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Anomalous diffusion models and their properties:
non-stationarity, non-ergodicity, and ageing at
the centenary of single particle tracking

Ralf Metzler,*ab Jae-Hyung Jeon,bc Andrey G. Cherstvya and Eli Barkaid

Modern microscopic techniques following the stochastic motion of labelled tracer particles have

uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate

systems. Such anomalous diffusion can have different physical origins, which can be identified from

careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced

particle, which allows one to evaluate different observables to quantify the dynamics of the system

under observation. We here provide an extensive overview over different popular anomalous diffusion

models and their properties. We pay special attention to their ergodic properties, highlighting the fact

that in several of these models the long time averaged mean squared displacement shows a distinct

disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained

from time averages cannot be interpreted by the standard theoretical results for the ensemble averages.

Here we therefore provide a comparison of the main properties of the time averaged mean squared

displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time

averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may

be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity

breaking parameters for the different anomalous stochastic processes and showcase the physical origins

for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and

theorists working on systems, which exhibit anomalous diffusion.

1 Introduction and historical
perspective

It is possible that the movements to be discussed here are identical

with the so-called ‘‘Brownian molecular motion’’; however, the

information available to me regarding the latter is so lacking in

precision, that I can form no judgment in the matter. This

statement is part of the introduction of Albert Einstein’s first

and seminal 1905 paper on the theory of diffusion.1 It refers to

the observations reported by Robert Brown in 1828 of small

granules (or Molecules, as I shall term them) of 1
4000

th to 1
5000

th of

an inch extracted from larger pollen grains. Brown found these

particles evidently in motion.2 He made meticulously sure that

the motion he observed was not the effect of living matter, and

he even studied the motion of such molecules as of a bruised

fragment of the Sphinx.2 In his second, 1906 paper Einstein then

quotes the experimental proof by Gouy3 that indeed the motion

perpetuated by Robert Brown is caused by the irregular thermal

movements of the molecules of the liquid, and thus described by

Einstein’s theory.1 As remarked by Marian Smoluchowski in his

equally seminal 1906 article,4 Einstein reinvigorated the interest

in Brownian motion. Since then, the interest in the molecular

phenomenon of diffusion is unbroken.

Considering the local concentration difference and the

counteracting flux of microscopic particles with a typical mean

free path, Einstein derived the diffusion equation†1

@

@t
Pðx; tÞ ¼ K1

@2

@x2
Pðx; tÞ (1)

with the coefficient of diffusion K1 for the probability density

function (PDF) P(x,t) to find the particle under observation at

position x at time t. This equation is indeed equivalent to Fick’s

second law for the concentration of a chemical substance originally

presented by Adolf Fick from a combination of the continuity

equation and the constitutive equation (Fick’s first law).5
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If the particle is released at the origin at time t = 0 in an

unbounded space, the solution of the diffusion equation (1) is

the normalised Gaussian PDF

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pK1t

p exp � x2

4K1t

� �
: (2)

Einstein remarks that this solution is that of the fortuitous error,

which was to be expected.1 From the PDF (2) we immediately

obtain the variance

x2ðtÞ
� �

¼
ð1

�1
x2Pðx; tÞdx ¼ 2K1t; (3)

the so-called mean squared displacement (MSD). From the

dynamic equilibrium of suspended particles Einstein (and later

independently Smoluchowski) derived the celebrated relation

K1 ¼
kBT

mZ
¼ R=NAð ÞT

mZ
; (4)

between the diffusion coefficient, thermal energy kBT, the mass

m of the observed particle, and the friction coefficient Z of unit

1 s�1. In the second equality of eqn (4) we replaced the Boltzmann

constant kB by the ratio of the gas constant R, quite precisely

known at the time, and Avogadro’s number NA.
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Yet another derivation of Brownian motion with the MSD (3)

was published in 1908 by Paul Langevin using the concept of a

stochastic force. The Langevin equation combines Newton’s

second law with the white Gaussian noise x(t) of zero mean and

autocorrelation function hx(t)x(t0)i = 2K1d(t � t0).6,7 In its over-

damped form relevant for the single particle tracking experi-

ments we will refer to below, it reads6,7

dxðtÞ
dt

¼ xðtÞ: (5)

The Langevin formalism represents a very intuitive physical

picture for Brownian motion. From the Langevin eqn (5) it is easy

to get back to theMSD (3). Likely prompted by discussions with his

friend Paul Langevin,8 the fundamental Einstein–Smoluchowski

relation (4) led Jean Perrin at the Sorbonne in Paris to conduct

the first extensive and systematic measurement of the diffu-

sion of single microscopic particles to determine Avogadro’s

number NA.‡
9

While Perrin was confined to short measured trajectories and

the need to use ensemble averages over not perfectly identical

particles, to the best of our knowledge it was Ivar Nordlund at

the University of Uppsala in Northern Sweden, who in 1914 came

up with the innovative idea to record the motion of individual

sedimenting mercury droplets on a moving film plate,13 see

Fig. 1. Nordlund managed to produce impressively long individual

time series of the droplet position. From separate analysis of

each single trajectory he determined the diffusion coefficients of

the traced droplets. The mass of the droplets was deduced from

the sedimentation speed using Stokes’ formula.13 In the sense

of the combination of single particle tracking with the time

series analysis of single recorded trajectories first performed

by Nordlund, we celebrate this year the centenary of modern

single particle tracking.

Nordlund’s experimental setup, the MSD from a single

trajectory, as well as a sample trajectory are shown in Fig. 1

and 2. Nordlund advocated in his paper that the principle of the

method of measurement consists in the automated recording of the

Brownian displacements of the particles in exactly identical time

intervals, free of personal errors.13 Perrin’s and Nordlund’s

studies prompted a string of diffusion experiments to deter-

mine the value of NA ever more precisely in the years to come,

culminating in the high precision torsional diffusion experiments

by Eugen Kappler, who in his PhD thesis at the University of

Munich found the remarkable result NA = 60.59 � 1022 � 1%.§14

We show the experimental shape of the torsional Brownian

motion measured by Kappler in Fig. 3.

Hundred years after Nordlund’s conception of single particle

tracking by the analysis of individual particle traces, modernmicro-

scopic technology is routinely used by experimentalists to record

the motion of fluorescently labelled single molecules or submicron

tracer particles.¶15–18 In these experiments the recorded time series

x(t0) is evaluated in terms of the time averaged MSD8

d2ðDÞ ¼ 1

t� D

ðt�D

0

x t 0 þ Dð Þ � x t 0ð Þ½ �2dt 0: (6)

The time series x(t0) of length t (the measurement time) is thus

evaluated in terms of squared differences of the particle position

Fig. 1 Centennial single particle tracking experiments of Ivar Nordlund.
Top: Nordlund’s experimental setup with the light source, an infrared
absorbing water-filled cylinder, and the clock-controlled, electromagnetic
shutter (on the table to the left) constituting a stroboscope. Mounted on
the separate optical table on the rack to the right, the object chamber with
the mercury droplet, as well as the objective and the camera are the heart
of the experiment: the camera is connected to an electric motor moving
the photographic plate with constant velocity. Bottom: example for the
time averaged mean squared displacement versus time (in seconds) from a
single recorded mercury droplet. Images taken from ref. 13.

‡ For completeness we mention that theories of Brownian motion appeared

earlier than Einstein’s studies. In particular, the Dane Thorvald Thiele set up a

theory for independent and normally distributed increments in his 1880 work on

the least squares method.10 Louis Bachelier in Paris applied a stochastic process

to model the dynamics of stock markets in 1900.11 Concurrently with Einstein,

the Melbourne physicist William Sutherland followed similar lines to Einstein in

his 1905 paper on diffusion.12

§ Immerhin dürfte die Bestimmung der Loschmidtschen Zahl mit dieser Methode auf

�1 Proz. erreicht sein.—After all, with this method the determination of the Loschmidt

[Avogadro] number should be achieved within �1 per cent.14

¶ We note that the concept of motion analysis of synthetic active matter is also a

topic of high current interest.19

8 Usually, for data analysis a discrete version is used in which the integral is

replaced by a sum. We here use the equivalent continuous notation. In what

follows, we denote ensemble averages of an observable O with angular brackets,

hOi, and time averages with an overline, �O. Note that the definition (6) is not

unique, however, it represents the most standard choice used in the literature.
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separated by the so-called lag time D which defines the width of

the window slid along the time series x(t0). Typically, d2ðDÞ is

considered in the limit D{ t to obtain good statistics. It is easy

to show that for Brownian motion d2ðDÞ ¼ 2K1D as long as the

measurement is sufficiently long. Compared with eqn (3) we

observe the equivalence

d2ðDÞ ¼ x2ðDÞ
� �

(7)

and therefore call the process ergodic: ensemble averages and

long-time averages are equivalent in the limit of long measure-

ment times.

Apart from direct imaging of the motion of a tracer particle

using a microscope, optical tweezer setups can be used to

obtain an improved temporal and spatial resolution of a

suitable tracer.20 Such single particle tracking can be used to

measure the motion of tracers in quite complex media such

as living biological cells.17,18 Alternatively to single particle

tracking, which provides the time series x(t0) of the particle

position, the diffusion of labelled molecules can be measured

by methods such as fluorescence correlation spectroscopy

(FCS),21 fluorescence recovery after photobleaching (FRAP),22

or fluorescence (Förster) resonant energy transfer (FRET).17,23

While these latter methods have many advantages—for instance,

that they can measure the motion of smaller tracers—they have

the intrinsic disadvantage that the quantity they measure is not

the particle position but averages over the position such as the

blinking correlation function of fluorescent particles entering

and leaving the illuminated focal spot in FCS. Due to the

underlying averaging, these latter methods thus do not provide

the same full information as direct single particle tracking.

We note that the MSD of stochastic systems may also be deter-

mined with techniques such as dynamic light scattering24 or laser

Doppler velocimetry.25

Already in 1926 an exception to the linear time dependence

(3) of the MSD of Brownian motion was analysed by Lewis Fry

Richardson. For the relative diffusion of two tracer particles in a

turbulent flow he observed strongly non-Brownian behaviour.26

He introduced the notion of non-Fickian diffusion and used

a diffusion equation with separation dependent diffusivity
@q

@t
¼

const� @

@l
l4=3

@q

@l

� �
for the PDF q(l,t) of the relative displacement

l to find the power-law MSD hl2(t)i C t3 with the characteristic

Fig. 2 Example for the recorded motion of a ‘submicroscopic’ mercury droplet using the clock-driven stroboscope and a moving film plate in the setup
shown in Fig. 1. The mass of the droplet could be determined from the droplet radius deduced from the sedimentation speed by use of Stokes’ formula.13

Time is increasing from left to right. The stochastic, Brownian motion around the deterministic sedimentation with constant velocity can be clearly
distinguished. Image taken from ref. 13.

Fig. 3 Experimental verification of the Gaussian shape by Kappler14 with
the original figure caption. The symbols represent nine different measure-
ments of average duration of 11 hours of the torsional Brownian motion.
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cubic scaling. Today anomalous diffusion typically refers to the

power-law form**

hx2(t)i C Kat
a (8)

of the MSD with the anomalous diffusion exponent a and the

generalised diffusion coefficientKa of physical dimension cm2 (sa)�1.

This is what we refer to in the following, distinguishing subdiffusion

(0 o a o 1) and superdiffusion (a 4 1).

The conditions assumed by Einstein in his derivation of

the diffusion equation are (i) the independence of individual

particles, (ii) the existence of a sufficiently small time scale

beyond which individual displacements are statistically inde-

pendent, and (iii) the property that the particle displacements

during this time scale correspond to a typical mean free path

distributed symmetrically in positive or negative directions.

These assumptions, by the help of the central limit theorem,

a forteriori lead to the Gaussian PDF (2) and thus to the

diffusion equation (1). The model described by Einstein may

therefore be viewed as a random walk or drunkard’s walk,

a concept introduced in the same year 1905 by Karl Pearson

in his famed letter to Nature.30 The connection of the diffusion

law to the random walk process was rendered more precisely by

Smoluchowski.4

In anomalous diffusion processes, at least one of these funda-

mental assumptions is violated, and the strong convergence

to the Gaussian according to the central limit theorem broken.

In particular, by departing from one or more of the assump-

tions (i)–(iii), we find that there exist many different generali-

sations of the Einstein–Smoluchowski diffusion picture. Here

we examine the properties of several popular and widely used

anomalous diffusion models which are important for the evalua-

tion and physical interpretation of single particle tracking data.

These models are conceptually very different from each other,

their only common ground being the non-Brownian form (8) of

the MSD. We pay particular emphasis on their ergodic behaviour,

that is, whether within the model the ensemble averaged MSD

(8) has the same form as the time averaged MSD (6) or not, an

important information for the evaluation of single particle tracking

time series in terms of physical theories, which are usually formu-

lated in terms of ensemble averages. We also check the ageing

properties of the processes, that is, the potential dependence of

physical observables such as the MSD on the time span between

initialisation of the system and the start of the measurement.

Both ergodicity breaking and ageing of a process are two

sides of the same medal and are intimately connected to the

(non-)stationarity properties.31,32

As we will see, numerous experiments using the above

techniques demonstrate the non-Brownian diffusion of tracked

biological cells as well as of tracer particles inside those very

cells. Similarly, anomalous diffusion is often revealed for the

motion of passive particles in complex liquids. One of the

breakthroughs came with the study of Golding and Cox, who

used single particle tracking of labelled messenger RNA

(mRNA) molecules of some 100 nm in size in living bacteria

cells to demonstrate that the motion of the molecule is sub-

diffusive,33 shown in Fig. 4. Even more interesting and thought-

provoking was the fact that the time traces d2ðDÞ of individual
trajectories showed a massive scatter of amplitudes, similar to

those shown in Fig. 8. The question whether this behaviour

could be due to the intrinsic non-ergodicity of the anomalous

diffusion performed by the mRNA molecules was in fact one of

the ignition points for the research presented herein. We note

that non-ergodicity in the sense discussed in the following is

not restricted to the spatial diffusion of particles, but similar

principles hold for certain processes revealing non-exponential

dynamics, such as the blinking behaviour of individual quantum

dots34 or laser cooling.35 To physically interpret suchmeasurements

Fig. 4 Motion of labelled messenger RNA molecules in a living E. coli cell. Left: time averaged MSD of individual trajectories plotted as a function of the
lag time D of eqn (6) shows pronounced trajectory-to-trajectory scatter. Yet all exhibit approximately the same anomalous diffusion exponent a E 0.7,
with some local variations. In contrast, the control experiment in water (stars) shows normal diffusion with a = 1. Right: points of the trajectory of an
individual messenger RNA in the E. coli cell, showing that the molecule explores a major fraction of the bacterium’s volume. (Adapted from ref. 33.)

** Curiously the very notion anomalous diffusion first appears in the literature in

the same year as Richardson’s paper, 1926, but in the context of a rays.27 Later

anomalous diffusion was used to describe the observation that in certain systems

the ‘Oeholm method’ does not return a constant for the diffusivity as expected if

the system was following Fick’s law.28 This paper by Herbert Freundlich and

Deodata Krüger28 refers to first measurements in aqueous solutions of dyestuffs by

Herzog and Polotzky.29
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we need to understand the time averages of individual time

series. As we will see, this requires information beyond the

conventional ensemble averages for a variety of anomalous

diffusion processes.

2 A short navigation chart through this
Perspective article

The main focus of this Perspective is two-fold. It is meant as an

introduction to the theory of anomalous diffusion processes

but also as a toolbox for the data analysis of anomalous stochastic

dynamics. Consider the experimental results of single particle

tracking experiments on fluorescently labelled messenger RNA

molecules in a living E. coli bacteria cell shown in Fig. 4.

Despite the fact that individual trajectories explore a large

portion of the entire cell volume, the amplitude and the local

slope of individual molecule traces, apart from the common

subdiffusive trend, vary massively. Is this apparent irrepro-

ducibility an artefact or the result of the physical mechanism

governing the molecule’s motion? What is the exact physical

origin of the variations in the slope? Will longer measurement

times improve the statistics? Can we interpret the time aver-

aged MSD shown here in terms of the ensemble results known

for anomalous diffusion? Such questions will be pursued in

what follows.

More concretely, this Perspective summarises a large variety

of stochastic processes yielding anomalous diffusion of the

power-law form hx2(t)iC Kat
a. We mostly focus on subdiffusion

with 0 o a o 1 but also consider superdiffusion characterised

by a 4 1 as well as ultraslow diffusion with a logarithmic

form of hx2(t)i. The fact that we consider this large range of

anomalous diffusion processes is the non-universal nature

of anomalous diffusion itself. Once we leave the realm of

Brownian motion, we lose the confines of the central limit

theorem forcing the processes to converge to the Gaussian

behaviour predicted by Einstein. For this reason we address

the most common processes effecting anomalous diffusion and

compare their basic properties. The latter are important for the

second purpose of this Perspective, namely, to provide a tool-

box for the analysis of anomalous stochastic time series x(t).

