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Strong correlations can dramatically modify the thermodynamics of a quantum many-particle
system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly
correlated regime, for the interplay between entropy and strong interactions can lead to counterintu-
itive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He
is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous,
isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice.
As we adiabatically increase the attraction between the atoms we observe that the gas, instead
of contracting, anomalously expands. This expansion results from the combination of two effects
induced by pair formation in a lattice potential: the suppression of quantum fluctuations as the
attraction increases, which leads to a dominant role of entropy, and the progressive loss of the spin
degree of freedom, which forces the gas to excite additional orbital degrees of freedom and expand
to outer regions of the trap in order to maintain the entropy. The unexpected thermodynamics we
observe reveal fundamentally distinctive features of pairing in the fermionic Hubbard model.

A. Introduction

The striking consequences of strong correlations in
many-body quantum systems are at the frontier of cur-
rent research. Typically, interest is devoted to the un-
usual properties of ground states or low-lying excitations,
which range from exotic types of order to unconventional
quasiparticle statistics [1, 2]. But strong correlations can
also severely alter the thermodynamics of a quantum sys-
tem, leading to fascinating finite temperature effects. Es-
pecially surprising behaviour can arise when the system
adiabatically enters a strongly correlated phase, as the
emerging correlations can imply a substantial redistribu-
tion of entropy.

A well known example of this type of phenomena is the
so-called Pomeranchuk effect [3, 4], which occurs in the
liquid to solid transition of 3He. Since the solid, through
its randomly oriented spins, is more disordered than the
liquid, it turns out that when the liquid is adiabatically
squeezed, it freezes into a solid by, astoundingly, absorb-
ing heat.

Other examples of anomalous behaviour due to the
combination of finite entropy and strong correlations
have been rarely observed in nature, usually because
interactions in typical strongly correlated systems can
hardly be tuned. Recently, the extraordinary progress in
the control and manipulation of neutral atoms in optical
lattices [5, 6, 7] has added a valuable degree of freedom to
the investigation of strongly correlated systems. By vary-
ing a collection of parameters, like the scattering length,
the lattice depth or the external confinement, it is possi-
ble to adiabatically bring a non-interacting gas of bosonic
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] or fermionic atoms
[19, 20, 21, 22] into a regime of strong correlations. Here,

we report on the experimental observation and the the-
oretical prediction of a novel instance of an anomalous
isentropic effect for a spin mixture of attractively inter-
acting fermionic atoms in an optical lattice.

Our observation moreover constitutes a step towards
the study of pairing and superfluidity of fermionic atoms
in optical lattices. In the continuum, fermionic atoms
have been the subject of breakthrough dipole trap exper-
iments studying the BCS-BEC crossover [23, 24, 25, 26].
In optical lattices, one of the major challenges is the re-
alization of low-temperature quantum phases within a
single band fermionic Hubbard model, which could pro-
vide critical insight into the origin of high temperature
superconductivity in cuprates [27, 28]. In this context,
the atomic quantum simulation of the attractive Hub-
bard model has found special interest [29, 30, 31, 32].
On the one hand, it allows the investigation of pairing in
a single band Hubbard model and gives access to the in-
triguing preformed pair or pseudogap regime [29, 30, 31].
On the other hand, it could serve as an alternative route,
more accessible to current experiments, to study the
physics of the repulsive Hubbard model [32]. The work
we present here contains the first experimental study of
the low entropy thermodynamics of an increasingly at-
tractive fermionic spin mixture in the lowest band of an
optical lattice. Our theoretical explanation of the un-
usual behaviour we observe reveals the dramatically dif-
ferent consequences of pair formation in the single band
fermionic Hubbard model with respect to the continuum
case.

