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The Hall effect, in which current flows perpendicular to electrical bias, has played a prominent role in con-
densed matter physics over much of the subject’s history. Appearing variously in classical, relativistic and
quantum guises, it has among other roles contributed to establishing the band theory of solids, to research
on new phases of interacting electrons, and to the phenomenology of topological condensed matter. The
dissipationless Hall current requires time-reversal symmetry breaking. This has either been ascribed to ex-
ternally applied magnetic field and referred to as the ordinary Hall effect, or ascribed to non-zero internal
magnetization (ferromagnetism) and referred to as the anomalous Hall effect. It has not commonly been
associated with antiferromagnetic order. More recently, however, theoretical predictions and experimental
observations have identified large Hall effects in some compensated magnetic crystals, governed by neither
of the global magnetic-dipole symmetry breaking mechanisms mentioned above. The goals of this article are
to systematically organize the present understanding of anomalous antiferromagnetic materials that generate
a Hall effect, which we will call anomalous Hall antiferromagnets, and to discuss this class of materials in a
broader fundamental and applied research context. Our motivation is two-fold: First, since Hall effects that
are not governed by magnetic dipole symmetry breaking are at odds with the traditional understanding of
the phenomenon, the topic deserves attention on its own. Second, this new reincarnation has again placed the
Hall effect in the middle of an emerging field of physics at the intersection of multipole magnetism, topological
condensed matter, and spintronics.

The alignment of the ferromagnetic needle of a com-
pass along the Earth’s magnetic field direction is an an-
cient example of a mechanical magnetic-dipole sensor.
Its electrical counterpart was discovered at the end of
the 19th century by Edwin Hall. In Hall’s “electric com-
pass”, a current that flows in a direction transverse to an
applied electrical bias is generated in a conductor in the
presence of the magnetic field, and the sign of the trans-
verse current flips if the direction of the magnetic field is
reversed. The magnetic field can couple directly to the
charge of particles carrying the electrical current via the
Lorentz force, in which case the phenomenon is referred
to as the ordinary Hall effect. Alternatively, the mag-
netic field can induce internal magnetization in the con-
ductor, in analogy to alignment of the magnetized needle
of a compass. The contribution to the Hall current due
to the coupling of charge carriers to the internal magne-
tization is commonly called the anomalous Hall effect.1

In ferromagnets with a spontaneous magnetization, the

Hall current can occur even in the absence of the external
magnetic field. Hall sensing of both internal magnetiza-
tion and external magnetic fields has now maintained its
role in both basic research and in applications for nearly
a century and a half.

In the middle of the 20th century, condensed matter
physics research was dominated by the early successes of
quantum mechanics and the band theory of solids. Here
the ordinary Hall effect, whose sign and magnitude de-
pend on the sign and density of charge carriers, helped
to establish the notions of electron and hole transport in
conduction and valence bands, and to give birth to the
field of semiconductor physics. The anomalous Hall ef-
fect contributed in a complementary area by providing
a macroscopic probe of spontaneous time-reversal (T )
symmetry breaking in ferromagnets. It was understood
early on2 that the anomalous Hall effect could not be
explained by the coupling of internal magnetization to
the charge of the carriers by the Lorentz force. Instead,
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relativistic spin-orbit coupling was identified as the link
between the T -symmetry breaking, generated by the fer-
romagnetic order, and the charge Hall transport.2 This
led to major controversies on whether the subtle spin-
orbit coupling effects in particular materials enter most
strongly intrinsically via the relativistic band structure
of an unperturbed crystal or extrinsically via impurity
scattering.3–5

Progress arrived from an unexpected direction thanks
to the discovery of the quantum Hall effect in 1980.6

The quantum Hall effect occurs in two-dimensional (2D)
electron systems whose non-relativistic energy spectrum
is broken into discrete Landau levels by a strong mag-
netic field. This turns the bulk into an insulator while
conduction is allowed only through dissipationless one-
dimensional edge channels. Our understanding of the
quantum Hall effect has benefited greatly from the in-
troduction of the concept of band-structure topology,
which along side symmetry can be used to catagorize
states of matter. The band topology concept helped to
explain the observed exact quantization of the Hall re-
sistance because of its relationship to Chern numbers,
topological Berry phase invariants of the Landau level
band structure.7–9 The quantum Hall effect also played
a prominent role in discoveries of new many-body phases
of strongly correlated electrons.9 It provided, e.g., a rare
example of a correlated state directly described by its
many-body wavefunction.