Quite commonly such analyses of time series from experiment

or simulations are performed in terms of time averaged observ-

ables, in particular, the time averaged MSD d2ðDÞ. We point out

that the physical interpretation of the obtained behaviour of

such time averages in terms of the typically available ensemble

approaches may be treacherous: many of the anomalous diffu-

sion processes discussed herein lead to a disparity between the

ensemble and the time averaged observable, for instance,

between the ensemble and time averaged MSDs

x2ðDÞ
� �

a lim
t!1

d2ðDÞ (9)

even in the limit of long measurement times. Moreover, it turns

out that individual results for time averages such as d2ðDÞ
appear to be irreproducible, despite long measurement times.

Such strange kinetics32 was in fact observed in a number of

experiments mentioned below. Instead of insufficient statistics,

we show that such weakly non-ergodic behaviour reflects the

physical nature of the exact mechanisms effecting the observed

stochastic dynamics.

The degree of the disparity between time and ensemble

averaged observables and their apparent irreproducibility

differ between the anomalous diffusion processes discussed

hereafter. For each time series it is important to identify

the exact underlying stochastic process—or combinations

thereof—in order to deduce the correct physical behaviour of

the system, to obtain meaningful values of fitted parameters,

and to predict secondary processes such as rates for diffusion

limited reactions. We therefore discuss the behaviour of time

and ensemble averaged MSDs and other observables for the

different processes. In addition we also address the ageing

behaviour of such processes, that is, the dependence of

physical observables on the time span, which may elapse

between the initial preparation of the system and the start of

the measurement.

Conceptually, weak ergodicity breaking was originally intro-

duced by Jean-Philippe Bouchaud for systems, whose phase

space is not separated into mutually inaccessible domains as

for strong ergodicity breaking.36 Instead Bouchaud was con-

cerned with systems such as physical glasses in which the

exploration time of the phase space is infinite and thus the

particle occupancy in subdomains becomes non-ergodic in a

single trajectory sense. This is the situation that we will

encounter in Section 3. We will see, however, that the situation

is somewhat more subtle in that also a number of seemingly

simple stochastic processes feature similar weak ergodicity

breaking.

The reader may approach this Perspective in two ways. One

is to simply read the article sequentially. The second is to select

specific sections after consulting the basic properties of the

various processes listed in Table 1. In what follows we first

concentrate on continuous time random walks in Section 3,

starting from the classical Scher–Montroll–Weiss picture and

then turning to more recent variants of this model. We then

present the properties of the Gaussian models of fractional

Brownian motion and the closely connected fractional Langevin

equation in Section 4. Section 5 focuses on scaled Brownian

motion, while Section 6 is devoted to heterogeneous diffusion

processes. In Section 7 we discuss the stochastic motion on a

fractal support, and Section 8 covers strong anomalous diffusion

processes. Complementary statistical measurables to analyse

recorded data are presented in Section 9, before a general

discussion in Section 10. The weakly non-ergodic behaviour of

the various processes discussed in the text are summarised in

Table 1. All important symbols are collected in Table 2.

3 Continuous time random walks

We begin with the continuous time random walk (CTRW)

model introduced by Montroll, Weiss, and Scher.37,38 It became
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originally recognised for its successful quantitative description

of charge carrier motion in amorphous semiconductors.37 The

CTRW model can be viewed as a direct generalisation of the

Pearson drunkard’s walk: consider a particle, which starts at

the origin. It has to wait for a random waiting (trapping) time t

drawn from the waiting time PDF c(t), before it makes a jump

to left or right. The length of the jump can also be chosen to be

a random variable, dx, distributed in terms of the PDF l(dx).

After the jump, a new pair of waiting time and jump length are

drawn from the PDFs c(t) and l(dx). An important ingredient of

the CTRW process is its renewal character: after each jump values

of the new pair of random variables t and dx are fully independent

of their previous values. For unbiased CTRW processes, the

jump length distribution is symmetric, l(�dx) = l(dx) such that

hdxi = 0.

We distinguish the sub- and superdiffusive versions of CTRWs

described in the following subsections. These cases arise depend-

ing on whether the characteristic waiting time

hti ¼
ð1

0

tcðtÞdt (10)

and the variance of the jump length

dx2
� �

¼
ð1

�1
ðdxÞ2lðdxÞdðdxÞ (11)

are finite or infinite, respectively. In the case of diverging

moments hti or hdx2i the anomalous character of the resulting

stochastic process is effected due to the Lévy–Khintchine

generalised central limit theorem (Lévy statistics),39–41 according

to which sums of independent and identically distributed random

variables with diverging moments are stable distributions,

compare also Section 8. Simply put, this means the occurrence

of power-law tails of the waiting time or jump length PDFs. In

particular, we may find non-exponential relaxation patterns and

non-Gaussian spatial distributions.42 Apart from renewal CTRW

processes, in this section we also mention two non-renewal

versions of CTRWs.

Let us first briefly consider the case when both hti and hdx2i
are finite. In the diffusion limit this process corresponds to that

of regular Brownian motion with MSD (3), i.e., a = 1 in eqn (8),

where the diffusion constant is defined as K1 = hdx2i/(2hti) in
the limiting sense of a random walk.42,43 Note that apart from

the finiteness of the moments hti and hdx2i the details of the

PDFs c(t) and l(dx) are irrelevant for the diffusive properties of

the CTRW process. In this case of normal diffusion we also

immediately evaluate the integrand in the time averagedMSD (6).

Namely, we know that as long as the lag time D is much larger

than the characteristic time hti for a single jump, the average

number of jumps during this time span equals D/hti. Thus,
the kernel [x(t0 + D) �x(t0)]2 in eqn (6) on average is given by

hdx2iD/hti. The result is

lim
t!1

d2ðDÞ ¼ 2K1D: (12)

Identifying the lag time D with the regular time t in the MSD (8),

we indeed find the equivalence

x2ðDÞ
� �

¼ lim
t!1

d2ðDÞ (13)

Table 1 Different stochastic processes and their (non-)ergodic behaviour. In column WEB, we first classify the processes as weakly non-ergodic (Yes) or
ergodic (No). We list the scaling of the MSD hx2(t)i and the time averaged MSD d2ðDÞ

D E
. Their disparity x2ðDÞ

� �
a d2ðDÞ
D E

signifies weak ergodicity
breaking. Note the very similar behaviour of ensemble versus time averaged MSD of several of these processes

Process WEB hx2(t)i d2ðDÞ
D E

Eqn Ref.

Correlated jump lengths Yes Ct3 CD2t (48) and (49) 120
Lévy walk, 0 o a o 1 Yes CA(a)t2 ’ AðaÞ

1� a
D2 (50) and (51) 136 and 137

Lévy walk, 1 o a o 2 Yes CA*(a)t3�a

’ A�ðaÞ
a� 1

D3�a (50) and (52) 83, 136 and 138

Lévy flight Yes =N[h|x|qi2/q C t2/a] CDt2/a�1 129, 137 and 275a

FBM 0 o a o 2 No Cta CDa (58) 156, 166, 176 and 276
Brownian motion No Ct CD (3) and (12) 44, 277 and 278
FLE motion 0 o a o 1 No Cta CDa (66) 156, 166 and 176
Fractal environment No Ct2/dw CD2/dw 50 and 218
HDP K(x) = K0|x|

b Yes Ct2/(2�b)
CDt2/(2�b)�1 (90), (91) and (93) 197 and 203

Correlated waiting times Yes Ctg/(1+g) CDtg/(1+g)�1 (8), (46) and (47) 120–122
Subdiffusive CTRW Yes Cta CDta�1 (8) and (20) 44, 63 and 64
Confined subdiffusive CTRW Yes Ct0 C(D/t)1�a (21) 45, 68 and 70
Quenched trap/patch models Yes Cta CDta�1 198 and 279b

Ageing CTRW Yes ’ t=t1�a
a ; t � ta;

t; t � ta

	
CLa(ta/t)Dt

a�1 (27) and (29) 73

Scaled Brownian motion Yes Cta CDta�1 (8) and (80) 189 and 190
Ultraslow CTRW Yes Cloga(t) Cloga(t)D/t (43) and (44) 110
Sinai (quenched) Yes Clog4(t) Clog4(t)D/t (42) 110
CTRW in ageing environment Yes Clog(t) Clog(t)D/t (40) and (41) 101
HDP K(x) = (K0/2)e

�2x/x* Yes Clog2(t) C(D/t)1/2 (94) and (95) 202

a For Lévy flights the MSD diverges, however, we can define the rescaled fractional moment h|x|qi2/q C t2/a with 0o qo ao 2. b For the quenched
trap and patch models the relation between the exponent a defined in the MSD and the long-tailed waiting time PDF is not the same as in
subdiffusive CTRWs, at least for one dimension.
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between the MSD hx2i and the time averaged MSD d2 which is

expected in an ergodic system.32,44–47

3.1 Subdiffusive continuous time random walks

We first study the case when the jump lengths are sufficiently

narrowly distributed such that hdx2i is finite. For instance, this
could correspond to a Gaussian form for the PDF l(dx) or the

motion on a lattice of spacing a, with l(dx) = 1
2[d(dx� a) + d(dx + a)],

where d(	) denotes the Dirac d-function. Concurrently, successive

jumps do not occur at equal time steps but are assumed to face

waiting times t, which are distributed in terms of the asymptotic

power-law waiting time PDF

cðtÞ ’ ta0
t1þa

(14)

in the limit t-N with 0 o a o 1, effecting the divergence of

the typical waiting time hti. Here the constant t0 is a scaling

factor corresponding to some fundamental time scale of the

process.

Power-law distributed waiting times following the asymptotic

law (14) with 0 o ao 1 are observed directly in various systems.

These include the diffusion of tracer microbeads in reconsti-

tuted, cross-linked actin networks,48 the motion of function-

alised colloidal particles along a complementarily functionalised

surface,49 or the stochastic pathway of potassium channels

diffusing in the plasma membrane of living human cells.50

Fig. 5 shows the asymptotic power-law behaviour of the waiting

times in the potassium channel data from ref. 50. The relatively

large value of a E 0.9 is significant, as can be seen from

the measurement time dependence in the same system shown

Table 2 Mathematical notations and physical dimensions used in the text

Quantity/functions Detailed description Units used

x Particle position cm
m Particle mass g
t Running time or trajectory length s
ta, t, t1 Ageing, waiting/trapping, and recurrent (forward waiting) time s
D Lag time s
x(t), xfGn(t) White and fractional Gaussian noise cm s�1

BðtÞ ¼
Ð t
0
xðt 0Þdt 0 Standard Brownian motion cm

P(x,t) Probability density function (PDF) cm�1

hx2(t)i (Ensemble) mean squared displacement (MSD) cm2

a, H = a/2 Anomalous diffusion exponent and Hurst exponent 1

d2ðDÞ, da2ðDÞ Time averaged MSD and aged variant cm2

d2ðDÞ
D E

¼ N�1
PN
i¼1

di2ðDÞ
Time averaged MSD averaged over an ensemble of trajectories cm2

La ta=tð Þ ¼ da2ðDÞ
D E.

d2ðDÞ
D E

Ratio of aged and non-aged time averaged MSDs 1

fðxÞ; x ¼ d2ðDÞ
.

d2ðDÞ
D E

Amplitude variation distribution of the dimensionless quantity x 1

EB(D) = hx2(D)i � 1 Ergodicity breaking parameter 1

EB ¼ x2
� �.

d2
D E

Auxiliary ergodic parameter 1

G(D) Non-Gaussianity parameter 1
c(t), l(dx) Waiting time and jump length distributions s�1, cm�1

m Stable index for jump-lengths of Lévy flights 1
v Velocity of Lévy walks cm s�1

Dapp Apparent diffusivity cm2 s�1

Ka Generalized diffusion coefficient cm2 s�a

K0 Basal diffusion coefficient for HDPs, K(x) BK0|x|
b cm2�b s�1

K(t) Time dependent diffusivity for SBM, K(t) = aKa*t
a�1 cm2 s�1

Ka* Generalized diffusivity for FBM cm2 s�a

ma Fraction of mobile traces for CTRW 1
T, Tg Absolute and glass temperature K
V(x), kBT External potential and thermal energy erg
o Strength of external harmonic potential V(x) = mo2x2/2 s�1

d, df, dw Spatial, fractal, and walk dimensions 1
R, NA Gas constant and Avogadro’s number erg K�1, 1

Z Friction coefficient s�1

Z*, g* Noise amplitude and generalised friction coefficient in FLE g s�1, g s�a

1/k Relaxation time to stationary solutions s
n(t) and N(t) Counting process and number of jumps 1
}aðtÞ Probability density of first passage times s�1

0D
1�a
t Riemann-Liouville fractional derivative sa�1

L{f (t)} Laplace transformation of the function f (t)
G(y) Gamma function
la(x) La,0(x) One-sided and symmetric Lévy-stable law
ID(

�
v) Infinite density of time averaged velocity

�
v

Er,d(z), M(a,b,z) Mittag-Leffler and Kummer function
�g C 0.5772 Euler constant
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in Fig. 7. In a fashion similar to the above experiments, power-

law distributed waiting times characterise the interruption in

the motion of tracer particles in weakly chaotic flows represent-

ing persistent sticking to invariant surfaces (stable islands,

Cantori),51 and power-law transition times are often measured

for the on–off times of blinking quantum dots.34 Such informa-

tion can be retrieved from single particle observations,32 while

for the more common measurements of particle ensembles,

only indirect evidence for scale-free CTRW dynamics is possible,

notably in the seminal study reported by Scher and Montroll.37

To identify CTRW dynamics or any other stochastic mechanism

in a given set of data without having the possibility to trace

individual test particles, complementary measures need to be

applied, see Section 9.

In the theory of CTRWs one can readily show that the

MSD with waiting time PDF (14) is subdiffusive and governed

by eqn (8), where the generalised diffusion constant is defined

via42,43

Ka ¼
dx2
� �

2ta0
: (15)

What is the dynamic equation connected to this CTRW pro-

cess? On the stochastic level, the regular Langevin equation

dx(s)/ds = x(s) driven by the white Gaussian noise x(s) is

augmented with a second equation subordinating the number

of steps s to the real process time t.52–55 After averaging over the

noise, in the diffusion limit we obtain the fractional diffusion

equation,42,56

@

@t
Pðx; tÞ ¼ Ka 0D

1�a
t

@2

@x2
Pðx; tÞ; (16)

where we introduced the Riemann–Liouville fractional operator

defined by57,58

0D
1�a
t Pðx; tÞ ¼ 1

GðaÞ
@

@t

ðt

0

Pðx; t 0Þ
ðt� t 0Þ1�a

dt 0: (17)

In the limit a = 1 we recover the normal diffusion eqn (1). The

fractional diffusion eqn (16) can equivalently be formulated in

terms of the Caputo operator.58 In eqn (17) we see that the

process is dominated by the slowly decaying memory given by

the integral over the power-law kernel. In the presence of an

external potential, the dynamics is described in terms of the

fractional Fokker–Planck equation.42,59 This fractional Fokker–

Planck equation fulfils a generalised form of the Einstein–Stokes

relation as well as linear response.42,59 We note that reactions

in such a subdiffusive setting are discussed in ref. 60. An

interesting generalisation to evanescent CTRW subdiffusion

was discussed recently.61

As illustrated in Fig. 6, during the evolution of the process

longer and longer waiting times emerge. Due to the lack of a

characteristic time scale of c(t), extreme individual waiting

times t arise which are of the same order as the measurement

time. In particular, there is no longer a scale hti separating a

single or a few jumps from the limit of many jumps. This effects

a disparity between the MSD and the time averaged MSD, the

so-called weak ergodicity breaking31,32,36,62–67

x2ðDÞ
� �

a lim
t!1

d2ðDÞ: (18)

More specifically, as this subdiffusive process is no longer self-

averaging such as the normal Brownian motion, to be able to

obtain analytical results we introduce the additional averaging

d2ðDÞ
D E

¼ 1

N

XN

i¼1

di2ðDÞ (19)

over sufficiently many (more correctly, N - N) individual

trajectories. From a data analysis point of view, this procedure

ensures smooth curves for d2
D E

as function of the lag time D.

Using the known fact that for subdiffusive CTRWs the

average number of jumps from t = 0 up to time t scales like

hn(t)i C ta, it is quite straightforward to show that in the limit

D { t the result for the time averaged MSD is32,44,63,64

d2ðDÞ
D E


 2Ka

Gð1þ aÞ
D

t1�a
: (20)

Fig. 5 Statistics of the waiting times measured in the motion of individual
labelled potassium channels in the plasma membrane of living human
kidney cells, combining the data of two different channel configurations,
see ref. 50 for details. The asymptotic power-law trend of the waiting time
distribution in this graph scales like Ct�1.9. Data courtesy Diego Krapf,
Colorado State University.

