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Anomalous diffusion and exit time distribution of particle tracers
in plasma turbulence model
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To explore the character of transport in a plasma turbulence model with avalanche transport, the
motion of tracer particles has been followed. Both the time evolution of the moments of the
distribution function of the tracer particle radial positions,^ur (t)2r (0)un&, and their finite scale
Lyapunov number are used to determine the anomalous diffusion exponent,n. The numerical results
show that the transport mechanism is superdiffusive with an exponentn close to 0.8860.07. The
distribution of the exit times of particles trapped into stochastic jets is also determined. These
particles have the lowest separation rate at the low resonant surfaces. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1416180#
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I. INTRODUCTION

Some of the phenomena observed in plasmas confi
by magnetic fields suggest that a broad range of space
time scales play an essential role in the dynamics of
plasma. In particular, transport of particles and energy
duced by turbulence have features that are not quite
plained by local diffusive transport models. Two of the
features are the non-gyroBohm scaling of the ene
confinement1,2 and the anomalous plasma response meas
in perturbative experiments.3,4 One of the possible
explanations5 is that high-temperature magnetically confin
plasmas are close to marginal stability and their dynam
are governed by self-organized criticality~SOC!.6

The concept of SOC brings together the ideas of s
organization of nonlinear dynamical systems with the oft
observed near-critical behavior of many natural phenome7

These phenomena exhibit self-similarities over exten
ranges of spatial and temporal scales. In such system
feature of the dynamics is the existence of transport even
all sizes that we usually denote as avalanches.

Results of the analysis of fluctuation data from seve
experiments, including tokamaks, stellarators, and reve
field pinch, showed the self-similar character of the elect
static fluctuations with a Hurst exponent,8 H, in the range
0.6–0.74.9 It is well known that for a time series with 1
.H.0.5, the data has long-range time correlations a
when 0.5.H.0, the series has long-range anticorrelatio
The absence of time correlations~i.e., random! gives H
50.5. Therefore the plasma fluctuations show the prese
of long-range time correlations. There is also evidence
radial correlations over distances longer than the correla
length of the fluctuations10 and large structures have bee
directly observed in the plasma core temperat
fluctuations.11 Such a character of the plasma fluctuations
consistent with plasma transport by avalanches.

Three-dimensional~3-D! calculations of plasma turbu
5091070-664X/2001/8(12)/5096/8/$18.00
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lence based on different dynamical mechanisms have sh
some of the characteristic SOC behavior12,13 and the pres-
ence of radially elongated structures.14 Some of the macro-
scopic results from these models when applied to subcrit
conditions are consistent with results from simple cellu
automata calculations based on the dynamics of
sandpile.5,15,16 In this simple model, transport processes a
dominated by anomalous diffusion.17

To explore the character of the underlying transport
plasma turbulence, we have considered a 3-D press
gradient-driven turbulence model12 that has already bee
used to identify the presence of avalanche transport. In
model, we have followed the motion of tracer particles. S
eral moments,̂ur (t)2r (0)un&, of the distribution of the par-
ticle radial locations have been determined and also t
dependence on the elapsed time,^ur (t)2r (0)un&5D0tnn(n).
Because of the finite size of the system, we have also ev
ated the finite scale Lyapunov number as an alternative te
nique to determinen. Both methods agree in the value ofn.
The determination of the exponentn is important for con-
structing plasma transport models that incorporate the m
plicity of time scales involved in transport.

The calculated transport exponents may be explaine
terms of fractional kinetics of the tracer particles,18,19 and
they can be related to the decay exponents of the trap
time distributions of these particles.

The rest of this paper is organized as follows. In Sec.
the turbulence model used in the present calculations is
scribed. The results of the tracer particle transport are p
sented in Sec. III. In Sec. IV, we provide an interpretation
the numerical results in terms of fractional kinetics. Final
the conclusions of this paper are given in Sec. V.

