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We present a one-dimensional coupled ring resonator lattice exhibiting a variant of the non-
Hermitian skin effect (NHSE) that we call the anomalous Floquet NHSE. Unlike existing approaches
to achieving the NHSE by engineering gain and loss on different ring segments, our design uses fixed
on-site gain or loss in each ring. The anomalous Floquet NHSE is marked by the existence of skin
modes at every value of the Floquet quasienergy, allowing for broadband asymmetric transmission.
Varying the gain/loss induces a non-Hermitian topological phase transition, reversing the localization
direction of the skin modes. An experimental implementation in an acoustic lattice yields good
agreement with theoretical predictions, with a very broad relative bandwidth of around 40%.

Introduction.—Non-Hermitian systems can exhibit a
range of striking phenomena with no counterparts in
the Hermitian regime [1–5]. The one that has per-
haps attracted the most interest over the past two
decades is parity-time (PT) symmetry, which allows
a non-Hermitian system to host real eigenvalues and
non-Hermitian phase transitions [6]; this has been re-
alized and extensively investigated in photonics, and
other platforms such as acoustics, using classical gain
and/or loss to implement non-Hermiticity [7–10]. Re-
cently, much attention has been drawn to another non-
Hermitian phenomenon called the non-Hermitian skin ef-
fect (NHSE) [11–15], whereby a non-Hermitian lattice
hosts an extensive number of boundary-localized eigen-
modes called skin modes. The NHSE is theoretically
intriguing as it signifies a breakdown of Bloch’s theo-
rem for non-Hermitian systems [11–18] and is associ-
ated with novel non-Hermitian bulk-boundary correspon-
dences based on the windings of complex energy spectra
[13, 19–21]; moreover, it may have application possibil-
ities in sensing [22, 23] and lasing [24, 25]. Over the
past two years, experimental realizations of the NHSE
have rapidly emerged in electric circuits [26–28], quantum
walks [29, 30], phononic metamaterials [31–35], optical
fiber-based synthetic lattices [36, 37], and active parti-
cle systems [38]. A notable obstacle to such experimen-
tal studies is the fact that the simplest theories of the
NHSE (though not all of them [39, 40]) involve tight-
binding models with nonreciprocal inter-site couplings,
which tend to be difficult to implement.

In this work, we study an interesting form of the NHSE
that arises in lattices of coupled ring resonators. We
theoretically analyze and experimentally implement one-
dimensional lattices of coupled ring resonators with on-
site gain and/or loss, in a configuration that does not

require placing gain/loss on different segments of some
rings (which had been the approach adopted in ear-
lier works to induce nonreciprocal inter-site couplings
[34, 41–44]). Coupled-ring lattices have two key features
relevant to the NHSE: (i) if waves experience negligible
back-reflection while propagating in the lattice (a stan-
dard assumption), certain lattice configurations allow the
eigenmodes to split into two circulation sectors that are
each effectively nonreciprocal [45–48]; (ii) in the strong-
coupling regime, eigenmodes are solutions to a Floquet,
rather than Hamiltonian, eigenproblem, and can deviate
qualitatively from tight-binding models [49].

We show that our coupled-ring lattice exhibits an
“anomalous Floquet NHSE” whereby the real part of the
Floquet quasienergy winds through its entire 2π range—
something that cannot occur in Hamiltonian models [11–
18]. The skin modes manifest in the entire range of
Floquet quasienergies, rather than a small interval cor-
responding to the bulk energy band. This behavior
can potentially be used to achieve asymmetric transmis-
sion over a much broadband bandwidth than in non-
Floquet systems. As a proof of principle, we construct an
acoustic lattice exhibiting the anomalous Floquet NHSE,
and demonstrate experimental results that are consistent
with the theoretical model, and in quantitative agree-
ment with full-wave simulations, over a ∼ 40% relative
frequency bandwidth. This design may also be useful
for achieving broadband NHSE, and related phenomena,
in platforms such as microwave photonics [50, 51] and
nanophotonics [45, 52–54].