For a spin mixture of trapped fermions, one would ex-
pect that increasing the attractive interactions between
spin components will compress the gas. In order to de-
crease its energy the system increases its density, the at-
traction playing the role of an effective increase in the
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FIG. 1: Experimental observation of anomalous ex-

pansion. A, measured cloud size R⊥ and B, fraction of par-
ticles on doubly occupied sites f2 (doublon fraction) versus
scattering length for different lattice depths (0 to 9 Er). Dots
in A correspond to a running average over three experimental
shots. Dots in B are averages over at least five consecutive
measurements, with the standard deviation plotted as the er-
ror bar. Lines are guides to the eye. The data have been taken
in a fixed external dipole trap with ω⊥ = 2π × 25Hz and as-
pect ratio γ ≈ 4, at a fixed temperature prior to loading of the
lattice of T/TF = 0.15(3) (see appendix). The data show an
initial contraction of the gas for weak attractive interactions
followed by an expansion for strong interactions. As the gas
expands, the doublon fraction continues to increase.

confining potential. This behaviour has been observed for
fermionic atoms in recent dipole trap based experiments
[25]. Here, we show that completely different physics
appears when the gas is loaded into a lattice potential:
while the system contracts for weak attractive interac-
tions, it reaches a minimum size for a certain finite in-
teraction strength and then starts to increase in size, be-
coming even larger than the non-interacting gas (Fig. 1).
If, in analogy to the usual volume compressibility[22], we
define the interaction compressibility as the change in size
due to a change in interaction strength, the system ex-
hibits an anomalous, negative interaction compressibility
for strong attractive interactions.

This counterintuitive crossover from contraction to ex-
pansion is the consequence of the progressive suppression
of quantum fluctuations that pairing induces in a lattice
potential. As the attractive interaction increases, the
system turns into a gas of hard-core pairs, in which the
two fermions with opposite spins are tightly bound at
the same lattice site. These on-site pairs can only move
through the lattice via virtually breaking up [1, 33] and,

in contrast to the continuum case, their kinetic energy
vanishes as their binding energy increases.

The quenching of quantum fluctuations as the attrac-
tion increases has two dramatic effects. On the one hand,
it effectively enhances the role of entropy, which becomes
increasingly dominant over energy as the attraction gets
stronger. On the other hand, it makes the bosonic pairs
acquire a fermionic character. Since Pauli principle does
not allow two on-site pairs to meet at the same lattice
site, the more and more spatially localized pairs eventu-
ally behave as spinless fermions.

Unlike what happens in the continuum, where increas-
ing the attraction between the spin components converts
the non-interacting fermionic gas into a gas of pairs that
Bose condense, pairing in a lattice potential brings the
system back to a fermionic gas, which has however lost
its spin degree of freedom. The progressive loss of the
spin degree of freedom gives rise to a redistribution of
entropy from spin to orbital degrees of freedom. In order
to maintain the entropy, the system is excited to outer
regions of the trap and forced to expand (see Fig. 2B-C).

B. The System

We consider an attractively interacting spin mixture of
fermionic atoms loaded into the lowest band of a three
dimensional optical lattice. Its physics can be described
by a Hubbard Hamiltonian with an additional harmonic
confining potential:

Ĥ = −t
∑

〈ℓ,ℓ′〉σ

c†ℓσcℓ′σ + U
∑

ℓ

n̂ℓ↑n̂ℓ↓ + Ec

∑

ℓσ

r2
ℓ n̂ℓσ. (1)

Here cℓσ(c†ℓσ) and n̂ℓσ are, respectively, the fermionic
destruction (creation) operator and the particle num-
ber operator at lattice site ℓ = (x, y, z) and spin state
σ ∈ {↑, ↓}. We consider the case of an unpolarized sys-
tem, with N↑ = N↓ = N/2. The Hamiltonian (1) con-
sists of three competing terms. The first term accounts
for the kinetic energy of the system, which is character-
ized by the hopping amplitude t between neighboring lat-
tice sites, while the second term describes the attractive
on-site interaction U < 0 between atoms with opposite
spin (see Fig. 2A). The last term takes into account the
confinement energy due to the external anisotropic har-
monic potential. The characteristic energy Ec = Vcr

2
c

is the mean potential energy per particle and spin state
of a maximally packed state at the bottom of the trap,
where r2

cd2 is the corresponding mean squared radius,
Vc = 1

2mω2
⊥d2, ω⊥ = ωx = ωy = ωz/γ is the horizontal

trap frequency, and d the lattice constant. The squared
radius at site ℓ is r2

ℓ = 1/r2
c

(

x2 + y2 + γ2z2
)

.