II. TURBULENCE MODEL

We start with a cylindrical plasma confined by a ma
netic field with average bad curvature. This plasma can
6 © 2001 American Institute of Physics
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unstable to resistive interchange modes. The dissipa
terms control the instability threshold and once they are
cluded, the model is a critical gradient model. A typical e
ample of this type of plasma is the outer region of a stel
ator with magnetic shear. In the past, the resistive press
gradient-driven turbulence has been used to describe t
plasmas in a supercritical state. The same basic model
been used in Ref. 12 to study a subcritical state. This mo
was described in detail in Ref. 12. Here, we just summa
the basic equations. The fluctuation equations are as follo
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Here,p andF are the pressure and electrostatic potential,
tildes indicate fluctuating quantities~in time and space!, and
the angular brackets,^ &, indicate flux surface averaging, th
is, the poloidal and toroidal angular average. The cylin
has a radiusa and length 2pR0 . The magnetic field along
the cylinder isB0 , the ion mass ismi , the averaged radius o
curvature of the magnetic field lines isr c , and the resistivity
is h. The total flow velocity is expressed in terms of a
averaged poloidal velocity plus a fluctuating compon
given in terms of a stream functionF̃/B0 :

V5^Vu&û1~“F̃3 ẑ!/B0 , ~3!

where^Vu& is the poloidal flow velocity, which is a function
only of t and r, and û and ẑ are unit vectors in the poloida
and toroidal directions, respectively. The velocity stre
functionF̃/B0 is trivially related to the electrostatic potenti
2F̃. In both Eqs.~1! and~2! there are dissipative terms wit
characteristic coefficientsm ~the collisional viscosity! andx'

~the collisional cross-field transport!, respectively. A parallel
dissipation term is also included in the pressure equat
This term can be interpreted as a parallel thermal diffusiv

The instability drive is the flux surface averaged press
gradient,]^p&/]r , which is a function ofr and t. The evo-
lution equation of the flux surface averaged pressure is

]^p&
]t

1
1

r

]

]r
r ^Ṽr p̃&5S01S11D

1

r

]

]r S r
]^p&
]r D . ~4!

It contains a time-independent source term,S0 , which is
only a function ofr. This source of particles and heat is du
for instance, to neutral beam heating and fueling. In t
case,S0 is essentially determined by the beam deposit
profile. In the present calculations, we use a parabolic p
file, S05S̄0@12(r /a)2#. Even the best beams have time a
radial variations in the amount of heating deposited; this
represented by an added noise term,S1 , which we choose to
be random in radius and time. Implicitly,S1 reflects varia-
tions on time scales slower than fluctuation time scales
the order of 400thp, hence its poloidal isotropy. Here,thp is
ve
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the poloidal Alfvén time. The surface averaged quantities a
not static, but they vary on time scales long compared to
fluctuations. The collisional diffusion coefficient,D, is taken
to be different from the one in the fluctuation equation, E
~2!.

The main transport mechanism that we study is the
bulent transport through the second term on the left-h
side of Eq.~4!. However, the collisional diffusion term on
the right-hand side is negligibly small for the calculatio
presented in this paper.

In a subcritical state, to reach a self-organized st
~when such a state exists!, it is necessary to have noise in th
system. In some simple dynamical models, like the sandp
the noise is external noise and the SOC state is reache
taking the limit of small noise. In the model presented he
there are two types of noise.

~1! To start the 3-D nonlinear calculations, a low level
background fluctuations is initialized. These are t
seeds for the instabilities to grow. We choose a rand
distribution of amplitudes and phases with an averag
fluctuation level below 1025. In our experience for fluc-
tuation levels this low, the results in the nonlinear regim
are not sensitive to these initial conditions.

~2! The second source of noise is the external press
sourceS1 in Eq. ~4!. The external noise is not needed
reach a supercritical state. However, it is essential
exploring the subcritical regime.

