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The fractal globule state is a popular model for describing chromatin packing in eukaryotic nuclei. Here

we provide a scaling theory and dissipative particle dynamics computer simulation for the thermal motion

of monomers in the fractal globule state. Simulations starting from different entanglement-free initial states

show good convergence which provides evidence supporting the existence of a unique metastable fractal

globule state. We show monomer motion in this state to be subdiffusive described by hX2ðtÞi ∼ tαF with αF
close to 0.4. This result is in good agreement with existing experimental data on the chromatin dynamics,

which makes an additional argument in support of the fractal globule model of chromatin packing.
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The question of how genetic material is packed inside a

eukaryotic nucleus is one of the most challenging in

contemporary molecular biology. This packing, apart from

being very compact, has some striking biological properties

including the existence of distinct chromosome territories,

easy unentanglement of chromosomes and chromosome

parts (needed in preparation to mitosis, and during tran-

scription), and the ability of different parts of the genome to

find each other in space strikingly fast in, e.g., so-called

promoter-enhancer interactions. All these properties are

very untypical for the compact states of generic synthetic

polymers (known as the equilibrium globular state in

classical polymer physics; see, e.g., [1,2]). Indeed, e.g.,

human chromatin fiber (that is to say, a composite polymer

fiber consisting of dsDNA and associated histone proteins

[3]) is so long that an equilibrium polymer globule made of

it would be too entangled to perform any biological

functions on any reasonable time scale [4].

The theories proposed to explain the chromatin packing

tend to either be based on some ad hoc biological

mechanism of stabilization [5–10] or argue that topological

interactions prevent the chromatin chain from entangling

itself on biological time scales [4,11–13]. The latter point

of view relies on the analogy between the chromatin state

and other topologically governed polymer states, such as

fractal (crumpled) globules [11,14–16], and melts of non-

concatenated polymer rings [17–21]. In recent years, the

data obtained via novel experimental techniques to study

genome structure, in particular FISH [22] and Hi-C

[12,23,24] methods, seem to provide data supporting the

topological fractal globule approach.

For the detailed overview of the state of the field we direct

the reader to a recent review [25]; here we provide a brief

summary of those presumed static properties of chromatin

packing which we use in what follows. First, the fractal

globule model assumes that chromatin fiber forms a compact

fractal state with dimensionality 3; i.e., on all length scales

the typical spatial distance R between monomers depends on

genomic distance n between them as R ∼ n1=df ¼ n1=3.
Second, there are no entanglements in the fractal globule

contrary to the equilibrium one. Because of that, parts of

chromatin can easily fold out from the fractal globule

conformation and form extended loops, and then retract

back to refold into the dense state. Third, the fractal globule

has a distinct territorial organization: parts of the genome

close to each other along the chromosome are close to each

other in space as well. These properties are dictated by the
absence of knots on the chromatin chains and topological

entanglements between them and are, therefore, shared

between linear polymers in the unentangled state and non-

concatenated unknotted rings; the difference is that while for

rings the described fractal state is equilibrium, for linear

chains it is but metastable, although it is supposed to be

relatively long-lived. The question of how to prepare a fractal

state with long-living stable properties is still a matter of

debate, many different algorithms to prepare a fractal globule

in computer simulations have been suggested [12,26–30],
most of them appear to be evolving in time rather rapidly

when the simulation starts. Here we use two different

algorithms to prepare initial fractal states, then anneal them

for some time before starting measurements. The observed

convergence of the results obtained from two different initial

states suggests that there indeed exists a unique metastable

fractal globule state corresponding to a partial equilibrium of

the polymer chain given the absence of topological

entanglements.

Dynamics of a fractal globule state, which is a focus of

this Letter, has been less studied so far. Clearly, self-

diffusion in the fractal globule should be faster than in the

equilibrium one due to the absence of entanglements [31].