We want to study the size behaviour of the system
when adiabatically entering the regime of dominating at-
tractive interaction U . In order to characterize the size
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FIG. 2: Attractively interacting fermionic spin mix-

ture in an optical lattice. A The system size R is de-
termined by the interplay among entropy and the different
energy scales: the interaction U , the tunneling amplitude t
and the confinement energy. For strong attractive interaction
the formation of on-site pairs forces the system to expand. B,

C, Schematic illustration of the anomalous expansion effect
with a zero-tunneling two-particle model. The entropy that
can be stored per site is reduced as the system evolves from B,
the non-interacting regime, with 4 possible configurations, to
C, the infinitely attractive regime, where particles are tightly
paired and only 2 configurations are available.

we define the radius R in the form:

R2 =
1

Nσ

∑

ℓ

r2
ℓ nℓ, (2)

where nℓ = 〈n̂ℓσ〉. With this definition the average po-
tential energy per particle and spin state is EcR

2 and the
radius of the maximally packed state is equal to one. As
a measure of the change in size in response to an adi-
abatic change of the interaction strength we define the
interaction compressibility

κi =
∂R2

∂U

∣

∣

∣

∣

S

. (3)

This is analogous to the volume compressibility κc =
−∂R2/∂Ec|S , which describes the behaviour of the radius
with external confinement [22].

At zero temperature the size of the system monotoni-
cally decreases with increasing attractive interaction and
κi is always positive (see Fig. 4A). As for the contin-
uum case, this behaviour can be qualitatively understood
within a mean-field picture, in which the increasing at-
tractive interaction plays the role of an additional trap-
ping potential that effectively compresses the gas. What

is special of the lattice system is the progressive quench-
ing of kinetic energy as the attractive interaction in-
creases, which gives rise to a saturation of the system size
in the strongly interacting regime. As the attraction gets
stronger, fermions with opposite spins get bound forming
on-site pairs, which can only tunnel via second-order pro-
cesses of suppressed amplitude t2/U (see ref.[1, 33]). In
the limit of a dominating attractive interaction, pairs get
localized at lattice sites, and are obliged by Pauli prin-
ciple to singly occupy the lattice sites at the bottom of
the trap. Once this maximally packed state with R = 1
is reached, Pauli blocking avoids further compression of
the system with increasing attractive interaction and κi

tends to zero.
We show below how this suppression of quantum fluc-

tuations leads to unexpected size behaviour at finite en-
tropy. Since the desire of minimizing the energy influ-
ences less and less the system size, entropy acquires a
dominant role as the attraction increases.

C. Experimental Observation

In the experiment an equal mixture of quantum de-
generate fermionic 40K atoms in the two hyperfine states
|F,mF 〉 = | 92 ,− 9

2 〉| ≡ | ↓〉 and | 92 ,− 7
2 〉 ≡ | ↑〉 is used.

By overlapping two orthogonally propagating lasers with
elliptical beam shapes, a pancake-shaped dipole trap
with an aspect ratio γ ≈ 4 is formed. Using evapora-
tive cooling in this trap, temperatures down to T/TF =
0.12(3) with 1.4 − 1.8 × 105 atoms per spin state are
reached. The combination of a red detuned dipole trap
(λdip = 1030 nm) and a blue detuned optical lattice
(λlat = 738 nm) with simple cubic geometry allows an in-
dependent control of the confinement energy Ec and the
tunneling t. By means of a Feshbach resonance located
at 202.1G (see ref.[34]), the scattering length between the
two spin states can be varied, and thereby the onsite in-
teraction energy U can be tuned at constant tunneling.
Negative scattering lengths up to a = −400 a0 can be
reached, where a further approach to the Feshbach reso-
nance starts to be hindered by enhanced losses, heating
and non-adiabatic effects in the lattice (see appendix).