III. STEADY STATE TURBULENCE WITH PARTICLE
TRACERS

To investigate the transport dynamics close to margi
stability, the model must have a critical pressure gradi
below which resistive interchange modes are stable. Thi
achieved by having finite values of the dissipative terms
the fluctuation equations. These dissipative terms also c
trol the width of the wave number spectrum. To be able
carry out these 3-D nonlinear calculations, we have to lim
this width. Here, we takem50.2a2/tR and x'50.025a2/
tR , wheretR[a2m0 /h is the resistive time anda the minor
radius. The resistivity is such that the Lundquist number
S5105 for all these calculations, andb0/2e250.018. Here,
b0 is the value ofb at the magnetic axis ande5a/R0 .

To avoid problems with the boundaries, only modes w
resonant surfaces in the range 0.2,r /a,0.8 have been in-
cluded in the calculation. Outside this region, the collision
diffusivity D is increased by a factor of 4 to compensate
the lack of anomalous transport and to avoid distortion of
profiles. We include 363 Fourier components to represent
poloidal and toroidal angle dependence for each fluctua
component. The radial grid resolution isDr 57.531024a.
The nonlinear evolution has been carried out with theKITE

code.20

To study the transport properties of this turbulen
model, a steady state must be reached. A particle sourc
included to maintain the averaged profile. In general, ho
ever, this source is noisy. This is represented by the so
S1 in Eq. ~4!. This noise is responsible for the dynamics
steady state. The noise is taken into account in the calc
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tion as follows. At a fixed number of time steps~typically
between 100 and 400!, a small averaged pressure perturb
tion is added with a 50% probability. This addition of pre
sure corresponds to times of the order of 50thp to 200thp.
This perturbation is radially localized. It has a Gaussian fo
with a width of W50.01a; the amplitude is 0.05 times th
local value of the normalized~to its r 50 value! equilibrium
pressure. The radial location of the averaged pressure pe
bation is randomly chosen in the range 0,r /a,0.7. A very
low random level of non-axisymmetric perturbations is a
initialized ~about 0.001% fluctuations! as a seed for the in
stabilities. We consider first the case without averaged po
dal velocity.

As the average pressure perturbations are added,
trigger local instabilities in the plasma at the correspond
resonance surface. The instability locally flattens the pres
profile and causes a change of gradient in the nearby
faces, which may become unstable, and so continue the
cess. Eventually, the excess pressure deposited at the c
transported to the edge of the plasma. This process ha
characteristic properties of an avalanche. It is a true a
lanche in the sense that propagation is both up and down
gradient. The downward propagation is dominant. A m
detailed description of the dynamics of this model is given
Ref. 12.

We use pseudoparticles as tracers because of the
requirements of the turbulence calculations. These tracer
solutions of the equation of motion:

dr

dt
5V~r ,t !. ~5!

Here, the velocity is theE3B velocity because no diamag
netic effects are included in this model, and it is given
terms of the stream function

V~r ,t !5
1

B2 EÃB5
1

B2 “F~r ,t !ÃB. ~6!

Because our model is electrostatic, all information on tur
lence evolution is throughF.

We use the electrostatic approximation in the dynam
evolution because of the simplification of the calculatio
Since we have to carry out these calculations in a time ra
that covers from the fluctuation time scale to transport sca
3-D turbulence calculations became nearly prohibitive wh
the electromagnetic terms are included. For resistive in
change turbulence at lowb values, the electrostatic approx
mation is quite a reasonable approximation.

The tracers are initialized at random poloidal and tor
dal positions around a given radius and with random ini
velocities. Because in Eq.~6! the velocity component along
the magnetic field is zero, the tracers move at a cons
component of the velocity in this direction. This compone
is the initial one.

To investigate the dynamics of these tracer particles,
have followed their orbits. In their evolution, the tracer pa
ticles are either trapped in eddies for long times, or they
jump over several sets of eddies in a single flight~Fig. 1!.
Therefore, both characteristic features of the anomalous
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fusion, particle trapping and particle flights, are present
this model. Trapping times for tracer particles can be cal
lated, as it is described later. However, from a quantitat
point of view, there is no simple way of defining a flight.

