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ABSTRACT

The di†usion properties of photospheric bright points associated with magnetic elements (magnetic
bright points) in the granulation network are analyzed. We Ðnd that the transport is subdi†usive for
times less than 20 minutes but normal for times larger than 25 minutes. The subdi†usive transport is
caused by the walkers being trapped at stagnation points in the intercellular pattern. We Ðnd that the
distribution of waiting times at the trap sites obeys a truncated type (power-law) distribution. TheLe� vy
fractal dimension of the pattern of sites available to the random walk is less than 2 for the subdi†usive
range and tends to 2 in the normal di†usion range. We show how the continuous time random walk
formalism can give an analytical explanation of the observations. We simulate this random walk by
using a version of a phenomenological model of renewing cells introduced originally for supergranules
by Simon, Title, & Weiss. We Ðnd that the traps that cause the subdi†usive transport arise when the
renewed convection cell pattern is neither Ðxed nor totally uncorrelated from the old pattern, as required
in LeightonÏs model, but in some intermediate state between these extremes.

Subject headings : di†usion È Sun: granulation È Sun: magnetic Ðelds

1. INTRODUCTION

A key to understanding solar surface phenomena is deter-
mining how photospheric convective motions transport
magnetic Ñux elements. A central process of this transport is
di†usion, taken as the cumulative e†ect of random walks.
The properties of the solar di†usion provide both insight
into the evolution of surface magnetic Ðelds and informa-
tion about the properties of the underlying velocity Ðeld.

The random character of solar convection complicates
theoretical modeling of the di†usion. One must specify to
what extent the Ñow is controlled by regular structures,
such as granules, mesogranules, and supergranules, and in
which ways it is random. Leighton (1964) introduced a very
simple and instructive model that combines these elements.
Here the surface di†usion is carried out by motions in a
randomly renewing Ðeld of supergranules. The model
assumes that the magnetic elements are carried passively to
the boundary of a supergranule by its radial Ñow and
remain there until the global supergranular Ñow Ðeld is
renewed. As a result of this loss of Ñow memory the mag-
netic Ðeld elements perform normal ““ Brownian ÏÏ random
walks. The di†usion coefficient (or di†usivity) for normal
di†usion is deÐned as one-fourth the mean squared dis-
placement of Ñow markers per unit time : K 4 Sr2T/4t. The
di†usion coefficient in LeightonÏs model is determined by
the size and lifetime of the supergranules.

LeightonÏs idea has been tested observationally by mea-
suring the motions of small magnetic fragments in time
sequences of magnetograms (Mosher 1977 ; Schrijver &
Martin 1990) and elaborated theoretically and numerically
(see Simon, Title, & Weiss 1995 ; Ruzmaikin & Molchanov
1997). Depending on how the aspect of randomness is
incorporated, these elaborated models can show a richer
variety of behavior than does the original Leighton version.

1 acadavid=galileo.csun.edu.

In almost all previous work, the di†usion coefficient is
assumed to be constant in time. However, when K is calcu-
lated or estimated from analyses of solar data, values range
between 70 and 1000 km2 s~1, depending on the type of
observations or the model assumptions. Sheeley, Nash, &
Wang (1992) have found that a di†usivity of 600 km2 s~1
Ðts the observed latitudinal distribution of magnetic Ñux,
the rigid rotation of coronal holes, and the 11 yr polar
reversals. In support of this value Simon et al. (1995) devel-
oped a series of kinematic models of di†usion generated by
supergranulation and thereby constrained the value of the
di†usion coefficient between 500 km2 s~1 and 700 km2 s~1.
However, Schrijver & Martin (1989), by directly tracking
magnetic elements in plages and network, found di†usion
coefficients of 120 km2 s~1 and 280 km2 s~1, respectively.
From recent studies of SOHO MDI magnetograms, Hage-
naar et al. (1999) concluded that the di†usion coefficient is
smaller and that it varies with the scale : 70È90 km2 s~1 on
short timescales (D1 hr) and 200È250 km2 s~1 on longer
timescales (D5 hr). Berger et al. (1998b) Ðnd a di†usion
coefficient D70 km2 s~1 for the transport of magnetic
bright points. There is obviously a mismatch between the
““ directly observed ÏÏ di†usivity and the di†usivity found by
modeling.

