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Recent advances in single-molecule experiments show that various complex systems display nonergodic

behavior. In this paper, we show how to test ergodicity and ergodicity breaking in experimental data. Exploiting

the so-called dynamical functional, we introduce a simple test which allows us to verify ergodic properties of a

real-life process. The test can be applied to a large family of stationary infinitely divisible processes. We check the

performance of the test for various simulated processes and apply it to experimental data describing the motion

of mRNA molecules inside live Escherichia coli cells. We show that the data satisfy necessary conditions for

mixing and ergodicity. The detailed analysis is presented in the supplementary material.
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I. INTRODUCTION

Several techniques including fluorescence correlation spec-

troscopy, single-particle tracking, and fluorescence recovery

after photobleaching have been used to uncover anomalous

diffusion in crowded fluids, for example, in the cytoplasm

of living cells [1,2]. Ergodicity and the related Boltzmann

ergodic hypothesis are the fundamental concepts in statistical

physics [3]. Their importance stems from the fact that for

ergodic systems the phase average of an observable quan-

tity can be compared with its infinite-time average. This

implies that observing one long trajectory of an ergodic

process is equivalent to observing a large number of its

independent realizations. This property is crucial in the

context of conducting physical experiments. The substantial

progress in single-particle tracking experiments [1,4–9] was

accompanied by theoretical studies on the ergodic properties of

systems displaying anomalous behavior [10–24]. Experimen-

tal measurements confirmed ergodicity breaking in blinking

quantum dots systems [5,6] as well as in the lipid granules

in living fission yeast cells [9]. Theoretical studies on weak

ergodicity breaking for continuous-time random walks were

introduced in [13]. These concepts were extended to the case

of fractional Fokker-Planck equations describing subdiffusive

dynamics in the presence of an external potential [15,19].

Ergodicity of anomalous dynamics following the generalized

Langevin equations was studied in [12,17]; see also [10,11,14].

The relationship between ergodicity and irreversibility was

investigated in [16]. A detailed analysis of the ensemble

and time average mean-square displacement of fractional

Brownian motion and its extensions can be found in [18,20,24].

The generalized Khinchin theorem for Lévy flights [21]

and ergodic properties of infinitely divisible (ID) processes

recently were fully characterized in [22] in terms of correlation

cascades [25].

In this paper, we solve the challenging problem of how

to verify ergodic properties (ergodicity and mixing) from

empirical data. Exploring the concept of dynamical functional,

we introduce a test which allows us to test ergodicity and
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ergodicity breaking in experimental data. We also show how

to verify mixing—an important property of chaotic systems

which is stronger than ergodicity. We illustrate the strength of

the introduced test by applying it to simulated data (Ornstein-

Uhlenbeck process, harmonizable process) and to the real-life

data describing the motion of mRNA molecules inside live

Escherichia coli cells [1].

II. ERGODICITY, MIXING, AND

DYNAMICAL FUNCTIONAL

First of all, we emphasize that all the results and methods

presented below apply to the general class of stationary ID

processes. The physical interpretation of stationarity is that

the system is in its thermal equilibrium [26]. The class of ID

processes considered here plays a central role in the theory of

stochastic processes and their applications [27,28]. Prominent

examples of ID distributions are Gaussian, α-stable, Pareto,

exponential, γ , Linnik, Mittag-Leffler, and tempered α-stable

distributions.

Let us consider a stationary ID stochastic process Y (n),

n ∈ N. Y (n) can be represented as a probability measure P

on the space (�,B). Here, � is the phase space of all the

functions f : N → R and B is the σ algebra of events [28].

The probability space (�,B,P ) together with the usual shift

transformation S : � → �, S[f (n)] = f (n + 1), is a standard

dynamical system that fully describes the evolution in time of

the process Y (n).