The finite size of the system introduces practical pro
lems in evaluating the dynamics of the tracers. These pr
lems are particularly acute when there are such dispa
behaviors on particle trajectories as illustrated in Fig. 1.
this situation, some particles stay trapped for very long tim
while others walk out of the system in very short times.
commonly used remedy for dealing with the particles leav
the system is to put back into the plasma these tracer
ticles and keep following their orbits as if their radial pos
tions are unbounded. This technique allows us to follow
bunch of tracer particles for as long as we desire, bu
causes some distortions in the particle properties that
have to avoid, as will be discussed in the following.

In following tracer orbits, we have calculated the e
semble average of several powers of the radial displacem
as a function of time. As discussed in Ref. 17, because of
finite size of the system, it is useful to evaluate differe
moments of the distribution function of the radial positio
of the tracer particle in order to extract the proper similar
exponent. That is, we calculate

^@r ~ t !2r ~0!#n&5D0tnn~n!, ~7!

wherer (t)[ur (t)u. We evaluate Eq.~7! for different values
of n, greater and smaller than 1. Here, the angular brac
indicate ensemble averaged over the particle tracers. F
Eq. ~7! we can, in principle, determine whether the diffusio
is normal, n50.5, or anomalous,nÞ0.5. Of course, if the
probability distribution function of the particle positions
different times is not self-similar, the exponentn can be a
function ofn. Consideration of several moments of the pro
ability function allows us to determine its self-similarit
properties.

FIG. 1. Example of two tracer particle orbits having extreme behaviors. O
is trapped in an eddy, while the other is doing several flights.



w
n
is

de
y

-
r

ob

e

e
er
en
nl
o
is

n

m
e
y
-

se
cl
e

th.
icle
pe
the
lose

of

e
port
r
not

s of

-
te
t is
.
ents
w
en
y
per
ion
is

ed
o-

s

5099Phys. Plasmas, Vol. 8, No. 12, December 2001 Anomalous diffusion and exit time distribution . . .
In these studies, we have used 2000 tracer particles
random initial conditions around a given radial positio
These particles are followed for two resistive times, that
43105 time steps. Over a time interval of about a deca
the moments of the tracer particle positions can be fitted b
power law. An example of the evaluatedn51 and n52
moments is shown in Fig. 2. A power fit of the formDtnn to
the larget(t.0.2tR) power scaling region of these two mo
ments givesn50.91 andn50.84, respectively. This is a clea
indication that the transport is superdiffusive.

As discussed in Ref. 17 for the sandpile model, the pr
ability distribution function~PDF! of the tracer particle po-
sitions at different times,P(r ,t), has different similarity
scaling for larger and smallr. This means that a simpl
scaling of the probability distribution of the formP(r ,t)
5t2nF(r /tn) is not possible for all scales with the sam
value ofn. The self-similarity scaling is broken by the trac
particles that are put back into the plasma as a consequ
of the finite size of the system. This symmetry breaking o
affects the high-r region of the distribution. Therefore, t
better determinen, we calculate several moments of the d
tribution function as shown in Eq.~7! and determinen(n).
In Fig. 3, there is an example of the calculatedn(n). Figure
3 shows that there are two linear scaling regions forn(n),
the low-n and high-n regions. They provide information o
two regions of the PDF, for lowr and highr, respectively.
For highn, n(n) is smaller thann(n) for low n. For largen,
n(n) tends to be 0.5. For a particle moving in the plas
with positionr ,a, the flight length may be of the same siz
as the particle position. Therefore, this particle does not
know that there is a limit in the size of a flight. When sum
ming over flights, the distribution of sums is possibly clo
to a stable Levy distribution. However, when a tracer parti
has moved out of the plasma and put back in several tim
its effective radial positionr is such thatr @a. Such a par-