After evaporation, the dipole trap depth is ramped in
100 ms to the desired value of the external confinement
(ω⊥ = 2π×20−70 Hz) and the magnetic field is adjusted
to set the scattering length. Subsequently, the optical
lattice is increased to a potential depth between Vlat =
0 − 9Er with a ramp rate of 7 ms/Er (see appendix),
Er = h2/(2mλ2

lat) being the recoil energy.
In order to measure the size of the system, an in-situ

image of the cloud along the short axis of the trap is
taken using phase-contrast imaging [35]. From this image

the integrated perpendicular radius R⊥ =
√

〈x2 + y2〉 is
obtained via an adapted Fermi-Dirac fit (see appendix).
The behaviour of the system size with increasing scatter-
ing length is analyzed for various lattice depths (Fig. 1A)
and various confinements (Fig. 6A). The data obtained
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shows a contraction of the gas for weak attractive interac-
tions followed by an anomalous expansion for interactions
larger than a critical value, which typically corresponds
to a scattering length |a| ≈ 20 − 40 a0. Additionally, the
fraction of atoms sitting on doubly occupied sites (dou-
blon fraction) is measured via conversion into molecules
[22, 34, 36] (see appendix), showing a steep increase as
the interaction becomes attractive. The number of dou-
blons surprisingly continues increasing while the gas ex-
pands, saturating close to 80% for strong interactions
and deep lattices. This high doublon fraction, at a den-
sity substantially lower than 2 atoms per site, indicates
that the system is in a preformed pair regime [31]. In
the absence of the lattice, we find that the anomalous
expansion disappears and the size of the cloud remains
constant, while the doublon fraction can still increase to
above > 40% when the free atom cloud is projected into
the lattice (see appendix). The absence of expansion in
the continuum system has also been observed in recent
dipole trap based experiments carried out at comparable
(within a factor of two) entropies [25].

D. Theoretical Prediction

We start by showing that in the strongly interacting
regime the system exhibits a negative interaction com-
pressibility. This is done by considering the zero tunnel-
ing limit, in which quantum fluctuations are completely
suppressed and the effect of entropy can be isolated.
Based on this knowledge, we then show how, at finite tun-
neling, a competition between energy minimization and
entropy conservation leads to a transition from positive
to negative compressibility as the attraction increases.

Zero tunneling limit. Negative compressibility. At zero
tunneling and zero temperature the system is in a maxi-
mally packed state for any attractive interaction strength
and the interaction compressibility vanishes. For fi-
nite entropy the size behaviour is then only determined
by the change in entropy density as the interaction in-
creases, which can be calculated exactly for any interac-
tion strength (see appendix). Since the Hamiltonian is a
sum of local Hamiltonians at each site,

ĥℓ = Un̂ℓ↑n̂ℓ↓ + Ecr
2
ℓ (n̂ℓ↑ + n̂ℓ↓), (4)

the problem factorizes into local on-site problems char-
acterized by the probabilities for zero, single and dou-
ble site occupation. As interaction increases from zero
to infinitely attractive, single occupation is progressively
suppressed and the system evolves from a gas of non-
interacting fermions with spin, and local entropy sℓ =
−2[nℓ log nℓ + (1 − nℓ) log(1 − nℓ)], to a system of on-
site pairs. In contrast to pairs in the continuum which
can Bose condense in the same quantum state, these
hard-core bosons occupy lattice sites according to Fermi
statistics and have local entropy sℓ = −[nℓ log nℓ + (1 −
nℓ) log(1−nℓ)], as if they were fermions without spin. For
the same density (the same radius) the entropy is thus