Theory.—Consider the one-dimensional lattice shown
in Fig. 1(a), with each unit cell consisting of three distinct
coupled ring resonators. Waves propagating in each ring
acquire phase shifts as well as experiencing amplitude
growth/decay due to gain/loss. For the rings drawn in
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FIG. 1. (a) Schematic of a finite lattice of coupled ring resonators (top) and a close-up view (bottom). One round trip in
each ring multiplies the wave amplitude by exp[i(φ− iγA,B,C)]. The phase shift φ is interpreted as a Floquet quasienergy. The
wave coefficients at six points in the unit cell are denoted by (a1, b1, b2, c1, c2, c3). (b) Complex quasienergy spectrum under
PBC (colored dots) and OBC with a lattice of 10 unit cells (black crosses) for θ ∈ {0.44π, 0.47π, 0.5π}. (c) Intensity profiles,
summed over all eigenmodes, for the lattices with OBC and θ ∈ {0.44π, 0.47π}. Both of these cases host skin modes, despite
the qualitative differences in the PBC spectra. (d) Wave propagation patterns under perfect coupling, θ = 0.5π. The grey
rectangle marks one unit cell. If an OBC mode’s right-moving path (orange) is damped, then its left-moving path (green) is
amplified and the mode profile is exponentially localized to the left, as indicated by the sizes of the arrows. In (b)–(c), the
gain/loss parameters are γA = −0.6 and γB = γC = 0.3.

red, blue, and grey in Fig. 1(a), and labelled {A,B,C},
one round-trip multiplies the complex wave amplitude
by exp[i(φ − iγA,B,C)]. If φ is real, it corresponds to
the round-trip phase shift in each ring, while positive
(negative) values of γA,B,C correspond to gain (loss) in
the respective rings. We consider only one of the two
choices of circulation directions in the lattice—say, coun-
terclockwise in the A and B rings, and clockwise in the
C rings—with no “spin-flipping” [45]. This restriction to
one circulation sector effectively breaks reciprocity [45–
48]. For simplicity, we let all rings share the same φ
parameter, which is interpreted as a Floquet quasienergy
[46, 47]. However, the behaviors discussed below gen-
eralize to rings of different φ; as an example, in the
Supplemental Materials we describe the case where the
A and B rings are anti-resonant with the C rings [55].
Note also that each ring is assumed to have uniform
gain or loss (or neither), unlike previously-studied non-
Hermitian coupled-ring models that have gain or loss on
different parts of each ring [34, 41–43].

Wave propagation within the lattice can be modelled
with the transfer matrix method [45–48]. As shown in
Fig. 1(a), we let {a1, b1, b2, c1, c2, c3} denote the com-
plex wave amplitudes at six points in the unit cell,
just before the coupling regions between adjacent rings.
The coupling is described by a scattering matrix Ŝ =
cos(θ) − iσ̂1 sin θ, where σ̂1 is a Pauli matrix and the
angle θ describes the coupling strength, with θ = π/2
corresponding to perfect coupling.

For a given set of source-free boundary conditions, such
as periodic boundary conditions (PBC) or open bound-

ary conditions (OBC), the scattering and coupling equa-
tions can be cast as an Floquet eigenproblem of the form
Û |Ψ〉 = e−iφ|Ψ〉, where Û is an evolution operator and
|Ψ〉 is a vector of complex wave amplitudes [45–47, 55].
Physically, Re[φ] describes the round trip phase shifts
in each ring, and Im[φ] is an additional gain or loss ap-
plied to each ring (on top of γA,B,C) to produce a self-
consistent wave pattern in the lattice. In a real system,
φ is typically proportional to the operating frequency,
though the other parameters γA,B,C and θ may also vary
with frequency.

Figure 1(b) shows the complex quasienergy spectra for
γA = −0.6, γB = γC = 0.3, and different values of θ.
In each plot, the colored markers correspond to PBC,
and the black crosses correspond to OBC for a lattice of
10 unit cells with the same termination conditions as in
Fig. 1(a). For θ = 0.44π [upper panel of Fig. 1(b)], the
behavior is similar to previous non-Hermitian Hamilto-
nian models exhibiting the NHSE [11–18]: the quasiener-
gies for PBC form a loop with nonzero point gap winding,
while the quasienergies for OBC form an arc enclosed by
and connecting to the loop. The OBC eigenmodes exhibit
the NHSE, as shown in the upper panel of Fig. 1(c).