Fig. 6 Trajectory of a subdiffusive CTRW with waiting time PDF (14) and
a = 1/2. In the evolving process longer and longer waiting times appear,
a characteristic of the scale-free underlying law (14) of this non-stationary
process.
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This is the first example of weak ergodicity breaking that we

analyse in the following. Remarkably, the linear lag time

dependence is different from the ta-scaling of the MSD (8).

Simultaneously, the length of the time series (measurement

time) t occurs explicitly in expression (20). The latter echoes the

ageing dependence of the subdiffusive CTRW process, to be

addressed shortly in more detail: the longer the process lasts,

the smaller the time averaged MSD becomes. Physically, this

corresponds to the above observations that for the scale-free

waiting time distribution (14) longer and longer trapping times

occur, stalling the progress of x(t). The linear form (20) of the

time averaged MSD was shown for the subdiffusive motion of

lipid granules in living yeast cells,68 and the ageing dependence

d2 ’ 1=t1�a was observed for the motion of insulin granules in

the cytoplasm and of potassium channels in the plasma

membrane of living human cells.50,69 For the channel motion

in the plasma membrane the data are shown in Fig. 7.††

Note that the linearity of the time averaged MSD (20) for

subdiffusive CTRWs may be deceiving: when such a linear

scaling is observed for the time averaged MSD in experiments,

it may easily be concluded that the observed process is normal.

Without testing other quantities, such as the dependence of d2

on the measurement time t, such a conclusion may in fact be

wrong. Note that in the limit a = 1 eqn (20) reduces to the

ergodic Brownian form, independent of the trace length t.

Another a priori surprising result is that for confined sub-

diffusive CTRWmotion the time averagedMSD does not converge

to the thermal plateau. Instead, after engaging with the confine-

ment it continues to grow in the power-law form45

d2ðDÞ
D E


 x2
� �

B
�hxiB2


 � 2 sinðpaÞ
ð1� aÞap

D

t

� �1�a

; (21)

where the prefactor involves the first two moments of the

Boltzmann distribution,

xnh iB¼ Z
�1

ð1

�1
xn exp �VðxÞ

kBT

� �
dx (22)

of the confining potential V(x). The normalisation factor is given

in terms of the partition functionZ ¼
Ð1
�1expð�VðxÞ= kBT½ �Þdx.

Only in the Brownian limit a = 1, we observe a turnover from the

free diffusion behaviour to a plateau with d2ðDÞ
D E


 D0. In the

general case 0o ao 1 the time averagedMSD (21) grows with D,

however, as long as D { t, the value of d2ðDÞ
D E

never exceeds

(hx2iB� hxiB2).‡‡ The behaviour (21) was found from simulations

in ref. 70 and experimentally corroborated from optical tweezers

tracking data in ref. 68.

Each individual, sufficiently long time series of this sub-

diffusive CTRW process is characterised by a number of extre-

mely long waiting times. However, in each realisation different

numbers and lengths of such waiting periods occur. This gives

rise to the fact that time averages remain random even for very

long averaging times, and time averaged physical observables

are thus irreproducible.45,64,73 This situation is shown in Fig. 8,

where the simulation data show variations in the slope in

individual d2 traces as well as a distinct amplitude scatter

between different d2. Qualitatively these are reminiscent of the

observations made in the experiments of Golding and Cox.§§33

Similar amplitude variations are observed in the aforementioned

single particle tracking studies in living cells50,68,69,71 and in the

simulation of associated water in the vicinity of lipid bilayers.72

We quantify this randomness of the time averaged MSD in terms

of the dimensionless variable64

x ¼ d2ðDÞ
d2ðDÞ
D E: (23)

The associated distribution is64,73

fðxÞ ¼ G1=að1þ aÞ
ax1þ1=a

la
G1=að1þ aÞ

x1=a

� �
(24)

for sufficiently long measurement times t. Here la is a one-

sided, completely asymmetric Lévy stable law with the Laplace

image L{la(t)} = exp(�ua).¶¶74 Note that the variable x is in the

denominator of the argument of la in eqn (24), and thus

moments hxni exist. In particular, for a = 1/2, the distribution of

f(x) is the half Gaussian f(x) = (2/p)exp(�x2/p), whose maximum

occurs at x = 0, i.e., in very long trajectories the most likely case

is that the amplitude d2 vanishes. For a fully ergodic process

Fig. 7 Dependence of the time averaged MSD on the measurement time,
observed for the motion of potassium channels in the plasma wall
of human kidney cells in ref. 50. The straight lines show the scaling

d2 ’ 1=t1�a with a = 0.9 deduced from the statistics of waiting times of
this system shown in Fig. 5. The predicted scaling is nicely fulfilled by the
data, corroborating the ageing nature of the system: the longer the system
evolves (given by the times in the figure key) the smaller the apparent
diffusivity. Data courtesy Diego Krapf, Colorado State University.

†† Note that in the latter two examples the time averaged MSD (6) does not scale

linearly as in eqn (20), as the observed stochastic motion has an additional noise

source.50,69

‡‡ Note that the universal factor 2sin(pa)/[(1 � a)ap] varies between 2 (for the

limits a- 0 and a- 1) and 8/p E 2.55 (for a = 1/2).

§§ As argued in ref. 64 the fact that the average slope of d2ðDÞ is smaller than

unity in the data of ref. 33 may be due to the fact that the motion of the RNA in the

cell is confined.

¶¶ The Laplace image f (u) of a function f (t) is defined as f ðuÞ ¼
Lff ðtÞg ¼

Ð1
0
f ðtÞ expð�utÞdt.
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with a = 1 the distribution has the sharp form f(x) = d(x � 1),

which implies that individual trajectories are completely

reproducible and there is no scatter in the relative amplitude

x around the ergodic value x = 1. The variance of the amplitude

fluctuations of d2 is measured in terms of the ergodicity break-

ing parameter64,75

EB ¼ lim
t!1

x2
� �

� xh i2
h i

¼ 2G2ð1þ aÞ
Gð1þ 2aÞ � 1 (25)

which monotonically varies from EB = 1 for a- 0 to EB = 0 for

a - 1. The latter mirrors the ergodic behaviour found for

Brownian motion by Nordlund.

How can scale-free forms of the waiting time distribution

(14) come about? Scher and Montroll explained this in terms

of energetic traps in a quenched energy landscape as that

shown in Fig. 9. When the depths of individual energy wells

are exponentially distributed, the motion of a particle on this

landscape is dominated by individual thermal escapes from

these traps characterised by the Kramers/Arrhenius activation,

only to be trapped again in the next well. As the motion of the

particle progresses, it typically encounters ever deeper wells,

effecting the subdiffusive behaviour.39 This scenario indeed

gives rise to the waiting time PDF (14).8837,76 The correspon-

dence of the Arrhenius-type escape in the energy landscape

to power-law waiting time distributions renders the CTRW an

extremely successful mathematical model for the description

of the mechanisms of anomalous diffusion in a number of

important physical systems.

Alternative sources for the power-law form (14) are spatial

traps. One example is the Havlin–Weiss comb model originally

designed to mimic the spatial trapping of particles in the

dangling ends of a percolation cluster:77 a particle moves along

the x axis but can get transiently trapped in perpendicular one-

dimensional channels, a structure similar to the teeth of the

comb. As the returning probability scales like t�1/2, the effective

motion along the x axis is governed by the waiting time PDF

(14) with a = 1/2. This exponent is indeed observed in typical

experiments of tracer dynamics in subsurface aquifers and

may correspond to the trapping of tracer molecules in thin

cracks off the main water artery.78 Further examples of systems

leading to a power-law form of c(t) are dynamic maps79–84 and

the sticking of tracer particles around stable islands of weakly

chaotic systems.***51,85

Ageing effects of the subdiffusive CTRW. Power-law distri-

buted waiting times lead to ageing in a wide variety of systems.

Suppose you observe the on–off blinking of a single, illumi-

nated quantum dot between a light emitting and a dark state.34

While such an experiment will show many rapid transitions

between the on and off states, occasionally very long on or off

periods will appear. Over a sufficiently long observation period t,

the duration of these long events typically increases with t.34

A similar effect is observed for the motion of potassium channels

Fig. 8 Sample trajectories of a subdiffusive CTRWwith power-law waiting
time PDF (14) for a = 1/2. For 10 individual trajectories of length 105 (a.u.)
we show the time averaged MSD (6). While the general slope of the time
averaged MSD d2ðDÞ follows the linear lag time dependence predicted by
eqn (20), local deviations of the slope are visible. Moreover, the variation
(scatter) of the amplitudes between different time traces is distinct. Both
effects are due to the occurrence of long waiting times between jumps,
due to the scale-free nature of c(t), eqn (14).

Fig. 9 Quenched trapmodel with constant bias.39We show a realisation of
the trapping landscape with exponential distribution p(E) = Tg

�1exp(�E/Tg)
of trap depths E, where we set the Boltzmann constant to unity. The system
specific ‘‘glass’’ temperature Tg (here, Tg = 1) sets the width of p(E). We also
include a unit tilting force. On its way through this landscape, a random
walker successively falls into traps and faces escape times given by
Arrhenius’ law t C exp(E/T), where T is the temperature of the thermostat.
Due to the tilt, revisits to a given trap are unlikely, and the model thus
corresponds to an annealed (biased) continuous time random walk with
power-lawwaiting time PDF (14) with a = T/Tg. When the system temperature
is below Tg, subdiffusion is effected.

88 More precisely, the quenched trap model in one and two dimensions leads to

correlations when the particle revisits traps. The resulting process is thus

different from the annealed subdiffusive CTRW. Such correlations can be avoided

when the process is embedded in three or more dimensions, as now the random

walk is transient. Alternatively, an additional bias as shown in Fig. 9 can be used

to eliminate correlations. The concept of trapping landscapes was extensively

broadened by Bouchaud to introduce ageing and weak ergodicity breaking in

glasses.39,76

*** In the latter example of weakly chaotic systems the waiting times interrupt

ballistic phases, so that the overall motion is anomalous with exponent 1 o ao 2,

see Section 3.5.
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in the plasma membrane of living cells50 or for the diffusion of

submicron tracers in a cross-linked actin mesh:48 longer and

longer immobilisation periods occur in the course of the

measurement. We already alluded to this phenomenon in the

discussion of the CTRW trajectory in Fig. 6 and from Fig. 7.

Such strongly non-stationary, out-of-equilibrium behaviour is

indeed well known from glassy systems,76,86 a field in which the

term ageing was originally coined. Subdiffusive CTRWs are non-

stationary, as we could see from the explicit dependence of d2

on the measurement time t in eqn (20), and they have been

proposed to capture the observed dynamics in glassy systems.87

What if we start to probe such an ageing system only at some

(ageing) time ta after the system was initially prepared at time t = 0?

As the subdiffusive CTRW evolves, on average longer and longer

waiting time events appear in the trajectory (compare the time trace

in Fig. 6). When we start to observe the particle we will typically find

it within one of the extremely long waiting periods. The occurrence

of the first step in this scenario is no longer determined by the

statistics of the waiting time distribution c(t) from eqn (14) but

occurs at the forward waiting (recurrence) time t1 (see Fig. 10),

which is governed by the PDF73,88–90

h t1; tað Þ ¼ sin pa

p

taa
ta1 t1 þ tað Þ: (26)

At longer ageing times (ta c t1), the scaling h(t1,ta) C t�a
1 in

terms of t1 of the forward waiting time PDF is thus broader than

that of the original waiting time PDF (14), c(t) C t�1�a. Due

to the memory of the CTRW process—directly visible in the

fractional diffusion eqn (16)—strong ageing persistently affects

the time evolution of the process.

The behaviour of the MSD for free, unconfined CTRWmotion

in this ageing scenario then exhibits the crossover73,89

x2ðtÞ
� �

a



Kat
a�1
a t; ta � t;

Kat
a; ta � t;

(
(27)

which for strong ageing (ta c t) shows an apparent linear

scaling with time t. Only when the process evolves for much

longer than the original ageing time, t c ta, the scaling with t

reflects the subdiffusive nature of the process.

Remarkably, the behaviour of the associated time averaged

MSD

da2ðDÞ ¼
1

t� D

ðtaþt�D

ta

xðt 0 þ DÞ � xðt 0Þ½ �2dt 0 (28)

is much more transparent in the presence of ageing. Namely,

in the limit D { t the result is73

da2ðDÞ
D E


 Laðta=tÞ
Gð1þ aÞ2Ka

D

t1�a
¼ La ta=tð Þ d2ðDÞ

D E
; (29)

where the right hand side involves the non-aged quantity d2.

The physical scaling with the lag time D is not affected, and all

information on the ageing enters as the ratio ta/t into the

universal algebraic prefactor

L(z) = (1 + z)a � za. (30)

As shown in ref. 73, this ageing depression also occurs for other

time averaged physical observables. In contrast to the ensemble

average, the scaling with D is the same for any ageing time ta,

and thus time averages are in that sense more suitable measur-

ables for aged systems. Finally, we remark that in the limit of

strong ageing ta c t c D, we even obtain an equivalence of the

limiting behaviour of the regular MSD and the time averaged

MSD,73

da2ðDÞ
D E


 2Ka

Gð1þ aÞt
a�1
a D 
 x2ðDÞ

� �
a
: (31)

Another important lesson to be drawn from ageing renewal

theory73,89 is the fact that in a growing fraction of trajectories

no jump occurs within the observation window from the ageing

time ta to ta + t. It was shown in ref. 73 that the probability to

have a nonzero number of steps during this observation

window decays as ma C (t/ta)
1�a for strong ageing ta c t.

Concurrently the discrete probability for not moving at all

during the observation grows. Observing a series of individual

particles, one therefore finds a population splitting into mobile

and immobile particles.73 This fact is important when one

wants to extract the amplitude—for instance, the anomalous

diffusion coefficient Ka—from a given set of time averaged

data.73 Notably, also the scatter distribution f(x) is significantly

altered.73 The splitting into mobile and immobile fractions may

be underlying the experimentally observed population splitting

in molecular biological systems.91 Fig. 11 demonstrates for the

same number of simulated trajectories how ageing suppresses

the mobile fraction of particles within the observation window

ta. . .ta + t.73

Ageing also affects other quantities of the subdiffusive CTRW

process, for instance, the first passage behaviour. Thus, for

unbiased subdiffusion on a semi-infinite domain the density of

first passage times acquires the three distinct scaling regimes92

}aðtÞ ’

ta�1
a t�a; ta � t;

taat
�1�a; ta � t � t?;

x0K
�1=2
a t�1�a=2; t? � t;

8
>>><
>>>:

(32)

with the time scale t* C t1+a/2a K1/2
a /x0 containing the initial

distance x0 between the particle and the absorbing boundary.

As expected, as long as ageing is weak, the scaling of the

first passage time PDF with t features the exponent (�1 � a/2)

of the non-aged system.42,93,94 However, as ageing becomes

Fig. 10 Schematic of the forward (recurrence) waiting time. A process
governed by the waiting time PDF (14) is started at t = 0. Events (jumps of
a random walker or on–off transitions of a blinking quantum dot) are
symbolised by the blue impulses. When we start to follow the system’s
dynamics after the ageing period at ta, the forward waiting time until the
first jump occurs is t1.
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more severe, there exists a competition between the magni-

tudes of the ageing time ta and the measurement time t, with

the intermediate scaling exponent (�1 � a) and the fully aged

exponent (�a). In particular, the intermediate scaling is steeper

than for both the non-aged and the fully aged system. This

observation, in principle, offers the possibility to determine

the age ta of the system from observation of the first passage

behaviour, albeit sufficiently many and long trajectories are

needed to evaluate }aðtÞ.92
We so far discussed the case with 0 o a o 1, when the

characteristic waiting time hti diverges. What happens when hti
is finite but the fluctuations around it diverge, i.e., for the case

1 o a o 2? It can be shown that indeed the process in many

facets is different from the naively expected Brownian behaviour.

Instead, different ageing features characterise the process.95,96

To fully understand the consequences on quantities such as the

time averaged MSD d2ðDÞ or its amplitude scatter, more work is

needed.