FIG. 3: Origin of negative compressibility at zero tun-

neling. Numerical exact calculation at zero tunneling for a
three dimensional system with Nσ = 7.5 × 103. A, reduc-
tion of entropy density for increasing attraction. The squared
radius is plotted versus entropy for different attractive inter-
action strengths. For a fixed size the corresponding entropy
monotonically decreases as the attractive interaction increases
from U = 0 (black curve) to U = −∞ (red curve). For a fixed
non-vanishing entropy the radius increases as the attraction
increases. B, fraction of particles on doubly occupied sites
(doublons) and C, radius versus interaction strength at dif-
ferent fixed entropies.

exactly reduced by a factor of two. This reduction in the
entropy density is illustrated in Fig. 3A, which shows the
relation between the entropy and the size of the system
for increasing attractive interactions. For a fixed entropy
this reduction forces the system to expand as the at-
traction increases, exhibiting a negative interaction com-
pressibility for any non-vanishing attraction and entropy
(Fig. 3C). In contrast to the mean-field picture, volume
compressibility and interaction compressibility have here
opposite signs.

Finite tunneling. Transition from positive to negative

compressibility. For finite tunneling and at zero tem-
perature the radius decreases with increasing attractive
interaction and the system exhibits a positive interaction
compressibility. At finite entropy this radius, R0, has to
be increased by an amount ∆R in order to accommodate
the given entropy:

R = R0 + ∆R(S). (5)

In contrast to R0, ∆R increases as the attraction be-
comes larger, for the progressive loss of the spin degree
of freedom implies a reduction of the average entropy
that can be stored per lattice site. Energy minimization
and entropy conservation thus compete for the sign of
the compressibility.



5

FIG. 4: Competition between energy minimization

and entropy accommodation at finite tunneling. Ra-
dius versus attractive interaction at constant entropy: exact
diagonalization of a one-dimensional system with 6 particles
and 7 sites. A, the radius at zero temperature, R0, decreases
with attraction to minimize the total energy. B, the change of
the radius due to entropy ∆R, however, increases with attrac-
tion as a consequence of the gradual loss of the spin degree
of freedom. C, the resulting radius R = R0 + ∆R reaches a
minimum value for a certain interaction strength where the
entropy effect starts dominating the energy effect. The dif-
ferent curves correspond to different ratios of t/Ec. Entropy
per particle is S/(kBN) = 0.59.

For weak attractive interaction, we expect the be-
haviour of the radius to be dominated by the zero entropy
radius, and the system to exhibit a positive interaction
compressibility. For strong enough attractive interaction,
however, where the influence of energy becomes negligi-
ble, the reduction of entropy density should dominate and
the system should increase its size, exhibiting a negative
interaction compressibility.

The value of attractive interaction above which the
compressibility becomes negative should increase with
tunneling. As tunneling gets larger the role of interac-
tions is effectively diminished and a larger interaction is
required for the entropic effect to overcome the energy
minimization effect.

The above predictions can be illustrated by exact di-
agonalization of a small system (see Figs. 4, 5). The
full many-body problem cannot be solved exactly, due to
the strong correlations involved. In order to analyze a
three-dimensional many-particle system we have used a
high temperature expansion [37, 38, 39] (see appendix).
This approximation treats interaction exactly and applies
when tunneling is much smaller than either interaction
or temperature. Already the first two terms of the high
temperature expansion capture the competition between
energy and entropy and predict the nontrivial minimum
in the cloud radius (see Fig. 6B).

FIG. 5: Transition from positive to negative compress-

ibility at finite tunneling. Exact diagonalization of a one-
dimensional system with 6 particles and 7 sites. A-C, squared
radius versus entropy for increasingly attractive interactions
(black to red curves) at different values of the tunneling am-
plitude, t/Ec = 0 (A), t/Ec = 2.25 (B) and t/Ec = 6.75
(C). Entropy is given in units of the maximum entropy of
the system, Smax. The red dashed line in (A) corresponds
to the limiting case of U = −∞. For any non-vanishing tun-
neling the curves eventually cross as the attraction increases,
indicating a change in the sign of the compressibility. This
crossing is shifted to larger values of attraction and entropy
as tunneling increases. D, E, F, interaction compressibility
versus entropy and interaction strength at different values of
tunneling (same as for A, B, C). Regions of negative (pos-
itive) compressibility are marked in red (blue) color. The
white color highlights the zero compressibility region where
the minimum size of the system is reached.

