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We consider thed=1 nonlinear Fokker-Planck-like equation with fractional derivativesd()P(x,t)
=D(3"1ox")[P(x,t)]". Exact time-dependent solutions are found for (2— y)/(1+ y)(—*»<y=<2). By
considering the long-distan@symptoticbehavior of these solutions, a connection is established, naipely,
=(y+3)/(y+1)(0<y=<2), with the solutions optimizing the nonextensive entropy characterized by qndex
Interestingly enough, this relation coincides with the one already known fey-like superdiffusion(i.e., v
=1 and O<y=<2). Finally, for (y,v)=(2,0) we obtainq=5/3, which differs from the valug=2 corre-
sponding to they=2 solutions available in the literaturex€1 porous medium equatignthus exhibiting
nonuniform convergence.

PACS numbgs): 05.60—k, 05.20-—y, 05.40-—a, 66.10.Cb

A great variety of diffusive problems in nature, namely J
those referred to asormal diffusion, are satisfactorily de- S PO=DVP(X,)]" (—<y=2). (4)
scribed by the Fokker-Planck linear equation

We will restrict ourselves to the=1 case. More specifi-

ip(x,t): DV2P(x,t), (1) cally, we are interested in normalized scaled solutions of the
where P(x,t) is the density of probability in thex 1 X
={Xy,Xs, ... Xq} Space and>0 is the diffusion coeffi- P(x,t)= _tF 00 5)
cient. Such processes are currently characterized by the fact o(t) [ (1)

that (x?)ect, as shown by Einstein in his celebrated 1905
paper on Brownian motion.

More recently, several workgl] have focused on the
same type of linear equation but wiftactional derivatives.

Inserting this form into Eq(4) (and, without loss of gener-
ality, settingD=1) we obtain

- p(t) [ d 1 d
More precisely _&)2 d—F(z)+zF(z) =————[F(2"], (6
$p(1)-L0z d(H)"" 7 dz"
J
P D=DVP(xt) (-=<y<2), (2 \where we have used the generic property
whereV7=3% (97/9x?). Also, thenonlinearequation with g 5 d°
ordinary derivatives has be¢B,3] focused on as well. More @F(ax)=a @F(Z) (6eR) )

precisely

J with z=ax. This basic property holds not only for the ordi-
—P(x,t)=DV{P(x,1)]* (v>-1) (3)  nhary derivative but_also for all fractional operators we are
ot aware of. By choosing the ansatz

(no solutions are known fow<—1 which are integrable :
£ S — ®
These two generalized Fokker-Planck equations have 109

been used to study anomalousvidike diffusion as well as _ _ .
correlated-like diffusive processes in porous mddial7.  Wherek s an arbitrary constant, we obtain
The present paper addresses the unification of both equations

as follows:
= e 9
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with k;=—(y+v—1)k, k, being another arbitrary constant.
Finally making an integration we obtain

y—1

dzr1

[F(2)]"=kzFz) +c, (11

wherec is another arbitrary constant.

Thus far it has not been necessary to specify the fractional
operator we refer to. Indeed, several fractional generaliza-
tions exist for the ordinary derivative, namely, the Riemann-
Liouville [1] (based on Laplace transfoypWeyl [1] (based -
on Fourier transformy and Caputo[18] (also based on
Laplace transformones. From now on we will use the  FIG. 1. (kyJt)"" D"~ r*Dp(xt) versusz=x/(|kyJt) " VP~ r+D
Riemann-Liouville operator, since it is for this one that it hasfor y<0; y=0" corresponds to a distribution everywhere vanish-
been possible to find new exact solutions. In this case weéng, except at the abcissa beinggl where it diverges. For
will work with the positive xaxis and, later on, we will use y<-—1(—1<vy<0) the distribution vanishe@iverges atz=*1.
symmetry to extend the results to the entire real &wis are
working, in other words, withy?/3|x|?). Also, we will use
the following generic resultl9] (see the Appendix of the origin of time, anda can be incorporated into the

normalization constar. We also mention the exact solution

y:—0.0;
0.5 1

1 0.5

T[a+1]

a—39, B—46
Mot 1=24] X*"°(a+bx)

(12

oy a B1— 4o
D;[x*(atbx)*]=a F(z)xz”(~ D (20)

. s o that is not normalizable. Several regions will have to be con-
with Di=d’/dx’ and é=a+p+1. By defining g(X)  sidered, namely,
=x*"(a+bx)#* and A=a(1-1/v)— 4, and rearranging

the indices, Eq(12) can be rewritten as follows: 1 1
—oly<—1, —1<y<0, O<y<gz, =<vy<l1, I<y<2.