3.2 Noisy continuous time random walks

In the subdiffusive CTRW the particle becomes fully immobi-

lised with respect to the co-ordinate x(t) in between successive

jump events (see Fig. 6). For charge carriers in an amorphous

semiconductor or for tracer particles firmly stuck to much

larger objects or solid surfaces this assumption appears to be

reasonable. However, imagine a submicron tracer particle in a

cross-linked network consisting of semi-flexible actin filaments.48

In this case the particle is stuck in cages for waiting times

distributed like the power-law (14). The actual trajectory shows

distinct fluctuations of approximately constant amplitude

around a mean location.48 This behaviour stems from the

thermal nature of the system, that is, the cages in the mesh

are typically somewhat larger than the tracer particle and/or the

actin filaments making up the mesh are themselves subject to

thermal agitation, compare the results of recent simulations of

tracer motion in a flexible gel.97 In the noisy CTRW the super-

imposed noise is combined with the fully immobilised periods

of the native CTRW.98 This model is therefore relevant for the

quantitative description of the stochastic particle motion in

a large range of systems. In particular, a detailed analysis of

recorded data in terms of the noisy CTRW may unveil an

underlying power-law waiting time despite the fact that no

clear stalling events feature in the measured trajectory.

In the above scenario of approximately constant amplitude

noise around the horizontal immobilisation periods in the x(t)

diagram, it is a natural choice to add Ornstein–Uhlenbeck noise

in the position space to the native subdiffusive CTRW process

(see Fig. 12). For the MSD this leads to the additive terms98

x2ðtÞ
� �

¼ 2Ka

Gð1þ aÞt
a þ Z2D

k
1� e�2kt

 �

; (33)

where the first term represents the contribution of the native

CTRW. The second term contains the noise strength Z2D made

up of the diffusivity D of physical dimension cm2 s�1 and the

empirical noise amplitude Z. This dimensionless noise strength

should not be confused with the friction coefficient used earlier.

Moreover, k is an inverse time scale governing the relaxation of

the Ornstein–Uhlenbeck process to stationarity. The Ornstein–

Uhlenbeck component in the MSD (33) after the time scale 1/k

becomes merely an additive constant, whose relative amplitude

becomes progressively smaller compared to the first term. The

effect on the trajectory itself is displayed in Fig. 12: for increasing

noise amplitude the stalling periods of the native CTRW become

more andmoremasked and resemble the experimental trajectories

of the submicron tracers in the semi-flexible polymer network.48

The results for the MSD are shown in Fig. 13.

The associated time averaged MSD becomes98

d2ðDÞ
D E


 2Ka

Gð1þ aÞ
D

t1�a
þ Z2D

k
1� e�kD

 �

; (34)

in absence of ageing (ta = 0). In contrast to the MSD (33), the

time averaged MSD (34) contains the factor ta�1 in the first term

representing the native CTRW contribution, while the ampli-

tude of the noise in the second term on the right hand side

is independent of t. While for small noise amplitude Z the

observable d2 will essentially be indistinguishable from the

native CTRW, for larger Z we observe a distinct crossover

behaviour for d2. Namely, for shorter lag times the time averaged

Fig. 11 Time averaged mean squared displacement d2ðDÞ for individual
free CTRW trajectories (full symbols) and the averages according to
eqn (29) (bold black lines). Left: non-aged system with ma = 1. Right: aged
process, ta = 1011 (a.u.), in which the large fraction 1 � ma E 94% of
trajectories is suppressed in the log–log plot. The parameters are a = 1/2,
hdx2i = 1, hti = 1, and t = 109. Compare ref. 73.

Fig. 12 Noisy CTRW process with Ornstein–Uhlenbeck noise with a = 0.8,
for different amplitudes Z of the superimposed Gaussian noise. Increasing
Z washes out the immobilisation periods of the pure CTRW process.
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MSD shows contributions from both the native CTRW and the

Ornstein–Uhlenbeck noise. Writing d2
D E


 2DappD, for D{ 1/k

we find Dapp C Kat
a�1/G(1 + a) + Z2D. At longer lag times, solely

the native CTRW contribution is visible and DappC Kat
a�1/G(1 + a).

In between these two regimes, a crossover behaviour is observed,

as shown in Fig. 13. However, when the measurement time t is

much longer than the lag time D, the Ornstein–Uhlenbeck term

is dominant. Again the time average has a clear advantage

over the ensemble average, as it reveals additional detail of the

behaviour.

A different scenario can also be envisaged.98 For instance,

when the observer is interested in the motion of a tracer inside

a living cell and the attachment of the cell to the cover slide in

the microscope turns out to be broken, the data will show the

additional Brownian noise stemming from the random cell

motion superimposed to the anomalous motion with respect to

the reference frame of the cell. In that case the MSD reads98

x2ðtÞ
� �

¼ 2Ka

Gð1þ aÞt
a þ 2Z2Dt; (35)

which exhibits a turnover from the subdiffusive scaling with ta

to the linear Brownian growth Ct in the long time limit. The

associated time average is always linear,98

d2ðDÞ
D E


 2Ka

Gð1þ aÞ
D

t1�a
þ 2Z2DD: (36)

We note that the superposition of Poissonian and non-

Poissonian noise was also discussed in a biologically inspired

reaction rate model.99

3.3 Ultraslow diffusion of continuous time random walks in

an ageing environment

The subdiffusive CTRW process discussed so far is a renewal

process. That is, after each step the waiting time t is randomly

chosen from the same PDF c(t). Physically, this corresponds to

an annealed environment.39 More formally, one can view this

process as if the random walker carried his own clock around

whose random ticks trigger the occurrence of the jumps. As we

discussed above, if we want to describe an aged subdiffusive

CTRW initiated at t = 0 and evolving for the ageing time ta, the

statistics for the occurrence of the first jump in an observation

beginning at ta is modified. The first jump occurs after the

forward waiting time t1, which is distributed with the prob-

ability density function (26). All subsequent waiting times are

then again drawn from the standard law (14).

Here we consider a different scenario, in which each jump

event depends on the present age of the system. Imagine a

toy scenario for a rupture model, in the spirit of Zener’s

famous work on stress relaxation in solids:100 a crack in a two-

dimensional material is propagating along the discrete n axis,

as sketched in Fig. 14. The crack is represented by the bold

black zig-zag line. As indicated by the arrow, this crack has just

propagated from site n to n + 1. Crack propagation is triggered

by the red circles (the ‘vacancies’), which diffuse along the

perpendicular x axis. When the vacancy at site n hit the x = 0

line the crack tip was allowed to extend to site n + 1. To

propagate to site n + 2, the vacancy at n + 1 has to diffuse to

x = 0, etc. If the vacancies can only diffuse along a finite interval

of length l on the x-axis, they return to x = 0 on time scales

tx C l
2. This tx then is the average time for the crack propa-

gation from one site to the next, and we will find the crack

propagation law hn(t)i B t/tx.

What happens if the length l becomes very large and the

vacancies can venture far away? As known from the theory of

comb models,77 the probability density of return to x = 0 is of

power-law form, proportional to t�1� 1/2. Typically, when the tip

of the crack reaches a new site, the vacancy will be away from

x = 0, and the triggering event for the crack propagation to the

next site then corresponds to the forward waiting time t1
distributed according to eqn (26) with a = 1/2. In contrast to

the previously discussed renewal ageing CTRWs, however, the

next propagation step of the crack tip again occurs with the

forward waiting time, characterising the arrival of the next

vacancy at x = 0, and so forth. In other words, every step occurs

Fig. 13 Ensemble averaged (top) and time averaged (bottom) MSDs for
the noisy CTRW process.98 In each case we present results for a = 0.5 and
a = 0.8 for three different noise strengths. The trajectory lengths are
t = 105, and the symbols represent an average over 103 trajectories.

Fig. 14 Sketch of the crack propagation model discussed in the text. The
tip of the crack (black zig-zag line) propagates from site n to n + 1 when
the vacancy represented by the red circle diffuses to the origin (x = 0) at
point n.
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with the forward waiting time t1. The probability that the tip

arrives at an extremely long forward waiting time t1 increases

considerably.††† This fact significantly alters the dynamics of

the process. Formally, this scenario corresponds to a random

walker, which is updated by stationary, site-specific clocks.

If we generalise the CTRW model and consider a process in

which every jump occurs with the waiting time PDF (14) with

general 0 o a o 1, it can be shown that the crack propagation

dynamics is reduced to the much slower logarithmic law101

hnðtÞi 
 logðt=t0Þ
m

; (37)

where m = �G0(a)/G0(a) � %g in terms of the complete G function

and its derivative G0, %g = 0.5772. . . is Euler’s constant, and t0 is a

cutoff time to avoid divergencies at t = 0. The counting process

n(t) is deterministic in the sense that the relative fluctuations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðtÞh i � hnðtÞi2

q

hnðtÞi ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m logðt=t0Þ

s
; (38)

albeit slowly, decrease during the progress of time.101 For a4 2

the process is normal and statistically equivalent to a Poisson

update, which is equivalent to the above scenario with finite

length l for the vacancy diffusion leading to the linear time

dependence hn(t)i C t. However, similar to our observations

above, the case with a finite characteristic update time hti but
diverging variance of waiting times with 1 o a o 2 displays the

power-law anomaly hn(t)i C ta�1.101

Interestingly, the time average over the time series n(t),

nðDÞ
D E


 1

mt
log

t

t0

� �
D; (39)

is linear in the lag time D, in analogy to the results (20) for the

regular renewal subdiffusive CTRW process. The inverse depen-

dence on the measurement time t with the logarithmic correc-

tion observed here, in a rough way can be viewed as the a- 0

behaviour of the power-law relation in eqn (20).

Above we constructed the crack propagation model such

that the motion of the tip is fully biased and each step is

directed to higher n values. What if we interpret the update rule

for the counting dynamics n(t) as jumps of a random walk

process in real space? To avoid correlations when the random

walker revisits the same spatial point and its next update is

governed by the same clock as during the previous visit, in

analogy to the discussion of the quenched trap model we could

include a spatial bias of the random walk. Alternatively, we

could embed the random walk in three dimensions. Due to

the transient nature of this process, revisits are significantly

reduced, and the MSD

hr2(t)i C log(t/t0) (40)

of the walker is then proportional to hn(t)i, while the corre-

sponding time averaged MSD

d2ðDÞ
D E

’ D

t
log t=t0ð Þ (41)

scales like nðDÞ
D E

. Such a random walk process thus exhibits

weakly non-ergodic behaviour.

The random walk process in an ageing environment corre-

sponds to a non-renewal process in dimension one and two.

In dimension three it is a renewal process, however, here the

waiting time distribution (14) is replaced by the PDF of the

forward (recurrent) waiting time. In other words, due to

the logarithmic nature the process, eqn (37), can be shown to

be governed by the limiting distribution for the product of

independent random variables, the log-normal distribution.101

This approach may thus be of relevance to a large range of

applications in which this distribution is identified.102

In the regular, renewal subdiffusive CTRW ageing affects the

statistics of the first jump, given in terms of the forward waiting

time t1. All subsequent jumps occur with the regular waiting

time PDF (14). The system remembers the first step, due to the

slowly decaying memory inherent to the process, seen in the

non-local time operator of the associated fractional diffusion

eqn (16). Once the process time exceeds the ageing time signi-

ficantly, i.e., t c ta, the ageing effects are no longer visible.‡‡‡

In the non-renewal scenario discussed here the system has a

high likelihood to encounter atypically long waiting times at

every step and thus every single step includes ageing. This

causes the massive retardation of the motion, giving rise to the

emerging logarithmic law. Such time dependencies occur in a

large variety of systems, inter alia, the crumpling of paper,103

compactification of grains,104 or record statistics.105 Recently,

it was shown that the long time behaviour of a tracer particle in

a single file system, in which individual particles repel each

other and may stick to a functionalised channel with power-

law waiting times, can indeed be described in terms of the

logarithmic time dependence derived here within the non-

renewal ageing process.106

Other ultraslow diffusion processes. In the theory of stochastic

processes, the logarithmic time evolution has a prominent

representative, namely, Sinai diffusion.107 In this special case of

Temkin’s model,108 the random walker moves in the quenched

energy landscape created by a seed random walk. Thus, locally

the walker experiences a force of the same amplitude, randomly

to the left or the right. The walker can become trapped signi-

ficantly when the bias in a number of adjacent sites points in

the direction of the walker’s current location. To get to a

distance x from its starting point the particle needs to cross

an energy barrier of the typical order
ffiffiffi
x

p
, corresponding to an

activation time scale t ’ t1 exp c
ffiffiffi
x

pð Þ, where t1 is a fundamental

time scale and c a dimensional constant. The typical distance

covered by the walker during time t then scales according to

††† Remember the fact that for long ageing times the probability density function

(26) of the forward waiting time decays with the power �a and is thus signifi-

cantly broader as the regular waiting time density (14).

‡‡‡ This is true for the ensemble averaged MSD (27) as well as for the corre-

sponding time averaged MSD. In the latter, the ageing depression L(ta/t) converges

to unity, compare eqn (28) and (29).
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the ultraslow, logarithmic law x2 C log4(t/t1),
39 compare also

the discussion in ref. 109. Referring to ref. 110 for further

explanations, we quote the result for the time averaged MSD

g
d2ðDÞ
D E

’ 3721

17080
log4ðtÞD

t
¼ gx2ðtÞh i549

854

D

t
; (42)

where the tilde denotes the disorder average. Interestingly, also

here the time averaged MSD increases linearly with the lag time

and exhibits a strong sensitivity to the measurement time.

A generalisation of the Sinai model with strongly correlated

disorder113 and a periodic Sinai model111 were reported recently.

The splitting probability of the Sinai model is determined in

ref. 112.

In terms of a renewal CTRW ultraslow processes can be

established by using a waiting time PDF of the form c(t) C

1/(t log1+gt),110,114–116 which is normalised but does not possess

finite moments of any power htqi with q 4 0. It produces an

MSD of the form

hx2(t)i C log gt, (43)

i.e., for g = 4 the MSD scales identically to that of the Sinai

diffusion. The weakly non-ergodic behaviour of ultraslow CTRWs

is analogous to eqn (42) for Sinai diffusion, apart from the general

exponent g and the prefactor,

d2ðDÞ
D E


 x2ðtÞ
� �

� D

t
: (44)

The time averaged MSD, the localisation of the diffusion

particle, as well as the ergodic properties of both Sinai and

ultraslow CTRW diffusion are analysed in ref. 110, discussing

some of the fundamental differences between time averages

recorded in annealed versus quenched environments.

Finally, ultraslow diffusion can also be effected by iterative

dynamics maps, as shown by Dräger and Klafter.116 Instead of

the power-law maps with a single exponent z discussed in ref. 79,

however, ultraslow diffusion emerges when an entire hierarchy

of exponents is considered. In very dense two-dimensional lattice

gas systems, ultraslow diffusion emerges, as well.117

3.4 Correlated continuous time random walks

Another way to break the renewal character of the standard

CTRW process is to introduce correlations between successive

waiting times. Correlations appear naturally in the motion

behaviour of higher animals or humans, or in the dynamics

of financial markets. They are also present for particles

diffusing in quenched disorder, compare the above discussion

of the quenched trap model or Sinai diffusion. It is there-

fore consequent to consider non-renewal CTRW processes

with built-in correlations. This can be achieved by extension

of the subordination of the physical time to the number

of steps of the process.118,119 An alternative approach is the

following.

Assume that successive waiting times are correlated in a way

that waiting time ti is given by waiting time ti�1 modified by a

small increment, dti, that is, ti = ti�1 + dti. The increments

dti may be positive or negative. Successive waiting times are

thus correlated: a short waiting time is followed by a similarly

short one, and vice versa for a long waiting time. This approach

corresponds in fact to a random walk in the space of waiting

times, and we can write the current waiting ti time as the sum

of increments120–123

ti = |dt0 + dt2 + . . . + dti|. (45)

The absolute value occurs here as waiting times always have to

be positive. These increments dti are then chosen to follow a

given probability distribution. We may, for instance, consider

the symmetric Lévy stable law defined in terms of its Fourier

transform as exp(�cg|k|
g). The process can then be shown to

produce a power-law MSD of the form (8) with anomalous

diffusion exponent

a ¼ g

1þ g
; (46)

whose range spans from zero (for g = 0) to 2/3 (for g = 2) and

thus leaves a gap to normal diffusion.120,121 Brownian motion

with a = 1 in this model can only be restored by completely

breaking the correlations.120 In the limit g = 2 the mode relaxation

is of stretched exponential form, P(k,t) C exp(�ct1/2), and for the

range 0 o a o 2 it is of power-law shape, Ct�a.122

Fig. 15 compares the CTRW model with correlated waiting

times (45) with the regular subdiffusive CTRW. In the corre-

lated case the gradual increase of the waiting times is distinct

from the occasional very long waiting times of the uncorrelated

model. Also the trajectories of the two models are very different:

without correlations, the long waiting times effect distinct

immobilisation events, while for the correlated waiting times, the

motion appears almost Brownian, albeit with a gradual increase of

the waiting times.

