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Abstract. We present a comprehensive analysis of the applicability of the effective medium 

approximation to deeply subwavelength (period      ) all-dielectric multilayer structures. We 

demonstrate that even though the dispersion relations for such multilayers differ from the effective 

medium prediction only slightly, there can be regimes when an actual multilayer stack exhibits 

significantly different properties compared to its homogenized model. In particular, reflection near the 

critical angle is shown to strongly depend on even very small period variations, as well as on the 

choice of the multilayer termination. We identify the geometries for which the influence of the 

subwavelength features is maximized and demonstrate that the difference between the reflectance 

from the actual multilayer and the effective medium prediction can be as great as 0.98. The results of 

this analysis can be useful for high-precision multilayers ellipsometry and in sensing applications. 
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1. Introduction 

Multilayer optics – the study of light propagation in photonic multilayer structures – is the cornerstone 

subject within the broader field of electrodynamics of inhomogeneous media [1]. On the conceptual level, 

the multilayer geometry is the simplest possible case of inhomogeneous media: a multilayer structure, being 

fully homogeneous in two spatial directions and piecewise homogeneous in the third direction, is only one 

step apart from a truly continuous medium in terms of complexity. On the methodological level, photonic 

multilayers are subject to several simple and illustrative mathematical theories for their analysis (see, for 

example, [2] and historical overview in [3]). This concerns both spatially infinite periodic multilayers, which 

exemplify a very simple variety of one-dimensional photonic crystals [4], and multilayers with a finite 

number of layers, for which very efficient semi-analytical approaches were developed, based on the transfer 

matrix [1,2,5] and Airy-type recurrent relations [6,7] formalism. Finally, on the practical level, multilayers 

easily lend themselves to various planar deposition methods and can, therefore, be fabricated in a reliable 

and cost-effective manner. For all these reasons, photonic multilayers are one of the most extensively studied 

optical systems to date, with profound theoretical knowledge and many established applications [8]. As a few 

characteristic examples, one may mention antireflection coatings, all-dielectric Bragg mirrors and 

omnidirectional reflectors [9,10], band-pass and multiband-pass filters [2,11,12], devices with tailored 
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frequency and group velocity dispersion [13,14], and devices with enhanced nonlinear optical effects 

[15,16]. Moreover, the optical multilayer model can be transferred to other physical systems governed by 

similar equations, such as acoustic multilayers [1,17] and multiple-quantum-well heterostructures [18]. 

As was shown in these extensive studies, most interesting properties of photonic multilayers originate from 

optical interference effects similar to those that underlie the physics of photonic crystals [4]. Therefore, 

research has traditionally focused on structures with characteristic layer thicknesses   comparable to the 

wavelength of light  . As a notable example, the Bragg mirror, which is none other than a stack of 

alternating low-and high-index dielectric layers, features maximum reflectance if the optical thickness of 

each layer is close to one quarter of the wavelength [19]. Structures with much larger layer thicknesses 

qualify as macroscopic optical systems (also well-studied but with somewhat different methodology). On the 

other hand, structures with much smaller layer thicknesses (   ) have long been thought of as not very 

interesting from the photonic band gap structures point of view. Indeed, if the layers are much thinner than 

the wavelength of light, then the field variations inside such layers should be very small, leading to 

negligibly weak interference effects. Therefore, it can be adopted that the light wave would not feel the 

individual layers in such a “deeply subwavelength” structure. Instead, light can be thought of as interacting 

with the entire composite material, which can be treated as effectively homogeneous and assigned some 

effective material parameters (see, e.g., [20] and references therein) in much the same way as the ordinary 

materials are treated as homogeneous media despite having atomic, molecular, or any other intrinsic 

structure. 

This concept of homogenization, which can be traced back to the earliest days of electromagnetic theory in 

presence of media, becomes really central in metamaterials [21], defined as artificial composite materials 

where the elements (“meta-atoms”) are much smaller than the wavelength. Since the geometry and 
composition of the meta-atoms can theoretically be arbitrary, the effective medium parameters of 

metamaterials such as negative refractive index [21–23] or near-zero dielectric permittivity [24] can be very 

different from those of the naturally occurring materials. 