2’ 2
IMa+1]
Df[g(x)]”zma‘sx”g(x). (13) (21)
We start with the region-~<y<—1 for which, again
without loss of generality, we can chookes —1. The nor-
malization condition implies

Using this property in Eq(11) and, for simplicity, choosing
c=0, we find

a= _(i—: Z”-, (14) e CA I
Y Af_l m dz
2__
g L2 15 TP 7+ D=2 I~ y(y=2)/(2y~1)]
’ T[1-7]
_2—y =1, (22)
V_lTy' (16)

see Fig. 1. Also, as we can see from the limits of the different
These results allow us to write the solution in the form regions (21), we will have to consider different particular
cases, namelyy=—1,y=0,y=1/2,y=1, andy=2.

A 2+ M=) Let us start withy= —1 and arbitraryv. The correspond-
P(x,t)= (k00 DIF 77D | (14 b2t 7 ; ing equation is
(17) ; .
T'(B) (1+y)/(1-2v) EP(X't):jo[P(y't)]de' (23
To solve it let us go back to Eq10); after derivation with
X respect taz, we obtain
z= , 19
(kg ) O+ DIOZ =) 19 d?zF(2)
: . >— =[F(2)]". (24)
whereb is an arbitrary constarfto be taken, later on, as1 dz

according to the specific solutions that are stugiedd
where, without loss of generality, we have ggt=0 anda  We are not going to treat this equation in detail; we rather
=1. Indeed, th&, constant can be incorporated into a shift limit ourselves to remark that the valye= —1 corresponds
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(71/2

(9 —
EP(x,t)——P(x,t).

ax2 (29)

This equation can be solved by using the Laplace transform
on botht andx. It can also be solved by taking the limjt
—1/2. We have followed this procedure and, after tedious
though straightforward calculations, we obtaki~$(1
—2y) andA~[(87/3)(1—2%)]" Y22, which, replaced into
Eq. (17), yield

1 exp(—t?/4x)
4\/;t2 (X/t2)3/2

Pia(x,t)= lim P (x,t)=
y—1/2

. (30)

for 0=<y<2; y=0" corresponds to a distribution which vanishes yhich is a distribution of the Poisson type. Let us stress that
everywhere. For & y<1/2 the distributions are defined in the en- the above distribution can indistinctively be obtained by

tire real abcissa axis. For ¥2y<1 the distributions vanish within

the (—1,1) abcissa interval; foy=1, a divergence exists at the

abcissa*+ 1 (vertical dashed asymptodes

to v— = in the curve(16). In the region—1<y<O0 the

probability density has a compact support, on the edges of

which it diverges, see Fig. 1.

Let us now address the<Oy<<1/2 region(whereb=1).
In the limit y=0(y=1/2) integrability fails at infinity(at the
origin); no such problems exist for<0y<1/2. Normaliza-
tion implies

1 /(1—2
JL2-3y+ /(127 (=2

TL(1-9)/(1-2y)]

B I[(1-9%)/(1-2y)]
= 5 (25
2I(Y)I[(y" = y+1)/(1-2y)]

It is easy to show thaP(x,t) achieves a maximurtsee Fig.
2) at

Y
(1-2y)°

Let us now address theg=0 limit. It corresponds to the
equation

(26)

d
S POGD=[P(xD] @7)

that can be resolved analytically for arbitrawy To obtain
this solution it is convenient to go back to Ed.0). It fol-
lows that

B
F(z)=Z[1+cz M0, (28)

Therefore, in thez—« (or, equivalentlyx— o) limit, we
have that-(z)«1/z if »>1 andF(z) is a constant ifv<<1.

solving the fractional differential equation for=1/2, or by
taking they>1/2 and they<<1/2 solutions and then consid-
ering they—1/2 limit.

Let us now focus on the 1Ry<2 region(whereb=
—1). The solutions strictly vanish inside an interval which
contains the origin. Outside this interval, the solutions are
everywhere finite if 1/Z y<1, whereas they diverge if 1
<y<2 (see Fig. 2

The solutions corresponding to the 4/2<1 region are
as follows:

A Z27(r+1) U(1-2y)
P(x.b= (kt)(rFDIG7 =y +1) { (—1+2)4" 72]
(3D
Normalization implies
o 2+ Y27
ZAJ1 m dz
:ZAF[Y]F[_Y(Y_Z)/(ZY_D]:1 32

Ply(y+DI(2y—1)]

from which A is uniquely determined; finallyk is obtained
from A by using Eq.(18), see Fig. 2.

Let us now focus the special case=1. In this case the
equation becomes

J P _ P v 33
Its generic solution of the form indicated in E®) is
[F(z2)]"=kzKx,t)+c, (34

which implicitly determined(z). The solution correspond-
ingtoc=0is

F(z)oc Y1), (35

The v=1 case needs specific discussion and we obtain In the region K y<2 we have the same analytic solution

F(2)xzZ™~1 It is worthy reminding that they=0 solu-

that we had in the region 12y<1 [i.e., Eq.(31)]; how-

tions cannot be considered as distributions of probabilitiegver, at the point=1, a divergence is now presesee Fig.

since they are not normalizable.