The dynamical system (�,B,P ,S) is ergodic [or equiva-

lently, the process Y (n) is ergodic] if for every invariant set

A ∈ B we have that P (A) = 0 or P (A) = 1 [26]. Recall that

the set A is invariant if P (A) = P [S−1(A)]. More intuitively,

ergodicity means that the phase space � cannot be divided

into two nontrivial sets such that a point starting in one set will

never get to the second set. It should be emphasized that for

every stationary and ergodic process the Boltzmann ergodic

hypothesis is satisfied—the temporal and ensemble averages

coincide [29,30],

lim
n→∞

1

n

n−1∑

k=0

g[Y (k)] = 〈g[Y (0)]〉, (1)
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provided that 〈g[Y (0)]〉 is well defined. Here, g(·) is a

deterministic function, and by 〈·〉 we denote the ensemble

average.

Another fundamental property investigated in this paper

is mixing. We say that the dynamical system (�,B,P ,S) is

mixing [or equivalently, the process Y (n) is mixing] if

lim
n→∞

P [A ∩ Sn(B)] = P (A)P (B) (2)

for all A,B ∈ B. Here, by Sn we denote n-fold superposition of

S. Thus, mixing can be viewed as the asymptotic independence

of the sets A and B under the transformation S. It is well known

that mixing is a stronger property than ergodicity [26]. Thus, to

show ergodicity, it is enough to prove mixing, which is easier

in many cases [22].

A solution to the problem of ergodicity and mixing of

Gaussian stationary processes was found by Maruyama,

Grenander, Fomin, and Itô [31–34]. The first three authors

proved that the stationary Gaussian process Y (t) is ergodic

if and only if its spectral measure has no atoms. Itô proved

that Y (t) is mixing if and only if its autocorrelation function

vanishes at infinity. For the α-stable case, see [35].

In recent papers [21,22,36], ergodic properties of ID

processes were described using the concept of correlation

cascades. However, in the context of empirical data analysis,

a mathematical tool called dynamical functional gives very

satisfactory results [28,37].

The dynamical functional D(n) corresponding to the

process Y (n) is defined as

D(n) = 〈exp{i[Y (n) − Y (0)]}〉 . (3)

Thus, D(n) is actually a Fourier transform of Y (n) −
Y (0) evaluated for the Fourier-space variable k = 1. The

following result illustrates the strength of the dynamical

functional [37,38]. The stationary ID process Y (n) is mixing

if and only if

lim
n→∞

D(n) = |〈exp{iY (0)}〉|2. (4)

The above condition should be viewed as the asymptotic

independence of Y (n) and Y (0) as n → ∞. Moreover, if

Y (n) is Gaussian, then the dynamical functional is equal to

D(n) = exp{σ 2[r(n) − 1]}, where r(n) is the autocorrelation

function of Y and σ 2 is the variance of Y (0). Thus, in the

Gaussian case, condition (4) is equivalent to the fact that

r(n) → 0 as n → ∞ (cf. [34]).

The above condition (4) can be written in the equivalent

form

lim
n→∞

E(n) = 0, (5)

where

E(n) = D(n) − |〈exp{iY (0)}〉|2. (6)

Consequently, using formula (4) and the result of Koopman

and von Neumann [39], we get that the stationary ID process

Y (n) is ergodic if and only if

lim
n→∞

1

n

n−1∑

k=0

D(k) = |〈exp{iY (0)}〉|2. (7)

Equivalently, Y (n) is ergodic if and only if

lim
n→∞

1

n

n−1∑

k=0

E(k) = 0. (8)

For more details on the origins of conditions (4) and (7), see

[37], Lemma 3. As we show in the next section, the above

results can be successfully applied to verify ergodicity and

mixing in experimental data.

III. TESTING ERGODICITY AND MIXING

Suppose now that we have at our disposal experimental

measurements of some random process Y (n). Our goal is to

check whether the process is ergodic and mixing. If the ID

process is stationary, then the results of previous section allow

us to verify its ergodic properties very efficiently. In the case

when the number of experimental realizations of Y (n) is large

enough to calculate ensemble averages, the procedure is the

following:

One calculates the ensemble averages on the right side

of (3) and on the right side of (4). If the convergence in (5)

holds for large n, then the process is mixing, otherwise Y (n)

displays mixing breaking.