Therefore the applicability of the homogenization concept to particular metamaterials has been a topical and 

ongoing discussion since the conception of the field [20,25]. While it was found that there are intricate meta-

atom geometries that do not readily lend themselves to homogenization [25], the applicability of the effective 

medium theory to the geometries as simple as a multilayer stack have hardly ever been questioned. Even 

though subwavelength metal-dielectric stacks with effectively indefinite dielectric permittivity tensor (planar 

hyperbolic metamaterials [26,27]) were found to be subject to a much tighter subwavelength condition than 

simply     [28], the origin of this tighter restriction on   results from the existence of plasmonic 

propagating waves with wave vector   significantly larger than the one inferred from the vacuum 

wavelength (      ), and consequently, with actual wavelength   much smaller than           [29–
32]. The principal condition of homogenization applicability, namely that the layer thicknesses must be small 

compared with the wavelength of light that interacts with them, remains unchanged. Hence, all-dielectric 

subwavelength multilayers, in which no plasmonic waves with extremely large wave vectors are supported, 

have been expected to obey the effective medium approximation (EMA) very well [33,34]. 

Nevertheless, a recent theoretical paper by H.H. Sheinfux et al. [35] demonstrates that this commonly 

believed assumption may fail in certain regimes. Namely, when the angle of incidence is close to the critical 

angle of the total internal reflection, the actual multilayer and its effective-medium counterpart can have 

significantly different transmission spectra despite the deeply subwavelength layer thicknesses (smaller than 

1/50 of the wavelength). Moreover, it was shown that the spectra become sensitive to variations of the layer 



thicknesses (the structure period variation) on the scale of one nanometer, i.e. 500 times smaller than the 

wavelength. Additionally, if the refractive indices of the medium behind the multilayer is carefully chosen, 

the transmission spectra become dependent on the choice of the outermost (“opening”) layer (i.e., 

ABAB…AB vs. BABA…BA), totally contrary to the effective medium theory results. This “anomalous” 
EMA breakdown reportedly happens because for a wave incident at a near-critical angle, the optical 

properties of the multilayer arise from the interference effects between phases of Fresnel reflection and 

transmission coefficients in the frustrated total internal reflection regime rather than between phases 

accumulated during wave propagation in subwavelength layers [35]. 

Such EMA breakdown is both enlightening and practically promising, e.g. for sensing and switching 

applications. However, the breakdown of the EMA reported in [35] only becomes noticeable when the 

multilayer contains a large number of layers (on the order of several hundreds), which should have equal 

thickness, as even a very minor thickness randomness would smear the effect due to its extreme sensitivity to 

the layer thicknesses. Such a structure, having at least 150-200 layers with 10 nm thickness and <1 nm 

tolerance, would be impractical for any experimental realization. To facilitate the experimental verification 

and practical applications of this newly observed EMA breakdown, it is necessary to reproduce this effect in 

practically realizable structures. 

In this paper we present a systematic analysis of the anomalous EMA breakdown in deeply subwavelength 

all-dielectric multilayers. We start from the dispersion relation discrepancies in infinite and semi-infinite 

multilayers and move on to the description of the effect in finite-thickness multilayer slabs. We then suggest 

a resonator-enabled geometry, where the EMA breakdown is further enhanced. We identify the parameter 

range, where the EMA breakdown is the strongest and can be observed in structures feasible for fabrication 

using state-of-the-art techniques such as atomic layer deposition (ALD). Specifically, we demonstrate that 

the difference between the reflectance of actual multilayer and the EMA prediction can be as large as 0.98, 

and the difference between reflectance for different opening layers (ABAB…AB vs. BABA…BA) can reach 

0.99. These results can be employed to improve the accuracy and reliability of ellipsometric measurements, 

to devise new high-precision ellipsometry techniques, and to design new types of ultracompact all-dielectric 

refractive index sensors with much lower losses compared to plasmonics-based ones. 

The remainder of the paper is organized as follows. We describe the methodology of our study in the Section 

2. Section 3 follows with the results, with subsections covering different geometries: infinite, semi-infinite, 

finite multilayer slab, and finite slab with added resonator layer. Finally, in Section 4 we discuss the results 

and conclude. 