The anomalous Hall effect returned to the forefront
of research in the early 2000’s when, borrowing from
quantum Hall theory, it was identified with Berry phases
in the spin-orbit coupled relativistic band structures of
ferromagnets.10,11 By the time of the publication of a
comprehensive topical review in 2010,1 the Berry phase
anomalous Hall contribution was established as a lead-
ing mechanism for the Hall effect in a broad family of
metallic ferromagnets. In addition, a systematic pars-
ing of intrinsic and scattering-induced contributions was
completed, clarifying the role disorder plays in common
metallic ferromagnets.1

The success of the Berry phase picture of the anoma-
lous Hall effect was one of the precursors of the field
of topological insulators12–14 which has provided a more
general classification of Bloch band topology. In 2013,
it led to the first experimental realization15 of the quan-
tum anomalous Hall effect - a quantum Hall effect due
to ferromagnetism and not to external magnetic fields.
In the meantime, the quantum Hall effect was demon-
strated in graphene at room temperature but it requires a
strong magnetic field.16 The quantum anomalous Hall ef-
fect can be observed at zero magnetic field but, so far, has
been limited to Kelvin temperatures.17,18 The search for
a high-temperature zero-field quantum anomalous Hall
effect is emerging as the ultimate destination of a more
than century long journey through condensed matter,
navigated by the intriguing relativistic, quantum, and
topological Hall compass.

The richness of the physics discovered along the jour-

ney, briefly reviewed above, is remarkable given how nar-
rowly the path was bounded. Because the Hall effect was
viewed for over a century as a magnetic-dipole detector,
its manifestation in materials in which an external mag-
netic field is absent and internal electron-electron inter-
actions do not generate a net magnetization remained
virtually unexplored. However, in 2010, a Hall effect
was experimentally observed at cryogenic temperatures
in the absence of a magnetic dipole in a spin liquid
candidate.19 Moreover, subsequent studies, guided again
by relativistic Berry phase physics, have identified Hall
effects in certain non-collinear antiferromagnets at room
temperature that are comparable in strength to those of
ferromagnets.20–24 The discoveries, illustrated in Fig. 1,
force us to abandon the century long view of the Hall
effect as a detector of the magnetic dipole. Hall response
is instead often closely related to non-trivial topology in
electronic structure which leads to enhanced response,
breaking the paradigm of scaling with total magnetiza-
tion strength.25–36
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
100 K. This is again quite large for an AFM and comparable to those 
values found in ferromagnetic metals3,17. On the other hand, the Hall 
conductivity for B || [0001] (c axis) shows no hysteresis but only a 
linear field dependence.

The magnetization curve M(B) shows anisotropic hysteresis similar 
to that found for the Hall effect. For example, M versus B || [0110] at 
temperatures between 100 K and 400 K shows a clear hysteresis, indi-
cating that a weak ferromagnetic moment (4–7 mμB per formula unit 
(f.u.)) changes its direction with coercivity of only a few hundred oersted 
(Fig. 3a). Whereas the in-plane M is almost isotropic and has a narrow 
hysteresis, the magnetization shows only a linear dependence on B for 
B || [0001] at all the temperatures measured between 100 K and 450 K 
(Fig. 3b). The similar anisotropic and hysteretic behaviours found in 
both ρH(B) and M(B) indicate that the existence of the small and soft 
ferromagnetic component allows us to switch the sign of the Hall effect. 
Indeed, previous neutron diffraction measurements and theoretical 
analyses clarified that the inverse triangular spin structure has no 

in-plane anisotropy energy up to the fourth-order term10,12, which is 
consistent with the observed small coercivity. This further indicates that 
by rotating the net ferromagnetic moment, one may switch the staggered 
moment direction of the triangular spin structure10,12. This switch 
should be the origin of the sign change of the Hall effect, as we discuss 
below. On heating, this ferromagnetic component vanishes at the Néel 
temperature of 430 K, above which the hysteresis disappears in both the 
T and B dependence of the magnetization (Fig. 3a and its inset).