2). It is clear that this solution cannot be used without appro-

The y=1/2 limiting case corresponds to the following priate asymptotic considerations fer=2, since fory—2,

linear equation:

v—0.
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FIG. 3. Curves in the¥,v) space on which exact solutions are
now available:v=1 [1,20], y=1 (present work y=2[3], v
=(2—y)/(1+ ) (present work The horizontal dashed line corre-
sponds to they— — asymptote; the vertical dashed line corre-
sponds to thev— + o asymptote.

Let us now specifically focus on the possilzles« tail of
P(x,t) for arbitraryt. For —oo<y<<0 the support is com-
pact, hence there is no tail. FoxOy<2, we obtain, using
either Eq. (17) (for 0<y<1/2) or Eq.(31) (for 1/2<y
<2), the following asymptotic behavior:

1 2
~ 7 Sy D)+ y-11/(1-2y)
PO~ i 2

1Yt DI = y+1)

~ T (36)

We can easily verify that the exponefpy(y+ 1)]/[ v?
—y+1] monotonically increases from zero to&+1
when y increases from zero to (1/3)/2. Also, we verify
that, for 0<y<1, both {|x|) and (x?) diverge; for 1<y
<2, only the latter does. Foy<0, all momenta are finite
since the support is compact. Finally, in all cases, van-
ishes because of symmetry.

Let us now address the solutions for 1 and arbitraryy.
The equation to be solved becomes

1% B ar
EP(X,'[)—%P(X,'[). (37)

one-dimensional case of E(B), and have looked for exact
scaled solutions of the type in E¢p). In the (y,v) param-
eter space, the solutions correspondingyte?2 andv>—1
(porous medium equatigras well as to & y<2 andv=1

are available in the literature, as already mentioned. We are
now exhibiting exact solutions along two new lines, namely,
the line y=1 and arbitraryr, and the line indicated in Eq.
(16) [i.e., v=(2—y)/(1+ y) with —o<y<2]. For the lat-

ter, we observe on Ed36) that the spatial asymptotic be-
havior is characterized by the exponent %, which exactly
coincides with that corresponding to \ie superdiffusion.
This is a remarkable result, since the present solutions con-
cern a nonlinear Riemann-Liouville-fractional differential
equation, andnot the usual linear Fourier-fractional one,
whose solutions are known to essentially bevy elistribu-
tions. It would no doubt be interesting to know whether the
same behavior is obtained no matter the valuev@< vy
<2).

Let us finally mention a connection between the present
problem and the solutions obtained from the optimization,
under appropriate constrainténormalization and finite
g-expectation value ok? in the interval (o,x)), of the
nonextensive entropy21,22 S,=[1— [dx p(x)%]/[q—1].

It has been shown that these optimizing distributiqme-
cisely coincidewith the solutions of the present diffusive
problem fory=2. It comes out thag=2—v(v>—1) [3].
Along the line indicated in Eq(16), the exact solutions of
the entropic optimization problem and the present diffusive
onedo not coincidefor arbitrary value ofx. However, com-
parison of thex—c asymptotic behaviors is possibl23].
Indeed, by identifying the behavior exhibited in E6)
with the behavior 1k|?@~1) obtained[2,3] for the entropic
problem, we obtain

_Y3 a2 38
Q—m (0<y<2), (38

which, as commented above, precisely reproduces the con-
nection established for g distributions[7]. By using Eq.
(16), this relation can be rewritten as follows:

5+2v
q= 3 (0<v<?2). (39

(We remind the reader that the distributions for2 andv
<-1, i.e.,y<0, have compact supporfThe present non-
trivial solution provides, for §,v)=(2,0), g=5/3, whereas
the porous medium equation solutiop=2— v providesq
=2. This discrepancy exhibits that the point, ¢) =(2,0) is

a singular one, at least within the fractional derivative that
we have adopted in this work.

This equation can be solved using Laplace transform and the Another point worth to be mentioned is that we have com-

solutions are discussed in R¢R0]. Moreover, we can see
(in Fig. 3), that the point §,v)=(1/2,1) is at the crossing of
two solvable lines. Since solutid30) has been found as the

pared the present solutions with those optimiz&glefined
in the interval (,%) and using finiteq expectation fox?
(whereas thej-expectation value ok vanisheg This is ap-

limit of either one of these lines, it seems reasonable to conpropriate since, through symmetry, we have extended the
jecture that the same solution is found as a limit along anysolutions that we have found in the interval %, to the

curve through that point.