With a larger coupling angle, θ = 0.47π, the com-
plex quasienergy spectrum is qualitatively different. As
shown in the middle panel of Fig. 1(b), under both PBC
and OBC, the quasienergies wrap across the entire range
of Re[φ] ∈ [−π, π], and the arc of OBC quasienergies
never meets the PBC quasienergies. Nonetheless, in this
regime there exists a macroscopic number of skin modes,
as shown in the lower panel of Fig. 1(c).
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This type of complex spectrum is made possible by the
fact that the present model is a Floquet system—i.e., it is
governed by a (non-unitary) evolution operator Û rather
than a (non-Hermitian) Hamiltonian, so that Re[φ] is an
angle variable [47, 49]. In other Floquet models, similar
quasienergy wrappings have been shown to give rise to so-
called anomalous Floquet insulators [49–51, 56] and other
anomalous Floquet phases [57, 58]. Similarly, we call the
present behavior the “anomalous Floquet NHSE”.

Because the skin modes have quasienergies spanning
the entire range of Re[φ] ∈ [−π, π], the anomalous Flo-
quet NHSE is a broadband phenomenon. Instead of using
the standard definition of point gap winding [13, 19–21],
it can be characterized by [55]

ν(φr) =

∫
BZ

dkx
2π

d

dkx
arg det[Û − e−iφr ], (1)

which describes the winding of e−iφ (not φ) around a
reference point e−iφr . All three cases in Fig. 1(b) have
ν(0) = 1, consistent with the occurrence of skin modes.

The physical origin of the anomalous Floquet NHSE
can be understood using the extremal case of θ = 0.5π, or
perfect inter-ring coupling. As shown in the bottom plot
of Fig. 1(b), under PBC there are two quasienergy bands
with constant Im[φ], whereas all the OBC modes have the
same Im[φ]. Perfect inter-ring coupling causes wave tra-
jectories to form two distinct paths in the bulk, as shown
in Fig. 1(d). Under PBC, the paths are completely de-
coupled; for the right-moving path, the wave amplitudes
are multiplied by exp[i(2φ − iΓR)] per unit cell, where
ΓR = γA + (γB + γC)/2, and applying the Bloch con-
dition yields the dispersion relation φ = k/2 + iΓR/2,
where k is the Bloch wavenumber with the lattice pe-
riod normalized to unity. The left-moving wave ampli-
tudes are multiplied by exp[i(φ − iΓL)] per unit cell,
where ΓL = (γB + γC)/2, so their dispersion relation
is φ = −k+ iΓL. Under OBC, the two paths meet at the
ends of the lattice, as seen in Fig. 1(d). A self-consistent
wave pattern must have no net gain/loss after each round
trip, so Im[φ] = (ΓL + ΓR)/3 = (γA + γB + γC)/3, con-
sistent with the complex quasienergy spectrum shown in
Fig. 1(b). If the left-moving/right-moving path in an
OBC mode is amplified/damped, the mode profile grows
exponentially to the left, as indicated by the arrow sizes
in Fig. 1(d). Such a formation picture of the skin modes
under OBC applies to all φ in the perfect coupling case,
thus leading to the anomalous Floquet NHSE.

We have chosen a coupling strength and gain/loss con-
figuration that is feasible for experiments (e.g, rings in
the same row have the same gain/loss). For other pa-
rameter choices, we observe similar behaviors, including
other instances of the anomalous Floquet NHSE. The
PBC spectrum can even exhibit multiple loops with dif-
ferent winding directions, resulting in skin modes local-
ized at different boundaries, consistent with the above
bulk-boundary correspondence principle [55].