FIG. 2. Then51 andn52 moments of the tracer particle positions start
near r /a50.3. A power fit to the asymptotic time scaling of the two m
ments givesn50.91 andn50.84, respectively.
ith
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ticle knows that the flights are all shorter thana. They have
a Levy-type distribution that is truncated at a finite leng
When partial sums of flights are done to calculate the part
motion, the particle positions no longer have a Levy-ty
distribution. Because of the truncation, the variance of
flights is finite, and the successive sums are distributed c
to a Gaussian.21 Therefore, then@1 moments that sample
theser .L particle positions should scale with an index
n'0.5. Note that then.1 regime is only the result of the
way we treat particles when they reach boundary. For lown,
the value ofn is larger than 0.5. This is the relevant regim
for the transport calculation because it describes the trans
process within the minor radius of the plasma, that is for
,a. Because of the finite size of the system, we are
dealing with the asymptotict→` limit. We are considering
time of the order of a confinement time for the low-n regime
and several confinement times for the large-n regime. That is
the reason for the apparent discrepancy with the result
Refs. 22 and 23.

The values ofn(n) for all n’s considered are plotted in
Fig. 3. For n,2, the averaged value isn(n)50.81, and
n(n)50.49 forn.2.

The separation ofn(n) in two regions allows us to cal
culaten correcting for the problems introduced by the fini
size of the system. However, it is never totally clear wha
the proper time range for evaluatingn. As can be seen in Fig
2, there are at least three regions in time where the mom
defined in Eq.~8! can be fitted by a power law. We also kno
from the previous discussion, that if the calculation is tak
further in time a nonphysical diffusive region will ultimatel
appear. Is the last of the three regions in Fig. 2 the pro
asymptotic region for this determination? This is a quest
difficult to answer with the available information. For th
reason, we have applied an alternative approach24 to deter-
mine the exponentn.

FIG. 3. Then(n) for several moments of the distribution. The plot show
two asymptotic regions, the low-n and high-n regions. They provide infor-
mation on two regions of the PDF, for low-r and high-r, respectively.
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When we determine the positions of the tracer partic
at a given time, some of the particles can be quite far aw
from the bulk of the bunch, and some have even walked
of the system all together. Therefore, it makes sense
finite size system to determine the time for a group of p
ticles to reach a given distance. In this way, one has a be
control of the particle positions. This is the essence of
method proposed in Ref. 24. Following this method, we
fine an initial mean square separation between a set oN
particles as

d~0!25
1

N (
i 51

N

ur i~0!22^r i~0!&2u, ~8!

where^r i(0)& is the mean radial position of the tracer pa
ticle i,

^r i~0!&5
1

N (
i 51

N

r i~0!. ~9!

We follow M bunches ofN particles and determine fo
each bunch the time,Tj (1), taken to multiply their initial
mean square separation by a given factorr; that is, to have a
mean square separationd~1!5rd~0!. The mean time to in-
crease by a factor ofr the mean separation between partic
is then

^Tj~1!&5
1

M (
j 51

M

Tj~1!. ~10!

This experiment can be repeated by successive increases
factor of r, the mean square separation between partic
After m iterations, the particles have a mean square sep
tion of d(m)5rmd(0), and theaverage time taken to reac
this state iŝ Tj (m)&. This allows us to define a finite sca
Lyapunov exponent:

l@d~m!#[
ln~r!

^Tj~m!&
. ~11!

Note that ford→0, Eq.~12! gives the Lyapunov exponent. I
Fig. 4, and for the same plasma parameters and initial tr
particle positions as the calculation of Fig. 2, we have plot
the values ofl as a function ofd. As shown in Fig. 4,l as a
function of d has three very well defined regions. At ve
low values ofd, l is independent ofd. In this region,l is the
Lyapunov exponent. The second region shows a power
off,24

l~d!}d21/n. ~12!

