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We show that the bulk-boundary correspondence for topological insulators can be modified in the

presence of non-Hermiticity. We consider a one-dimensional tight-binding model with gain and loss as well

as long-range hopping. The system is described by a non-Hermitian Hamiltonian that encircles an

exceptional point in momentum space. The winding number has a fractional value of 1=2. There is only one

dynamically stable zero-energy edge state due to the defectiveness of the Hamiltonian. This edge state is

robust to disorder due to protection by a chiral symmetry. We also discuss experimental realization with

arrays of coupled resonator optical waveguides.
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Introduction.—The bulk-boundary correspondence is a

central principle that governs the band structure of tight-

binding models [1,2]. It says that the bulk of a lattice is

characterized by a topological invariant, whose value

determines the existence of gapless states that are localized

on the edges of the sample. The bulk-boundary correspon-

dence applies universally to all noninteracting tight-binding

models, which are usually assumed to be Hermitian, i.e.,

closed systems. As such, it has been used to predict edge

states in a variety of settings, including solid state [3,4],

cold atoms [5,6], photonics [7–9], and even acous-

tics [10,11].

In a one-dimensional tight-binding model, the topologi-

cal invariant is the winding number, which is always an

integer [1,2]. If the winding number is 0, there are no edge

states. If the winding number is �1, there will be a pair of

zero-energy edge states (one on the left and one on the

right). As the Hamiltonian is modified, the edge states are

“topologically protected” because the winding number

changes only when the gap closes.

The bulk-boundary correspondence was developed for

Hermitian systems, as motivated by solid state experiments.

However, experiments with photonics are intrinsically non-

Hermitian due to gain and loss, which raises the question of

whether they can display physics beyond the bulk-boun-

dary correspondence. The general conclusion so far is that

the usual bulk-boundary correspondence still holds in the

presence of non-Hermiticity, although the spectrum may be

complex [12–19].

In this Letter, we show that the bulk-boundary corre-

spondence is modified in the presence of non-Hermiticity.

We consider a one-dimensional tight-binding model with

gain and loss, motivated by recent experiments with optical

waveguides [7–9,20–23]. First, we show that the winding

number can have a fractional value of 1=2, because the

Brillouin zone is 4π periodic when circling an exceptional

point (a non-Hermitian degeneracy) [24]. An open chain

exhibits a zero-energy eigenvalue, which is peculiar

because it is defective [25]. Although there are two edge

states, only one of them is dynamically stable. This edge

state is protected by a chiral symmetry and is robust to

disorder until the band gap closes. These new features are

due to the fact that a non-Hermitian matrix can be defective,

while a Hermitian matrix is always diagonalizable [25]. We

also discuss experimental implementation with optical

resonators and waveguides.

Model.—To motivate our model, we first consider a

simple 2 × 2 non-Hermitian Hamiltonian

Hk ¼ hxσx þ

�

hz þ
iγ

2

�

σz; ð1Þ

where σx; σz are Pauli matrices. The eigenvalues are

degenerate when ðhx; hzÞ ¼ ð�γ=2; 0Þ. Such non-

Hermitian degeneracies are called exceptional points

[24]. We vary the parameters hx, hz so as to encircle an

exceptional point [26]

hx ¼ vþ r cos k; hz ¼ r sin k; ð2Þ

where k is an external parameter for now. As k increases,

we make a circular trajectory in hx, hz space [Fig. 1(a)].

(a) (b)

FIG. 1. (a) In momentum space, the Hamiltonian encircles an

exceptional point at ðhx; hzÞ ¼ ð�γ=2; 0Þ. (b) The equivalent

tight-binding model with gain on sublattice α and loss on

sublattice β. The arrows denote the phase direction.
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When v − r < �γ=2 < vþ r, Hk encircles the exceptional

point at ð�γ=2; 0Þ. Without loss of generality, we assume

that r is positive, while v can take any sign.