To reveal the temperature evolution of the spontaneous component 
of the AHE, both the zero-field Hall resistivity ρH(B =  0) and the zero-
field longitudinal resistivity ρ(B =  0) were measured after cooling sam-
ples in a magnetic field of BFC =  7 T from 400 K down to 5 K and 
subsequently setting B to 0 at 5 K (Methods). Figure 4a shows the tem-
perature dependence of the zero-field Hall conductivity  
σH(B =  0) =  − ρH(B =  0)/ρ2(B =  0) obtained after the above field- 
cooling (FC) procedure using three different configurations of the mag-
netic field (BFC) and electric current (I) directions. Here, σzx stands for 
the Hall conductivity obtained after the FC procedure in BFC || [0110] 
with I || [0001], and σyz for BFC || [2110] and I || [0110]. Both show large 
values at low temperatures, and in particular, |σzx| exceeds 100 Ω −1 
cm−1 at T <  80 K. Both |σzx| and |σyz| decrease on heating but still retain 

Figure 2 | Magnetic field dependence of the AHE 
in Mn3Sn. a, Field dependence of the Hall 
resistivity ρH (left axis) and the longitudinal 
resistivity ρ (right axis) at 300 K in the magnetic 
field B [2110] with the electric current I [0110]. 
b, Field dependence of the Hall resistivity ρH at 
various temperatures in B [0110] with I [0001].  
c, d, The Hall conductivity σH versus B measured 
in ,B [2110] [0110] and [0001] obtained at 300 K 
(c) and 100 K (d). e, Magnetization dependence  
of ρH at 300 K. f, Field dependence of 
= − −ρ ρ R B R μ MH

AF
H 0 s 0  at 300 K. The arrows in 

the hexagon at lower left in a and b indicate the 
field and current directions in the hexagonal 
lattice of Mn3Sn.
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Correspondingly, the Hall conductivity, σH =  − ρH/ρ2, for in-plane 
fields along both [2110] and [0110] shows a large jump and narrow 
hysteresis (Fig. 2c, d). For instance, with B || [0110], σH has large values 
near zero field, ~20 Ω −1 cm−1 at 300 K and nearly 100 Ω −1 cm−1 at 
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a

c

b

d

Extended Data Figure 1 | Normal and inverse triangular spin structures. 

a–d, Examples of normal (a, b) and inverse (c, d) triangular spin structures. 

An inverse triangular spin structure has the opposite sign of the vector  

spin chirality to a normal one. As each M
n moment has the local easy-axis 

parallel to the direction towards its in-plane nearest-neighbour Sn sites, the 

case shown in d is realized in M
n
3Sn (refs 10–12).
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FIG. 1. Experimental discovery of the Hall-effect in
the compensated non-collinear magnet Mn3Sn. a,
Crystal and magnetic structure of Mn3Sn, and the Hall effect
geometry. b, Magnetic field dependence of the Hall resistivity
(left axis) and the longitudinal resistivity (right axis). Strong
magnetic fields align magnetic moment in time-reversed states
(insets). Panel b is adapted from Ref. 22.

Large anomalous Hall effects do not require non-zero
total magnetization. In this review we systematically
explain what distinguishes anomalous Hall antiferromag-
nets from their antiferromagnetic cousins which, by sym-
metry, generate zero Hall effect. We start by returning
to the basic concept of T -symmetry breaking, inspecting
it in a context beyond the magnetic dipole. This sym-
metry analysis is presented in the next section. Instead
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of reviewing research progress in chronological order, we
take the more pedagogical approach. We start from what
is perhaps the simplest example of anomalous Hall anti-
ferromagnets, the recently discovered crystals containing
two collinear antiparallel magnetic sublattices,37,38 ex-
plaining what makes them special.

We then extend the discussion to multiple sublat-
tices, considering compensated collinear,39 as well as the
non-collinear and non-coplanar magnetic crystals that
were historically studied earlier.19–24,40–47 We empha-
size that the T -symmetry breaking by the compensated
non-coplanar magnetic order can under the right cir-
cumstances generate a Hall effect even in the absence
of the relativistic spin-orbit coupling.48 Note that this
non-relativistic mechanism has been referred to as the
geometrical or topological Hall effect.19,41,44,45

We use primarily the language of crystal symme-
try groups, and also make reference to the magnetic
multipole classification.48–55 We explain which crystal
symmetries favor that non-relativistic electron-electron
Coulomb interactions lead to a co-planar magnetic or-
der with a precisely zero magnetization. We show that
this T -symmetry breaking mechanism due to the com-
pensated non-relativistic magnetic order, in combination
with the relativistic spin-orbit coupling, can for some
symmetry types generate the Hall effect. These anoma-
lous Hall antiferromagnets, which have precisely zero
magnetization in the limit of zero relativistic spin-orbit
coupling, have symmetries which also allow for the exis-
tence of a weak relativistic magnetization. We empha-
size, however, that it is the above non-relativistic T -
symmetry breaking by the precisely compensated mag-
netic order, rather than the weak relativistic magnetiza-
tion, which governs the Hall effect we focus on in this
review.