In this process the waiting time on average is an increasing

function and diverges in the limit of many steps. The correlated

CTRW process indeed exhibits weakly non-ergodic behaviour,122

d2ðDÞ
D E

’ D

t1�g=ð1þgÞ; (47)

Fig. 15 Trajectory x(t) (top) and individual waiting times (bottom) in the
regular subdiffusive CTRW model with a = 2/3 (left) and the CTRW model
with correlated, Gaussian waiting times256 with g = 2 (right). Both cases
lead to the same MSD (8) with a = 2/3.
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such that the range of the ageing exponent 1 � g/(1 + g) is in

between 1/3 and one. Moreover the process ages, as shown via

the decaying response of the process to a sinusoidal driving

force.122

Similarly, when the waiting times are exponentially distri-

buted but the jump lengths correlated the process leads to the

exact form120

hx2(t)i = 1
4K3(t(t + 1)(2t + 1)) C K3t

3 (48)

of superdiffusive behaviour with the asymptotic cubic

Richardson form26 when the distribution of jump length incre-

ments is Gaussian. When the jump length increments are

drawn from a Lévy stable law with index m, the MSD diverges.

From fractional oder moments one can derive the scaling

relation x2 B t(1+m)/m. For the case m = 2 the weakly non-

ergodic form of the MSD

d2ðDÞ
D E

¼ 3K3

4
D2tþ K3

D

4
þ 3D2

4
� D3

4

� �

 3K3

4
D2t (49)

was obtained exactly, and the expansion is valid for D { t.120

3.5 Superdiffusive continuous time random walks and

ultraweak ergodicity breaking

For completeness we also consider superdiffusive renewal

CTRW processes. To that end we note that the introduction

of a waiting time distribution into a standard random walk

process at most leads to a subdiffusive behaviour when the first

moment of the waiting time PDF c(t) diverges. Superdiffusion

cannot be achieved within the approach of a generalised waiting

time concept. There exist, however, two pathways to extend the

CTRW model to superdiffusion.

The first way is to modify the distribution of jump lengths.

All CTRW processes considered so far (apart from the case of

correlated jump lengths in the preceding section) correspond

to the motion on a lattice, or in continuous space with a jump

length PDF that possesses a finite variance hdx2i and zero mean

hdxi. What if we choose a jump length distribution l(dx), for

which the variance hdx2i diverges? Consider a Lévy stable form

with the asymptotic power-law behaviour l(dx) C 1/|dx|1+m of

the jump lengths with the stable index 0 o m o 2. When the

waiting time PDF has finite moments, this process was called a

Lévy flight by Mandelbrot.124 The divergence of the jump length

variance translates into the divergence of the second moment

of the PDF P(x,t),125 and only fractional order moments h|x|ki
with 0 o k o m exist.42 The trajectory of a Lévy flight is fractal

(see below) of Hausdorff dimension m. A single trajectory

therefore never fully covers an embedding space whose dimen-

sion is larger than m. This is particularly relevant in the two-

dimensional world, in which effectively most human and

animal motion occurs. There exist also several studies con-

sidering the combination of a diverging characteristic waiting

time hti with a Lévy stable distribution of jump lengths, either

in terms of fractional diffusion equations126 or via using

subordination arguments.127 Due to its fractality a single Lévy

flight trajectory cannot visit all points in space when the

stable index m is smaller than the embedding dimension d.

Under confinement to a finite area, Lévy flights are ergodic,128

and the convergence to the ergodic state can be analysed in

terms of the apparent fractal dimension or in terms of the first

passage dynamics.129 The divergence of hdx2i as well as the

ensuing non-ergodicity of Lévy flights can be rectified by a cutoff

in the jump length PDF130 or by dissipative non-linearities.131

Such stochastic processes behave like a Lévy flight until the

regularisation of the jump length PDF comes into effect.

The alternative approach is to introduce a coupling between

jump lengths and waiting times. In subdiffusive CTRWs

described previously the waiting time and jump length PDFs

enter in the multiplicative form c(dx,t) = c(t)l(dx).43 Intro-

ducing a functional dependence between waiting times t and

jump lengths dx, this spatiotemporal coupling preserves the

renewal properties of CTRW processes but due to penalising

long jumps—associating them with long waiting times—yields

a finite MSD.43,132 The simplest choice is the coupling c(dx,t) =
1
2c(t)d(|dx| � nt), in which the velocity v is introduced.

It bestows a propagating horizon to the process in the form

of two travelling d peaks with decaying amplitude. For waiting

time PDFs c(t) C t�1�a with 1 o a o 2, in between these

peaks, a Lévy stable distribution is building up.133 Also Lévy

walks are non-ergodic, albeit in a way, that is different from the

above discussed non-ergodic behaviour.

To see this, we first recall that for a waiting time PDF of the

power-law form c(t) C t�1�a their MSD scales134,135

x2ðtÞ
� �

’
v2ð1� aÞt2; 0o ao 1

2K3�at
3�a; 1o ao 2

(
: (50)

The associated time averaged MSD in the ballistic phase with

0 o a o 1 scales like

d2ðDÞ
D E


 n
2D2; (51)

with a higher order correction scaling with D2(D/t)2�a.136,137

In the enhanced diffusion phase 1 o a o 2 the result is136–138

d2ðDÞ
D E


 2K3�a

a� 1
D3�a: (52)

In both the ballistic and enhanced diffusive phases the

MSD differs from the time averaged MSD merely by a factor

of 1/|a � 1|. This phenomenon may be referred to as ultraweak

ergodicity breaking.138 Note that an analogous result was

obtained by Zumofen and Klafter for Lévy walks with stationary

and non-stationary initial conditions,139 compare the discus-

sion in ref. 138. To leading order, the time averaged MSDs (51)

and (52) do not exhibit ageing in the sense that the measure-

ment time t does not appear explicitly, in contrast to the

corresponding forms for the subdiffusive CTRW processes

discussed above. Further physical properties of Lévy walks, in

particular, the amplitude scatter of the time averaged MSD, are

studied in ref. 138 and 140 Additional recent studies of Lévy

walks analyse their response to an external bias and the power

spectral properties.136–138,140

Lévy flights and walks are used as statistical models in many

fields, for example, to quantify blind search processes of animals
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for sparse food.141–143 In the science of movement ecology, the

so-called Lévy foraging hypothesis has become widely accepted.141

Recently this model was qualified for human motion behaviour

and when different search criteria and external forcing are

considered.144 These stochastic processes also describe the

propagation of visible light in disordered optical media145

and the dynamics of quantum dots.34 In optical lattices the

divergence of the position of single ions was shown to follow

Lévy statistics.146 For more details compare also Section 7.

4 Fractional Brownian and Langevin
motion

Next to the CTRWmodel, fractional Brownian motion (FBM) and

the motion governed by the fractional Langevin equation (FLE)

represent the secondmajor stochastic models for the description

of anomalous diffusion processes both in the presence and in

the absence of external potentials. Physically, these types of

motion arise when we observe the effective motion of a single

tracer particle in a coupled many-body system such as a single

file of excluded volume particles, see below.

4.1 Fractional Brownian motion

We believe that FBMs do provide useful models for a host of natural

time series and wish therefore to present their curious properties to

scientists, engineers and statisticians, argue Mandelbrot and van

Ness in their defining work on FBM.147 The motivation for this

study and Mandelbrot’s earlier work148 were Hurst’s laws for

the discharge of the Nile and other rivers.149 In the Russian

literature Kolmogorov introduced an analogous process already

in 1940150 which was then analysed further by Yaglom.151

Mathematically, FBM indeed has curious properties,147 as it is

not a semimartingale and cannot be interpreted in terms of a

random walk process.152,153 Despite the many studies on FBM

and its wide application in various fields of science, engineering,

and beyond, many fundamental properties of FBM remain elusive,

such as the first passage properties.154,155 At the same time FBM is

distinguished by the fact that it is the only self-similar Gaussian

process with stationary increments.147 Note that for notational

consistency in the following we use the anomalous diffusion

exponent a in the formulation of the fractional Gaussian noise

which is related to the Hurst exponent H commonly used in the

FBM literature via a = 2H.

Mandelbrot and van Ness define FBM in terms of the

stochastic integral147

xðtÞ ¼ 1

Gð½1þ a�=2Þ

ðt

0

ðt� t 0Þða�1Þ=2
dBðt 0Þ

�

þ
ð0

�1
ðt� t 0Þða�1Þ=2 � ð�t 0Þða�1Þ=2
� 


dBðt 0Þ
�
;

(53)

where B(t) is ordinary Brownian motion. A more intuitive repre-

sentation uses the Langevin equation

dxðtÞ
dt

¼ xfGnðtÞ; (54)

which is fuelled by the fractional Gaussian noise xfGn(t). The

latter has a standard normal distribution for any t 4 0 but is

power-law correlated,§§§

hxfGn(t1)xfGn(t2)i = a(a � 1)Ka
�|t1 � t2|

a�2 (55)

for t1, t2 4 0 and t1 a t2. The physical dimension of xfGn(t) is

thus [xfGn] = cm s�1. Due to the factor (a � 1) the fractional

Gaussian noise is persistent or positively correlated for the case

1 o a o 2, and it is antipersistent or negatively correlated for

0 o a o 1. The PDF for free FBM is given by the Gaussian

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pKa

�ta
p exp � x2

4Ka
�ta

� �
: (56)

The position autocorrelation of FBM is

hx(t1)x(t2)i = Ka
�(ta1 + ta2�|t1 � t2|

a), (57)

and reduces to the MSD (8) for t = t1 = t2. From this quantity we

can obtain the time averaged MSD156

d2ðDÞ
D E

¼ 2Ka
�Da ¼ x2ðDÞ

� �
; (58)

showing that FBM is ergodic in the sense that is equivalent to

the MSD (8). As the process is self-averaging, for sufficiently

long measurement times we even obtain the single trajectory

equality, formally,

lim
t!1

d2ðDÞ ¼ 2Ka
�Da: (59)

demonstrated in ref. 156 and 157. As shown in ref. 156,

ergodicity is reached algebraically slowly, a property shared

with that of regular Brownian motion (see also Section 4.3).

For finite trajectory length t the scatter distribution of the

relative amplitude x ¼ d2ðDÞ=hd2ðDÞi can be approximated by

the Gaussian158

fðxÞ �
ffiffiffiffiffiffiffiffiffiffiffi
t� D

4pt�

r
� exp �ðx� 1Þ2ðt� DÞ

4t�

 !
; (60)

where t� is a binning time scale. Fig. 16 shows the reproduci-

bility of unconfined FBM. Note that the scatter for longer lag

times D- t is due to insufficient statistics of the time average.

4.2 Fractional Langevin equation motion

The FLE for the position co-ordinate x(t) of a particle with mass

m is written as157,159–161

m
d2xðtÞ
dt2

¼ �g�
ðt

0

ðt� t 0Þa�2 dxðt 0Þ
dt0

� �
dt 0 þ Z�xfGnðtÞ; (61)

where g* is a friction coefficient of physical dimension [g*] =

g s�a and xfGn(t) represents the fractional Gaussian noise (55)

with 1 o a o 2.

The FLE (61) is a special form of the Hänggi–Kubo generali-

sed Langevin equation160,162,163 driven by noise, which is not

white but correlated. In contrast to the d-correlated white noise

encountered in the Langevin eqn (5), that is, the correlation

§§§ One could also writehxfGn(t1)xfGn(t2)i = aKa*|t1� t2|
a�2 + 2aKa*|t1� t2|

a�1d(t1� t2),

to include the case t1 = t2 explicitly.
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function of the noise at time t explicitly depends on past times

t0 o t with a given weight function. Concurrently, the friction

term becomes a convolution integral such that the noise kernel

balances the non-local noise to fulfil the generalised fluctua-

tion dissipation relation.160,162,163 Such equations with memory

arise in the Mori-Zwanzig projection operator framework.164

The FLE corresponds to the special case for which the noise

autocorrelation is given by the power-law decay of the fractional

Gaussian noise xfGn(t). The friction kernel is then equally of

power-law form.

The Kubo generalised fluctuation dissipation relation fixes

the noise amplitude in the form

Z� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�kBT

aða� 1ÞKa
�

s
: (62)

Typically, in single particle tracking experiments one observes

the overdamped motion of the tracer. Such overdamped motion

corresponds to neglecting the inertia term in eqn (61), produ-

cing the overdamped FLE

g�
ðt

0

ðt� t 0Þa�2 dxðt 0Þ
dt0

� �
dt 0 ¼ Z�xfGnðtÞ: (63)

The convolution integral can be replaced with the Caputo time

fractional derivative¶¶¶

d2�axðtÞ
dt2�a

¼ 1

Gða� 1Þ

ðt

0

ðt� t 0Þa�2 dxðt 0Þ
dt0

� �
dt 0; (64)

which then constitutes the fractional Langevin equation159

m
d2xðtÞ
dt2

¼ �g�Gða� 1Þd
2�axðtÞ
dt2�a

þ Z�xfGnðtÞ; (65)

or the corresponding overdamped FLE. Note that due to the

coupling of the friction kernel and the fractional Gaussian noise

via the fluctuation dissipation relation a large instantaneous

value of the noise couples to a high effective friction. For this

reason fractional Gaussian noise with 1 o a o 2 effects

subdiffusion behaviour, as shown in eqn (66) and (68). The

fact that the friction increases with how strongly we push a

substance is indeed an everyday experience when we deal with

viscoelastic substances such as toothpaste, honey, or liquid

concrete.165 Poking gently with our finger into toothpaste, it

yields like a liquid. If we hit it hard or jump onto the toothpaste

tube, the response is that of a very highly elastic substance,

causing the tube to explode.

The MSD described by the underdamped FLE becomes166

x2ðDÞ
� �

¼ lim
t!1

d2ðDÞ ¼ 2kBTD2

m
Ea;3 �Gða� 1Þg

�

m
Da

� �
; (66)

and is thus ergodic. From the series expansions around z = 0

and N of the generalised Mittag-Leffler function

Er;dðzÞ ¼
X1

n¼0

zn

Gðdþ rnÞ ¼ �
X1

n¼1

z�n

Gðd� rnÞ (67)

we thus obtain the limiting behaviours

x2ðtÞ
� �



kBTt

2=m; t � m=g�½ �1=a

2kBT Gða� 1Þg�ð Þ�1
t2�a; t � m=g�½ �1=a

8
<
: (68)

of short time ballistic motion,167 which eventually crosses over to

the overdamped subdiffusion with exponent 2� a for 1o ao 2.

In this regime, that is, the motion is subdiffusive for persistent

noise.

The FLE can be shown to govern the effective dynamics of a

tagged particle in a single file168 or the motion of a monomer

in a long polymer chain.169 The FLE was used to model the

internal dynamics of proteins.170 It occurs naturally for the

description of particle motion in a viscoelastic environment,157

and is related to generalised elastic models171 as well as hydro-

dynamic interactions.172,173 FLE-governed motion was also

identified from the motion of individual lipid molecules

from large scale simulations of lipid membranes.174,175 Visco-

elasticity controlled subdiffusion was reported for the motion

of messenger RNA molecules and chromosomal loci in living

E. coli cells.71,176,177 In ref. 68, the long time motion of lipid

granules in living yeast cells was shown to cross over from non-

ergodic CTRW motion to viscoelastic-type subdiffusion, con-

sistent with observations in a different strain of yeast cells.20

In complex fluids, viscoelastic subdiffusion was, inter alia,

revealed in ref. 179 and 178 Based on microrheology data of

endosomes in living cells,180 stochastic models for active

transport in the molecularly crowded cytosol of living cells

were recently discussed. These include the viscoelastic nature

of crowded fluids178 in terms of the FLE, and it can be shown

that depending on the size of the cargo or the biochemical

turnover rate of the motor molecule, normal (hx(t)i C t) or

anomalous (hx(t)i C ta with 0 o a o 1) transport can be

effected.181 We finally note that the FLE exhibits dynamic

transitions with different critical exponents of the driving

fractional Gaussian noise for free and forced motion.182

Fig. 16 Time averaged MSD d2ðDÞ as a function of the lag time D for FBM
with a = 0.5. Individual trajectories provide quite reproducible results, no

significant scatter of the amplitude between different d2ðDÞ arises, and the

anomalous scaling d2ðDÞ ’ D1=2 is fulfilled.

¶¶¶ Or, alternatively, with the Riemann–Liouville fractional operator (17), if only

the initial values are included properly.42
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4.3 Transient non-ergodicity and transient ageing

While we saw that asymptotically the unconfined motion of

both FBM and FLE motion is fully ergodic, we mention the

following caveat lector for these processes in the confines of an

harmonic external potential V(x) = 1
2mo2x2 of strength o2 4 0,

such that the dimension of o is s�1.

