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Résumé. — Nous étudions la croissance temporelle des moments de la distribution de particules
diffusant sur un fractal & portée de saut variable avec une coupure inférieure. Les paramétres essen-
tiels sont : le taux de croissance, le facteur d’échelle de la longueur et celui du temps le long de la
hiérarchie ; ce dernier critére est nouveau. Nous trouvons des lois de croissance algébriques et expo- '
nentielles et des corrections logarithmiques, ou un piégeage si la coupure est éliminée. Une aug-
mentation anormale du taux de croissance de la variance ¢ oc t% 6 étant supérieur 4 2, comme cela
a déja été observé pour la turbulence, est obtenue pour la premiére fois.

Abstract. — The temporal increase of the moments in diffusion on a fractal with variable hopping
range and lower cut-off is given. The essential parameters are the growth ratio, the length scaling and,
as a new feature, the time scaling along the hierarchy. We find algebraical or exponential increase,
logarithmic corrections, or trapping if the cut-off is removed. For the first time anomalous enhance-
ment of the variance increase ¢ oc t, 0 larger than 2, is obtained as observed in turbulence.

1. Introduction.

In normal diffusion the distribution of the particles is asymptotically Gaussian ; the variance
increases linearly with time, other central moments either vanish (odd) or increase like powers
of the variance (even)

(Ox)™ ) oc tO 6, = m/2,  meven integer. a.n

This normal diffusion is a very widespread phenomenon, since its physical basis — the statistical
independence of successive steps during the random walk — is rather generic. But there are
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several mechanisms which result in « anomalous » diffusion, i.e. deviations from equation (1.1).
Among those are long-lasting correlations implying 1 < 6, < 2, fluctuating transition rates
or hopping widths as in amorphous substances resulting in 0 < 6, < 1 [1], restrictions in the
random walker’s available sites due to percolation structure or fractal selfsimilarity also cha-
racterized by 6, < 1 [2-4], and convective transport by the eddies in a fully developed turbulent
fluid flow with 6, =~ 3 [5].

Several of these mechanisms seem to determine turbulent relative diffusion (particle pair
separation) simultaneously : long lasting correlations due to slow decay of the relevant eddies,
a fractal, scaling structure of the eddies, fluctuating transition rates due to intermittency, and,
in addition, two aspects which are usually not met : the hopping range depends on the level
of the hierarchy, i.e. on the eddies’ extension, and also the transition rate or hopping time-scale
depends on that level.

These features of diffusive transport in fully developed turbulence have motivated us to intro-
duce hierarchical models with variable range hopping and to investigate the anomalous diffusion
on such models. In reference [6] we have studied a nested hierarchy of d-dimensional intervals
whose levels scale with a spatial scale factor u. The underlying idea is deterministic, chaos-induced
diffusion as defined for example by discrete-time mapping by a broken linear map showing fractal
selfsimilarity [7]. Under such mapping which enjoys a variable hopping range step function
distributions remain step functions and their time development can be described in terms of tran-
sition probabilities. We found in [6] either exponential increase of the moments or trapping (where
the lower order moments approach a finite limit). The physical reason for trapping is the possibi-
lity of transitions to arbitrary low levels below a given one.

We have modified that model in three respects to meet more closely turbulent transport in the
inertial subrange. (i) We have introduced a lower cut-off of levels. (ii) There is mapping only to
the next lower (and next higher, as before) level. (iii) The transition rates scale with the level
number. These aspects reflect the Kolmogoroff dissipation length, the eddy decay into about half
or twice as big ones, and the decreasing decay rates with increasing eddy size, respectively.

The coupling of the eddy size x, its energy ~ v?(x), and decay rate t~!(x) has a deep-lying
physical origin unique to turbulence. According to our present understanding of fully developed
turbulence (Richardson, Kolmogoroff, Oboukhoff, von Weizsicker, Heisenberg, Onsager) the
basic parameter in the inertial subrange is the energy dissipation rate ¢ ~ v2(x)/z(x). Its scale
invariance implies v ~ x!/3 and © ~ x?/3. Denoting the spatial scaling in our hierarchy with u
and the rate constant’s scaling with s these are related accordingly by

utsd =1 (1.2

if intermittency is neglected. Simple scaling would predict 6,, = m In u/In s~ ! for our model, but
we will find that this relation holds only for a restricted range of the model parameters. Deviations
from this law as well as logarithmic corrections and exponential diffusion occur in other regions of
the parameter space.