Now, we find the tight-binding model whose momen-

tum-space Hamiltonian is Hk. The tight-binding model is

given by a non-Hermitian Hamiltonian H. As shown in

Fig. 1(b), H is a one-dimensional lattice with long-range

hopping as well as gain and loss. To implement H, the

physical system we have in mind is a classical system of

optical resonators with complex amplitudes αn; βn that

obey the equations of motion

_αn ¼
γ

2
αn − ivβn þ

r

2
ðαn−1 − αnþ1Þ −

ir

2
ðβn−1 þ βnþ1Þ;

_βn ¼ −
γ

2
βn − ivαn −

r

2
ðβn−1 − βnþ1Þ −

ir

2
ðαn−1 þ αnþ1Þ;

ð3Þ

for n ¼ 1;…; N, where N is the number of unit cells, so

there are a total of 2N sites. Equation (3) is mathematically

equivalent to evolving a Schrödinger equation with H
[9,20–23]. γ is the non-Hermitian gain and loss on the α and

β sublattices, respectively. v, r denote the Hermitian

hopping between sites.

Equation (3) is valid when the light fields are weak, such

that the dynamics are linear. For strong light fields, the gain

medium saturates, and the dynamics become nonlinear

[27]. We are interested in the linear regime, when the

system is equivalent to a tight-binding model. Note that an

experiment would also have noise [not shown in Eq. (3)].

H is similar to Hofstader’s model of a particle moving on

a discrete lattice in a magnetic field, since the particle

accumulates a phase of π when it goes around a plaquette

[28]. Later on, we discuss how to implement Eq. (3)

experimentally in an array of coupled resonator optical

waveguides [29].

H has two important symmetries. The first is chiral

symmetry: letting Γ ¼ ⨁
n

σy;n, ΓHΓ ¼ −H. So if H has an

eigenvector un with eigenvalue En, then Γun is also an

eigenvector with eigenvalue −En. There is also parity-time

(PT ) symmetry: letting P ¼ ⨁
n

σx;n and T iT −1 ¼ −i,

PT HT −1P−1 ¼ H. This means that the eigenvalues of

H can be real, despite the non-Hermiticity [30].

Periodic boundary conditions.—For a periodic chain, the

Hamiltonian H is diagonalized in momentum space as Hk,

given in Eqs. (1)–(2), where k ∈ ½0; 2πÞ. The eigenvalues of
Hk are

Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvþ r cos kÞ2 þ ðr sin kþ iγ=2Þ2
q

: ð4Þ

The real part of Ek is gapped when jjvj − rj > γ=2. The
imaginary part is gapped when jjvj þ rj < γ=2. Figure 2

shows an example spectrum. The eigenvectors of Hk are

uk;þ ¼

�

cos θ=2

− sin θ=2

�

; uk;− ¼

�

sin θ=2

cos θ=2

�

; ð5Þ

where tan θ ¼ −ðvþ r cos kÞ=ðr sin kþ iγ=2Þ.
The eigenvalues and eigenvectors of Hk are 4π periodic

in k when Hk encircles one exceptional point [24,31]. This

is a well-known feature of non-Hermitian systems and is

due to the square root in Eq. (4) and the half angles in

Eq. (5). After circling once around an exceptional point, the

two eigenvectors exchange values; to come back to the

initial value, one must circle twice.

Now, we calculate the winding number of the eigenvec-

tors.We follow the trajectory of hσxi; hσzi for an eigenvector
as k sweeps through the Brillouin zone and see whether it

winds around the origin [12]. As seen in Fig. 2(c), the

winding number depends on whether Hk encircles an

exceptional point.WhenHk does not encircle an exceptional

point, the winding number is 0. When Hk encircles one

(a) (b) (c)

FIG. 2. Chain with periodic boundaries, N ¼ 30 unit cells, and r ¼ 0.5γ. (a) Real and (b) imaginary parts of the spectrum.

(c) Trajectory of eigenvector uk;þ in the Brillouin zone for v ¼ 0.3γ when Hk encircles 0 exceptional points (EPs) (blue, r ¼ 0.18γ),

1 exceptional point (red, r ¼ 0.3γ), and 2 exceptional points (black, r ¼ γ). Solid lines denote k ∈ ½0; 2πÞ. Dashed line denotes

k ∈ ½2π; 4πÞ.
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exceptional point, the eigenvector does wind around the

origin, but k must sweep through 4π in order to close the

trajectory; thus, thewinding number has a fractional value of

1=2 [32]. When Hk encircles both exceptional points, the

winding number is 1. (These results can be proven

analytically.)