  



2. Methods 

We consider the multilayer structure shown in Figure 1(a), consisting of two lossless dielectrics with 

refractive indices    and    and thicknesses    and   , respectively. The total period is        , and 

we define the filling fraction of material A as             . Since the theoretical study presented here 

neglects material dispersion for the sake of simplicity, it is convenient to normalize all geometrical sizes to 

the free-space wavelength of incident light  , which is what we do throughout the paper. 

Conventional Maxwell-Garnett homogenization applied to the multilayer geometry does not introduce any 

approximations other than the assumption that the layer thicknesses are much smaller than the wavelength. It 

gives the effective permittivity tensor [5]  ̂                , where                    (         )    (1) 

and the coordinate system used is given in Figure 1(a). The dispersion equation for the waves in such an 

ideal homogenous uniaxial medium yields circular isofrequency contours for one polarization (TE or 

transverse electric with     ) and elliptical isofrequency contours for the other polarization (TM or 

transverse magnetic with     ):                                  (2) 

where         and         are normalised wavevector components and            is the 

wavevector in vacuum. 

 

Figure 1. (a) Schematics of the multilayer dielectric structure considered. (b) Example of the isofrequency contours for 

the homogenized uniaxial medium (                       ) according to Eqs. (1)-(2) (TM – dashed black, 

TE – dashed red) and solutions of dispersion equation (3) (TM-solid green, TE – solid cyan). (c) Discrepancy between 

the periodic material and homogenised medium increases with period d                  . (d-f) Illustration of 

the transfer matrix method: (d) an interface between two dielectrics, (e) propagation in a homogenous layer, 

(f) illustration of the main idea behind the analytic expression (7) for Fresnel reflection from a semi-infinite structure. 



The dispersion relation for the actual multilayer structure can also be determined analytically. It is known 

from Bloch’s theorem that the existence condition for propagating waves in a one-dimensional periodic 

medium is directly related to the properties of one period of the structure and the dispersion equation is [28] 

                                  (    )                       (3) 

where      √         and           (TE) or                   (TM). 

Typically, the isofrequency contour from Eq. (3) for the TE polarization results in an ellipse of a larger size 

than homogenization predicts [Figure 1(b)], while the contour for the TM polarization is of a more complex 

shape than elliptical. For a certain value of tangential component   equations (2) and (3) give the same   for 

the TM polarization.  

To characterize the discrepancy between the Bloch and homogenized solutions, we introduce the quantities 

[see Figure 1(b)]                                                             (4) 

These quantities are chosen because the discrepancy between the homogenized and the Bloch dispersion 

relations are maximum for     and    , as seen in Figure 1(b). Both these quantities increase with the 

structure period, as shown in Figure 1(c). The dependency is very close to quadratic, and for smaller period 

values          it was confirmed that            . 

For calculations of the reflectance from finite-sized multilayer structures we used the transfer matrix method 

similar to [2], which we briefly outline here for the sake of completeness. For an interface between two 

materials [see Figure 1(d)] with refractive indices    and      the relations between electric field amplitudes 

a and b corresponding to the waves propagating in the two directions are 

(    )        (        )      (         )(        )  (5) 

where           ,           and          (TE) or                               (TM). 

For propagation inside layer i [see Figure 1(e)] 

(              )    (                )  (                               ) (                )  (6) 

The transfer matrix   for an arbitrary number of layers    is obtained through subsequent multiplication of 

matrices   (            )                                , where the subscripts “in” and “out” 

denote the ambient media to the both sides of the stack. The reflectance from the structure is then        |      | . For example, the transfer matrix    for one period of the considered structure (dielectric layers A 

and B are surrounded with material     from both sides) is    (                )                       . 

The transfer matrix for N periods of such a structure can then be written as      , using the identity                . 



Finally, to calculate the reflectance from a semi-infinite stack we use the fact that adding one period to a 

semi-infinite structure does not change the overall reflectance, as illustrated in Figure 1(f). Thus (    )    (    )  (                ) (    )   (7) 

where the factor   stands for the reduction of the wave amplitude after propagation through one period. 