Like our original model in [6], henceforth denoted as I, also the modified model can be solved by
analytical methods. In this Letter we present the main results together with a summarizing compa-
rison with I. Only the basic steps of the derivation are indicated ; details are published either in [6]
or in [8].

2. The model.

We consider a set of d-dimensional intervals arranged in levelsk = 0, 1, 2, ... (Fig. 1). The intervals
of a given level are labelled by i = 0, 1, 2, ... ; these are all of the same size. The spatial extension
of adjacent levels scales with a factor 4 > 1 ; the size of the lowest level (¢ = 0) intervals is chosen
arbitrarily, say 1. Phase points in a given interval (k, /) are assumed to cover it homogeneously ;
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* $“'d/2

Fig. 1. — Vertex and transition structure of the hierarchical set of intervals with z = 3. For examples of
realizations in the d-dimensional Euclidian space the reader is referred to [6].

Py.i(t) denotes the probability to be in this interval. After an infinitesimal change of the continuous
time ¢ the phase points in (k, i) either stay there, or are mapped upwards the hierarchy with rate
sk to (k + 1, [i/z]), or downwards with transition rate s*~* @/z into each of the z subordinate
intervals(k — 1,iz + j),j = 0, 1, ..., z — 1.zdenotes the branching ratio, [i/Z] is the largest integer
smaller or equal to i/z. The fractal dimension D of the hierarchy is D = Inz/ln u; itis D < d,
since zu~™? < 1.

The hierarchy is meant to represent the structure in the space of two-particle distances, one
particle being attached to the origin. This space is not translational (but scale) invariant. According
to these ideas the model is defined by the master equation for the probabilities

Poi = — Wpo; + @/2) Py gy, k=0,
o ~ k ~ k—1 - k - k_lz—l (21)
Dy = — (" + &) p; + (8/2) " Py + WS Y Pi-1uz+j> k>0.

=0

Henceforth we measure the time in units of w1, the upward transition time. The remaining
parameters are the branching ratio z, the rate scaling factor s, and

r=w/a 2.2)

which we denote as the « growth ratio ». If r > 1 the phase points are predominantly climbing
upwards (with an expected exponential increase of the moments). If r < 1 they are mainly mapped
downwards the level-hierarchy ; this would yield trapping (cf. I), but in the present model that
cannot happen due to the existence of a finite lowest level, k = 0. Still one expects suppression of
the diffusive spreading, resulting in a power law increase of the moments. The borderline r = 1
represents a balance between up- and downward trend and will give rise to logarithmic corrections.

Onestartsatt = 0 with p, ;(0) = 6, ¢ J; o, i.e. a homogeneous distribution of all phase points in
the single interval (0, 0). The normalization ) p,; = 1 is conserved for all times, as one easily

k,i

verifies by summing (2.1) over all %, i.

A phase point which has reached but never exceeded a certain level / = 0 up to time ¢ can only be
in one of the subsets (k, i) withk < land i £ i, = z'* — 1 at time t. This observation suggest
to introduce g{"(¢), defined as the probability to be in the kth level at time ¢ without having ever
exceeded level / up to this time. Of course, ¢’ = 0ifk > I The sets { g@(¢) } and { p, ;(t) } can be
calculated from one another (cf. I).
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The master equation for the g{"(t) reads (using the dimensionless time already)

Q= —a + P, k=0, .3
G = =TT g0 T g0, g0, k>0
The initial condition is ¢{?(0) = §, ,. The branching ratio z does not appear anymore. All quan-
tities of physical interest which can be calculated from the ¢’s depend on the two parameters s
(transition rate scaling of adjacent levels) and r (growth ratio) only. Among these are the moments
{ x™ ) (t), which are given by

(xmy@) = Yy p™q®@e) = Y p™@® - q¢ ). 2.9
1=0 1=0
Here the notation is used
]
§om = Y a@). (2.5a)
k=0

the probability to be at any level 0 < k£ < / without having ever exceeded level / up to time ¢, and
a9 = 490 - 4*7 V@), (2.5b)

the probability that a phase point has indeed reached level / in the hierarchy but without having
exceeded it, up to time t. Since these points are spread over the interval (/, 0) and its directly and
indirectly subordinate intervals (k, i),k < i < z'~* — 1, and thus over a region of linear exten-
sion of order y', the moment is estimated by equation (2.4).