To experimentally observe the fractional winding num-

ber, one can modulate the hopping amplitudes in time to

adiabatically sweep through the Brillouin zone (see

Supplemental Material [33] for details). An alternative

approach may be to use Bloch oscillations [34].

Since a periodic chain has nontrivial topology, we next

investigate whether there are zero-energy edge states in a

chain with open boundaries. However, there is a problem:

Eq. (4) says that when one exceptional point is encircled,

Ek is gapless in both real and imaginary parts. This is

worrisome because it precludes the existence of zero-

energy edge states, which usually require a band gap.

Open boundary conditions.—Figure 3 shows the spec-

trum for an open chain. There are several remarkable

features of this spectrum. (1) A gap opens up in the

spectrum’s real part in the vicinity of v ¼ γ=2, dividing
most of the eigenvalues into two distinct bands [Fig. 3(a)].

(2) Within the band gap, there is an E ¼ 0 eigenvalue,

which is twofold degenerate but defective [25]. This

eigenvalue is associated with an eigenvector and a gener-

alized eigenvector. Under time evolution, the eigenvector

dominates over the generalized eigenvector, so the latter is

unimportant to the long-time dynamics. (3) The eigenvector

for E ¼ 0 is localized either on the left edge (when v > 0)

or the right edge (when v < 0) [see Fig. 3(c)]. The edge

state is protected by chiral symmetry, and it appears when

the gap opens and disappears when the gap closes. (4)

For jvj ≥ γ=2, the spectrum is purely real [Fig. 3(b)]; i.e.,

PT symmetry is preserved, in contrast to a periodic

chain [30].

Open chain: case of v ¼ γ=2.—We discuss, in detail, the

case of v ¼ γ=2, where H can be solved exactly. We seek

the eigenvalues of H, as well as their algebraic and

geometric multiplicities [25]. It is more convenient to deal

with H2, which is block upper triangular. It is easy to

show that the characteristic polynomial of H2 is fðλÞ ¼
λ2ðλ − r2Þ2N−2, which implies that H has eigenvalues

E ¼ 0; r;−r with algebraic multiplicities 2; N − 1; N − 1,

respectively. The Jordan normal form indicates that the

geometric multiplicities of all three eigenvalues are 1. Thus,

H is highly defective at v ¼ γ=2. Note that the eigenvalues
are real.

The eigenvector for E ¼ 0 is the edge state

u0 ¼ ði; 1; 0; 0;…ÞT ; ð6Þ

in the basis α1; β1; α2; β2;…. So u0 is localized on the left-

most unit cell. It is its own chiral partner: Γu0 ¼ −u0.
Physically, this state has zero energy because of destructive

interference between the hopping and non-Hermiticity.

The generalized eigenvector u0
0
for E ¼ 0 is given by

Hu0
0
¼ u0 [25]:

u0
0
¼

�

2

γ
; 0;−

r

γ2
;−

ir

γ2
;
r2

γ3
;
ir2

γ3
;…

�

T

: ð7Þ

Since Hu0
0
¼ u0, population in u0

0
is transferred to u0

during the time evolution. Note that u0
0
is also localized on

the left edge.

For v ¼ −γ=2, H can be similarly solved: u0 and u0
0
are

similar to Eqs. (6)–(7) but localized on the right.

Open chain: case of v ≠ γ=2.—As v deviates from γ=2,
the bands are no longer degenerate, and the band gap

narrows and eventually closes. There is still a defective

E ¼ 0 eigenvalue because it is protected by chiral sym-

metry [Fig. 3(c)]. However, when the band gap closes, the

E ¼ 0 eigenvalue splits into two distinct eigenvalues that

join the upper and lower bands [Fig. 3(a)].