Equation (7) gives a quadratic equation for determination of    with two roots. One of the roots, for which 

the reflectance is larger than 1, is discarded as non-physical. 

  



3. Results 

3.1. Infinite multilayer structure: dispersion equation 

We start our investigation from the infinite periodic multilayer structure [Figure 1(a)]. In such a system, 

there are four independent parameters to vary: refractive indices   ,    and layer thicknesses   ,    

expressed as the lattice period         and the filling fraction       . Most of the low-loss 

dielectrics in the optical and near infrared region have refractive indices in the range     , therefore we 

stay within this limit. 

Figures 2 and 3 show the characteristic dependencies of the discrepancies      ,       and   , as defined in 

Equation (4), on refractive indices. We can see that the discrepancies increase with the difference of 

refractive indices         nearly monotonically (see Figure 2). This gradual decrease of the accuracy of 

EMA is the expected result since the optical thickness of a layer increases with its index of refraction, so 

even for a physically subwavelength layer (e.g.,          ), one can have            for     , 

which is already approaching the quarter-wave layer optical thickness of 0.25. We note that the dependence 

of       on    and    is slightly more complicated than for       and   , namely, the isolines                    are slightly curved rather than straight [cf. Figure 2(a) and (b-c)]. This means that, 

e.g., the dependence                    has a maximum for       , whereas the corresponding 

functions                    and                 are monotonic in that range. 

 

Figure 2. Discrepancies       (a),       (b) and    (c) between Bloch and EMA dispersion equation increase with the 

difference of refractive indices        . Other parameters are         and      . 

The same gradual frustration of EMA can be observed in the monotonically increasing dependencies of      ,       and    on the lattice period  , as shown in Figure 3. To be able to consider the refractive indices 

of surrounding materials below and above    and    while staying within the range     for all materials, 

we fix      and      and use them throughout the rest of the paper. The dependencies of      ,       

and    on filling fraction   feature a maximum at values between 0.3 and 0.6 depending on polarization. 

This is also reasonable, since for the limiting cases     and     the multilayer stack becomes a 

homogenous material for which the EMA is automatically valid; on the other hand, at the intermediate values 

of   the effects brought about by the non-homogeneity of the structure are expected to be stronger. 

Since the dependencies in Figures 2 and 3 are featureless and only predict the gradual frustration of the EMA 

as the layers become optically thicker, we can pick any values of multilayer parameters for further 

investigation in other geometries. For the rest of the paper we use the period size          . For this 

period the maximum of        occurs for       , maximal       and    are reached for       , and for 



the filling fraction        all   are equal [Figure 3(d)]. To facilitate direct comparison between the two 

polarizations, we stick to this filling fraction        throughout the rest of the paper, yielding the 

permittivity tensor components           and           according to Equations (1). 

 

Figure 3. (a-c) Discrepancies       (a),       (b) and    (c) between Bloch and EMA dispersion equation increase with 

the period     and experience maximum at a certain filling fraction   for a fixed    . Refractive indices are     ,     . (d) Discrepancies for          experience maximum at the filling fraction        (     ) and        

(            ); they are equal for the crossing point at       . 

3.2. Semi-infinite multilayer structure 

Our next goal is to consider a structure that would be minimally more complex than an infinite periodic 

multilayer, i.e., a semi-infinite periodic multilayer bordering some ambient homogeneous material with 

refractive index    . Since the translation invariance is broken by that interface, the Bloch theorem is no 

longer rigorously applicable, so in order to characterize the EMA applicability, we analyze discrepancies in 

the Fresnel reflection coefficient for a wave incident from the ambient medium onto the multilayer structure. 

Such scenario is also much more relevant than the dispersion relation from the experimental point of view 

because the reflectance is directly measurable. 

Specifically, and following two main results in [35], we will introduce two quantities:                                                          (8) 



The first one,    , is essentially the difference between the reflectance of the actual multilayer and its 

homogenized counterpart, since the structure with           can be regarded as “quasi-homogenous”; we 
recall that all discrepancies  , as defined in Equation (4), scale quadratically with the period of the structure 

[cf. Figure 1(c)], so           is “400 times more homogenous” than         . This quantity will be 

non-zero if finite thickness of layers, even as small as     , has an influence on the reflectance of the entire 

multilayer, indicating the breakdown of the EMA. The second quantity in Equation (8), namely    , is the 

difference between reflectance for the same structure (with         ) starting with the either layer A or 

layer B. This quantity signifies the influence of the layers ordering (hence the subscript “o”), again indicating 

the breakdown of homogenization because, obviously, two otherwise identical multilayers that only differ by 

layer ordering are homogenized to the same material. 