entire real axis. Another possibility would of course be to

Let us summarize the present work. We have addressedampare the present results in the positive real semiaxis with
generic Fokker-Planck-like diffusive equation, namely thethose optimizing the entrop§, defined in the same semiaxis
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and using finiteg-expectation value o%. If we did so, rela- L[D&f(x)]=s*F(s)—f(*~1(0) (A4)
tion (39) would be replaced bg=(y+2)/(y+1) (see also
Refs.[9,24]). for a<1 and wheref(“"1)(0) means fractional derivative

Finally, last but not least, now that we have finished thecalculated inx=0.
presentation of the various exact solutions that emerged Letus now show how formuléA3) leads to Eq(12), that
within the present work, it is worthy to mention that it would is used in the text. By assuming no restrictions on the param-
be very welcome the discussion of th&@bility of such so- etersa,8 and y and applying the generalized Leibnitz rule
lutions. More precisely, if we start at=0 with an arbitrary ~ to the functionx*(a+bx)? we obtain
distribution P(x,0) and make it evolve through the present

differential equation, what would be the-o asymptotic D x% a+bx)5]= - (5 D " x*1D" (a+bx)?
distribution P,(x,t)? (a stands forattractor, in the space of X )] nZO nj—x [XAID:( )
the distributions For instance, if the evolution is determined (A5)

through the convolution produdi.e., a linear fractional-

derivative Fokker-Planck equation, using a Fourier-baseé)‘fter some algebra we obtain

definition of fractional derivative then the standard and the s I(a+1)
Lévy-Gnedenko central limit theorems apply, and conse- D;f[x“(a+ bx)?]= E ) —————x® 9t
quently the attractoP,(x,t) is either a Gaussian or a \g i=0 \N/ T'(a+1-46+n)

distribution (respectively, when the second cumulant is finite T(B+1)

or infinite). If the evolution is instead determined through a X—=——"—(—1)"b"(a+bx)# "
nonlinear integer-derivative Fokker-Planck equation such as I'(g+1-n)

the one considered in Ref3], then P,(x,t) is given (as (A6)

numerical verifications have showrby the distributions ) ) . )

which optimize the nonextensive entropy, wherescales A closed form for this series can be achievedrit5+1
with a simple function of. If the time evolution is obtained, =9 Indeed, by using the Gamma function property
as sometimes done, through recursive use of mjasg | (2T'(1—2)=n/sin7z we obtain
Pa(xzt_) can present a variety of shapes depending on the T(a+1)
specific map which is used. Finally, in our present dass- D;f[x“(a+ bx)fl=a’————
linear fractional-derivative Fokker-Planck equation using a [(at+1-4)
Laplace-based definition of fractional derivativéhe solu-
tions we have found might well be,(x,t). This point, how-  which is essentially Eq(12).

ever, deserves analysis on its own. For completeness, it is worthy to briefly mention here a
recent variation of Riemann-Liouville operator that we have
mentioned in the text, namely, the Caputo derivative. Its
definition is

X¢"%(a+bx)#?,

(A7)

One of the author¢C. T. acknowledges Seth Lloyd for
warm hospitality at the Massachusetts Institute of Technol
ogy, where this work was concluded.

1 xdtf(M(t)
F(m— a/) 0 (X_t)a+l—m

APPENDIX Def(x)= (A8)

We give a short review of the property of the fractional ) )
operator used to solve the nonlinear equatid). The (C stands for Capuo The main advantage with respect to

Riemann-Liouville operator is used in many applications ofthe Riemann-Liouville operator is that Caputo derivative of a
fractional calculus. The usual integral representation for thigonstant is zero, which is not the case of the Riemann-

operator is Liouville one. Substantially, this kind of fractional derivative
is a formal generalization of the integer derivative under
1 d" (x dtf(t) Laplace transform. As disadvantage, it exhibits the fact that,
Dyf(X)==——= —f —— (h—1<a< n). whenever the derivation index is an integer number, it recov-
F(n—a) dx"Jo (x—t)* ot : "
(AD) ers the usual derivativexceptingfor an additive constant,

whereas the Riemann-Liouville operator has no such disagre-
For the calculations in this paper we have instead used th@Ple property. , _

following equivalent form: Finally, let us also mention the definition of Weyl frac-
tional derivative. It is based on the properties of Fourier

I'(p+1) transform, and it is defined as follows:
DyxP=mr—F——x"" % (A2)
I'p+1l—a) +oo
WD&f(x)= —1k)cy exp( —1kx), A9
We have also used the generalized Leibnitz formula for this 1) k;oc ( )i exnl ) (A9)

kind of fractional derivative, namely, ) ) ) )
its continuum version being

a c o a—n n 1 +o n
Dx[f(X)g(X)]ZnZO n)Dx [FOOIDL9(X)]. (AJ) WDgf(x):EL do(—10)*F(w)exp — 1wx).

Let us also mention that, for this operator, the following (A10)

property holds under Laplace transform (W stands for Wey).
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