One source of this difficulty may be that in most previous
studies the more basic character of the di†usion, namely,
the way the mean squared displacement grows with time
(Sr2T P tc), was not taken into account : is it normal di†u-
sion (i.e., c \ 1), as usually assumed, or is it ““ subdi†usion ÏÏ
(c \ 1) or ““ superdi†usion ÏÏ (c [ 1)? Equivalently, if we
deÐne c 4 1, is the di†usivity constant, or a decreasing or
growing function of time?

While in the general physics literature there are plenty of
examples of ““ anomalous ÏÏ di†usion in di†erent systems
(Bouchaud & Georges 1990 ; Weeks et al. 1994), there have
been only a few attempts to identify the character of the
solar di†usion (Lawrence 1991 ; Lawrence & Schrijver 1993 ;
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Ruzmaikin et al. 1996 ). In the work of Lawrence & Schrij-
ver (1993) a di†usion exponent found to be c \ 0.89 ^ 0.20
indicated possible subdi†usion for magnetic elements in
active network tracked by Schrijver & Martin (1990) for
periods between 1/2 and 5 days.

In addition, Lawrence & Schrijver (1993) determined a
second parameter governing the di†usion, namely, the e†ec-
tive dimension D of the spatial distribution of the random
walk sites. Mathematically, this dimension is not connected
in a one-to-one relationship to c (OÏShaughnessy & Pro-
caccia 1985). D is almost universally assumed to be the
Euclidean dimension (D \ 2) ; however, it was found for the
Schrijver & Martin (1990) data to be fractal :
D \ 1.56 ^ 0.08, signiÐcantly excluding the Euclidean case.
It was suggested (Schrijver et al. 1992 ; Balke et al. 1993 ;
Lawrence & Schrijver 1993) that the experimental results
could be explained in terms of percolation theory since the
number 1.56 characterizes the fractal dimension of a perco-
lation pattern below threshold. A particle performing a
random walk on that pattern would Ðnd its motion
impeded by the Ðnite clusters, a situation that would lead to
subdi†usive behavior. In this paper we instead focus on
details of the time evolution of the random walk.

In this work we analyze the G-band magnetic bright
point (MBP) data of Berger & Title (1996) and Berger et al.
(1998a). As these authors explain, the relation between the
G-band bright points and the underlying magnetic elements
is subtle, since they have observed instances in which the
G-band bright points are not observed or disappear when
the associated magnetic elements are still observed. While
this situation renders the bright-point data useless for the
study of magnetic element lifetimes, however, it is very
useful for the analysis of the random walk in which the
whole process from splitting to merging can be followed.
Another consideration is the fact that the magnetic Ðeld in
the solar photosphere is a vector, and its motion may be
a†ected by curvature forces as well as the magnetic force
may well a†ect the convective motions. Thus, formally, we
have no right to assume passive scalar di†usion. However
this is a good Ðrst approximation to the di†usion of the
line-of-sight component of the magnetic Ðeld (Parker 1979).
In previous work (Cadavid et al. 1998) we found that the
stochastic component of the velocity is closer to
Kolomogorov-type turbulence, rather than Kraichnan.
This may indicate that the e†ects of the magnetic Ðeld on
the Ñow are small, which is consistent with the assumption
of treating the magnetic Ðeld as a passive contaminant.