In addition to the parameters of the multilayer stack analysed in the previous section, there are two additional 

parameters, namely the above-mentioned refractive index of the ambient material     and angle of incidence   for the impinging wave. It was found that layer ordering difference     is negligible (on the level of the 

numerical noise), while layer thickness difference     is shown in Figure 4. It can be seen in Figure 4 (a) 

and (b), where the logarithmic scale is used for clarity, that     is small (around     ) for most     and   

below the critical angle. Interestingly there are distinct lines of local minima [two crossing lines for TM in 

Figure 4(a) and one line for TE in Figure 4(b)], corresponding to crossings between the homogenized and 

actual multilayer dispersion relations, as seen in Figure 1(b). In contrast, for   above the critical angle 

(where total internal reflection occurs) the reflectance difference is exactly zero [black areas in Figure 4 (a) 

and (b)], making the transition to the total internal reflection regime clearly marked. 

The most significant feature of the dependence            is seen to occur immediately before the critical 

angle. As seen in Figure 4(c) and (d), where the region in the vicinity of the critical angle is magnified, and 

as confirmed by plotting the explicit reflectances in Figure 4(e)-(f), the reflectance difference can be as large 

as 0.1. This occurs for the combination of parameters when the homogenized multilayer is in the total 

internal reflection regime, so that             , but the field in multilayer with finite layer thicknesses, 

weakly evanescent in lower-index (A) layers and propagating in higher-index (B) layers, forms a quasi-

propagating Bloch wave (giving            ). This regime corresponds to the case described in [35], and 

therefore Figure 4 confirms that the anomalous EMA breakdown actually occurs at near-critical incident 

angles and can be present already in semi-infinite multilayers. 

In what follows, we will focus on the detailed investigation of this anomalous breakdown in a variety of 

geometries, and will therefore use the input refractive index       for the rest of the paper. This value 

corresponds to the critical angle 52.5 degrees (TM) and 59.3 degrees (TE) for the quasi-homogenous 

structure. Figure 4 (e) and (f) shows the reflectance from the actual and quasi-homogenous structures for this 

value. It is seen that the difference     is maximal at the incidence angle exactly equal to the critical angle. 

Therefore we will use         (TM) and         (TE) for the rest of the paper. 



 

Figure 4. (a-b) Difference of reflectance                             for the actual periodic structure and quasi-

homogenous structure. Reflectance difference in a broad range of input refractive indices     and incidence angles   for 

TM (a) and TE (b) polarizations. Black area corresponds to the total internal reflection. (c-d) Region of     and   close 

to the critical (total internal reflection) angle for TM (c) and TE (d). (e-f) Reflectances for the periodic (        ) 

and quasi-homogenous (         ) structures are significantly different only in the vicinity of the critical angle 

(     ) both for TM (e) and TE (f) polarizations. 

3.3. Finite multilayer stack 

Now we consider the case of a finite multilayer stack, which is the simplest practically relevant geometry 

because such a stack can be not only characterized in reflectance measurements (as the semi-infinite stack in 

principle can), but also fabricated. Having already fixed the parameters of the multilayer structure, the 

ambient material and incidence angle, we vary the parameters specific to this new geometry, namely the 



thickness of the multilayer   and refractive index of the output material      (see inset in Figure 5). For the 

sake of simplicity, we use   as a continuously varying parameter, keeping in mind that all real calculations 

are made with an integer number of periods. 

 

Figure 5. (a-b) Reflectance difference between the actual periodic and quasi-homogenous structures     for TM (a) and 

TE (b) polarizations for the finite stack. (c-d) Reflectance difference     for the periodic structure with opening layer A 

and B for TM (c) and TE (d) polarizations. Insets show the magnified region around maximum reflectance difference. 