We conclude this section with the remark that the discrete time model in I can easily be trans-
formed to the continuous time version presented here by putting

t=nN, «=8N, w=wN, No-o. (2.6)

w and a/z denote the transition probabilities from a given set (k, i) to the next larger one and to one
of the subordinate lower ones in a discrete time step n — n + 1. The growth ratio w/a = w/a =r
is the same in the discrete or continuous version. The transition rates in I are assumed to be inde-
pendent of the level &, i.e. s = 1; all results then depend on the growth ratio  only.

3. Eigenvalues.

The solution of the master equation (2. 3) can be obtained in terms of eigenfunctions and eigen-
values. Note, that in I for the discrete time model without lower cut-off, i.e. k=..., —2, — 1,0, 1, 2, ...
we gave the explicit solution not expanded into eigensolutions but, instead, as sums over binomial
coefficient expressions.

Substituting ¢’ = — A?¥ g in (2.3) defines / + 1 eigenvalues 1" and eigenvectors for fixed /
which are numbered from i = Otoi = /with increasing size. All eigenvalues are positive. There are
two important boundaries which separate the regions A, B, C, and D with different behaviour of
the eigenvalues A{.

The heavy line separates the region s < 1 with ever decreasing transition rates along the hie-
rarchy from that with s > 1, speading up transitions for higher levels. " behaves roughly like
s'"ifor s < 1 and like s’ for s > 1. There are slight r-dependent deviations at i =~ 0 and i = /,
which, apart from that for AJ’ stated in (3.2) are not essential for the diffusion behaviour. At the
borderline s = 1 the eigenvalues are bounded from below and above by

(1 — r Y22 <20 < (1 + r-12)2 (.1)
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independent of i and /. Thus, with the exception of r = 1, equation (3.1) provides a lower non-zero
bound for the A’s.

The other boundary (heavy broken line) singles out the region r < 1, rs < 1. In this region the
description given above does not apply for the lowest eigenvalue. Instead it is given by

AW =crs), c¢c=0-nl-r)>0 (3.2

for large /. Consequently, the system is governed by two time scales, a large one ~ (rs)”'and a
shorter one ranging between ~ s~'and ~ 1.

The behaviour of the eigenvalues in the different parameter ranges and at their corresponding
boundaries is summarized in table 1.

Table 1. — Eigenvalues A" and temporal behaviour of the moments { x™ »(t), m = 1, in the various
regions of the parameter space (r, s). The regions are displayed in the inset. The boundaries of two
regions are labelled by the letters of the adjacent regions ; for the centre r = s = 1 take DA. The
constants are ¢ = (1 — r)(1 — rs), a = (u™ — 1) (1 — u~™/r). The exponents 0 are defined in
(4.7) through (4.9). I labels the levels, i the eigenvalues in increasing order (i = 0, 1, ..., [). The
notion « bounded » refers to (3.3). Always p > 1, therefore p™ rs < 1 does not exist in region D
and its boundaries CD and D A ; this part of the table is taken for the inset.

i 0]
) low e]sitlgenvalues 4 'other Diffusion behaviour of ¢ x™ > (t)
Region eigenvalue eigenvalues " _ for i
G = 0) i > 0) urrs <1 urrs =1 urrs > 1

A £

AB ~ sl ~ g7 (t/In £)® t/lnt t%/Int

B tint £

BC c(rs) bounded 1% t? e”

C

CD ~ 1/1 ~ s Inr o
. A |

D el
p-——————— B \\

DA bounded C\Nrs=1 e

4, Diffusion.