Namely, consider the subtle difference in the equilibration

behaviour between the MSD for FBM,166,183

x2ðtÞ
� �


 x2
� �

st
� 2

o2
aða� 1ÞKa

�ta�2e�ot; (69)

which features an exponential relaxation to the stationary value

hx2ist, and the time averaged analogue166

d2ðDÞ 
 2 x2
� �

st
�Ka

�Gð1þ aÞ
oa

e�oD � 2aða� 1ÞKa
�

o2D2�a
: (70)

The relaxation dynamics of the time averaged MSD d2ðDÞ is

algebraically slow. Note that the stationary value166,184

x2
� �

st
¼ Ka

?

oa
Gð1þ aÞ (71)

for FBM explicitly depends on the exponent a as the noise is

external and thus not coupled to the friction constant, i.e., no

fluctuation dissipation relation is fulfilled here. Moreover the

factor of two in front of the stationary value hx2ist appears in

the time averaged MSD (70) due to the very definition (6)

involving two times the MSD at times t 0 þ D and t0 and a decaying

cross-term.166

A behaviour similar to that of eqn (71) is observed for FLE

motion. Here, however, the noise is internal, i.e., the fluctua-

tion dissipation theorem is fulfilled. Thus, the thermal value

x2
� �

th
¼ kBT

mo2
(72)

is reached for any a. The power-law relaxation for the time

averaged MSD in a viscoelastic environment was indeed observed

experimentally by optical tweezers single particle tracking in

wormlike micellar solution,179 as shown in Fig. 17.

What about ageing, the dependence of some physical obser-

vable on the time span ta between initial preparation of the

system at t = 0 and start of the measurement (see Fig. 10)? For

regular Brownian motion physical observables are independent

of the ageing time ta. In the following cases for the FBM/FLE

models, however, we find transient ageing. For both FBM and

FLE motion the time averaged MSD splits into two additive

terms,185

d2ðDÞ
D E

¼ fstðDÞ þ fage D; ta; tð Þ: (73)

The stationary term fst depends solely on the lag time D, while

the ageing term fage is an explicit function of t and ta. As long as

the initial velocity distribution is not thermal, fage C 1/t for long

t. For free FLE motion at sufficiently long D, the stationary term

is subdiffusive, fst C D2�a. When additionally we are in the

strong ageing regime ta c t, the scaling

fage C t�2a
a (74)

is derived.185 For confined FLE motion, the ageing term now

features the power-law dependence,185

fage C t2a�6
a . (75)

For confined FBM, however, the ageing term decays

exponentially,185

fage B x0
2exp(�2kta). (76)

Thus, the ageing behaviour for FBM is negligible, while for

strongly aged FLE motion the transient ageing may be obser-

vable under specific conditions.

5 Scaled Brownian motion

A popular model for the description of anomalous diffusion is

that of scaled Brownian motion (SBM), which is based on the

time-dependent diffusivity K(t).186–188 The associated Langevin

equation with the white Gaussian noise x(t) of unit intensity,

hx(t)x(t0)i = d(t�t0), and zero mean then becomes

dxðtÞ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2KðtÞ

p
� xðtÞ: (77)

For the power-law form

K(t) = aKa*t
a�1 (78)

of the diffusion coefficient the MSD of the process is given by

eqn (8) with Ka = G(1 + a)Ka*. Note that while the physical

dimension of K(t) is cm2 s�1, that of the constant Ka* is cm
2 s�a.

In SBM the scaling exponent is allowed to vary in the range

0o ao 2, so that the process describes subdiffusion as well as

sub-ballistic superdiffusion.

Fig. 17 Comparison of the time averaged MSD d2ðDÞ
D E

from 10 individual
trajectories for beads of d = 0.96 mm diameter in 1 weight% worm-like
micellar solution compared to the control data in pure water.179 Two different
fitting curves to the results are depicted: the full solid line represents the
exponential relaxation pattern fex(D) = 2hx2ith(1 � C1e

�C2D), while the dashed
line represents the power-law relaxation behaviour fpo(D) = 2hx2ith(1� C3/D

C4),
where Ci are fit parameters. For the data shown here the arbitrary units on the
ordinate are converted to nm2 by multiplication with E8 � 103 [179].
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The associated time averaged MSD can be calculated exactly,

yielding188,189

d2ðDÞ
D E

¼ 2Ka
?t1þa

ðaþ 1Þðt� DÞ 1� D

t

� �1þa

� 1� D

t

� �1þa
" #

: (79)

In the limit D{ t, we obtain the linear lag time dependence189,190

d2ðDÞ
D E


 2Ka
? D

t1�a
; (80)

familiar from subdiffusive CTRW processes, eqn (20). However,

expression (80) for SBM is valid in the whole range 0 o a o 2.

When the lag time D approaches the measurement time t, the

limiting form189

d2ðDÞ
D E


 2Ka
?ta � aKa

?

t1�a
ðt� DÞ þ aða� 1ÞKa

?

3t2�a
ðt� DÞ2 (81)

describes a cusp at around D = t: as shown in Fig. 18 the

time averaged MSD (81) converges to the value of the MSD

hx2(t)i. However, while the disparity x2ðDÞ
� �

ad2ðDÞ between

the MSD and its time averaged analogue renders SBM weakly

non-ergodic in the sense defined above, the amplitude scatter

of d2ðDÞ around the trajectory-to-trajectory average d2ðDÞ
measured in terms of the dimensionless variable x is approxi-

mately of Gaussian form with a relatively narrow width. For

sufficiently long trajectories, that is, the randomness in single

trajectories of SBM is deterministically decreased with time

and the process becomes practically reproducible.189 SBM

therefore belongs to a non-ergodicity class, that is funda-

mentally different from subdiffusive CTRW, for which the

randomness of time averages is present no matter how long

the process is followed.

Equipping the Langevin eqn (77) for SBM with an additional

external potential force F(x), one can derive the associated

Fokker–Planck equation. For the special case of a confining

harmonic potential V(x) = 1
2mo2x2 we find189

@

@t
Pðx; tÞ ¼ @

@x
�oxþ KðtÞ @

@x

� �
Pðx; tÞ; (82)

where �o =o2/Z includes the friction coefficient Z of dimension s�1.

In the limit of unconfined motion, o = 0, the resulting dynamic

equation was used by Batchelor191 to describe the relative

diffusion in turbulence as a complementary approach to

Richardson’s mentioned above (see also Section 6). The force-

free propagator encoded by eqn (82) is exactly that of free FBM,

eqn (56), despite the fundamental difference between the two

processes. However, in the presence of the confinement, o4 0,

we obtain the MSD

hx2(t)i = 2Ka*t
ae�2�otM(a,1 + a,2�ot) (83)

in terms of the Kummer function M(a,b,z).192 The limiting

behaviour at short times t { 1/�o is that of free anomalous

diffusion, hx2(t)i = 2Ka*t
a, i.e., when the particle starts in the

vertex of the potential it initially moves force-free. At long times,

we observe that the motion does not become stationary but the

MSD exhibits the scaling law189

x2ðtÞ
� �


 aKa
?

�o
ta�1: (84)

The motion is thus influenced by the effective strength o of the

potential. However, as the diffusion coefficient is explicitly time

dependent, this implies that the system is characterised by a time

dependent temperature, see also the discussion of Fuliński.188

Alternatively, one could view this as an effect of a time depen-

dent mobility. Clearly this corresponds to a far from thermal

equilibrium state.

For its interesting behaviour, we mention the associated

time averaged MSD in the harmonic confinement. In the limit

D { t we find the result189

d2ðDÞ
D E


 Ka
?

�o

ta � Da

t� D
þ ðt� DÞa�1

1� 2e��oD

 �� �

; (85)

where we observe an apparent plateau at D c 1/�o,

d2ðDÞ
D E


 2Ka
?

�o
ta�1; (86)

as demonstrated in Fig. 19, in which we compare the full

analytic solution (83) for the MSD and the exact form for

the time averaged MSD with results from simulations. In a

way, the behaviour is opposite to that of subdiffusive CTRWs,

for which we observe the thermal plateau for the MSD and a

continuing power-law growth for the time averaged MSD,45

confirmed by experiment.68 Experiments observing the

apparent plateau (86) for the time averaged MSD of SBM may

misinterpret this for a sign of confinement, contradicting the

result (83).

In view of these results SBM represents a very simple model

for sub- and superdiffusive anomalous diffusion. However, its

physicality is somewhat questionable for most experimental

settings, in which the system is connected to a heat bath, or

when the system is stationary. Its non-ergodic properties are

certainly interesting, and may be used to model active processes

in the superdiffusive range 1 o a o 2. SBM-type dynamics in

fact occurs in free granular gases.289

Fig. 18 Convergence of the time averaged MSD d2ðDÞ
D E

(blue line) to the
MSD hx2(t)i (orange line) when the lag time D approaches the process time
t = 105.189
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6 Heterogeneous diffusion processes

Single particle tracking experiments usually employ relatively

large tracers. The above mentioned granules and artificial

tracers are all in the range of several hundreds of nanometres

in size.48–50,68,69,179,193,194 Considerably smaller tracer proteins were

recently employed to samplemuch larger subvolumes of living cells,

producing cell-widemobilitymaps. The results show significant and

systematic variations in the position-dependent cytoplasmic diffu-

sivity K(x) with a growing distance from the nucleus.195 Similar

approaches using space-dependent diffusivities are routinely used

in various fields, for instance, in the mathematical modelling of

tracer dispersion in subsurface hydrology.196 We also recall

Richardson’s approach to the description of his measurements

of the relative dispersion of two tracer particles in a turbulent

flow, in terms of a diffusivity depending on the relative tracer

position,26 mentioned in the Introduction.

Diffusion processes with position-dependent diffusivity, K(x),

are described by a simple Markovian Langevin equation with

multiplicative noise197

dxðtÞ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2KðxÞ

p
� xðtÞ; (87)

where x(t) represents white Gaussian noise. In the Stratonovich

sense, the diffusion equation for this heterogeneous diffusion

process (HDP) has the symmetric form

@

@t
Pðx; tÞ ¼ @

@x

ffiffiffiffiffiffiffiffiffiffiffi
KðxÞ

p @

@x

ffiffiffiffiffiffiffiffiffiffiffi
KðxÞ

p
Pðx; tÞ

h i� �
: (88)

A diffusing particle tends to accumulate in regions of low diffusivity.

The HDP is fundamentally different from the CTRW approach:

standard CTRWs are running off in an annealed environment and

thus constitute renewal processes. HDPs represent a deterministic

(in contrast to random) quenched environment. The particle, that is,

has the same diffusivity K(x) each time it returns to the point x.

Interestingly, despite the different nature of HDPs they share some

common features such as weak ergodicity breaking with renewal

CTRWprocesses. Even when the space dependence of the diffusivity

becomes annealed, many of these effects are preserved.198

Let us first consider the power-law forms

KðxÞ ¼ K0

jxjb þ xoffj jb; b4 0

1
.

jxj�b þ xoffj j�b
� 


; bo 0

8
><
>:


 K0jxjb

(89)

for the diffusivity. The amplitude K0 has physical dimension

cm2�b s�1. The offset xoff in eqn (89) is introduced to avoid either

divergencies of K(x) (bo 0) or stalling (b4 0) of the particle around

x = 0 in the simulations. In the analytical calculations we use the

bare scaling form K(x) B K0|x|
b. The HDP based on the diffusivity

(89) and d-initial condition for the PDF at the origin has the MSD197

x2ðtÞ
� �

¼ Gðaþ 1=2Þ
p1=2

2

a

� �2a

K0tð Þa (90)

shown in Fig. 20. It is thus of the generic power-law form (8)

with the anomalous diffusion exponent a given in terms of the

scaling exponent b from eqn (89) as197

a ¼ 2

2� b
; (91)

Fig. 19 MSD hx2(t)i (orange symbols) and time averaged MSD d2ðDÞ
D E

(blue symbols) of SBM with a = 0.5 (top) and a = 1.5 (bottom). In each case
we consider the potential strengths o2 = 0.01 (circles) and o2 = 0.1
(squares). The full lines represent eqn (83) and the numerical evaluation
of the exact results for the time averaged MSD.189 The convergence of the
corresponding ensemble and time averages at D = t = 105 can be shown
numerically, in analogy to Fig. 18 for the unconfined motion.

Fig. 20 Ensemble and time averaged MSDs for sub- and superdiffusive
HDP processes with power-law diffusivity (89), for t = 105, and K0 = 0.01.
Note that in the simulations, to avoid divergence (subdiffusion) or stalling
(superdiffusion) at x = 0, we, respectively, use the forms K(x) = K0/(x

2 + 1)
and K(x) = K0(|x| + 1). Thin red lines represent individual traces d2ðDÞ, thick
blue lines refer to the MSD hx2(t)i and the trajectory average d2ðDÞ

D E
. The

expected results (90) and (93) are shown by dashed lines.
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such that we observe superdiffusion in the range 24 b4 0 and

subdiffusion for b o 0. We note that when b approaches

the critical value b = 2, the anomalous diffusion exponent a

diverges. In that case the MSD assumes an exponential time

dependence. The PDF of the HDP with power-law diffusivity

(89) is given by the exponential197

Pðx; tÞ ¼ jxj�b=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pK0t

p exp � jxj2�b

ð2� bÞ2K0t

 !
: (92)

In the subdiffusive range, b o 0, this PDF is of compressed

Gaussian shape and exhibits a dip to zero at the origin, that is,

it is bimodal. For superdiffusion with 2 4 b 4 0, the PDF is a

stretched Gaussian and has a non-differentiable cusp at x = 0.

This is opposite to the behaviour observed for subdiffusive and

superdiffusive fractional diffusion equations.42,199,200

For the HDP with the diffusion coefficient (89) we obtain the

weakly non-ergodic behaviour197

d2ðDÞ
D E

¼ D

t

� �1�a

x2ðDÞ
� �

¼ Gðaþ 1=2Þ
p1=2

2

a

� �2a

Ka
0

D

t1�a
: (93)

Fig. 20 shows the MSD (8) and the mean time averaged MSD

(93) for a sub- and superdiffusive case. The linear scaling of

d2ðDÞ
D E

is nicely fulfilled, and individual realisations d2ðDÞ
D E

show pronounced amplitude scatter around this mean. The

initial deviation of hx2(D)i from the expected behaviour is due

to the offset xoff used in the simulations.197 The fluctuations of

d2ðDÞ
D E

around the mean d2ðDÞ
D E

can be fitted by a Gamma

distribution for both sub- and superdiffusive HDPs.197 In contrast

to subdiffusive CTRW processes the amplitude scatter distribu-

tion f(x) decays to zero at x = 0, that is, the process never leads to

complete stalling of the diffusing particles during the observation

time window. Concurrently, the ageing behaviour of HDPs with

power-law form of K(x) was numerically shown to be in good

agreement with the form (30) of the ageing depression of the

CTRW approach.201 From a data analysis point of view the similar

behaviour of various quantities requires some care not to confuse

HDPs from CTRW processes.

We note that different forms for the position dependent

diffusivity K(x) such as an exponential and logarithmic depen-

dence were studied in ref. 202. The exponential case with

K(x) = (K0/2)exp(�2x/x*), where x* sets the length scale, leads

to the MSD202

x2ðtÞ
� �


 x*ð Þ2
4

log2 x*ð Þ�2
K0t

h i
(94)

which belongs to the range of ultraslow processes discussed

earlier. The associated time averaged MSD becomes202

d2ðDÞ
D E


 2p x*ð Þ2 D

t

� �1=2

(95)

and exhibits an interesting square root scaling in the lag time

D for initially highly mobile particles, with initial position x0 on

the negative semi-axis. For intermediate x0, however, a pro-

found splitting of the tracer populations is observed, exhibiting

D1/2 and D1 scaling forms of the time averaged MSD, respectively,

for highly mobile and rather trapped fractions of particles in

the ensemble. This fact is reminiscent of the population splitting

effect observed for CTRW processes, Section 2.1. For more details

Fig. 21 MSD hx2(t)i (thick blue curves), time averaged MSDs d2ðDÞ (thin red curves), and trajectory average d2ðDÞ
D E

(thick blue curves) for confined HDPs

with power-law diffusivity (89) and different exponents b.201 All curves converge to the plateau value (96). For each exponent b we show N = 300 time
averaged traces of length t = 105 in the interval {�L,L}.
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see ref. 202. The fluctuations in the HDP model were analysed in

more detail in ref. 197, and a two-dimensional analysis para-

phrasing the mobility experiments in living cells in ref. 195 was

presented recently.203

In Fig. 21 we demonstrate how under confinement the ensemble

and time averaged MSDs converge to the plateau value

x2
� �

st

 d2
D E

st

.
2 � a�nL2

�
3 (96)

where nC 0.6 and 2L is the length of the interval with reflecting

boundaries.201 The convergence to the plateau for both ensem-

ble and time averaged MSDs (with the aforementioned factor of

two for the time average) sets the HDP process apart from the

subdiffusive CTRW, in which no long time plateau occurs for

d2ðDÞ
D E

.