We have applied the above test to the simulated trajectories

of two different processes. The first one, the classical Ornstein-

Uhlenbeck process, is given by the Langevin equation

dY (t) = −0.05Y (t)dt + dB(t), (9)

where B(t) is the standard Brownian motion. The results are

presented in Fig. 1. They confirm that the Ornstein-Uhlenbeck

process is mixing.

We have also tested the nonmixing and nonergodic Gaus-

sian process of the form

Y (n) =
√

T cos(0.5n + θ ), (10)

where T is an exponentially distributed random variable with

parameter 0.5 and θ is uniformly distributed on [0,2π ]. The

result of the test is shown in Fig. 2 (left panel). It confirms that

the process is not mixing.

Analogous procedure can be applied to verify ergodicity of

experimentally observed process:

If the convergence in (8) holds for large n, then

the process is ergodic; otherwise Y (n) displays ergodicity

breaking.
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FIG. 1. (Color online) Verification of the mixing property for

the Ornstein-Uhlenbeck process. The real and imaginary parts of

the function E(n) decay to zero. Thus, condition (5) is satisfied

and the process is mixing. The ensemble averages were calculated on

the basis of 1000 simulated trajectories.
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FIG. 2. (Color online) Left panel: testing of mixing property for

the Gaussian process defined in (10). Clearly, condition (5) is not

satisfied, and thus the process is not mixing. Right panel: real part of

the function 1

n

∑n−1

k=0 E(k) corresponding to the process (10). Since

condition (8) is violated, the process displays ergodicity breaking. The

ensemble averages were calculated on the basis of 1000 simulated

trajectories.

In Fig. 2 (right panel), we see the result of the test for the

Gaussian process (10). Clearly, the process displays ergodicity

breaking. Figure 3 depicts the results of the test for the

Ornstein-Uhlenbeck process. Since condition (8) is satisfied,

the process is ergodic.

We have also applied the test to the stationary stable

harmonizable process [28] of the form

Y (t) = A1/2[G1 cos(t) + G2 sin(t)]. (11)

Here, A > 0 is the one-sided α-stable random variable, and G1

and G2 are standard normal random variables. Moreover, A,

G1, and G2 are independent. Y (t) is known to be nonergodic

[35]. Results in Fig. 4 confirm this fact. Clearly, the real part

of 1
n

∑n−1
k=0 E(k) does not converge to zero.

Since the dynamical functional is a Fourier transform of

Y (n) − Y (0), it takes values in the interval [−1,1]. Therefore,

this interval determines the order of magnitude of the y axes

in the figures.

IV. ONE-TRAJECTORY CASE

It gets much more complicated when there are not enough

trajectories to calculate ensemble averages. Suppose that we

have only one realization of the process Y (n), n = 0,1, . . . ,N ,

where N is an appropriately large integer. If we assume

that Y (n) is mixing, then Boltzmann ergodic hypothesis is

satisfied—the temporal and ensemble averages coincide. Thus,

the dynamical functional D(n) in (3) can be approximated by

D̂(n) =
1

N − n + 1

N−n∑

k=0

exp{i[Y (n + k) − Y (k)]},
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FIG. 3. (Color online) Verification of ergodicity for the Ornstein-

Uhlenbeck process. Clearly, condition (8) is satisfied. This confirms

that the process is ergodic. The ensemble averages were calculated

on the basis of 1000 simulated trajectories.
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FIG. 4. (Color online) Verification of ergodicity breaking for

harmonizable process (11). Since condition (8) is not satisfied, the

process displays ergodicity breaking. The ensemble averages were

calculated on the basis of 1000 simulated trajectories.

whereas the ensemble average on the right side of (4) can be

approximated by

â =

∣∣∣∣∣
1

N + 1

N∑

k=0

exp{iY (k)}

∣∣∣∣∣

2

.