E. Comparison between theory and experiment

In Fig. 6A we show the experimental data obtained
at fixed lattice depth for different external confinements,
for which the ratios U/t and t/Ec are varied indepen-
dently. The experimental observation and the theoret-
ical prediction show the same qualitative features. As
predicted above, for increasing tunneling (decreasing con-
finement) the observed transition from positive to nega-
tive compressibility shifts to stronger attractive interac-
tions (Figs. 6B,C). It is interesting to note that for large
ratios of t/Ec, where the role of the external confinement
becomes unimportant, the transition occurs at a nearly
constant value of U/t, the only energy scale left in the
problem.

The size expansion of the gas observed in the exper-
iment when increasing the interaction from zero to the
maximum experimental negative value (|U/t| ∼ 20) is
on the order of 5 − 8%. This is in agreement with
the expansion we would expect assuming that the non-
interacting gas is adiabatically converted into a gas of
spinless fermions (∼ 6−11%). Moreover, in order to rule
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FIG. 6: Comparison of experimental and theoretical

size behaviour. A, measured rescaled radius R versus in-
teraction strength for different external confinements. Lattice
depth is fixed to 7Er and entropy is S/(kBN) = 0.9 − 1.4
(T/TF = 0.12(3)). The radius is rescaled in units of the ra-
dius of a maximally packed system as defined in the text. For
each data set the corresponding ratio between tunneling and
confinement energy t/Ec is indicated. B, experimental and C,
calculated compressibility via exact diagonalization of a small
system at S/(kBN) = 0.7. Compressibilities are plotted ver-
sus interaction strength as a function of t/Ec. Experimental
compressibilities are determined from the measured cloud size
via a linear fit to ten consecutive data points. D Calculated
radius of an atom cloud in a 3D lattice using a high temper-
ature expansion for different external confinements at fixed
entropy S/(kBN) = 1.6.

out a possible size increase due to heating, temperatures
after reversing the lattice loading process have been mea-
sured for all scattering lengths (see appendix). For large
values of t/Ec, where the effect is most pronounced, a
very small heating is observed (∼ 1% of TF ), which could
only account for a negligible expansion of the gas (up to
∼ 1%), below the experimental shot to shot variation.

In the low temperature and large tunneling regime
for which the anomalous expansion effect is most pro-
nounced in the experiment, the high temperature expan-
sion cannot be applied anymore. For lower tunneling
and stronger confinement the experiment is affected by
larger heating rates, which could mask the isentropic ex-
pansion, making a full quantitative comparison difficult.
We note, however, that on a qualitative level, all trends
such as the steepening of the anomalous expansion with
increasing t/Ec agree very well between experiment and
theory.

F. Conclusions and outlook

We have demonstrated how pair formation in an at-
tractively interacting spin mixture of fermionic atoms in
an optical lattice gives rise to an anomalous expansion
of the gas as the attraction increases. This novel effect
is the result of the quenching of quantum fluctuations
caused by pairing in a lattice potential, which effectively
enhances the role of entropy and fermionizes the bosonic
pairs.

Our observation reveals for the first time the funda-
mentally different consequences of pairing in the first
band of a lattice potential as compared to those in the
continuum. It constitutes a step towards the study of
superfluidity in the fermionic Hubbard model, where
characterization and detection of the many-body paired
states, especially the pseudogap regime relevant to high
temperature superconductivity, is a major goal.