Sometimes [26,32] the Rouse dynamics of the fractal state

is assumed in order to estimate the relaxation times of the

chain as a whole, while explicit measurements (e.g.,
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computer simulations of nonconcatenated rings [33],

experiments on the dynamics of unknotted ring bacterium

genomes [34] and on the telomeres in the nuclei [35–37])

suggest a slower than Rouse dynamics. Indeed, the dis-

crepancy from Rouse theory is to be expected since it relies

heavily on the absence of interactions between monomers

that are not immediate neighbors along the chain [1], and

cannot be directly applied to the fractal globule which is

actually stabilized by this interaction. Recently, a theoreti-

cal approach to generalize the Rouse model to produce

different scaling exponents was suggested [38], but without

any discussion of what particular exponent one should

choose in a physically relevant situation [39]. In what

follows, we present a scaling theory and computer simu-

lations of the self-diffusion in a fractal globule state

resulting in a subdiffusive motion with an exponent similar

to one observed experimentally in [34–37]).

We start with the Rouse model, which is the simplest

model of the dynamics of an unentangled polymer. In the

continuous limit the conformation of the Rouse chain

Xðs; tÞ (here X is the spatial coordinate, s is a coordinate

along the chain, and t is time) satisfies the equation [1,2]

∂Xðs; tÞ

∂t
¼ λ

∂2Xðs; tÞ

∂s2
þ ξðs; tÞ; ð1Þ

where λ is some coefficient, ξ is the white thermal noise

delta-correlated in space and time. This equation has a

stationary solution, which is a Gaussian measure over all

trajectories Xðs; tÞ. In what follows we restrict ourselves to

discussing very long chains (or, equivalently, relatively

short times), which makes the boundary conditions coupled

to Eq. (1) irrelevant for internal monomers.

Equation (1) neglects any interactions between mono-

mers not immediately adjacent along the chain, and,

therefore, it cannot be directly applied to non-Gaussian

equilibrium or metastable states of a polymer chain, which

are stabilized by volume interactions. Many different

generalizations of Eq. (1) are possible, e.g., by introducing

fractional derivatives [38,43] or by introducing correlations

into the noise term [44]. It is not clear which particular

generalization is most valid microscopically for the fractal

globule, so instead of modifying Eq. (1) we rely below on a

more general scaling argument. Proceeding this way we

lose the detailed information about the statistics of the

monomer self-diffusion, but are able at least to recover the

scaling exponent of the self-diffusion.

For theRousemodel the scaling argument goes as follows.

Let xðs; tÞ be a stationary solution of Eq. (1). Then for any

given time t and two positions along the chain s1; s2,

h½xðs1; tÞ − xðs2; tÞ�
2i ∼ js1 − s2j; ð2Þ

where triangular brackets correspond to averaging over

stationary solutions of Eq. (1). Assume now that as time

goes on the monomer displacement grows as

h½xðs; tþ τÞ − xðs; tÞ�2i ∼ ðτÞα; ð3Þ

with some unknown α. Since the chain is connected and

Eq. (2) holds at any given time, parts of the chain of length

δsðτÞ ¼ js1 − s2j ∼ ðτÞα are obliged tomove collectively at a

time scale τ. Moreover, if all monomers in this chain

fragment experience independent random forces from the

solvent, the collective effective diffusion constant of such a

fragment is

DðδsÞ ∼D0=δs ¼ D0τ
−α; ð4Þ

where D0 is a microscopic diffusion constant [45].

Combining Eqs. (3) and (4) one recovers the well-known

result

h½xðs; tþ τÞ − xðs; tÞ�2i ∼ ðτÞα ∼DðδsÞτ ∼ τ1−α;

αR ¼ 1=2; ð5Þ

wherewe introduced notation αR for the scaling exponent of

the Rouse model.