Diffusion is described by the moments (2. 4). The §(¢) can be evaluated without the knowledge of
the eigenvectors. Performing the sum over k in the master equation (2. 3) for fixed /yields

3 = - s' 4. “.1)

Its meaning is that the decay of §¥(¢) is only possible by the escape of points from the largest level
L. ¢{(¢) can be expressed by the eigenvalues,

]
gPt) = Y cPe A, “4.2)
i=0
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At t = 0 the probability ¢{’(¢) and all its derivatives up to the (/ — 1)-th vanish. Furthermore,
4G®(0) = 1and §®(00) = 0, hence from (4.1)

J g"(t)dt = s, 4.3)
0
These properties determine the coefficients c{” uniquely,
¢® = s~ A0 T] A9/ — 49). .4)
j=0
(G#i)

With (4.4) in (4.2) we get for large /in the respective regions

gi(s't), A,
I o= crs)t -1
crle ™ G(s'~'t), B,

() — "
ql ( ) cr, e_d")lt Gs—l(t) s C s (4 5)
s7'g,—4(0), D.
Here, g (t) = dG,(z)/dr and G,(z) is defined for s < 1 by
G(1) =1 —m (s Z (- 1) 7,(s) snn+ 12 g =t/sn
n=0
4.6)

7 (8) = H 1 — st

G,(r) increases monotonously fromOatt = Oto 1 att = oo. Allits derivatives vanish for t = 0.
If s approaches 1, the transition gets sharper (Fig. 2).

From ¢’(t) (4.5) and §¥(t) via (4.1) the moments (2.4) can be estimated ; a more precise and
detailed elaboration is given elsewhere [§].

Because the hierarchy of levels has a lowest level £ = 0, all phase points eventually will reach
arbitrary high levels and will thus migrate to arbitrary large distances. Therefore the moments
{ x™ »(t) will increase with time for all r, s. The rate of increase is calculated from (2.4), (4.1),

10- Gs(t)

0.5

O.C ¥ T
0

—
N
w

Fig. 2. — The function G(z) for various values of the parameter s € (0, 1). Both the position and the width
of the transition range increase with s as ~ (1 — s)”! and ~ (1 — s?)~!/2, the relative width decreases

~ [ = s/ + s)]V2
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and (4.5). We distinguish the cases y™ rs < 1, > 1, and the marginal value = 1.In table I we have
summarized the behaviour of { x™ }(t) vs. t in the various parameter regions for the three ranges
of u™ rs. We obtained a power law increase, an exponentially strong increase of moments, or even
infinite moments for all ¢t > 0. There are logarithmic corrections at the border lines. The three
relevant exponents are given by

6, =lnp™ns~t, 4.7
0. = Inp™n(rs)~! <1, @.8)
0, =In(p™r)/lns~! > 1. 4.9)

In region B the exponent 6,, increases linearly with m with a slope k

Ko = Inp/In(rs)~1, umrs < 1. 4.10)

Atu™ rs = 1 there is a kink to another slope

Ky =Inp/ns™',  pumrs>1. 4.11)
At the marginal value m, = In (rs)”'/In u there is a logarithmic correction. From the constraints
u? rs S 1 we conclude that 8, = 6 is smaller than one, while 8, = 6, describes a system with
enhanced, though algebraic anomalous diffusion ; #., may even exceed 2, the value known from
highly correlated random walk.
In region A we also have 6,, oc m with a slope

1

K, = Inpy/lns*, r>1, s<1. 4.12)

0, can be less or larger than unity.

While the suppression of moment growth for diffusion on fractals is known from recent work
[2-4, 9], we have described here for the first time diffusion on selfsimilar structures with anoma-
lously enhanced algebraic variance increase 6, > 2. This happens if s < 1 and p > s™! x
max (1, r~1/2).

5. Infinite fractal.

If there is no lower cut-off and the fractal extends to arbitrary small (and large) scales we found in
[6] the phenomenon of trapping. We briefly give the results in the continuum limit (2. 6) which are
obtained from equations (3.17), (3.20), (3.37), and (3.38) of reference [6], model I. Since the
transition rates in this model are independent of the level, onehas s = 1.

