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Abstract

The paper presents the random-variable formalism of the anomalous diffusion processes. The emphasis is on a rigorous

presentation of asymptotic behaviour of random walk processes with infinite mean random time intervals between jumps.

We elucidate the role of the so-called inverse-time stochastic process, the main mathematical tool that allows us to modify

the dynamics of standard relaxation processes and give rise to the nonexponential decay of modes. In particular, we show

that the Brownian motion in combination with an appropriate inverse-time process may lead not only to exponential but

also to the nonexponential relaxation responses.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic formulation of transport phenomena in terms of a continuous time random walk (CTRW) [1]
was fundamental for the understanding of the diffusive behaviour of various complex systems (see e.g.,
photoconductivity in amorphous semiconductors [2], transport processes in heterogeneous rocks [3],
hydrodynamic transport [4], self-diffusion in micelle systems [5], transport in heterogeneous catalysis [6],
reactions and transport in polymer systems [7], motion of gold nanoclusters on graphite [8], etc.). Beginning
with the work of Montroll and Weiss in Ref. [1], the physical community showed a steady interest in the
anomalous diffusion, a term that describes diffusive behaviour in absence of the second moments of the
spatio-temporal jump parameters and with scaling different than that of the classical Gaussian diffusion.

Usually, in applications of the CTRW ideology, the analysis of the properties of the diffusion front (the
random walk propagator) is presented within the approach that is based on a formal expression for the
Fourier–Laplace transform [1] of the asymptotic distribution, or otherwise, use of the fractional calculus is
required [9] as a legitimate tool. In this case, the useful explicit formulas are provided only under some
e front matter r 2006 Elsevier B.V. All rights reserved.

ysa.2005.12.011

ing author.

esses: Marcin.Magdziarz@pwr.wroc.pl (M. Magdziarz), Karina.Weron@pwr.wroc.pl (K. Weron).

www.elsevier.com/locate/physa
dx.doi.org/10.1016/j.physa.2005.12.011


ARTICLE IN PRESS
M. Magdziarz, K. Weron / Physica A 367 (2006) 1–62
restrictive assumptions on spatio-temporal properties of the random walk. In this paper, we present an
approach to the random walk analysis which is based directly on the definition of the cumulative stochastic
process. We demonstrate the power of the mathematical tools underlying the CTRW concept by showing how
they can be generalized to handle different diffusive situations in complex systems. Our aim is to show that
despite the extensive studies on the CTRWs and their long history in physics, the power of limit theorems [10],
hidden behind the derivation of limiting distributions, has not been fully explored yet. We provide a clear
random walk scheme and rigorous analysis of the anomalous diffusion, and emphasize the possibilities of
application of that scenario in stochastic modelling of the nonexponential relaxation phenomena. Our effort is
directed toward bringing into light all stochastic conditions underlying the well-known frequency-domain
Cole–Cole relaxation response. The proposed approach may serve as a basis for further developments of the
nonexponential relaxation models, in particular, the one that can lead the Havriliak–Negami function,
commonly used to fit the dielectric relaxation data.

2. CTRW and anomalous diffusion

We begin with recalling some basic facts concerning the notion of the CTRW, Fig. 1. The starting point is a
sequence Ti, i ¼ 1; 2; . . . ; of nonnegative, independent, identically distributed (i.i.d.) random variables which
represent the time intervals between successive jumps of a particle. The random time interval of n jumps is
given by

TðnÞ ¼
Xn

i¼1

Ti; Tð0Þ ¼ 0 (1)

and the number of the particle jumps performed up to time t40 has the form

Nt ¼ maxfn : TðnÞptg. (2)

The process Nt is often referred to as the renewal process or, alternatively, as the counting process.
The position of the particle after n jumps is

RðnÞ ¼
Xn

i¼1

Ri; Rð0Þ ¼ 0, (3)

where Ri are i.i.d. random variables indicating both the length and the direction of the ith jump. Ri are
assumed to be independent of the sequence Ti; i ¼ 1; 2; . . . ;. Finally, the total distance reached by the particle
time
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Fig. 1. A single realization of the one-dimensional CTRW process. In this case the number Nt of particle jumps (3) performed up to time t

equals 7.
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Fig. 2. A realization of the continuous limit UðtÞ of the random sum (1) and its relationship to the inverse-time a-stable subordinator V t

(a ¼ 0:8). For the details of simulation see Ref. [23].