In order to correctly determine the di†usion parameters c
and D in a real physical system by following the random
walk of passive markers (here magnetic elements), one needs
observations of a large number of elements, each followed
over many walk steps. The G-band magnetic bright-point
data consist of approximately 1800 random walkers associ-
ated with magnetic elements, moving on granular scales,
and with lifetimes of up to 70 minutes. These provide an
ideal opportunity to perform this study.

In analyzing these data we Ðnd that the random walk
steps do not occur at uniform intervals. Instead there are
traps, i.e., sites in the photospheric Ñows (stagnation points),
at which magnetic elements stick before the next displace-
ment. The sticking times have a broad distribution function
that extends to long periods. Further, we Ðnd that the
random walks of the bright points, on timescales ¹20
minutes, are signiÐcantly subdi†usive. Finally, we calculate

the fractal dimension of the pattern of sites available to the
random walkers. At short times, D ] 1, which is a reÑection
of the restricted motion in the intergranular lanes. For long
times, D ] 2, which shows that as the granular pattern
changes the restricted short time behavior is unimportant,
and the walkers have access to the full underlying Euclidean
space.

These three results can be uniÐed in a natural way within
a single analytical framework : the continuous time random
walk (CTRW) model (Montroll & Shlesinger 1984 ; Klafter,
Blumen, & Shlesinger 1987 ; Shlesinger & Klafter 1989 ;
Zumofen & Klafter 1993). This approach takes into con-
sideration both the e†ect of waiting times at stagnation
points and the contribution from the transport due to the
underlying convection. The CTRW method has been suc-
cessfully used in the past to describe the dynamics of passive
carriers di†using in disordered media such as doped crystals
and glasses (Alexander & Orbach 1982 ; Blumen et al. 1986),
and it is natural to apply it to the di†usion problem on the
solar photosphere. We begin with the observation that the
waiting times between random walk jumps of the MBPs
follow what amounts to a truncated power law or one-sided

distribution. The CTRW formalism then analyticallyLe� vy
leads, for timescales shorter than the truncation, to a sub-
di†usive spreading of walkers and to an e†ective fractal
dimension D \ 2.

In solar physics the presence of power-law waiting times,
or ““ fractal time ÏÏ (Mandelbrot 1997), is implicit in the
analysis of the magnetic observations by Smithson (1973),
and in particular, in the modeling of Simon & Weiss (1989)
and Simon et al. (1995), who observed that after moving to
the supergranular cell boundaries, the magnetic Ðelds con-
tinue along the cell boundaries and end at accumulation
““ sinks. ÏÏ During the short, initial stage the transport is
““ ballistic, ÏÏ a trivial form of superdi†usion with Sr2T P t2
or c \ 2. Subsequent displacement occurs only when the
underlying cell pattern is renewed. In the version we will
apply here to granular motions, the cells have radii R. Their
radial outÑows are randomly centered within distances
given by a ““ tether ÏÏ length : of points on a0 ¹ r ¹ R

teth
square grid. Each cell dies and is renewed individually. In
the case that we Ðnd that the Ñow pattern is com-R

teth
[ R

pletely decorrelated in a few cell lifetimes and that the di†u-
sion is normal with c \ 1 for long times. If theR

teth
\ R/2,

Ñow never decorrelates, there is no di†usion, and c \ 0 for
long times. However, there is an intermediate range of this
control parameter, where the behavior isR/2 \ R

teth
\ R,

critical : the Ñow pattern retains some memory of its con-
Ðguration for many cell lifetimes, the sink sticking times
take on a broad distribution, and the transport is sub-
di†usive with 0 \ c \ 1 for long times. It is this situation
that we see for the granular transport of the magnetic bright
points.

In ° 2 we perform a statistical analysis of the MBP data ;
this is followed, in ° 3, by a brief explanation of how the
results are uniÐed in the framework of the CTRW method.
In ° 4 we run a version of the numerical model for renewing
cells introduced by Simon et al. (1995). We end in ° 5 with a
discussion of the various results.