ν(−0.2i) = 1 ν(0.2i) = −1

T
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FIG. 2. (a) Spectra for a lattice under PBC with gain and loss
parameters: γB = γC = 0, γA = −0.6, 0, 0.6 (left to right).
(b)–(c) Profile of a typical skin mode in a lattice under OBC,
with γB = γC = 0, and (b) γA = −0.6, (c) γA = 0.6. (d)–
(e) Field distributions when exciting the lattice from the left
and the right, respectively. (f)–(g) Plots of transmission ratio
TLR/TRL against φ for θ = 0.5π and θ = 0.2π, respectively.
Here TLR (TRL) denotes transmission from right to left (left
to right). In (d)–(e), the gain/loss parameters are the same
as in (a) and the input/output couplings are θin/out = 0.5π.

Moreover, gain and loss can induce a topological tran-
sition whereby the Floquet point gap windings reverse
direction, and the skin modes correspondingly switch
boundaries. To demonstrate this, consider a lattice with
the following parameters: γB = γC = 0 and θ = 0.5π. In
addition, we introduce a variable γA that can be tuned
to achieve the topological transition. Figure 2(a) shows
the spectra under PBC as γA is increased from −0.6 to
0.6. For γA = −0.6, the PBC spectrum consists of two
branches, as shown in the left panel of Fig. 2(a). We find
ν = 1 (for φr = −0.2i), and the skin modes are localized
to the left boundary as shown in Fig. 2(b). Upon increas-
ing γA, the two branches of PBC quasienergies approach
each other, meeting at γA = 0 as shown in the middle
panel of Fig. 2(a). This is the phase transition point. As
γA is further increased, the PBC spectrum again splits
into two branches with ν = −1 (for φr = 0.2i), as shown
in the right panel of Fig. 2(a). The OBC modes are now
skin modes localized on the right boundary, as shown
in Fig. 2(c). Thus, our Floquet model enables the ac-
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FIG. 3. (a) Photograph of one unit cell in the experimental sample. (b) Plot of effective coupling angle θ against frequency,
extracted from full-wave numerical simulations as described in the Supplemental Materials [55]. (c)–(f) Full-wave acoustic
simulations and experimental measurements of the acoustic intensity under: (c),(d) left incidence and (e),(f) right incidence.
The excitation frequency is 8000 Hz. In (d) and (f), we multiply the measurement results by a factor of exp(αl), where α is a
decay factor and l is the path length, to compensate for background losses [55]. In the full-wave simulations, intrinsic losses are
absent and the additional loss in the A ring is implemented as a nonzero imaginary part in the sound speed. The experiment
and simulations can be described by the Floquet model with γA = −0.35, γB = 0 and γC = 0.

tive control of the NHSE, which may be useful for recon-
figurable devices based on optical platforms where gain
and/or loss can be tuned by external pumping [52].

Thus far, we have investigated how the model behaves
under source-free conditions. In Figs. 2(d)–(e), we study
the transmission properties when inputs and outputs are
attached to the ends of the lattice. The lattice param-
eters are the same as in the left panel of Fig. 2(a); the
couplings between the couplers and the lattice are set to
0.5π (i.e., perfect coupling). As shown in Fig. 2(d)–(e),
the wave is continuously attenuated (unattenuated) when
transmitted left-to-right (right-to-left). This is consistent
with the localization of the skin modes, and with the pre-
viously discussed differences in relative gain between left-
and right-moving paths. Furthermore, such an asymmet-
ric transmission behavior is broadband in the anomalous
Floquet NHSE case [Fig. 2(f)]. When the coupling is de-
creased and the skin modes only exist for a small range
of φ, the broadband property no longer holds [Fig. 2(g)].

Experiment.—We performed a proof-of-principle ex-
perimental demonstration using an acoustic lattice. As
shown in Fig. 3(a), the lattice unit cell consists of three
coupled rings with the same dimensions. Each ring is
filled with air and surrounded by rigid walls, with adja-
cent rings connected by small channels (see Supplemen-
tal Material for detailed structural parameters [55]). The
couplings are optimized so that the effective θ, derived
from full-wave simulations [55], is approximately 0.5π

over a wide range of frequencies, as shown in Fig. 3(b).