(e-f) Reflectances for A and B opening layer, for periodic and quasi-homogenous structures depending on the angle in 

the vicinity of the critical angle for TM (e) and TE (f) polarizations. 

The resulting dependencies             and             are shown in Figure 5. Several interesting 

features can be seen. First, for the semi-infinite stack     can reach values on the order of 0.1 [Figure 4 (a)-

(b)], while for a finite slab [Figure 5 (a) and (b)]     yields the maximum values of 0.24 and 0.41 for TM 

and TE polarization, respectively. This means that the anomalous EMA breakdown near the critical angle 

identified in the semi-infinite case persists in the finite multilayer case too. Second, the area where     is 

significantly non-zero is quite narrow along the horizontal axis     , so the EMA breakdown effect is quite 



sensitive to output refractive index     . Specifically, the maximum discrepancy is observed for            (TE) and            (TM), which is very close to √   and √  , respectively. This is in full 

accordance with the findings in [35], where this high sensitivity was attributed to the impedance matching 

conditions at the output interface of the multilayers. Third, it is seen that the dependence on   is non-

monotonic as well, but is much weaker. There are rather broad maxima at           (TE) and          (TM), and it can be seen that the range of     where     stays above 0.04 spans from 0.1 to around 2. 

In stark contrast to the semi-infinite multilayers, the ordering reflectance difference           [Figure 

5 (c) and (d) and insets therein] is significantly greater than zero. It shows the same dependence on      and   as     reaching the maximal absolute values 0.46 (TE) and 0.32 (TM) at the same values of      and    . Remarkably, the maxima of     and     are broad with respect to    , so even though the maxima of 

the reflectance difference     and     occur at relatively large multilayer stack thickness      , the 

reflectance difference is measurable (         and          for both TE and TM polarizations) even 

at the stack thickness as small as          (only five periods). 

Figure 5 (e) and (f) show the explicit reflectance dependence on the incidence angle near the critical angle 

for the multilayered (        ) and quasi-homogeneous (         ) structures with A or B opening 

layers. The reflectances for the actual multilayer structure generally follow the quasi-homogenous trend, 

oscillating around it; oscillations for opening layers A and B are of the opposite signs with respect to the 

quasi-homogenous line, and all the curves coincide at certain angles. Interestingly, the critical angle shift 

[observed in Figure 4(e) and (f)] is not observed anymore in Figure 5 (e) and (f). It results from fact that the 

total internal reflection depends mainly on the substrate, which is identical for all cases. 

3.4. Finite multilayer stack with resonator layer 

The final geometry that we consider here includes an additional finite-thickness layer between the multilayer 

structure and the substrate (see inset in Figure 6). This intermediate layer acts as a photonic resonator with 

resonance conditions determined by its thickness  . Such a geometry is highly relevant because previous 

research has shown that a resonator (even a very primitive one such as a single layer of carefully chosen 

thickness) can considerably improve impedance matching in many photonic devices, leading to enhancement 

of various effects such as nanoantennas excitation [36] and metasurface polarization conversion [37]. It is 

expected that the already measurable discrepancies between the reflectance from the actual multilayer and its 

homogenized counterpart may be enhanced in the resonator set-up.  

Following the same adopted methodology of gradually working from the simpler geometry to the more 

complicated, we fix the refractive index of the resonator layer to be the optimal      determined in the 

previous section, namely,            (TM) and            (TE), and use resonator thickness   and 

refractive index of the substrate beneath the resonator      as new variable parameters. The total thickness 

of the multilayer stack is fixed at           (TE) and          (TM).  



 

Figure 6. (a-b) Reflectance difference     between the actual periodic and quasi-homogenous structures for TM (a) and 

TE (b) polarizations for the finite stack with an additional layer of refractive index      and thickness  . (c-d) 

Reflectance difference     for the periodic structure with opening layer A and B for TM (c) and TE (d) polarizations.  