2. DIFFUSION OF SOLAR MAGNETIC BRIGHT POINTS

The data set consists of a 70 minute sequence of G-band
Ðltergrams obtained with the 50 cm Swedish Vacuum Solar
Telescope on 1995 October 5. The pixel size is (60.170A.083
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km), and the resolution is The observations corre-D0A.4.
spond to a 29@@ ] 29@@ region of enhanced network near
disk center. There are 1800 di†erent MBPs, which are
associated with magnetic elements. The duration of each
series of single point displacements is determined both by
the lifetime of the MBP and the time of observation. The
images are corrected for seeing e†ects, and a subsonic Ðlter
is used to remove the acoustic and f-mode oscillations. The
detailed description of the data can be found in Berger et al.
(1998a).

In order to calculate the mean squared displacement we
used all possible combinations in a given series. Thus a
string of n consecutive measurements of r for an MBP gives
(n [ 1) single interval displacement observations, (n [ 2)
double interval observations, . . . , two (n [ 2) interval obser-
vations, and one (n [ 1) interval observation. Since these
intervals overlap and thus are not independent, we have
weighted each sample accordingly. The data were then
averaged in logarithmic bins of width * log t \ 0.06 log (s)
and a weighted linear least-squares Ðt of log Sr2T versus
log t was performed taking into account the uncertainties
due to scatter in the bins. Figure 1 shows the results for the
mean square displacement in the radial direction versus
time. The dashed lines correspond to the linear Ðt over
di†erent ranges of time. The slopes of the lines and corre-
sponding Ðtting range are c \ 0.76 ^ 0.04, 0.3È22 minutes ;
c \ 1.10 ^ 0.24, 25È57.5 minutes. We Ðnd subdi†usive
transport for times shorter than 22 minutes and normal
di†usion for times greater than 25 minutes. This result was
presented in a di†erent way by Berger et al. (1998b) in a plot
of (Sr2T/t) versus t. They found a time-dependent di†usion
coefficient that decreases up to t D 26 minutes, followed by
a region of constant di†usion coefficient with value 50 km2
s~1 in the range 26È40 minutes, and Ðnally a region of
constant di†usion coefficient with value 79 km2 s~1 in the
range 42È57 minutes. The regions of constant di†usion coef-
Ðcient correspond to the regime of normal di†usion with
c D 1. Only in these regions can the ratio Sr2T/t yield a
constant value. For completeness we have analyzed the
mean squared displacement versus time in the x and y direc-

FIG. 1.ÈMean squared displacement vs. time for data in logarithmic
bins. The dashed lines present the linear Ðts in the ranges 0.3È22 and
25È57.5 minutes.

tions. We Ðnd the following values for the di†usion expo-
nent : x-direction, c \ 0.69 ^ 0.03, 0.3È57.5 minutes ;
y-direction, c \ 0.83 ^ 0.05, 0.3È22 minutes ; y-direction,
c \ 1.10 ^ 0.30, 22È57.5 minutes. The scaling range for the
x-direction is larger than for the y-direction. At t D 22
minutes the variance in the y-direction, which had been
growing faster than in the x-direction, suddenly decreases.
It is not clear what causes walkers to be constrained further
in their motion in y at this time. The measured asymmetry
in the two variances may be due to some fundamental bias
of the network, since the observed bright points are con-
strained to move in the intergranular lanes. Since the obser-
vations correspond to a small (29@@ ] 29@@) region, it is not
surprising to encounter local anisotropies. The mean square
displacement in the radial direction provides the best esti-
mate, as it averages up these purely local e†ects.