Examples of exotic thermodynamic behaviour caused
by the interplay of strong interactions and entropy have
been scarcely observed in quantum many-body systems.
Our work might pave the way towards the discovery of
other novel instances of this type of phenomena with cold
atomic gases. It remains an important experimental and
theoretical challenge to identify such novel phenomena
and design appropriate protocols to observe them in the
laboratory. We anticipate that similar effects can oc-
cur for attractive Fermi mixtures with population imbal-
ance [40, 41], where the intriguing features of pairing of
fermions with different Fermi energies are the focus of
current investigation and controversy.

Our work also opens an interesting route towards the
detection of quantum many-body phases at finite en-
tropies, where a dramatic change in the thermodynamic
behaviour can serve as a footprint of the crossover be-
tween two phases exhibiting substantially different en-
tropy densities, as observed recently for a quantum crit-
ical system [42]. This might be a promising perspective
for the detection of transitions between two topological
phases [43], whose different topology can lead to strik-
ingly distinctive ways of storing entropy [44].
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APPENDIX A: SUPPLEMENTARY

INFORMATION

1. Thermodynamics at zero tunneling

At zero tunneling the partition function Z0 of the sys-
tem is a product of local partition functions at each site
Z0 =

∏

ℓ zℓ with

zℓ = 1 + 2e−β(Ecr2
ℓ−µ−U

2 ) + e−2β(Ecr2
ℓ−µ), (A1)

where β = 1/kBT and T is the temperature of the
gas. Defining the probabilities p0

ℓ = 1/zℓ, p1
ℓ =

e−β(Ecr2
ℓ−µ−U

2 )/zℓ, p2
ℓ = e−2β(Ecr2

ℓ−µ)/zℓ for zero, single
and double site occupation, respectively, the local occu-
pation per spin state is given by nℓ = p1

ℓ + p2
ℓ and the

entropy per site is sℓ = −p0
ℓ log p0

ℓ − 2p1
ℓ log p1

ℓ − p2
ℓ log p2

ℓ .
For a given entropy S and a number of particles per spin
state Nσ the radius of the system R at any interaction
strength U can be calculated by imposing the conditions
∑

ℓ sℓ = S and
∑

ℓ nℓ = Nσ.

2. Entropy density reduction and size expansion at

zero tunneling

At zero tunneling in the two limiting cases of U =
0 and U = −∞ the system behaves as a gas of non-
interacting fermions with local Hamiltonian

ĥℓ ∝ r2
ℓ n̂ℓ. (A2)

For U = 0 it is a two-component gas, whereas for
U = −∞ it behaves as a single component made out
of fermions with twice the mass. The thermodynamic
magnitudes for both cases can be directly obtained by
relating them to those of a single component with the
same local Hamiltonian. Let us denote by z′ℓ(β), n′

ℓ(β)
and s′ℓ(β) the local partition function, density and en-
tropy, respectively, of a single component gas at temper-
ature kBT = 1/β. For a two-component gas, consisting
of two copies of that one, the corresponding thermody-

namic magnitudes are (z′ℓ(β))
2
, n′

ℓ(β), and 2s′ℓ(β). In
contrast, for a single component with double mass, ener-
gies are multiplied by a factor 2 and the corresponding
thermodynamic functions are z′ℓ(2β), n′

ℓ(2β) and s′ℓ(2β).
The one-component system with double mass has there-
fore the same radius (same density per component) as
the two-component gas when its temperature is twice as
high. In that situation its entropy is exactly half the one
of the two-component gas.

The relative expansion of the gas as the interaction is
adiabatically increased from U = 0 to U = −∞ can be
directly estimated for low entropies. As for a free gas,
for temperatures much smaller than the Fermi tempera-
ture the entropy changes linearly with temperature, while
the energy increase is quadratic. For our system, with
E ∝ R2, the squared radius increases quadratically with

entropy (see Fig. 3A), R2 ∼ 1+α(S/N)2, where α can be
found to be kBTF /π2Ec = 5/3π2. Since the number of
particles is half for the one-component gas we have that
the relative radius increase is ∆R(U = −∞)/∆R(U =
0) ∼ 2.