Finally, Fig. 22 shows the result for a typical trajectory in the

recent study of ref. 198, in which a random walker travels on a

landscape with randomly switching local diffusivity. As can be

seen from the graph, on finer scales the motion appears to be

more like normal diffusion, due to the broad distribution of

K(x) magnitudes, on a coarser resolution the trajectory appears

to be similar to that of a subdiffusive CTRW with a diverging

characteristic time scale shown in Fig. 6. It will be interesting to

compare these results to the behaviour of stochastic HDPs in

annealed and quenched environments.204

7 Fractals

Finally we come to the third major model for anomalous

diffusion, namely, the transport on a fractal support. Like

fractional Brownian motion and Lévy flights, fractals were

popularised by Mandelbrot, in whose book The fractal geometry

of nature he came up with the epitomised phrase Clouds are not

spheres, mountains are not cones, coastlines are not circles, and

bark is not smooth, nor does lightning travel in a straight line.124

Instead, Mandelbrot argues that many natural phenomena are

statistical fractals, i.e., objects which, in a statistical sense, do

not have a scale and thus one cannot judge at what resolution a

picture of the object was taken. Or, in other words, their length

(or area, etc.) depends on the applied scale in a measurement,

as in the celebrated coastline of the Britain paradox: with a

smaller yardstick finer details can be measured and the length

of the coastline is larger than when we apply a larger yardstick.

Mandelbrot accredits the discovery of this effect to Lewis Fry

Richardson.205,206

We distinguish mathematical fractals with their strict build-

ing rules and exact self-similarity from statistical fractals, for

which self-similarity is present only in a certain average sense.

Let us briefly address these two concepts. First, mathematical

fractals are constructed by iteration. For instance, see the

Sierpińsi gasket in Fig. 23. An equilateral triangle is divided

into four equilateral triangles and the central one removed.

This subdivision rule is repeated, ideally an infinite amount of

times. From the iteration scheme: scale the original triangle

down by a factor of 2 and keep three of the resulting four objects,

we obtain the similarity dimension log3/log 2 C 1.585, which

gives the same result as the formal Hausdorff approach.124,207

We would obtain the same result if we had started by arranging

three copies of the original triangle into an object with twice the

original edge length. The Sierpińsi gasket is more space filling

than a line but does not fully fill an area. In particular, we see

that the generated object contains empty triangles on all scales.

To come from one given sector to another, a random walker on

such a geometry needs to first locate and then traverse narrow

causeways, as sketched in Fig. 24. This considerably slows down

the particle propagation in the embedding space.

As said, natural objects are not exact mathematical fractals.

However, for example, the coastlines of Britain or Norway are

statistical fractals: while their shape does not repeat exactly

on a smaller scale, their overall length fulfils a scaling law

L(e) C e1�df, where e is the length of the yard stick applied to

measure the coastline.124,149,208,209 If the coastline were a

perfect line with df = 1, its length L would be independent of

Fig. 22 Trajectory in the heterogeneous diffusivity domain model of
ref. 198. While on short scales the process appears to be Brownian (inset)
on the larger scale distinct stalling events are reminiscent of scale-free CTRW
dynamics. Data for the figure courtesy John Lapeyre.

Fig. 23 Sierpińsi gasket. An equilateral triangle is constructed iteratively
such that the edges of three congruent triangles make up the edges of a
triangle twice their size. The centre of this larger triangle remains empty.
Here we show the fourth generation of the Sierpińsi gasket.
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the length e of the yard stick (resolution) applied for the

measurement. However, within a certain upper length scale—of

the order of the extension of the country—and a lower length

scale—e.g., the finest features appearing on a map—the fractal

dimension of coastlines typically differs from unity. Thus, while

the South African coastline with df = 1.02 is almost a perfect

line, the West coast of Britain has df = 1.25, and is thus

significantly more ramified. For finer measurement resolutions

(shorter yard stick length e) the measured length increases,

while coarser measurements (longer yard stick length e) lead to

shorter apparent L. For general fractals with a fractal dimen-

sion df embedded in a d-dimensional space, it is often useful

to think in terms of the mass of the fractal object, which, on

average, grows like M(R) C Rdf as a function of the radius R.

As by necessity df o d, the mass density therefore shrinks with

R as Rdf�d, as fractals are characterised by ‘holes’ on all scales

(compare the Sierpińsi gasket in Fig. 23).

An important approach to the description of porous or

crowded media is the percolation model. In site percolation each

point on a lattice is occupied with probability p and remains

empty with probability 1� p. At the critical occupation probability

p = pc ( pc C 0.59. . . in two210 and pc C 0.31. . . in three211

dimensions for a square and cubic lattice, respectively) the

correlation length of the system diverges and an infinite cluster

is formed. The percolation cluster then has a fractal dimension

df = 91/48 C 1.896. . . in two212 and df C 2.52. . . in three

dimensions.213 A random walker placed on the fractal, incipient

infinite cluster allowed to move between nearest neighbour

occupied sites performs anomalous diffusion with an anomalous

diffusion exponent a = 2/dw related to the walk exponent dw, which

is larger than df.
214,215 According to the Alexander Orbach conjecture

dw = 3
2
df,

215 which is close to experimentally observed values,

compare ref. 216. Note that when the averaged motion of random

walkers placed on all clusters, a different scaling exponent char-

acterises the MSD, for more details see ref. 217.

Fig. 25 shows the critical percolation cluster on a square

lattice used for random walk simulations in ref. 218. The results

for both the two-dimensional MSD hr2(t)i and time averaged

MSD d2 for the motion on the infinite cluster are shown in

Fig. 26. Both overlap perfectly, corroborating the ergodicity of

this anomalous diffusion process. The straight line in Fig. 26

indicates the expected slope to guide the eye. In ref. 219, the

non-Gaussian nature of the diffusion on the critical percolation

cluster is analysed. Fractal percolation clusters are often used

for simulations of free diffusive processes220 as well as facili-

tated diffusion processes221 in the crowded cytoplasm of living

biological cells. A fractal support was also diagnosed to be

superimposed onto the subdiffusive CTRW motion for the

diffusion of potassium channels in the plasma membrane of

living human cells in ref. 50. It is important to note that when

we consider the motion on all clusters the motion is a forteriori

no longer ergodic: a walker moving on a finite, disconnected

cluster cannot explore the entire phase space.217

Fig. 24 A random walk on part of a Sierpińsi gasket. Each time the walker
wants to reach a sector of the gasket across one of the larger holes, it needs
to traverse a narrow causeway.

Fig. 25 Percolation cluster at criticality on a 250 � 250 square lattice.
Occupied sites appear blue. Data provided by Y. Meroz, corresponding to
those used in ref. 218.

Fig. 26 MSD (thicker red curve) and time averaged MSD (thinner yellow
curve) of a random walk on the infinite critical percolation cluster shown in
Fig. 25. Both MSD and time averaged MSD perfectly overlap, i.e., diffusion
on a fractal is stationary and ergodic. The straight black line shows the
expected slope a = 0.697 to guide the eye. Data provided by Y. Meroz,
corresponding to those used in ref. 218.
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While the increments of random walk processes on fractal

structures are stationary31 and the infinite percolation cluster

simulations of ref. 218 indicate that diffusion on fractals

is ergodic, this point needs further investigation, in particular,

for different types of fractals; compare also the discussion

in ref. 222. A second open question is what happens in the

presence of a topological bias, for instance, a bias away from

the backbones208 of a diffusion cluster. In that case at least

transient non-ergodicity would be expected.

8 Strong anomalous diffusion and
infinite densities

So far we have focused our attention on the ensemble averaged

MSD hx2(t)i and the corresponding time average d2. More

generally, one may characterise stochastic processes by their

fractional moments h|x(t)|qi with q Z 0. Strong anomalous

diffusion deals with processes, which in the long time limit

satisfy223

h|x(t)|qi B tqn(q), (97)

where n(q) is not a constant. For Brownian motion n(q) = 1/2

and for FBM n(q) = a/2 so that these processes do not exhibit

strong anomalous diffusion. For unbiased Gaussian processes

like FBM the MSD characterises the width of the PDF P(x,t)

when the particles start at the origin x = 0. For this reason, from

the starting days of the Gaussian central limit theorem the

variance of the stochastic process has attracted special attention.

Experimentally, information on h|x(t)|qi is used to support or

dispute the Gaussian nature of an underlying diffusion process

or, more generally, the mono-scaling assumption of a set of data

(see below). When dealing with complex transport of particles,

for example tracer particles in living cells when periods of active

motion contribute to the motion, the spectrum of exponents

qn(q) may in fact exhibit non-Gaussian and strong-anomalous

statistics.224

Recent experimental studies on the active transport of

polystyrene beads in living cells exhibit a particular type of

strong anomalous diffusion. The data analysis exhibits piece-

wise linear behaviour with

qnðqÞ ¼
mq; qo qc

aq� b; q4 qc

(
(98)

with the positive constants qc, m, a, and b. Such a behaviour is

sometimes called bi-fractal scaling, as the simplest case of

multi-fractal behaviour. More importantly this bi-linear beha-

viour is widespread and found in many models of non-linear

dynamics,223,225–229 transport in optical lattices,230,231 models of

transport in disordered Lévy glasses,232–234 and other stochastic

models.88,235,236 The parameters qc, m, a, and b are non-universal

and hence give specific information on the underlying model or

process. As emphasised by Vulpiani and coworkers223 strong

anomalous diffusion implies the breakdown of mono-scaling

theories which predict P(x,t) B t�nf (x/tn) in terms of a scaling

function f (	). For example, FBM, FLE, sub-diffusive decoupled

CTRW, and fractional diffusion equations,42,56 do not predict

the piecewise bi-linear scaling (98) of the moments, in other

words these popular stochastic models considered above cannot

describe the active transport found in ref. 224. In experiments

a C 0.8 (see discussion below).

Roughly speaking, the piecewise linear scaling of the spec-

trum qn(q) implies that lower order moments qo qc still follow

a diffusive, possibly anomalous process if m a 1, while the

linear increase of the spectrum qn(q) B q for q c 1 implies a

ballistic scaling, since if x scales like t, h|x|qi scales with tq. This

implies that the process is actually a mixture of both diffusive

process x p tm and ballistic element x p t, and hence

characterising the process as an anomalous diffusion process

is in some sense misleading. In particular, we should not

universally accept the special role of the second moment,

beyond the fact that it indicates certain deviations from normal

behaviour. A typical situation occurs when P(x,t) for small

x scales diffusively (n = 1/2), however, for certain large x the

scaling becomes ballistic (n = 1). Here we focus on one

stochastic model of strong anomalous diffusion, the Lévy walk

model mentioned in Section 3.5. For more details on the

mathematical treatment of the following, see ref. 237.

Lévy walks represent a widely applicable model describing

superdiffusion.51,81,238–244 In its simplest one dimensional ver-

sion, a particle starts at the origin at time t = 0, and travels with

velocity v1, drawn from the PDF F(v). The duration of the

travelling event is t1 which is drawn from the PDF c(t). The

position of the particle at time t1 is x = v1t1. The process is then

renewed, until time t is reached: a new velocity v2 and waiting

time t2 are independently drawn from F(v) and c(t), and this

process is repeated. The position of the particle is then simply

xðtÞ ¼
Ð t
0
vðtÞdt. If the PDF c(t) of the flight duration is expo-

nential and the velocity distribution Gaussian with zero mean,

we recover the famous Drude model.245 Ergodic properties of

Lévy walks were analysed in ref. 136–138, see also Section 2.5.

We assume that the velocity PDF is symmetric—F(v) = F(�v),

such that hvi = 0—and that all moments of F(v) are finite, for

instance, a Gaussian PDF. The main ingredients of the stochastic

model are the power-law distributed waiting times (14). These can

be justified from first principles models or from observations, at

least in some systems, compare the discussions in ref. 39, 51 and

241. We here limit our discussion to the case 1o ao 2 which in

turn implies that the average sojourn time hti is finite, however,

its variance diverges. Rather generally, it is easy to understand

that the MSD is bounded by hx2(t)i o hv2it2. Roughly speaking,

the ith jump in the process is given by dxi = viti, and due to the

assumed power-law PDF of waiting times the PDF of this

increment is a symmetric distribution (due to the symmetry

of the distribution of v) with long tails

l(dx) p |dx|�1�a. (99)

The typical number of jumps in the process is N C t/hti. Hence a

hand-waving argument yields the PDF of the position of the particle

using the generalised central limit theorem. Namely, x ’
PN¼t=hti

i¼1

dxi
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with the variance of dxi being infinite, such that we expect that

the PDF of particles is given by (in dimensionless units)

Pðx; tÞ ’ 1

t1=a
La;0

x

t1=a

� �
: (100)

here La,0(x) is the symmetric Lévy distribution, whose Fourier

pair is exp(�|k|a), such that the case a = 2 corresponds to a

Gaussian process. Taken seriously, this central limit theorem

implies

jxjqh i 

tq=a; qo a

1; q4 a:

(
(101)

These hand-waving arguments provide the correct scaling of

the lower order moments, however, the results for higher order

moments, including the second moment, are obviously wrong:

the particle cannot travel faster than ballistic motion.888 Our

argument is flawed since we have neglected the correlation between

the jump sized and time in the problem. A more precise mathe-

matical analysis leads to the result237

jxjqh i 

tq=a; qo a

tqþ1�a; q4 a

(
(102)

In terms of the parameters introduced in eqn (98), we thus

identify m = 1/a, qc = a, a = 1, and b = a � 1. We see that the

process exhibits strong anomalous diffusion,223,237,246 the MSD

exhibits enhanced diffusion hx2i B t3�a which is faster than

normal but slower than ballistic, 1o 3 �ao 2. The lower order

moments q o a exhibit Lévy scaling, i.e., what we call anomalous

diffusive scaling. In contrast, the higher order moments are ballistic

in the sense that if qc 1 we have qn(q) = q + 1� a- q, the ballistic

scaling. The power law tail of the Lévy PDF is cut off at x C t since

particles cannot travel faster than the typical velocity permits,

compare ref. 133. This Lévy walk picture thus cures the diver-

gence of the moments beyond q = a of the original Lévy flight.

The fact that experimentally224 one finds a = 0.8 and there-

fore qn(q) B 0.8q and not qn(q) Bq shows that purely ballistic

motion between turning points is not a sufficient model to

describe the measured behaviour. At least on the stochastic

level this may imply that non-linear relations between jump

size and waiting times are important. The experimental finding

of non-ballistic scaling of large-q moments (in experiment the

largest q was 8) is an indication for the insights one can achieve

by analysis of time dependence of moments.

8.1 Infinite densities

At the heart of the mathematical theory of diffusive phenomena

stand the Gauss and Lévy central limit theorems. A piecewise

linear scaling of the moments in our example implies that

the Lévy central limit theorem is a valid approximation at the

central part of the PDF of particles but not in the tails. The fact

that we have only two scaling behaviours of the moments may

suggest that in addition to the central limit theorem there exists

another general method to describe the fluctuations. Such a

theory was recently obtained237 and the problem related to

infinite densities. These are a class of non-normalised densities

that have only recently attracted attention from physicists.

According to eqn (102) the moments h|x|qi with q o a are

given by the Lévy density. The higher order moments with

q 4 a are also calculated from a density denoted ID(	),237

jxjqh i 
 tqþ1�a

ð1

�1
�nj jqIDð�nÞd�n: (103)

ID(
�
v) is called an infinite density, in the sense that it yields

the moments h|x|qi with q 4 a but at the same time is not

normalised,
ð1

�1
IDð�nÞd�n ¼ 1 (104)

(see below for the physical meaning of
�
v). The density ID(	) is

complimentary to the Lévy density. The infinite respective Lévy

densities fail to provide statistical information on the moments

q o a or q 4 a, but are useful for q 4 a respective q o a. The

identity of the observable of interest is thus crucial, e.g., hx2(t)i
versus h|x(t)|i, in the sense that not only they yield different

scaling behaviours with time (strong anomalous diffusion) but

they are calculated from two different scaling functions. More

specifically, the infinite density has the small
�
v behaviour237

ID(
�
v) B |

�
v|�(1+a), (105)

which is non-integrable and hence non-normalisable. Note that

this non-integrability is cured when we calculate, for example,

the second moment, since
�
v2

�
v�1�a is integrable close to

�
v-0.

This is the reason why this function can give information on

the higher order moments q 4 a.