Then, the modified condition (5) takes the form

Ê(n) ≈ 0 (12)

for large n. Here

Ê(n) = D̂(n) − â.

Condition (12) is necessary for mixing. Therefore, violation

of (12) implies that Y (n) does not have the mixing property. It

should be emphasized that (12) is by no means sufficient for

mixing. This means that we can only prove lack of mixing if

we have one trajectory of a random process. To show that the

process is mixing, ensemble averages need to be calculated.

In Fig. 5 we observe the behavior of the function Ê(n) for

one trajectory of the harmonizable process (11). This process

is known to be nonergodic and nonmixing [35].

Analogous considerations can be conducted for ergodicity.

Having one realization of a process, we can check the following

condition:

1

n

n−1∑

k=0

Ê(k) ≈ 0 (13)

for large n. The above condition is necessary for ergodicity.

This means that its violation implies ergodicity breaking.

Similarly as for mixing, more than one trajectory are needed

to check the sufficient condition for ergodicity (8).
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(Ê

(n
))

n n

FIG. 5. (Color online) Real and imaginary parts of the function

Ê(n) corresponding to one simulated trajectory of the stable harmo-

nizable process. Since condition (12) is not satisfied, the process is

not mixing. Length of the simulated trajectory N = 212 + 1.
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FIG. 6. (Color online) The real and imaginary parts of the

function
∑n−1

k=0 Ê(k)/n corresponding to the longest trajectory of

Golding-Cox data (x coordinate). The necessary condition for

ergodicity (13) is clearly satisfied.

V. EXPERIMENTAL DATA

Next, we applied our test to Golding-Cox data [1], describ-

ing the motion of mRNA molecules inside live E. coli cells. In

the whole data set, there were not enough trajectories to calcu-

late ensemble averages. Consequently, we were able to check

only the necessary condition for mixing (12) and ergodicity

(13), which requires only one appropriately long trajectory. In

Fig. 6 we see the result of the test for the longest Golding-Cox

trajectory. The necessary condition (13) is clearly satisfied.

However, to make sure that the process is ergodic, one needs

to verify the sufficient condition (8). This requires more than

one trajectory for analysis. We have also analyzed all the

other Golding-Cox trajectories that were longer than 29 =
512 points. All these sample paths satisfied necessary

conditions for mixing (12) and ergodicity (13). The detailed

analysis is presented in the supplementary material [40].

VI. CONCLUDING REMARKS

In this paper, we have discussed necessary and sufficient

conditions for mixing (5) and ergodicity (8) in the language

of the dynamical functional (3). The main finding is a simple

test, which can be applied to verify mixing and ergodicity

in experimental data. The test can be applied to the whole

family of ID stationary processes. The reasonable length of

each analyzed trajectory should not be shorter than 500 points;

see [40].

We have also analyzed the case when there is only one

experimentally recorded realization of the process at disposal.

In this case, the necessary conditions for mixing (12) and

ergodicity (13) can be verified. This means that violation of

(12) or (13) implies mixing breaking or ergodicity breaking,

respectively. To make a definite statement about mixing and

ergodicity, more than one trajectory are needed in order to

calculate ensemble averages.

The number of trajectories needed to calculate ensemble

averages depends strongly on the underlying distribution. For

the Gaussian case it is enough to have about 100 trajectories,

but it is not enough for a heavy-tailed α-stable law. Every

distribution needs to be analyzed separately. Therefore, we

encourage experimentalists to make measurements with more

trajectories and with higher resolution. Then, the proposed

here methodology will allow to rigorously verify ergodicity

and mixing; see Figs. 1–3.

The introduced test can be applied to anomalous diffusion

processes measured experimentally; see Ref. [40]. We hope

that these results, in conjunction with our earlier studies

[21,22], can be used to identify the source of anomalous

diffusion [41,42].
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