Strictly speaking, for finite N, the E ¼ 0 eigenvalue

is defective only when v ¼ γ=2. However, we find,

numerically, that, for a range of v around γ=2, H has

(a) (b) (c)

FIG. 3. Chain with open boundaries, N ¼ 30 unit cells, and r ¼ 0.5γ. (a) Real and (b) imaginary parts of the spectrum. Red lines

follow the E ¼ 0 eigenvalue. (c) Zero-energy eigenvector for different values of v.
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one vanishingly small singular value [25], which decreases

as N increases (see Supplemental Material [33]). This

indicates that for large N, the E ¼ 0 eigenvalue remains

defective for a range of v.
In the Supplemental Material [33], we show that the

E ¼ 0 eigenvalue is robust to disorder due to protection by

chiral symmetry. The eigenvalue remains at E ¼ 0 until the

disorder is strong enough to close the band gap.

Discussion.—The general time-dependent solution to

Eq. (3) involves the eigenvectors and generalized eigen-

vector of H. Consider the regime when the E ¼ 0 eigen-

value exists and is defective. In this case, the coefficient

of u0 increases linearly in time, while the coefficient of

u0
0
is independent of time [35]. Thus, as time increases,

the population in the E ¼ 0 subspace is dominated by u0.
In a typical topological insulator, there are a pair of

E ¼ 0 eigenvectors (one on the left and one on the right),

and they are equally important to the dynamics [2]. In our

non-Hermitian model, due to the defectiveness of theE ¼ 0

eigenvalue, it has one eigenvector and one generalized

eigenvector (both on the same edge). However, only the

eigenvector is present in the long-time-scale dynamics.

Thus, the generalized eigenvector is dynamically unstable,

and there is only one dynamically stable edge state. We

note that, in the Hermitian limit (γ ¼ 0), our model behaves

entirely like a typical topological insulator.

Our non-Hermitian model is highly sensitive to boun-

dary conditions. A periodic chain has a complex spectrum

and a nonzero winding number, while an open chain can

have a real spectrum but has no winding number. An open

chain also has a band gap not present in a periodic chain.

These differences are because an open chain is much more

defective than a periodic chain.

We note that the Su-Schrieffer-Heeger model also has a

single zero-energy state when the number of sites is odd

[36]. Because of the incompleteness of a unit cell, this state

exists even when the gap closes. This state is not defective

because the algebraic and geometric multiplicities are both

1. In contrast, our model’s zero-energy state is defective

and disappears when the gap closes. Our zero-energy state

originates from the non-Hermiticity instead of the pecu-

liarity of an incomplete unit cell.

Experimental implementation.—Equation (3) can be

implemented with an array of coupled resonator optical

waveguides similar to Ref. [29]. In this setup, each site is a

resonator, and waveguides between resonators allow pho-

tons to hop between sites. One would design an array of

resonators with waveguide connections as in Fig. 1(b). The

phase of a hopping amplitude can be tuned by making the

corresponding waveguide asymmetric; in this way, one can

engineer the imaginary hopping amplitudes in H. To avoid

cross talk between the diagonal waveguides that cross each

other, one diagonal should be below the other.

In principle, the gain on the α sublattice can be obtained

by incorporating a pumped gain medium as in Ref. [21]. In

practice, it is easier to let both sublattices be lossy but with

more loss on the β sublattice [9,20]; such a passive setup

avoids the complication of the gain medium. The physics is

still described by Eq. (3) but on top of a background

of decay.

When jvj ≥ γ=2,H has real eigenvalues, so the evolution

is oscillatory (Fig. 4). It is easy to detect the E ¼ 0 state by

exciting the left edge and measuring the frequency spec-

trum of the subsequent evolution. When the E ¼ 0 state

is present, the spectrum has a peak at zero frequency

[Fig. 4(b)]. When the E ¼ 0 state is absent, there is no peak

at zero frequency [Fig. 4(d)].

Conclusion.—We have shown that non-Hermiticity

breaks the usual bulk-boundary scenario. The new features

are due to the fact that a non-Hermitian matrix can be

defective, while a Hermitian matrix is always diagonaliz-

able. In the future, it would be interesting to consider

transport properties in the presence of a potential gradient

[34] or scattering properties, especially when the Brillouin

zone is 4π periodic. One should also extend the model to

two dimensions to see whether the Chern number can be

fractional and whether there is still only one dynamically

stable edge state.

We thank P. Rabl and Y. N. Joglekar for useful

discussions.
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