However, is the infinite density merely a mathematical con-

struction with which we obtain statistical information on the

moments of the process, or does it actually contain information

on the particle PDF? Since
Ð1
�1Pðx; tÞdx ¼ 1 at all times, one

may wonder why a non-normalised solution emerges? The

infinite density and the density P(x,t) are related according to237

ID(
�
v) B taP(x,t) (106)

where �v ¼ x=t ¼
Ð t
0
vðt 0Þdt 0=t is the time averaged velocity. SinceÐ1

�1taPðx; tÞdx ¼ ta ! 1, the integral over the infinite density

diverges when t-N. Importantly, eqn (106) implies that if we

plot the density of particles (normalised to unity, with an initial

condition at the origin) according to taP(x,t) versus x/t and t1/aP(x,t)

versus x/t1/a, the data in both cases will collapse onto amaster curve.

In the first way of plotting this curve will be the infinite density, and

thus we can estimate this density from numerical or experimental

data. In the second plot we get the well known Lévy density.237 This

dual scaling is obviously related to the bi-linear behaviour of the

spectrum qn(q). Since the latter is very common we believe that

infinite densities also have some general validity. In mathematics,

infinite densities, briefly discussed here, are a subject of research

for many years, in the context of infinite ergodic theory.247–249 This

branch of pure mathematics is in fact related to the phenomenon

of weak ergodicity breaking discussed here.250
888 As we required all moments of the velocity distribution F(n) to be finite,

we have a kind of light cone beyond which the particle cannot be found.
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For the Lévy walk model one can obtain explicit formulae for

the infinite density in terms of the parameters of the model.237

It was shown that this density depends on three measurables:

F(v), a, and the anomalous diffusion constant which characterises

the width of the Lévy density.237 In that sense the infinite density

yields statistical information not contained in the central limit

theorem, namely it contains more fingerprints of the underlying

process: the velocity distribution (which can, in principle, be

measured independently). The small
�
v behaviour of ID(

�
v) is not

sensitive to the shape of F(v) (provided it is symmetric) and in

that sense it is universal. For example, for a Gaussian F(v), the

infinite density is plotted in Fig. 27. We believe that further work

on infinite densities is required since only recently these have

attracted some attention in statistical physics83,230,251–254

9 Measurables

Normal and anomalous diffusion are key to many biological

signalling processes and a vast number of biochemical reactions in

cells, or to the spreading dynamics in inanimate complex systems.

To be able to analyse diffusion measurements in a physical

meaningful way and to make predictions for secondary pro-

cesses such as reaction rates or signalling cascades, it is

absolutely necessary to know the exact nature of the stochastic

process driving the particle motion. For instance, the first

passage behaviour is vastly different between the processes

reviewed here. In this section we describe some experimentally

relevant observables whose complementary character enables

one to attain a fair degree of certainty that a given set of data is

based on a concrete stochastic process. Analyses based on the

application of different measures are, for instance, presented in

ref. 44, 50, 68, 69, 175, 176 and 255–260. As demonstrated in the

literature,50,68,69,72 we note that there is a priori no good reason

to assume that in a complex system one of the above processes

is sufficient to adequately describe all the observed dynamic

features: sometimes it is necessary to combine at least two

of the processes, which may influence the particle motion

simultaneously or at different time scales. When passive diffu-

sion is combined with intermittent active motion additional

challenges to the data analysis arise.261

MSD

The MSD is unarguably the most common way to analyse

stochastic data. Depending on the kind of measurement the

quantity to evaluate is the MSD hx2(t)i or the time averaged MSD

d2ðDÞ
D E

. The latter is the typical approach to the analysis of the

time series obtained from single particle tracking. If the time

averaged MSD exhibits anomalous scaling of the form d2ðDÞ ’
Da and d2ðDÞ ’ x2ðDÞ

� �
we are dealing with an (asymptotically)

ergodic process, and when we want to use the data to identify

the underlying stochastic process we can even eliminate CTRW

motion and diffusion processes with time or space dependent

diffusivity as sole contributions. To be more specific, additional

complementary measures need to be evaluated.

Scatter of time averages

The statistics of the scatter of the amplitude d2ðDÞ of the time

averaged MSD for a set of individual trajectories at a given lag

time D is a useful indicator for the classification of the anomalous

diffusion process. We quantify this scatter by the distribution f(x)

of the dimensionless amplitude x ¼ d2ðDÞ
.

d2ðDÞ
D E

and by its

variance, the ergodicity breaking parameter EB = hx2i � hxi2
introduced earlier. As a general trend the fluctuations increase

for any type of motion when the lag time is taken too large in

comparison to the measurement time t. We note that due to the

very definition (6) of the time averaged MSD the plateau value

observed for some of the processes under confinement is twice

the value of the MSD. When the lag time approaches t, the time

averaged MSD d2 shows a cusp to the thermal value hx2ith, as
shown explicitly for the SBM model in ref. 189.

For Brownian motion the PDF f(x) converges to the sharp

form f(x)- d(x � 1) around the ergodic value x = 1 in the long

time limit t - N. At finite t this d-peak broadens. Individual

trajectories exhibit erratic fluctuations of d2 as D - t. The

ergodicity breaking parameter tends to zero with the ratio D/t in

the form EB B D/t.

For subdiffusive CTRW motion the trajectory-to-trajectory

fluctuations are asymptotic, that is, the ergodicity breaking

parameter has the finite limiting value (25) varying with a

between unity and zero. As in this process the fluctuations are

statistically given by the number of jumps performed during its

time evolution,73 the PDF f(x) remains unchanged when the

process becomes confined. The distribution f(x) has a finite

value at x = 0 for any given D, a strong characteristic of the weakly

non-ergodic CTRWmotion. For aged CTRW processes f(x) has a

discrete immobile contribution proportional to d(x) and a con-

tinuum part whose distribution is qualitatively similar to the

non-aged process, albeit there occurs a redistribution of this

continuous part to larger x values.73 The PDF f(x) for noisy CTRW

processes with superimposed Ornstein–Uhlenbeck or Brownian

Fig. 27 Infinite density for a Gaussian velocity distribution F(v). Notice the
divergence of the density at the origin. This divergence is non-integrable,
hence these functions are non-normalisable. Still, they describe the statistical
properties of physical particles.237
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noise narrows down for increasing noise strength.98 Finally, we

note that subdiffusive CTRW processes with a cutoff of the

power-law waiting time distribution exhibit an MSD with all

features of the process with a diverging waiting time scale

roughly up to the cutoff time, however, due to the lack of

extreme waiting events the scatter distribution f(x) appears to

be significantly more ergodic,68 compare also the discussion in

ref. 262 and 263.

For FBM and FLE motion the scatter distribution at suffi-

ciently short lag times is Gaussian and becomes somewhat

asymmetric but preserves the property f(0) = 0 for larger D.158

The ergodicity breaking parameter tends to zero with the ratio

D/t.156 For the transiently non-ergodic behaviour under con-

finement see ref. 166 and 179. In general, the scatter distribu-

tion and the ergodicity breaking parameter of both processes

are relatively similar to those of regular Brownian motion.

SBM was shown to be a weakly non-ergodic process but its

ergodicity breaking parameter tends to zero with the ratio

D/t.189,190 The PDF f(x) is approximately bell-shaped albeit wider

than for the corresponding FBM with identical anomalous diffu-

sion exponent a.

For HDPs the form of the PDF f(x) follows an asymmetric

Rayleigh-like or generalised Gamma distribution.197 The width

of f(x) for HDPs with power-law form (89) grows from the

minimal Brownian value attained for the scaling exponent b = 0

of K(x) and diverges at the critical point b - 2. For confined

HDPs the width of f(x) decreases drastically for all b values,

often reaching only a minute scatter. The ergodicity breaking

parameter tends to zero as 1/t for fixed D.201

We note that in some cases, in lieu of the ergodicity break-

ing parameter defined above—which represents a sufficient

condition for (non-)ergodicity—one uses the parameter EB ¼
d2ðDÞ
D E.

x2ðDÞ
� �

,138 representing a necessary condition for

ergodicity.

First passage time statistics

When sufficient statistics are available onemay use the first passage

time statistics to distinguish different kinds of anomalous diffusion

processes. In single particle tracking experiments the first passage

can simply be measured as the moments in time when the tracer

passes a certain distance from its original point of release. As shown

in ref. 264 the scaling of the mean first passage time obtained from

a statistical number of repeats of such an experiment with the

distance from the origin may be a good indicator for the underlying

diffusion process. Moreover, the PDF of first passage times can be a

good indicator, especially for confined systems. While subdiffusive

CTRW processes with their scale-free waiting times still exhibit a

power-law decay under confinement,42,94 other processes have an

exponential form of the first passage PDF. For semi-open intervals,

we note that the dependence of the scaling exponent for the first

passage PDF on the stochastic process may either be increasing or

decreasing**** with the anomalous diffusion exponent a, and could

thus also serve as an indicator when a is varied.

Mean maximal excursions and higher order moments

Apart from the regular PDF P(x,t) a stochastic process may be

characterised by another, related quantity, the PDF of the

maximal excursion. This PDF measures the likelihood that at

some time t after its initial release at the origin, the particle has

not travelled farther than the distance x.256,265 This distribution

may be reconstructed from the measured single particle traces,

and then higher order moments calculated from the data. For

CTRW and FBM the scaling behaviour of the second moment

of the mean maximal excursion as well as the fourth moments

are known. It can be shown that the ratios of the regular

moments hx4i/hx2i2 and the corresponding quantities of the

mean maximal excursions obey certain inequalities.256 The

behaviour of the other processes with respect to this method

remain to be analysed. However, we mention that the method

of the mean maximal excursion has a clear advantage over the

regular PDF as the mean maximal excursion dynamics is less

dispersed and the associated moments therefore more reliable

for finite data sets.256

Distribution of local diffusivity

An interesting tool to analyse single particle tracking data is to

measure the distribution of the local anomalous diffusion

coefficient as a function of the (lag) time from the ratio of the

MSD (time averaged MSD) versus the (lag) time to some positive

power. These distributions for a weakly non-ergodic process are

different according to whether the MSD or the time averaged

MSD is evaluated. A detailed discussion for Brownian processes

with spatially varying diffusivity and for CTRW processes can

be found in ref. 266 and 267. This method still needs to be

analysed for the other anomalous stochastic processes con-

sidered herein.

Non-Gaussianity measure

Similar to the ergodicity breaking parameter EB, the non-

Gaussianity measure G involves higher order moments. In terms

of the experimentally relevant time averaged MSD we define the

non-Gaussianity as217

GðDÞ ¼ d

d þ 2
�

d4ðDÞ
D E

d2ðDÞ
D E2 � 1; (107)

in dimension d, where the fourth time averaged moment is

defined via

d4ðDÞ ¼ 1

t� D

ðt�D

0

½xðt 0 þ DÞ � xðt 0Þ�4dt 0: (108)

For Brownian motion G = 0, while this parameter deviates from

zero for progressively non-Gaussian diffusion. The value of G

provides a sensitive measure for the type of diffusion process

under consideration. For instance, based on G measurements

for diffusion of fluorescent nanobeads in complex crowded

fluids, the Gaussian FBM-like process was recently proposed as

a suitable mathematical model rather than a CTRW process.268**** Notably, this occurs for FBM.154,155
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The p-variation method

The p-variation method is based on the evaluation of the pth

power of a partial sum of increments of a given stochastic

process.177,269 It was applied as a measure to distinguish the

non-Gaussian subdiffusive CTRW from the Gaussian FBM

process.177,269 An attractive feature of the p-variation test is its

applicability to both unbounded and confined systems, even

when based on a single sufficiently long experimental trace.

When the recorded time traces are affected by a highly noisy

environment, the p-variation test may become inconclusive.98

Velocity auto correlation

The experimentally accessible correlation of increments along

some time trace x(t) can be probed in terms of the covariance44

C(e)
n
(t) = e�2h(x(t + e) � x(t))(x(e) � x(0))i. (109)

Although it is based on increments of the position rather than

on the real velocity of the particle, the quantity (109) is often

referred to as the velocity auto-correlation function of the

process x(t). For free, unconfined CTRW processes this function

drops to zero algebraically as C(e)
n
(t)B 1 � (t/e)a and vanishes at

t 4 e due to the independence of successive steps.44 With this

property CTRW motion is easily distinguishable from uncon-

fined FBM, the latter being characterised by a crossover to

negative values (a signature of the antipersistence) and a power-

law recovery back to zero. The autocorrelation can be successfully

used to analyse the nature of an anomalous diffusion process.166,197

However, for confined motion also the CTRW process exhibits

some form of antipersistence due to the reflections at the

boundaries or the rising flanks of the confining potential. In

that case the behaviour of the function C(e)
n
(t) becomes empiri-

cally indistinguishable between confined CTRW and FBM.44

10 Discussion and conclusions

Brownian diffusion with its Gaussian propagator has an appeal-

ing beauty in its universality. No matter what the exact details

of the underlying process are, the limiting behaviour is com-

pletely determined by the MSD and its linear growth with time.

Concurrently, it is ergodic, so all quantities measured as time

averages of sufficiently long single trajectories can be safely

interpreted in terms of the readily available theoretical results

in terms of ensemble averages. At the same time one could also

perceive Brownian diffusion as somewhat too restrictive: many

experimental observations are much richer and cannot be

explained by the Gaussian propagator emanating from the

central limit theorem. We note that while it may be true that

apparent anomalous diffusion may in fact be due to transient

crossovers of Brownian motion in confined geometries270–274

the opposite may also be true: some diffusion processes failed

under Brownian motion may in reality be anomalous.64 One of

the reasons may be the weakly non-ergodic behaviour discussed

in this review.

Especially since more refined measurement techniques such

as space resolved fluorescence recovery after photobleaching

measurements and, in particular, high resolution single particle

tracking have become available, anomalous diffusion has been

widely observed. Most importantly, information beyond the time

scaling of the MSD can be extracted from the data. These observa-

tions demonstrate that in different systems anomalous diffusion

has different diffusive, first passage, and ergodic characteristics.

In particular, disparities between ensembles and time averaged

observables have been reported. Accommodating the features of

anomalous diffusion and non-ergodicity poses the challenge to

come up with a pluralistic range of stochastic models for the

description of non-Brownian diffusion processes.

We here summarised the state of the art in the study of the

properties of the most popular anomalous diffusion processes.

In view of their importance in the analysis of experimental or

simulations data we paid specific attention to the time and

ensemble averaged MSDs. For ergodic processes both quantities

are identical for sufficiently long measurements and ensembles.

In the opposite case, when time and ensemble averaged MSDs

are asymptotically disparate, we speak of a weakly non-ergodic

process. The rich range of behaviours is listed in Table 1. In the

sense of the ensemble averaged MSD, the considered models

span from cubic time scaling down to ultraslow, logarithmic

time evolution. Considering the lag time dependence of the time

averaged MSD, the variation is much narrower, from quadratic

scaling to a square root dependence. In most weakly non-ergodic

cases a linear lag time dependence is observed and may be

falsely interpreted as normal diffusion.

From a statistical physics point of view the variety of

behaviours listed in Table 1 poses a number of questions, in

particular, for a classification scheme of anomalous diffusion

processes with respect to their (non-)ergodic behaviour and how

fundamental mathematical concepts have to be generalised, for

instance, the Khinchin theorem.45 Moreover, it is of principle

interest whether we can construct new processes, which break

the linear lag time scaling of d2. At the same time there are still a

number of open questions concerning the processes reviewed

here, for instance, the exact form of the ergodicity breaking

parameter EB beyond the CTRW case. Another question is to

come up with additional methods to diagnose the underlying

stochastic process from a given, limited set of data from experi-

ments or computer simulations. In particular, Bayesian inference

methods are expected to be developed further. The latter should

also work well when the observed process in fact represents a

blend of different stochastic processes.

It will also be of interest to extend the study of the ergodic

behaviour and the features of ageing from the stochastic processes

considered here to more specific systems. The latter include, for

instance, the Lorentz gas model with its rich behaviour of cross-

overs and density effects,280 the motion in periodically structured

environments such as elastic gels,97 or the folding dynamics of

proteins.170,281 Other interesting current questions concern the

understanding from a stochastic point of view of Fickian yet non-

Gaussian diffusion processes,282–284 compare also the discussion

in ref. 285. Finally we mention that similar concepts to those

summarised here could be relevant for active transport processes.
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From a more practical point of view, the discussion of the

question as to what extent anomalous diffusion may impact

biological function has just begun.32,33,217,221,286–288

Abbreviations and symbols

Symbols used in the text are summarised in Table 2.

CTRW Continuous time random walk

FBM Fractional Brownian motion

FLE Fractional Langevin equation

HDP Heterogeneous diffusion process

MSD Mean squared displacement

PDF Probability density function

SBM Scaled Brownian motion
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