If r > 1 we get exponential increase

(x"H@ cexpl,t, I,=(u"—1DE"r—1D/ru"), G.1D

for all moments m = 1.
If, instead, r < 1, one observes trapping. There is an asymptotic normalized distribution

1
g% t—>0)= Y @ - N=0-nr, 1=012.. (5.2
k=—o
for the probability to have reached but not exceeded level /. This implies finite moments
x"Yt—->0)=0 -/ —-ru™, if ru™<1. (5.3)

Moments of sufficiently large order m, namely if ru™ > 1, are infinite. The approach to infinity is
exponential, described also by (5.1).
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The marginal case ru™ = 1 yields a moment which grows linearly in .
{xmyt)oct, m =Inrnu. (5.4
If m, = 2, this corresponds to normal diffusion. Note the difference to diffusion on the fractal

with lower cut-off : If s = 1, r < 1, but ru™ = 1 we have (Table I, BC) enhanced diffusion
{ x™e M(t) oc t2.

6. Applications.

What do we learn for turbulence ? Since larger eddies have larger turnover times we choose
s < 1. The condition of scale invariant energy dissipation can be met by u? = s73, cf. (1.2).
From table I, regions A, AB, and B we can formulate the following behaviour for the temporal
increase of the variance (m = 2) for relative diffusion.

If the growth ratio r is larger than one, i.e. dominance of upward transitions,

o, =2{x2Yt)ct®, r>1>s. 6.1)

If downward transitions dominate, r < 1, there is less diffusion enhancement.

-1
0, 0, =3-B" 1,3, st<r<l,
Ins
g,oc{ tint, s?=r<1, 6.2)
-1
10 9<=3/<1+h”_1><1, r<s*<l.
Ins

For balanced upward and downward trend, r = 1, we find

o, ct3lnt, s><r=1. 6.3)

Remarkable are the logarithmic corrections and the general tendency of reducing the diffusion if
the downward transitions dominate. Usually intermittency is suspected to increase the exponent of
diffusion[5, 10, 11]. Thus one has to be aware of counteracting influences of dynamical fluctuations.
Present data do not yet allow to make reliable conclusions on the deviations from 6 = 3.

In addition to the moments also correlation functions can be evaluated. For example, the proba-
bility to be in the subset (0, 0) at time ¢ (provided one starts in (0, 0) at ¢ = 0) is

Poo(®) = Y. 27'a8’ — 487 "). 6.4)

In regions B and C we have
qP(t) = (1 — r)exp(— c(rs)' t). 6.5)
The main contribution comes from / ~ [_(t) with ct(rs)'< = 1, leading to
Poo(t) oc 27D oct™”, 6.6)
v=Inz/n(s)"'. 6.7

Thus together with anomalous diffusion there is algebraically slow decay of correlations. The
scaling relation between variance-exponent § _ and autocorrelation exponent v reads (if 42 rs < 1)

v=20_D]2 6.8
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with D the fractal dimension, which characterizes the nested hierarchy over the range of scales
above the cut-off. (This attributes the spectral (fracton) dimension [3, 9] dg = 2v = Df_ to the
hierarchy.)

We have put emphasis on turbulent diffusion. But hierarchical models are also of interest for
modelling glassy and metastable behaviour [12, 13]. In our model the lowest level £ = 0 might be
identified with states of local energy minima, whereas the states at higher levels correspond to
saddle point states between adjacent valleys. To make contact with thermally activated transitions
we put in equations (6.6) and (6.7).

rs = Kexp(— ¢/T). (6.9)

T is the temperature, ¢ the activation energy, and K = 1 is the number of saddle points effectively
contributing to the transitions between adjacent valleys. The exponent v of correlation decay then
displays a characteristic temperature dependence :

Tlnz
Ve = 6.10
e+ ThK™! ¢ )
. The exponent v divergesat T, = ¢/In K and thus signals the glass transition for this simple model.
Again we have the scaling relation (6.8) connecting thermally actived correlation decay and
diffusion on the hierarchical structure

0<=£ Tinz

_— 6.11
D¢+ TlnK™? 6.11)
The scaling law 2 v/0 . = D is independent of temperature unless the fractal dimension itself
should vary with T. (6. 8) is known to hold for constant range hopping and scale invariant transi-
tion rate. We have extended its domain of applicability for variable hopping range and rate on the
fractal, which is another result of the present work.
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