This scaling reasoning is much easier to generalize for

the fractal globule case than Eq. (1) itself. Indeed, the

principal change is the statistic of the state we consider

(recall that we are only considering time scales much

shorter than chain entanglement time, so we assume that the

fractal globule state can be treated as stationary). This

corresponds to replacing Eq. (2) with

h½xðs1; tÞ − xðs2; tÞ�
2i ∼ js1 − s2j

2=df ; ð6Þ

where df is a fractal dimensionality of the state under

consideration, df ¼ 3 for a fractal globule. The chain

connectivity argument still holds, and the size of a

collectively moving domain scales now as δsðτÞ∼
ðτÞαdf=2. If the random forces acting on monomers are still

independent, the resulting scaling exponent of a fractal

globule αF is

h½xðs; tþ τÞ − xðs; tÞ�2i ∼ ðτÞα ∼
D0

δs
τ ∼ τ1−αdf=2;

αF ¼
2

2þ df
¼ 2=5: ð7Þ

Similar predictions for the self-diffusion in swollen poly-

mer coils have been coined previously; see, e.g., [46]. In

[47] we argue that allowing for hydrodynamic interactions

should make the forces acting on different monomers

correlated, which will speed-up the diffusion. We show,

however, that this effect is expected to be small, only

shifting αF to around 0.42.

The natural state of comparison for a fractal globule is a

usual entangled equilibrium globule, where self-diffusion

of monomers is described by the Rouse exponent αR ¼ 1=2
only on short time scales, when displacement is smaller

than the typical size of the entanglement blob. For larger
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time and length scales the entanglements play a crucial role

and the scaling theory [2] predicts αent ¼ 1=4.
To check the predictions of the scaling theory we held out

extensive computer simulations using the dissipative particle

dynamics (DPD) technique, which is known [64,65] to

correctly reflect dynamics of dense polymer systems. The

polymer model we use consists of renormalized monomers

with the size of order of the chromatin persistence length,

corresponding DPD time step is of order 1 nsec or more (see

Ref. [47] for more details). Volume interactions between the

monomers are chosen to guarantee the absence of chain self-

intersections, the entanglement length isNe ≈ 50� 5mono-

mer units [66]. The modeled chains have N ¼ 218 ¼
262 144 units confined in a cubic volume with periodic

boundary conditions. In a chain that is long (N=Ne ≃ 5000)

the equilibration time by far exceeds the times accessible in

computer simulation, so the choice of starting configurations

plays a significant role. Here we provide a short outline of

how we construct and prepare the initial states, addressing

the reader to [47] for further details.

The first initial state we use is a randomized Moore curve

similar to that described in Ref. [26], it has a very distinct

domain structure with flat domain walls. The second initial

state is generated by a mechanism which we call

“conformation-dependent polymerization in poor solvent.”

This algorithm, which, for the best of our knowledge, has

never been suggested before, is constructing the chain

conformation by consecutively adding monomer units in a

way that they tend strongly to stick to the already existing

part of the chain. In Ref. [47] we show that the resulting

conformations show exactly the statistical characteristics

expected from fractal globules, while a full account of this

new algorithm will be given in Ref. [30]. In what follows,

for brevity we call the globule prepared by the randomized

Moore algorithm “Moore,” and one prepared by the

conformation-dependent polymerization “random fractal.”

As a control sample we use a standard equilibrium globule

which we call “Gaussian.”

Prior to the diffusion measurements all three initial states

are annealed for τ ¼ 3.2 × 107 modeling steps. The stat-

istical properties of the random fractal and Gaussian

globule do not change visibly during the annealing time,

while the Moore globule is evolving with domain walls

roughening and its statistical characteristics (e.g., depend-

ence of the spatial distance between monomers on the

genomic distance hR2ðnÞi; see [47]) approaching those for

the random fractal globule state.

Snapshots of conformations annealed from different

initial states are shown in Fig. 1. In fractal states, contrary

to the Gaussian one, fragments close along the chain tend to

form domains of the same color. The states are further

characterized in Fig. 2. The fractal globule curve appears

very similar (but for the saturation at large n due to the

finite size effects) to the universal spatial size-length curve

for unentangled rings discussed in Refs. [20,68]. R2ðnÞ for
the Moore state seems to approach the fractal globule curve

with growing modeling time suggesting the existence of a

unique metastable fractal globule state. Fractal globules

prepared by two different techniques are significantly

different at first, but converge with growing simulation

time, making the results obtained after annealing unsensi-

tive to the details of the initial state.