If the probability distribution function of the tracer partic
positions is self-similar and as a consequencen is indepen-
dent ofn, then from Eq.~7!, we haved}Tn. From the defi-
nition of l, Eq. ~11!, we can see that the exponentn in Eq.
~12! is the samen as in Eq.~7!; n is the scaling exponent tha
we are seeking. In the third region,l falls off very fast. This
last region corresponds to particles walking out of the s
tem. In the present calculations, we have taken 15 bunche
200 particles. A fit by a power law of the second region giv
an exponentn50.8760.03 for particles starting aroundr
s
y

ut
a

r-
er
e
-

s
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s.
ra-
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d
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-
of

s

50.3a, and n50.8960.12 for particles starting aroundr
50.5a. These values are not inconsistent with the value
termined by the first methodn50.81.

In the case of supercritical transport, the noise sourceS1

can be removed. We repeated the calculation of the par
tracers in this situation, and the plot ofl~d! is shown in Fig.
5. A fit to the second algebraic region givesn50.8960.14;
this value is very close to the ones obtained for subcriti
transport.

FIG. 4. For the same plasma parameters and initial tracer particle posi
as the calculation of Fig. 2, we have plotted the values of the nonlin
Lyapunov numberl as a function ofd for two radial position of the initial
tracers.

FIG. 5. In the case of supercritical transport, the plot ofl~d! vs d gives an
exponentn50.8960.14; this value is very close to the ones obtained
subcritical transport.



om
th
ta
e
is

-
e
r
f

at
e
es
T
th
th

on

he
tu
th
ra

e
ru
c
a

th
re
ns

a
e
a
s
te

lso

he
et
Fi
o

ns
th
o

h
ow
s
tio
th

on
n

b

ma
can
of

rent

ith
to-

the

ose
in to
nal
ional

rge
nent

5101Phys. Plasmas, Vol. 8, No. 12, December 2001 Anomalous diffusion and exit time distribution . . .
We can study the transport properties of this system fr
another perspective. Let us consider a particle trajectory
we call the basic trajectory, and a second trajectory that s
simultaneously with the first one. The initial condition for th
second trajectory differs from the basic one by a small d
tanced0 . When the distanced(t) between the two trajecto
ries reaches a given value,d f , we measure and store the tim
T, suchd(T)5d f . At this point, we start a new trajectory fo
the same basic trajectory, and we repeat the process. A
many iterations, we accumulate a sequence of times th
takes the trajectories to getd f apart. We also accumulate th
information on the length along the orbit until the particl
separate and on the radial position where they separate.
approach is similar to the usual method of determining
Lyapunov number, but for a finite size separation. In
following results, we have usedd050.001a, the lowest pos-
sible value, because of the limitation of the radial resoluti
andd f50.003a.

By looking at the PDF of the radial positions where t
particles separate, we find that it has considerable struc
This structure is directly related to the rational values of
safetyq profile. There are fewer events of particles sepa
ing at the radial position of a low-n rational surface. At these
positions the turbulent eddies are centered and within th
eddies the particles are trapped for long times. These st
tures are the stochastic jets defined in Ref. 25, and they
be visualized as toroidal structures where the tracers
trapped. While trapped in poloidal and radial directions,
tracers along the toroidal direction within these structu
travel at a relatively constant velocity. In the radial regio
between eddies the trajectories become stochastic and
Lyapunov number is large. In these regions, there are m
particle separation events. We can see that in Fig. 6, wh
we have plotted PDF of the radial positions, where the p
ticles separate. We have used a requirement of 100 event
bin to minimize noise; therefore, only structures associa
with low rational surfaces remain. In Fig. 6, we have a
plotted the positions of these low rational surfaces.

A way of measuring the particle trapping times is by t
time that the particles stay together in the stochastic j
This is not necessarily an exact definition, but as seen in
6, it gives a good description of trapping times. The PDF
the trapping times provides additional information on tra
port properties of the tracer particles. As shown in Fig. 7,
PDF of the trapping times has a power tail for large values
the trapping times with a decay exponent21.8360.22. If the
system were unlimited, that would imply a divergence of t
second moment of the PDF. The implications of this sl
falloff will be explored in Sec. IV. As the tracer particle
travel together, the length along the orbit before separa
can also be calculated. As shown in Fig. 8, the PDF of
length along the trajectory decays as the22.0 power for all
values of the length. This may reflect that particle moti
along the orbit is nearly uniform with the toroidal motio
being the dominant one.