After encountering a di†usion exponent that indicates
subdi†usive transport, we proceeded to calculate the prob-
ability density of waiting times t(t). The coordinates of the
MBPs are deÐned by the centroid positions that change
owing to evolution of the shape of the object or from
motion. Because of this ambiguity, we have opted for a
conservative deÐnition in which a walker is determined to
be waiting if the distance between two consecutive positions
does not exceed 2 pixels. Furthermore, in order to deÐne a
waiting time we must be able to follow the MBP through a
full jump-wait-jump cycle. The data presented in Figure 2
have been organized in bins of width 1 minute, and the error
bars go as where N is the number of points in the1/JN,
bin. For motion in the radial direction we Ðnd a scaling
regime that terminates abruptly at t D 14 minutes.

From the last result, t(t) has precisely the form of a trun-
cated stable or distribution. Mathematically it can beLe� vy
described by

t(t) D
4
5
6

0
0

t~(c{`1), t ¹ q,

0, t [ q,
(1)

where q is the truncation time, which in Figure 2 occurs at
D20 minutes. We must point out that the truncation time

FIG. 2.ÈLog-log plot of the probability density of waiting times vs.
time. The dashed line has a slope of [ (1 ] c) for the value c \ 0.76
obtained in Fig. 1.
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FIG. 3.ÈProbability density per unit area for being at position r at a
time t, vs. r/tc@2. The di†erent curves correspond to times t \ 4, 6, 8, and 10
minutes.

for t(t) is comparable to the upper limit of the scaling range
for subdi†usive transport in Figure 1. We will show in the
next section that the parameter c@ is related to the di†usion
exponent c. For comparison with the value of the di†usion
exponent previously obtained, we have included in Figure 2
a dashed straight line of slope [1.76.

We then calculated P(r, t), the probability density per
unit area for being at a position r at a time t. Figure 3
presents a graph of P(r, t)tc@2 versus f \ r/tc@2 for di†erent
times. The factor tc@2 is included in order to be able to
compare these results with the mathematical description in
the next section. The temporal bins are centered at the given
time t and have a width of 40 s in each direction. While P(r,
t) presents a cusp at small r for short times (4, 6, and 8
minutes), at approximately 10 minutes (the lifetime of the
intergranular lane pattern) the cusp disappears. This implies
that for times less than 10 minutes there is a large concen-
tration of walkers close to the starting point. For larger
times the walkers gradually cover uniformly the available
underlying space. We must also note that the plots of P(r, t)
tc@2 versus f, for short times, converge to one curve, as will
be shown in the mathematical model. This analysis can be
complemented further by calculating the fraction f (r, t) of
walkers for which the displacement at time t is less than r

TABLE 1

DIMENSION OF THE PATTERN OF SITES

AVAILABLE TO THE RANDOM WALK

FOR DIFFERENT TIMES

t

(minutes) D

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2

6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3

8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6

30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7

40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9

(Lawrence & Schrijver 1993). For small r/tc@2 there is a
scaling regime in which

ln f D D ln r ] constant , (2)

where D is the fractal dimension of the pattern of sites avail-
able to the random walk. By making linear Ðts to plots of
ln f versus ln r, we have found the following dimensions at
the corresponding times (see Table 1).

While for short times the walkers, constrained to move in
the intergranular lanes, have access only to a low dimen-
sional pattern of sites, for longer times as the intergranular
pattern renews itself, the walkers have access to essentially
the two-dimensional underlying Euclidean space.

3. THEORETICAL BACKGROUND

As explained in ° 1, the observed phenomena can be natu-
rally explained in the framework of the continuous time
random walk (CTRW) method. This is not a thorough pres-
entation of such a method, and we simply deal with those
quantities that are relevant to the data. For further details
the reader is directed to the extensive literature on this topic
(Montroll & Shlesinger 1984 ; Klafter et al. 1987 ; Shlesinger
& Klafter 1989 ; Zumofen & Klafter 1993).