Unlike the previously-discussed theoretical models, the
experimental sample is purely lossy. There are two
sources of loss: the first is intrinsic loss due to material
absorption, which is the same for all rings. The second
type of loss comes from the intentional introduction of
absorbing materials to a segment of each A ring, indi-
cated by the blue box in Fig. 3(a).

The lattice is excited by a monochromatic signal with a
frequency of 8000 Hz incident from the left or right end,
as indicated by the blue arrows in Figs. 3(c)–(f). We
probe the acoustic intensities at various positions by in-
serting microphones into the rings, with a step of 28 mm
(see Supplemental Material for more details on the mea-
surement [55]). For ease of visualization, the measured
intensities in Figs. 3(d) and (f) are compensated by mul-
tiplying the measured intensity by a factor eαl, where α
is a decay factor induced by the background loss and l is
the propagation length [55]. The uncompensated inten-
sity fields are shown in the Supplemental Material [55].

When the signal is injected from the left, the acous-
tic intensity attentuates rapidly, as demonstrated in
Figs. 3(c)–(d). By contrast, if the signal is injected
from the right, the attenuation is negligible, as seen in
Figs. 3(e)–(f). This is consistent with the behavior dis-
cussed in Figs. 2(d)–(e). The asymmetric transmission is
experimentally observed in a frequency window ranging
from 6500 Hz to 10000 Hz (i.e., a relative bandwidth of



5

∼ 40%), consistent with the theoretical expectations that
the anomalous Floquet NHSE should be broadband (ex-
perimental results at other frequencies are given in the
Supplemental Material [55]).

Discussion.—We have shown theoretically and experi-
mentally that the NHSE can occur in a lattice of coupled
ring resonators. By analyzing lattice modes as Floquet
eigenstates [45–47], we found a new variant of the NHSE,
the anomalous Floquet NHSE, in which skin modes ex-
ist at every quasienergy. This phenomenon arises from
the special features of Floquet bandstructures, which had
previously been exploited in anomalous Floquet insula-
tors to produce broadband and extraordinarily robust
topological states [56]. Similarly, the anomalous Floquet
NHSE allows for broadband asymmetric transmission en-
abled by skin modes.

We note that there have been previous proposals to re-
alize the non-anomalous NHSE in coupled-ring lattices,
by designating certain rings as “coupling rings” with
varying gain/loss on different arms [34, 41–43]. By com-
parison, our design assigns to each ring a certain level
of gain/loss, and does not require gain/loss engineering
on ring segments. It may thus be easier to implement,
especially on other platforms such as photonics. There,
our model may be helpful for realizing NHSE-aided lasing
[24, 25], and for studying the interplay of the NHSE with
other non-Hermitian effects [4] or nonlinearities [59–61].
The coupled-ring model can also be mapped to helical
waveguide arrays [62] or temporally modulated Floquet
systems [49]. Finally, it would be interesting to generalize
the lattice to two or higher dimensions [55], in order to
investigate higher-dimensional versions of the anomalous
Floquet NHSE.
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[3] M.-A. Miri and A. Alù, Exceptional points in optics and
photonics, Science 363, eaar7709 (2019).

[4] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
waves in PT-symmetric systems, Rev. Mod. Phys. 88,
035002 (2016).

[5] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Ex-
ceptional topology of non-Hermitian systems, Rev. Mod.
Phys. 93, 015005 (2021).

[6] C. M. Bender and S. Boettcher, Real spectra in non-
Hermitian Hamiltonians having PT symmetry, Phys.
Rev. Lett. 80, 5243 (1998).

[7] A. Guo, G. Salamo, D. Duchesne, R. Morandotti,
M. Volatier-Ravat, V. Aimez, G. Siviloglou, and
D. Christodoulides, Observation of PT-symmetry break-
ing in complex optical potentials, Phys. Rev. Lett. 103,
093902 (2009).
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J. Vučković, and S. Fan, Generating arbitrary topologi-
cal windings of a non-Hermitian band, Science 371, 1240
(2021).