IV. FRACTIONAL KINETICS OF PARTICLE TRACERS

The information obtained from the tracer particles can
interpreted using the concept of fractional kinetics.18,19 As
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mentioned in Sec. I, large-scale fluctuations in the plas
take place and influence the tracer particle transport. We
identify the large-scale fluctuations with an appearance
spontaneous bursts in time–space dynamics or with cohe
time–space structures~like ‘‘avalanches’’!. Tracers can be
trapped in the vicinity of coherent structures and travel w
the structure. This type of particle dynamics was called s
chastic jets in Ref. 25. In our calculations, Fig. 6 shows

FIG. 6. PDF of the radial positions where two particles that started cl
together separate. We have used a requirement of 100 events per b
minimize noise; therefore, only the structure associated with low ratio
surfaces remains. We have also plotted the positions of these low rat
surfaces.

FIG. 7. The PDF of the trapping times of the particle tracers. For the la
values of the trapping times, the PDF decays as a power with an expo
g521.8360.22.
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radial distribution of those jets. Particles in a jet are travel
together with other particles of the same jet. They ha
power law statistics of the particle’s escape from the
Following this pattern, one can split the distribution functi
of tracersP(x,t) into two parts, a normalPn and singular
Ps . It is the singular part of the distribution,Ps(x,t), that
describes long-scale fluctuations and that is responsible
the anomalous diffusion. In one-dimensional kineti
Ps(x,t) satisfies the fractional kinetic equation:

]bPs~x,t !

]tb 5Dan

]aPs~x,t !

]uxua
, ~13!

with an appropriate exponent,~b,a!, that can be fractiona
and with an anomalous diffusion coefficient,Dan. Although
the second and higher moments ofx are infinite forb,1 and
a,2, space–time truncated moments are finite. Only t
are considered in the numerical calculations and in the a
lytical interpretation of the results. Thus,

^uxu&;tb/a, ~14!

with n5b/a. The ratio,b/a, can be expressed through th
scaling parameters,lx and l t , that characterize the reno
malization properties of particle trajectories in space a
time, respectively. Namely,19

n5 ln lx / ln l t ~lxl t.1!, ~15!

which follows directly from Eq.~13! after the rescaling of
the time and space coordinates

x→lxx, t→l tt. ~16!

The most difficult part of the diagnostics of particle dyna
ics is obtaining the parameterslx , l t . One possibility is the
calculation of the escape time statistics for particles in s
chastic jets because only these particles are responsibl
the long-term asymptotics of the escape time distributi

FIG. 8. The PDF of the length along the trajectory of the particle trac
For the large values of the length, the PDF decays as a power wit
exponent of22.08. This may reflect that the toroidal velocity, which is
constant random number, dominates the particle motion along the orbi
g
e
t.

or
,

y
a-

d

-

-
for
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Following Ref. 26, consider a domainA of the escaping par-
ticles in phase space with a phase volumeG05G(A). As-
sume that the particle dynamics are Hamiltonian althou
the plasma flow is not. Hamiltonian dynamics preserve ph
volume GA during the time evolution, but the envelope
coarse-grained volumeG t grows with time. The escaped pa
ticles fromA are dispersed in the volumeG t after timet, and
the effective number of particles that occupyG t is

nt;tG t . ~17!

The corresponding integrated probability of a particle to
cape fromA during t is

Pint~ t !;t0G0 /tG t , ~18!

wheret0 is a characteristic time.
In the two-dimensional phase space (x,px), we can es-

timate

G t;xpx;x2/t. ~19!