The motion of the MBPs is constrained by the intercellu-
lar lanes and the stagnation points. Fast motion occurs
when the underlying convective cell pattern renews. The
salient properties of this process can be described by a
““ jump model, ÏÏ in which random walkers wait at a trapping
site before moving ““ instantaneously ÏÏ to another location.
To describe this process mathematically one needs to con-
sider t(t), the probability density to wait at a site a time t,
and p(r), the probability density for the jump, when it
occurs, to have a length r. With these two functions one can
calculate P(r, t), the probability of being at r at a time t. In
turn, the mean square displacement can be obtained as

Sr2(t)T \
P

drr2P(r, t) . (3)

Depending on the functional form of t(t) the jump model
can lead to normal or subdi†usive transport.

As we found in the data analysis section, the case of
interest corresponds to a probability density t(t) that
asymptotically takes the form of a distribution (eq.Le� vy
[1]. Stable or distributions have proved to be useful inLe� vy
the description of anomalous di†usion (Klafter, Zumofen,
& Shlesinger 1994). Random variables are said to obey a
stable distribution if their sum has the same distribution as
the individual independent variables. While the best known
example is the Gaussian distribution, it di†ers from the
other stable distributions in that it does not obey an asymp-
totic power law and has Ðnite moments.

Although in the real data the probability density is trun-
cated at time q, to a Ðrst-order approximation, we present
the results without truncation to illustrate the main points
of the CTRW method. The mathematical form of t(t)
implies, Ðrst, that there is a scaling regime and, second, that
there are walkers that wait very long times at the trapping
sites. The combined e†ect leads to the concept of a ““ fractal
time. ÏÏ

In this case the probability density P(r, t), of being at a
site r at a time t, takes the form

P(r, t) D t~c{@2f (f) , (4)
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where and f (f) is given byf \ rt~c{@2
f (f) D e~a1 f~a2 f2 , for small f , (5)

where and are functions of c@.a
1
, a

2
, a

3
The exponential ““ cusp ÏÏ at f D 0 in f (f) indicates an accu-

mulation of random walkers around the origin. This leads
to D \ 2, for the dimension of the pattern of sites available
to the random walkers, which was precisely the behavior
observed in the data for times less than 10 minutes. For
longer times the shape of P(r, t) changes and, correspond-
ingly, the dimension D increases.

Finally the mean squared displacement is

Sr2(t)T D

4

5

6

0
0

tc{, 0 \ c@ \ 1,

t/ ln (t), c@ \ 1,

t, 1 \ c@ \ 2.

(6)

As we have shown, when t(t) has a power-law tail and no
truncation, the parameter c@ can be identiÐed with the di†u-
sion exponent c. For the data, in the subdi†usive regime
where the probability density for waiting times exhibited a
scaling law, we found c \ 0.76 ^ 0.04 and c@ \ 0.61 ^ 0.09.
While the two numbers are in the same ball park, they are
not the same for two main reasons. First, in the analytical
calculation the probability distribution is not truncated as
in the data. Second, the calculation of t(t) from the data has
ambiguities, and the number of samples is small as com-
pared to the calculation of the mean squared displacement.
We consider the latter calculation the more reliable result.
We must stress, however, that both numbers clearly estab-
lish subdi†usive transport for times less than 20 minutes.

4. NUMERICAL SIMULATION OF DIFFUSION IN A

RENEWING CELLULAR PATTERN

The CTRW formalism detailed above has the ability to
give analytical results from a clear assumption. Thus, Le� vy
distributed waiting times for random walkers (fractal time)
leads to subdi†usion. The formalism, however, o†ers no
physical basis for the assumption of fractal time. In this
section we show that both this and the resulting sub-
di†usive transport can arise naturally in a simple, intuitive,
and quite familiar model.

In order to illustrate the process described above, we
have revisited a numerical model introduced by Simon et al.
(1995) to describe the dynamics of di†usion at super-
granular scales. At these scales observations show the
migration of the magnetic Ñux from the point where it
emerges within a supergranule to the cell boundary where it
is constrained to move on the supergranular lanes and
eventually accumulates at sinks of the Ñow Ðeld. As the
supergranular pattern evolves, the sinks displace randomly.
While the MBPs are only observed at the intergranular
lanes, we Ðnd that once there the phenomena at granular
and supergranular scales have many properties in common.