[38] L. S. Palacios, S. Tchoumakov, M. Guix, I. Pagonabar-
raga, S. Sánchez, and A. G Grushin, Guided accumula-
tion of active particles by topological design of a second-
order skin effect, Nat. Commun. 12, 1 (2021).

[39] Y. Yi and Z. Yang, Non-Hermitian skin modes induced
by on-site dissipations and chiral tunneling effect, Phys.
Rev. Lett. 125, 186802 (2020).

[40] K. Zhang, Z. Yang, and C. Fang, Universal non-hermitian
skin effect in two and higher dimensions, Nat. Commun.
13, 1 (2022).

[41] S. Longhi, D. Gatti, and G. Della Valle, Robust light
transport in non-Hermitian photonic lattices, Sci. Rep.
5, 13376 (2015).

[42] X. Zhu, H. Wang, S. K. Gupta, H. Zhang, B. Xie,
M. Lu, and Y. Chen, Photonic non-Hermitian skin ef-
fect and non-Bloch bulk-boundary correspondence, Phys.
Rev. Research 2, 013280 (2020).

[43] Z. Lin, S. Ke, X. Zhu, and X. Li, Square-root non-bloch
topological insulators in non-Hermitian ring resonators,
Opt. Express 29, 8462 (2021).

[44] H. Liu, J.-S. You, S. Ryu, and I. C. Fulga, Supermetal-
insulator transition in a non-hermitian network model,
Phys. Rev. B 104, 155412 (2021).

[45] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor,
Imaging topological edge states in silicon photonics, Nat.
Photon. 7, 1001 (2013).

[46] G. Liang and Y. Chong, Optical resonator analog of a
two-dimensional topological insulator, Phys. Rev. Lett.
110, 203904 (2013).

[47] M. Pasek and Y. Chong, Network models of photonic
Floquet topological insulators, Phys. Rev. B 89, 075113
(2014).

[48] D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, Re-
configurable topological phases in next-nearest-neighbor
coupled resonator lattices, Phys. Rev. Lett. 121, 023901
(2018).

[49] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin,
Anomalous edge states and the bulk-edge correspondence
for periodically driven two-dimensional systems, Phys.
Rev. X 3, 031005 (2013).

[50] W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and
Y. Chong, Measurement of a topological edge invariant
in a microwave network, Phys. Rev. X 5, 011012 (2015).

[51] F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D.
Joannopoulos, M. Soljačić, H. Chen, L. Lu, et al., Prob-
ing topological protection using a designer surface plas-
mon structure, Nat. Commun. 7, 11619 (2016).

[52] H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and
L. Feng, Non-Hermitian topological light steering, Sci-
ence 365, 1163 (2019).

[53] S. Mittal, V. V. Orre, D. Leykam, Y. D. Chong, and
M. Hafezi, Photonic anomalous quantum Hall effect,
Phys. Rev. Lett. 123, 043201 (2019).

[54] S. Afzal, T. J. Zimmerling, Y. Ren, D. Perron, and
V. Van, Realization of anomalous Floquet insulators in
strongly coupled nanophotonic lattices, Phys. Rev. Lett.
124, 253601 (2020).

[55] See Supplemental Material.
[56] Z. Zhang, P. Delplace, and R. Fleury, Superior robust-

ness of anomalous non-reciprocal topological edge states,
Nature 598, 293 (2021).

[57] B. Huang and W. V. Liu, Floquet higher-order topolog-
ical insulators with anomalous dynamical polarization,
Phys. Rev. Lett. 124, 216601 (2020).

[58] W. Zhu, H. Xue, J. Gong, Y. Chong, and B. Zhang, Time-
periodic corner states from Floquet higher-order topol-
ogy, Nat. Commun. 13, 11 (2022).

[59] D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar,
Nonlinear topological photonics, Appl. Phys. Rev. 7,
021306 (2020).

[60] M. Wimmer, A. Regensburger, M.-A. Miri, C. Bersch,
D. N. Christodoulides, and U. Peschel, Observation of
optical solitons in PT-symmetric lattices, Nat. Commun.
6, 7782 (2015).