3. High Temperature Expansion

The so-called high temperature expansion is a use-
ful analytical approach to analyze the Hubbard model.
Within this method the partition function of the system

Z =tr(e−βĤ) is expanded around the one at zero tunnel-
ing Z0, which can be calculated exactly as shown above.
The logarithm of the partition function can be formally
written as:

log(Z) = log(Z0)+

log

〈

T

{

exp

(

−

∫ β

0

K̂(τ ′)dτ ′

)}〉

0

,
(A3)

where K̂ = −t
∑

〈ℓ,ℓ′〉σ c†ℓσcℓ′σ is the tunneling Hamil-

tonian, T denotes imaginary time ordering and 〈〉0 is
the expectation value calculated with the unperturbed
partition function Z0. Expression (A3) can be used
to perform a systematic expansion of Z in powers
of βt. The radius can be then obtained as R2 =
−1/(βNσ)∂(log Z)/∂Ec|β,µ. This method treats inter-
action and confinement exactly and is valid for values
of tunneling much smaller than temperature, interaction
and confinement energy. Already a second order expan-
sion can efficiently describe the competition between the
Hartree interaction, which induces the compression of the
cloud for weak interactions, and entropy, which gives rise
to the expansion of the gas for strong attraction.

4. Image analysis

The phase contrast images were fitted using two-
dimensional adapted Fermi-Dirac fits

F (x, y) =aLi2

(

−100 e
−

(x−xc)2

2σ2
x

−
(y−yc)2

2σ2
y

)

+

b + c

√

(x − xc)2

σ2
x

+
(y − yc)2

σ2
y

,

(A4)

with Li2 being the di-logarithm and xc, yc, σx, σy, a, b, c
free fit parameters. The perpendicular cloud size R⊥

after integration over the propagation axis of the imaging
laser beam was extracted from the fits through R⊥ =
√

1.2642 (σ2
x + σ2

y) − w2, where w denotes the imaging

resolution (Radius of Airy disc < 3µm) of our imaging
setup. The renormalized radius R is then given by R =
√

3/2R⊥/rc.
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5. Lattice Calibration and Ramps

The lattice depth was calibrated using frequency mod-
ulation of the lattice beams to resonantly excite atomic
population to higher vibrational energy bands. The lat-
tice was ramped to the final depth using linear ramps.
The ramp rates were chosen such that a minimum cloud
size was obtained for low confinement. For much shorter
ramp times non-adiabatic effects lead to a larger cloud
size, whereas for much longer ramp times heating leads
to increased cloud sizes. For the case of strong attractive
interactions and strong confinements (t/Ec < 0.2), we
find that the cloud size has increased beyond the mini-
mum size again for the ramp times used. We attribute
this behaviour to increased heating observed for strong
attractive interactions.

6. Temperature Measurements and Heating Rates

All quoted temperatures were determined from Fermi-
Dirac fits to time-of-flight absorption images of a non-
interacting spin mixture, released from the dipole trap

at low compression (ω⊥ ≃ 2π × 25 Hz). For tempera-
tures below 0.15TF we note that the reliability of the fit
deteriorates, resulting in an increased temperature un-
certainty. The non-interacting cloud size can serve as an
additional thermometer and would suggest initial tem-
peratures around 0.1TF .

We have measured the entropy increase due to losses
and technical noise in the lattice by loading and unload-
ing the atoms from the lattice and determining the in-
crease in T/TF , and assuming the same heating during
loading and unloading. For low confinements (t/Ec >
0.5) the measured maximum temperature increase per
ramp is < 0.02TF . At stronger confinements (t/Ec < 0.5)
the heating increases with increasing density and increas-
ing attractive interaction. In the interaction range, where
we observe the cloud size minimum (−5 < U/t < 0), the
temperature increase varies between 0.01TF for U/t = 0
and 0.02TF for U/t = −5. For the strongest interactions
and strong confinement (t/Ec < 0.2) we observe heat-
ings up to 0.06TF . The main temperature increase may
be caused by pair losses, inelastic three-body collisions
and technical noise.
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