Monomer spatial displacement was measured for t ¼
6.5 × 107 DPD time steps after the annealing (correspond-

ing to ∼0.1 sec on the real time scale), with results shown

in Fig. 3. Impressively, mean-square displacement for the

FIG. 1 (color online). The snapshots of globule conformations:

random fractal (top), Moore (middle), and Gaussian (bottom)

globules. (a) General view of the modeling cell after initial

annealing. Chains are gradiently colored from blue to red. (b)–(d)

The evolution of a 1000-monomer subchain conformation:

(b) initial conformation at the start of measurement, (c) after 218 ≈

2.5 × 105 DPD steps, (d) after 226 ≈ 6.5 × 107 DPD steps. The

cube on the figure corresponds to the whole simulation box and

has the size 46 × 46 × 46 DPD length units.

FIG. 2 (color online). Mean-square distance hR2i between

monomers as a function of genomic distance n. Gaussian (green)

and random fractal (red) states are stable on the modeling time

scale (see Fig. 2 in Ref. [47]). Initial Moore state (black) relaxes

after annealing to the blue curve, approaching the random fractal

state. Inset shows the same plots in (hR2in−0.8, n=Ne) coordinates

used in [20].
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random fractal and Moore initial states is indistinguishable

within the measurement error. As expected, it is slower than

in the Gaussian state: the observed scaling exponent for

Gaussian globule αG is fairly close to αent ¼ 1=4 predicted

by the reptation model, while for the fractal globule one

gets α
exp
F ≈ 0.38, which clearly is above αent ¼ 1=4 and

below the Rouse exponent αR ¼ 1=2, fairly close to our

theoretical prediction αthF ¼ 0.4 − 0.42. Both our simula-

tions and results known from the literature for computer

simulation [33,69] and experiment [34–37] of similar

unknotted polymer systems give scaling exponents similar

but slightly below our theoretical estimate. We expect this

discrepancy between theory and simulation to be due

primarily to the fluctuation effects. We also examined

the distributions of monomer displacements at various

times for all three initial states [47]. For both fractal states

the monomer displacement distributions stay Gaussian at

all times despite the mean-square displacement growing

subdiffusively, a behavior typical for fractional Brownian

motion [43]. In turn, distribution of monomer displace-

ments in the equilibrium globule shows visible deviations

from the normal distribution.

The scaling theory introduced above can be used to

estimate the first passage time for two parts of a chromatin

chain (e.g., the loci of enhancer and promoter) to find each

other. In Ref. [47] we show this time scale as n1.6−1.67 with
the genomic distance between the loci, i.e., significantly

faster than the Rouse time, enhancing the speed of gene

regulation processes. We consider this to be an additional

argument in favor of the fractal globule model of genome

packing.

Summing up, self-diffusion in a fractal globule state,

while much faster than that in the entangled equilibrium

globule, is not described by the Rouse model, it is a

subdiffusion with a different exponent αF ≈ 0.38 − 0.42.

This result, which we support by scaling theory and

computer simulations, is in accordance with earlier numeri-

cal [31] and experimental [34–37] data. By analogy with

the Rouse model, we expect the dynamics in the fractal

globule to be a fractional Brownian motion, but full

analysis of this matter goes beyond the scope of this

Letter. Moreover, the compactness of the domains in the

fractal globule coupled with comparatively fast subdiffu-

sion leads to the estimate T ∼ n1.6−1.67 for the first passage
time, which is faster than Rouse time T ∼ n2, not to

mention the first passage time in the entangled melt.

The ability of different parts of chromatin to find each

other fast may be crucial for fast regulation of gene

expression. As a by-product of our simulation we provide

evidence that the long-living metastable fractal globule

state is unique and has characteristics similar to the

equilibrium state of nonconcatenated polymer rings.
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