[61] L.-J. Lang, S.-L. Zhu, and Y. Chong, Non-hermitian
topological end breathers, Phys, Rev. B 104, L020303
(2021).

https://doi.org/https://doi.org/10.1038/s41467-020-19090-4
https://doi.org/https://doi.org/10.1002/andp.201800023
https://arxiv.org/abs/2202.13621
https://doi.org/https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/https://doi.org/10.34133/2021/5608038
https://doi.org/https://doi.org/10.34133/2021/5608038
https://doi.org/https://doi.org/10.1038/s41467-021-26414-5
https://doi.org/https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/https://doi.org/10.1103/PhysRevLett.126.230402
https://doi.org/https://doi.org/10.1038/s41467-019-12599-3
https://doi.org/https://doi.org/10.1038/s41467-019-12599-3
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1073/pnas.2010580117
https://doi.org/https://doi.org/10.1038/s41467-021-26034-z
https://doi.org/https://doi.org/10.1038/s41467-021-25716-y
https://doi.org/https://doi.org/10.1038/s41467-021-26619-8
https://doi.org/https://doi.org/10.1038/s41467-021-26619-8
https://doi.org/https://doi.org/10.1126/science.aaz8727
https://doi.org/https://doi.org/10.1126/science.abf6568
https://doi.org/https://doi.org/10.1126/science.abf6568
https://doi.org/https://doi.org/10.1038/s41467-021-24948-2
https://doi.org/10.1103/PhysRevLett.125.186802
https://doi.org/10.1103/PhysRevLett.125.186802
https://doi.org/https://doi.org/10.1038/s41467-022-30161-6
https://doi.org/https://doi.org/10.1038/s41467-022-30161-6
https://doi.org/https://doi.org/10.1038/srep13376
https://doi.org/https://doi.org/10.1038/srep13376
https://doi.org/10.1103/PhysRevResearch.2.013280
https://doi.org/10.1103/PhysRevResearch.2.013280
https://doi.org/https://doi.org/10.1364/OE.419852
https://doi.org/10.1103/PhysRevB.104.155412
https://doi.org/https://doi.org/10.1038/nphoton.2013.274
https://doi.org/https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1103/PhysRevLett.110.203904
https://doi.org/10.1103/PhysRevLett.110.203904
https://doi.org/https://doi.org/10.1103/PhysRevB.89.075113
https://doi.org/https://doi.org/10.1103/PhysRevB.89.075113
https://doi.org/10.1103/PhysRevLett.121.023901
https://doi.org/10.1103/PhysRevLett.121.023901
https://doi.org/https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.5.011012
https://doi.org/https://doi.org/10.1038/ncomms11619
https://doi.org/https://doi.org/10.1126/science.aay1064
https://doi.org/https://doi.org/10.1126/science.aay1064
https://doi.org/10.1103/PhysRevLett.123.043201
https://doi.org/10.1103/PhysRevLett.124.253601
https://doi.org/10.1103/PhysRevLett.124.253601
https://doi.org/https://doi.org/10.1038/s41586-021-03868-7
https://doi.org/https://doi.org/10.1103/PhysRevLett.124.216601
https://doi.org/https://doi.org/10.1038/s41467-021-27552-6
https://doi.org/https://doi.org/10.1063/1.5142397
https://doi.org/https://doi.org/10.1063/1.5142397
https://doi.org/https://doi.org/10.1038/ncomms8782
https://doi.org/https://doi.org/10.1038/ncomms8782
https://doi.org/https://doi.org/10.1103/PhysRevB.104.L020303
https://doi.org/https://doi.org/10.1103/PhysRevB.104.L020303


7

[62] D. Leykam, M. Rechtsman, and Y. Chong, Anomalous
topological phases and unpaired Dirac cones in photonic

Floquet topological insulators, Phys. Rev. Lett. 117,
013902 (2016).

https://doi.org/https://doi.org/10.1103/PhysRevLett.117.013902
https://doi.org/https://doi.org/10.1103/PhysRevLett.117.013902

	Anomalous Floquet non-Hermitian skin effect in a ring resonator lattice
	Abstract
	 Acknowledgments
	 References