Here,px is the component of the moment of the tracer p
ticle in thex direction. We can now estimate the escape pr
ability as

Pesc~ t !5
d

dt
Pint~ t !;t0G0 /tx2;t0G0 /tg, ~20!

with g5112n. In Eq. ~20!, we have introduced the particl
escape probability densityPesc(t) with a corresponding char
acteristic decay exponentg.

All of these estimates were for one-dimensional traje
tories. Real dynamics of tracers in the calculations are 3
and all trajectories, determined as jets, are elongated in
toroidal direction. Numerical calculations give a diffusiv
dispersion of tracers in the radial direction, characterized
an exponentn>n~1!;0.88. We also calculated the trappin
time probability,P(t), ~see Fig. 7! that scales as

P~ t !;1/tg l, ~21!

with g l;1.83. It is easy to find a connection betweeng l and
g. Let us consider a tracer that travels inside a jet a
‘‘flight.’’ Assuming that the distribution of the flights along
the tube of the lengthl is approximately uniform and thatl
;constt, we conclude that

P~ t !; lPesc~ t !;tPesc~ t !. ~22!

This result implies thatg l5g2152n. Therefore,g51.76
60.14, consistent with the numerical resultg51.8360.22
from Fig. 7.

V. DISCUSSION AND CONCLUSIONS

We have investigated the transport properties of a 3
pressure-gradient-driven turbulence. This system was cha
terized by subcritical transport by avalanches when a no
source was introduced in the equations. Similar propertie
avalanche transport are found in the supercritical regim
The use of particle tracers in this system has allowed u
characterize, through different diagnostics, the transp
properties of the tracers in such a system.
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The main results are that the transport is superdiffus
with a transport exponent ofn50.8860.07. There is no
change of the exponent, within the error bars, in going fr
subcritical to supercritical transport. Several of the meth
used in calculating this exponent lead to the same result

The transport picture coming from these calculatio
agrees with the one put forward in Ref. 5. Particles
trapped in eddies at the resonant surfaces; they move as
along the torus. When the particles reach near the boun
of the eddy, where the trajectories become stochastic,
travel fast radially. As they do that, they can travel acro
several eddies in a single flight. This combination of trapp
and flights is consistent with the simple picture given by
sandpile model of Ref. 5.

The transport dynamics of the tracer particles may
interpreted with fractional kinetics. This interpretation pr
vides a consistent picture of the trapping time distributio
and the radial anomalous diffusion exponent.
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APPENDIX: FRACTIONAL CALCULUS

Here, we give a short summary of fractional calculu
Necessary elements of the fractional calculus can be foun
Refs. 27 and 28. Let us define a Fourier transform ofg(x) as

g~x!→
F

g~q!5E
2`

`

g~x!eiqx dx. ~A1!

The simplest way is to define fractional derivative of order

da

dxa g~x!→
F

~2q!ag~q!,

~A2!
da

d~2x!a g~x!→
F

~ iq !ag~q!.

A symmetrized fractional derivative can be defined as

da

duxua
g~x!→

F

2uquag~q!, ~A3!

or in an explicit form

da

duxua
g~x!52

1

2 cos~pa/2! F da

dxa 1
da

d~2x!Gg~x! ~aÞ1!.

~A4!

The following properties of fractional derivatives are use
in applications:
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db

dtb
f~ t !5f~0!2

t2b

G~1-b!

1
1

G~1-b!
E

0

t f~ t !

~ t2t!b dt ~ t.0!, ~A5a!

db

dtb
td5

G~d11!

G~11d2b!
td2b, ~A5b!

db

dtb
15

t2b

G~12b!
, ~A5c!

db

dtb
dn

dtn
5

db1n

dtb1n . ~A5d!

The explicit form of the fractional derivative, Eq.~A5a!,
shows the nonlocal character of those derivatives.

An important formula of integration by part can be a
plied to the scalar product:

@g~x!• f ~x!#5E
2`

`

dx g~x! f ~x!.

Then

Fg~x!
da

dxa f ~x!G5F f ~x!
da

d~2x!a g~x!G . ~A6!
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