The version of the model of Simon et al. (1995) that we
make use of here assumes a square grid of (x, y) locations
separated by distance 2R. Cells of radius R are tethered to
the grid centers at distances chosen at0 ¹ r ¹ R

teth
random from a uniform distribution and in azimuthal direc-
tions uniformly distributed from 0 to 2n. The cell lifetimes
have average value T and are uniformly distributed
between 2T /3 and 4T /3. As each cell dies it is replaced by a
new one with newly selected lifetime, tether length, and
azimuth. At the center of each cell is a source of Ñuid that
Ñows to the intercellular lanes, where it adds vectorially

with the Ñow from other cells. We take the Ñow from each
source to be radial, with form (Simon & Weiss 1989)

v(r) D (V r/R)e~(r@R)2 . (7)

We take the peak velocity to be V D R/T .
Walkers are randomly placed on this pattern, and their

motions under the inÑuence of the net Ñow are recorded
over many cell lifetimes. Figure 4 displays Sr2T versus t for
di†erent values of as compared to the cellular radius.R

teth
For times less than the average cell lifetime we Ðnd the

exponent c D 2. This is a trivial form of superdi†usion. It
corresponds to ““ ballistic ÏÏ motion and is due to the uni-
directional advection of the passive markers toward the cell
boundary. This process is seen in the results of Lawrence &
Schrijver (1993) for the random walks of magnetic elements
in network on timescales D3È7 hr. It also has been seen at
similar timescales by Hagenaar et al. (1999) when studying
the random walk of magnetic Ñux concentrations from
high-resolution magnetograms obtained by SOHO. We do
not see the e†ect, however, when studying di†usion at gra-
nular scales. Here magnetic elements do not become visible
as bright points until they are situated in the intergranular
lanes.

When the markers reach the cell edges, they are carried
along the intercellular lanes until they reach Ñow sinks
located at some of the cell vertices. Further motion relies on
renewal of the Ñow pattern following the deaths of individ-
ual cells. The nature of this motion depends on the value of
the tether length relative to the cell radius. Thus for time
intervals longer than a cell lifetime we Ðnd the following : (1)
for no di†usion (c \ 0) ; (2) forR

teth
\ 0.5R, 0.5R \ R

teth
\R, subdi†usion (0 \ c \ 1) ; and (3) for normalR

teth
[ R,

di†usion (c \ 1). These results are presented Ðrst in Figure
4, in a Sr2T versus t diagram and then in Figure 5, which
presents the di†usion exponent c as a function of tether
length.

The interpretation of this result is straightforward. If the
tether length is short, new cells will be born at almost the
same location as the old ones and the pattern of Ñow sinks

FIG. 4.ÈMean squared displacement vs. time for the numerical model.
The di†erent curves correspond to tether lengths R

teth
\ 0.25R,0.75R, and

1.25R, where R is the cellular radius.
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FIG. 5.ÈVariation of the di†usion exponent c as a function of the tether
length in the numerical model.

never changes. Then the walkers are permanently trapped.
If the tether length is long, then the changing cell structures
easily disrupt the pattern of sinks and the walkers di†use
normally. Between these two cases is a zone (0.5R \

of critical behavior in which walkers are dis-R
teth

\ R)
placed but also can be trapped for periods on all timescales.
This is the counterpart of the distribution of waitingLe� vy
times (fractal time) introduced in the previous section. Here,
as there, it leads to subdi†usive behavior. We note that in
these cases, when steps do occur in the x- or y-directions,
their lengths are clustered around integer multiples of 2R.