The results are shown in Figure 6. As expected from the previous theoretical considerations [37], 

discrepancies     and     are greatly enhanced compared to the case when the resonator is absent. The 

primary factor affecting the enhancement is resonator thickness  , with both     and     periodically 

exhibiting maxima and minima with changing    . The dependence on substrate refractive index      is 

much weaker and essentially consists in the requirement          : it can be seen in Figure 6 that the 

EMA breakdown vanishes otherwise. The dependencied             achieves saturation once      exceeds      substantially, and there is a transition region for            where the resonator has little effect so that 

the structure beneath the multilayer can be thought of as effectively bulk. 

Specifically, finite-thickness difference     reaches maximal absolute values 0.90 for         ,            (TM) and 0.98 for         ,            (TE) [see Figure 6 (a) and (b)]. Ordering reflectance 

difference     [Figure 6 (c) and (d)] shows qualitatively similar behaviour, reaching maximal absolute 

values 0.97 for         ,            (TM) and 0.99 for         ,            (TE). For a thinner 

multilayer stack with         (10 periods), it was shown that the resonator configuration also yields 

significant maximal reflectance differences, reaching          and          for both TE and TM 

polarization. 

  



4. Discussion and conclusions 

Our results show that all-dielectric subwavelength multilayer stacks exhibit surprisingly interesting 

properties. Even though their isofrequency contours do not differ much from the effective medium 

predictions (Figures 2 and 3), it turns out that under certain circumstances (surrounding materials refractive 

indices, angle of incidence, thickness of the stack) this can be enough to cause significant differences in 

reflection between the actual structure and EMA prediction (Figures 4-6). These differences clearly manifest 

as the anomalous breakdown of the EMA applicability. In other words, it is possible that an incident wave 

can excite guided modes in a multilayer stack, leading to less-than-unity reflectance, but would undergo total 

internal reflection from a slab of homogeneous material representing the stack under the EMA. Using a 

finite-size stack (Figure 5) and placing a resonator layer behind the multilayer (Figure 6), it is possible to 

further enhance the reflectance difference. The reflectance depends not only on the period, but also on the 

opening layer (A or B) in the stack. In the resonator geometry it is even possible to maximize the reflectance 

difference (Figure 6) up to 0.99. Our results corroborate the findings of H. Sheinfux et al [35], placing them 

in context of a systematic and comprehensive investigation and identifying the parameters where these 

findings could be experimentally verified using existing fabrication and measurement techniques. 

The results are even more surprising taking into account that the structure consists of lossless dispersionless 

dielectrics (contrary to metal-based metamaterials) and no material resonances (contrary to resonant 

metamaterials) are involved. The analysis presented in this paper is general and wavelength-independent (all 

the sizes are normalized to the wavelength) so they are applicable for a broad range of frequencies from 

radio waves to light waves.  

Two important practical conclusions can be drawn. First of all, one should be extremely careful doing 

ellipsometry of multilayer structures, since the applicability of the EMA, usually taken for granted, can be 

grossly invalid under certain circumstances. Existing ellipsometry models involving multilayer structures 

may be in need for correction due to this possibility. 

Second, we notice that the observed effect generally happens in a narrow parameter window (surrounding 

materials refractive index, angle of incidence, stack thickness). Hence the investigated anomalous EMA 

breakdown can be used for sensing applications, where minute variation in the refractive index (primarily 

that of the medium immediately behind the multilayer structure) can be detected in reflectance 

measurements. The resonator geometry considered in Section 3.4 is particularly promising because of high 

performance and because it can be realized with a relatively small number of layers (for example, 10 

periods). The multilayer structure can be placed on top of a microfluidic channel for lab-on-a-chip 

applications. In addition, high sensitivity to the total thickness of the stack, individual layer thickness, and 

multilayer termination (whether the opening layer is A or B) can be used as a new optical method of in situ 

monitoring of subwavelength multilayer deposition such as ALD. Finally, high sensitivity to the incidence 

angle can be used in precise angle measurements and control. 

In summary, we have performed a general systematic analysis of deeply subwavelength dielectric 

multilayers and the anomalous EMA breakdown in such structures. We have determined the conditions for 

maximal reflectance difference between the actual periodic multilayer and its homogenized counterpart, as 

well as the maximal sensitivity to the choice of the opening layer in the stack. The presented results will be 

useful for ellipsometric characterization of multilayer stacks as well as for a variety of sensing applications. 
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