M. Magdziarz, K. Weron / Physica A 367 (2006) 1–6 3
by time tX0 defines the cumulative stochastic process

W ðtÞ ¼ RðNtÞ ¼
XNt

i¼1

Ri (4)

known as the CTRW.
Assuming that the time intervals Ti belong to the domain of attraction of a completely asymmetric stable

distribution Sa;1ðtÞ
1 (see Refs. [11,12]), i.e., PðTi4tÞ / t�a as t!1 for some 0oao1, then the generalization

of the central limit theorem [12] yields the continuous limit of the random sum (1)

s�1=aTð½st�Þ �!
d

UðtÞ as s!1, (5)

where UðtÞ is a strictly increasing a-stable Lévy process. Here ‘‘½x�’’ denotes the integer part of x and ‘‘�!
d

’’
reads ‘‘tends in distribution’’. Similarly, if the jumps Ri belong to the domain of attraction of a g-stable
distribution Sg;bðxÞ, 0ogp2, jbjp1, then

s�1=gRð½st�Þ �!
d

X ðtÞ as s!1, (6)

where X ðtÞ is a g-stable Lévy process, a continuous limit of (3). In particular, for g ¼ 2, X ðtÞ is the classical
Brownian motion.

Taking advantage of the fact that TðnÞ, the random time interval of n jumps, and Nt, the number of jumps
performed up to time t40, are related by the following formula

fTð½x�Þptg ¼ fNtXxg,

and applying (5) we get

s�aNst�!
d

V t as s!1, (7)

where V t is the so-called inverse-time a-stable subordinator (or inverse-time a-stable process) defined as

Vt ¼ infft : UðtÞ4tg.

An example of realization of the continuous limit UðtÞ of the random sum (1) and its relationship to the
inverse-time a-stable subordinator Vt is shown in Fig. 2.
1Here, for a stable distribution we use the notation Sa;bðtÞ, where 0oap2 denotes the index of stability and jbjp1 denotes the skewness

parameter.
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Using (6) and (7) we derive the continuous limit of the CTRW process (4)

s�a=gW ðstÞ ¼ s�a=gRðNstÞ � ðs
aÞ
�1=gRð½saVt�Þ �!

d
X ðVtÞ (8)

as s!1. Thus the scaling limit of W ðtÞ leads to the subordinate process X ðVtÞ with the random discrete-
time jumps RðnÞ replaced by the process X ðtÞ, where t denotes the operational time [13] (replacing the number
of steps n), and the counting process Nt replaced by the inverse-time a-stable subordinator V t. Following the
idea of the recent paper of Piryatinska et al. [14], we can call process X ðV tÞ the anomalous diffusion.

The anomalous diffusion X ðV tÞ displays some interesting properties, which deserve to be mentioned. First,
it is self-similar with Hurst index H ¼ a=g, in particular, for g ¼ 2 (i.e., when the second moment of X ðVtÞ

exists) we have H ¼ a=2o1=2 and the process is subdiffusive. Since X ðtÞ and Vt are assumed to be statistically
independent, the probability density function (p.d.f.) pðx; tÞ of X ðVtÞ obtained with the help of the generalized
total probability formula has the form

pðx; tÞ ¼

Z 1
0

f ðx; tÞgðt; tÞdt, (9)

where f ðx; tÞ and gðt; tÞ are the p.d.f.s of X ðtÞ and Vt, respectively. Further, the Fourier transform epðk; tÞ ¼
hexpðikX ðV tÞÞi and the Laplace transform bpðk; tÞ ¼ hexpð�kX ðV tÞÞi are given by

epðk; tÞ ¼ Z 1
0

ef ðk; tÞgðt; tÞdt,
bpðk; tÞ ¼ Z 1

0

bf ðk; tÞgðt; tÞdt, ð10Þ

where k40 has the physical sense of a wave number.
Taking into account that the inverse-time stable subordinator V t is self-similar with index H ¼ a and

computing moments of the random variable V 1, one can show [14] that the Laplace transform bgðu; tÞ ¼
hexpð�uVtÞi of V t has the form

bgðu; tÞ ¼ Eað�cautaÞ; ca40, (11)

where

EaðzÞ ¼
X1
n¼0

zn

Gðnaþ 1Þ
(12)

is the Mittag–Leffler function [15]. The latter property plays a significant role in analyzing the relaxation of
physical systems in the framework of the diffusion mechanism.

3. Cole–Cole response and anomalous diffusion

Broad, time- and frequency-domain experimental investigations confirmed that the classical Debye pattern
of exponential relaxation

fðtÞ ¼ e�opt,

where op is the loss-peak frequency (a characteristic material constant), hardly ever fits the dielectric
relaxation spectroscopy data [16,17]. Instead, it has been found that many physical systems exhibit
nonexponential relaxation well fitted in the frequency-domain with the Cole–Cole function

f�ðoÞ ¼
1

1þ ðio=opÞ
a ; 0oao1. (13)

By definition, the frequency-domain response f�ðoÞ is connected to the temporal relaxation function fðtÞ
through the relation

f�ðoÞ ¼
Z 1
0

e�iot dð�fðtÞÞ.
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The temporal counterpart of the Cole–Cole function can be hence expressed in terms of the Mittag–Leffler
function (12)

fðtÞ ¼ Eað�ðoptÞaÞ. (14)

Note that for a ¼ 1, formula (14) takes the form of the exponential relaxation function.
In a rather general perspective, the theoretical attempt to model nonexponential relaxation phenomena can

be based on the idea of relaxation of an excitation undergoing diffusion in the system under consideration
[18–22]. Consequently, the relaxation function is connected to the temporal decay of a given mode k and, in
the framework of the one-dimensional CTRWs, can be defined through the following Fourier Transform

fðtÞ ¼ heikRðtÞi,

where RðtÞ denotes the diffusion front, i.e., the scaling limit of the CTRW. If RðtÞ is supported on positive half-
line only, its Fourier transform in the foregoing definition has to be replaced by the Laplace transform [19].
We have hence

fðtÞ ¼ he�kRðtÞi

for the biased walk. As experimental techniques probe the behaviour of the system for a given mode, the above
formulas give the temporal relaxation of a makroscopic excitation.

