417
256 25 129.411 1.252
512 19 177.459

Table 3L Experimental results (traveling salesperson)

4. Concluions

We have demonstrated the existence of anomalous behavior in parallel branch-

and-bound. Our experimental results indicate that such anomalous behavior will

be rarely witnessed in practice. Furthermore, there is little advantage to

expanding more than k nodes in parallel. k will in general depend on both the

problem and the problem size being solved. If we require I(p)/1(2p) to be at

least 1.66, then for the knacksack problem with n = 50, k is between 4 and 8

whereas with n =100 it is between 8 and 16 (based on our experimental results).

For the traveling salesperson problem with 20 vertices k is between 8 and 16. If

p is larger than k, then more effective use of the processors is made when they

are divided into k groups each of size approximately p/k. Each group of proces-

sors is used to expand a single E-node in parallel. If s is the speedup obtained by

expanding an E-node using q processors, then allocating q processors to each E-

node and expanding only p/q E-nodes in parallel is preferable to expanding p E-

nodes in parallel provided that sl(1)/1(p/q) > 1(1)/1(p).

21

128

64

32

16

8

I FT

2

1 2 4 8 16 32 64 128 256 512

p, number of processors

2

1 2 4 8 1632 64128 256

p, number of processors

FigureJQ' Traveling Salesperson

-22-

1. N. Agin. "Optimum seeking with branch-and bound," Manage. Sci., Vol. 13.
pp. B17B-B185.

2. B. Desal. 'The BPU. a staged parallel processing system to solve the zero-

one problem," Pr'oceedings of ICS 78. 1978. pp. 802-817.

S. B. Desal. "A parallel microproc easing system," PRoc. ediwgs of the 197M

Interniational Con~ference on Parllel Procesinrg, 1979.

4. 0. El-Dessouki and W. Hueri. "Distributed enumeration on network comput-

ers." IEEE 7Vwaactions on Cbmpimtew's, C-29. 1980. pp. 818-825.

5. J. Harris and D. Smith, "Hierarchical multiprocessor organizations."

Proceedings of the 4th Annual S9ymposum an Cbrrputer Architecture, 1977,

pp. 41-48.

S. Md. Held and R Karp. 'TIhe traveling salesman problem and minimum span-

ning trees: part lI." Math Frog.. 1. pp. 6-25. 1971.

7. E. Horowitz and S. Sahni, FirndamientaLs of £bnmter Algorithms. Computer

Science Press, Inc., 1978.

8. E. Ignall and L.Schrage, "Application of the branch-and-bound technique to

some flow-shop scheduling problems," COper. Res.. 13 pp. 400-412, 1965.

9. W. Kohler and K. Steiglitz, "Enumerative and iterative computational

approaches." in E. Coffman (ed.) Corraputer and Job-Shop Scheding

Theory. John Wiley & Sons. Inc., New York, 1976. pp. 229-287.

10. E. L.awer and D. Wood. "Branch-and bound methods: a survey." Cper. Res..
14. pp. 699-719. 1966.

11. L. Mitten, "Branch-and-bound methods: general formulation and proper-

ties." £)er. Res., 18. pp. 24-34. 1970.

12. N. Nilsson, Problem Sabring Methods in M'tiflcWa Intelligence, McGraw-Hill,

New Yorkc, 197 1.

13. B. Wah and Y. Ma, "NANIP - a parallel computer system for implementing

branch-and-bound algorithm," Proceedings of The Sth Ayuinua S~rmpostum

on Covmter Architecture. 1982. pp. 239-262.

I