In this phenomenological model the control parameter is
The results can be interpreted physically in termsR

teth
/R.

of the spatial correlation between old and new cell patterns
or the ““ memory ÏÏ of the underlying convection. At one
extreme, when the new pattern is totally correlated to the
old one, the random walkers remain in the traps and there is

FIG. 6.ÈLog-log plot of the number density of waiting times vs. time
for the numerical model. The two curves correspond to tether lengths

where R is the cellular radius.R
teth

\ 0.75R,1.25R,

no motion. At the other extreme, when there is no corre-
lation between the old and new cellular patterns the motion
is totally random and the di†usion is normal. In the inter-
mediate range, which corresponds to the MBP data, the
transport is subdi†usive.

Figure 6 presents the number density of waiting times
versus time in cell lifetimes. The case corre-R

teth
[ R,

sponding to normal di†usion, shows a scaling range fol-
lowed by a fast decrease indicating a truncation in the
number density of waiting times. For the scalingR

teth
\ R

range is less steep and the truncation occurs at much larger
times.

Finally, in the critical range exami-(0.5R \ R
teth

\ R),
nation of the displacement of random walkers from their
starting points does indicate the e†ect of fractal dimension
D \ 2 for the sites available for motion. In this case the
e†ect can be attributed to the restriction of the motion to
the square grid deÐned by the intercellular lanes.

5. DISCUSSION

We have found that the commonly assumed normal
(Brownian) model for random walks of magnetic elements
on the Sun does not always apply. We have demonstrated
the e†ect on the Sun by tracing the observed motions of
G-band bright points on granular spatial and temporal
scales. For timescales less than 20 minutes we Ðnd three
results : (1) subdi†usive transport ; (2) fractal time, that is, a
broad, roughly power-law distribution of walker waiting
times ; and (3) an e†ective fractal dimension D \ 2. By
applying to the solar case the CTRW formalism developed
for analytical treatment of anomalous transport in disor-
dered media, we have shown the close logical connection
between these three phenomena. And Ðnally, by application
of the ““ tether ÏÏ model of random walks in a Ðeld of rene-
wing convective cells we have found that the origin of the
e†ect appears to be a long but Ðnite retained memory in the
granular pattern.

Magnetic bright points become observable only when
magnetic Ñux is concentrated in the intergranular lanes
(Muller & Hulot 1989 ; Title et al. 1992). While in the case of
the granulation, the bright-point data do not show the
migration of the magnetic Ñux to the boundary, once the
walkers are on the boundaries, there are many similarities
between the transport and evolution at granular and super-
granular scales. This includes the waiting times and the
corresponding subdi†usive transport. When the underlying
granulation pattern changes, the MBPÏs are given a push
that can be identiÐed as a jump in the context of the CTRW
model. For longer times (several lifetimes of the granulation
pattern) the waiting times become unimportant and the
motion of the MBPs is dominated by the random evolution
of the granulation pattern, leading to normal transport.

The renewing cell model we have used was originally
introduced by Simon et al. (1995) to study supergranular
di†usion, the velocity distribution in equation (7) was
derived from observations of mesogranules (Simon & Weiss
1989), and in ° 4 we applied the model to granules. This
mixing of metaphors should not detract from the point of °
4, that apparently abstract notions like fractal time and
anomalous di†usion can arise from a simple, concrete
model. The model also demonstrates a degree of robustness
for the ideas. Analytical derivation of the subdi†usion in ° 3
requires a power-law form of the distribution of waiting
times. Our model, as shown in Figure 6, reproduces this
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only qualitatively. Nevertheless, subdi†usion is found. The
key feature is a long tail on the distribution extending to
waiting times longer than the period of observations. In
turn this can also be interpreted in terms of the underlying
convection. The cellular pattern is neither Ðxed as in

cells, nor is it totally uncorrelated fromRayleigh-Be� nard

the old pattern as required in LeightonÏs model. We Ðnd
instead a behavior between these extremes.

We thank T. Berger for generously sharing the excellent
bright-point data and for useful comments. This work was
supported in part by NSF grant ATM-9628882.
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