Let us now consider the problem of finding the function fðtÞ for the anomalous diffusion X ðV tÞ defined in
(8). Recall that Vt is the inverse-time a-stable subordinator with the property (11) and X ðtÞ belongs to the
class of g-stable Lévy processes. In the case of the nonbiased random walk, i.e., when the symmetric process
X ðtÞ has the following characteristic function

heikX ðtÞi ¼ e�cgk
gt; cg40,

formulas (10) and (11) imply that the relaxation function takes the form

fðtÞ ¼ heikX ðVtÞi ¼

Z 1
0

e�cgk
gtgðt; tÞdt ¼ Eað�ca;gk

gtaÞ,

where ca;g ¼ cacg . Thus for op ¼ ðca;gk
g
Þ
1=a we obtain the Cole–Cole relaxation function (13). In particular, for

g ¼ 2, i.e., when X ðtÞ is the standard Brownian motion parametrized by the operational time t, we get the
following relaxation function

fðtÞ ¼ Eað�ca;2 k2taÞ.

The above formula clearly shows that in this special case we obtain the nonexponential relaxation pattern as
well. Additionally, it can be proved that p.d.f. of X ðV tÞ in this particular example is the solution of the
celebrated fractional diffusion equation [20]

qpðx; tÞ

qt
¼0D1�a

t ca;2
q2

qx2
pðx; tÞ.

In the case of the biased random walk, for asymmetric X ðtÞ having the Laplace transform

he�kX ðtÞi ¼ e�cgk
gt; 0ogp1

analogous arguments show that

fðtÞ ¼ he�kX ðVtÞi ¼

Z 1
0

e�cgk
gtgðt; tÞdt ¼ Eað�ca;gk

gtaÞ

and once again we obtain the Cole–Cole relaxation function with op ¼ ðca;gk
g
Þ
1=a. In particular for g ¼ 1 we

obtain the result discussed in Ref. [19] and for g ¼ a the one derived in Ref. [10]. In an even more general case
studied in Ref. [14], when X ðtÞ belongs to the wide family of Lévy processes with characteristic function

heikX ðtÞi ¼ eCcðkÞt,

where cðkÞ is the logarithm of the characteristic function of the random variable X ð1Þ, similar calculations
lead to the response function described by the Cole–Cole expression as well.
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Table 1

Stochastic schemes of the Cole–Cole response with inverse-time a-stable subordinator Vt

X ðtÞ; 0ogp2; jbjp1 fðtÞ f�ðoÞ ¼ 1=1þ ðio=opÞ
a

Symmetric g-stable Lévy processes ð0ogo2; b ¼ 0Þ Eað�ca;gk
gtaÞ op ¼ ðca;gk

g
Þ
1=a

Strictly increasing a-stable Lévy processes ð0ogo1;b ¼ 1Þ Eað�ca;gk
gtaÞ op ¼ ðca;gk

g
Þ
1=a

Brownian motion ðg ¼ 2; b ¼ 0Þ Eað�ca;2k2taÞ op ¼ ðca;2k2
Þ
1=a

Deterministic process linear in operational time ðg ¼ 1; b ¼ 1Þ Eað�ca;1ktaÞ op ¼ ðca;1kÞ1=a
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4. Conclusions

We have demonstrated how the empirical Cole–Cole function can be derived from a diffusion model based
on the CTRW ideology. We have brought into light the role of the inverse-time a-stable subordinator Vt,
which in turn originates from the heavy-tailed distributions of the waiting times Ti. The key observation is
that the Laplace transform of Vt given in the formula (11) is equal to the temporal counterpart (up to a
constant op) of the Cole–Cole function. As the carried out calculations show, the g-stable process X ðtÞ,
parametrized by the operational time t, does not change the type of the relaxation response. It only affects the
material constant op by determining the spatial properties of the anomalous diffusion X ðV tÞ. Since X ðtÞ
belongs to the broad family of stable processes, the presented probabilistic formalism creates a possibility to
derive a broad class of stochastic processes underlying the Cole–Cole relaxation pattern (see Table 1). In
particular, the proposed scheme includes also the Debye relaxation, as a! 1. This classical response is related
to the inverse-time deterministic subordinator which originates from the waiting-time distributions with finite
first moment.
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