The symmetry analysis is followed by a section illus-
trating anomalous Hall antiferromagnetism microscopi-
cally in terms of band structure and Berry phase calcu-
lations in representative crystals. We highlight how the
symmetry and microscopic electronic structure of these
magnetically compensated crystals cooperate to create
large Hall signals with a rich phenomenology, and tabu-
late the anomalous Hall antiferromagnets that have been
realized experimentally to date.

We conclude the review by discussing the central
role of anomalous Hall antiferromagnets in an emerg-
ing fundamental and applied field at the intersection of
multipole magnetism, topological phases, and spintron-
ics. The Hall effect, together with electrical readout by
anisotropic magnetoresistance and switching by the spin-
orbit torque,20–24,37–39,56–62 have been the key phenom-
ena that initiated experimental research in the field of
relativistic antiferromagnetic spintronics.61,63–82

Recently, studies of anomalous Hall antiferromagnets
with collinear order have also drawn the attention to
an unexpected alternating spin-polarization in the non-
relativistic limit of their band structures.37–39,52,83–91 In-
stead of regarding these as antiferromagnetic anomalies

present only in some materials, the authors of Ref. 90
propose viewing them as members of a third magnetic
class, altermagnets, along side ferromagnets and anti-
ferromagnets. This class has been systematically de-
limited in Ref. 90 based on a formal non-relativistic
spin-group theory. From an applied perspective, a new
route has emerged for realizing zero magnetic-dipole ana-
logues of multilayer stacks with non-relativistic giant or
tunneling magnetoresistance readout and spin-transfer
torque switching.39,92,93 These phenomena, based on
non-relativistic conserved spin-currents, underpin com-
mercial ferromagnetic spintronics technologies.94–98

Anomalous Hall antiferromagnets also open a new av-
enue of research on dissipationless transport and quan-
tum topological phenomena.13,14,18,27–29,66,80,99–106 The
field can benefit from the rich symmetry landscape of
these multipole magnets, and can include materials rang-
ing from insulators to superconductors.90 Finally, we
recall that while our focus in this review is on or-
dered bulk magnetic crystals, Hall effect mechanisms
not governed by a magnetic dipole were also identified
in fluctuating quantum phases, such as chiral spin liq-
uids or in chiral non-collinear structures,19,107 in elec-
trically gated systems including antiferromagnetic Dirac
semimetals,108,109 or at surfaces of magnetic topological
insulators.110,111

Hall effect, time-reversal, and magnetic crystal
order

Hall vector and time-reversal symmetry breaking.
The Hall current jHall corresponds to the antisymmet-
ric part of the conductivity tensor, σa

ij = −σa
ji, which

allows it to be expressed in terms an axial Hall vector
h as, jHall = h × E, where h = (σa

zy, σ
a
xz, σ

a
yx).112 Be-

cause Joule heating is given by j · E, the Hall effect is
dissipationless.112 Therefore, the transformation under
T of the dissipationless Hall vector must be preserved
in the constitutive relation between the Hall current and
electric field. Since jHall reverses sign under T and E
does not, h must reverse sign under T , i.e., the Hall vec-
tor is a T -odd axial vector. According to the Neumann’s
principle, then, T -symmetry must be broken in the sys-
tem for the Hall vector to be nonzero. (Note that be-
cause the longitudinal current, which generates entropy
through Joule heating j ·E, is dissipative, the symmetric
components of the conductivity tensor are T -even.112)

For the most of the history of the Hall effect research,
the considered T -symmetry breaking mechanisms were
either due to an external magnetic field or internal mag-
netization (ferromagnetism).113 The Onsager relations in
the presence of the external magnetic field, σij(H) =
σji(−H), then explicitly imply that the Hall effect is odd
in H: σa

ij(H) = −σa
ij(−H) and h(H) = −h(−H).112 In

ferromagnets with a non-zero averaged internal magneti-
zation M, the T -symmetry is broken even at H = 0. In
analogy to the external magnetic field, the Hall effect is
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again allowed, with h(M) = −h(−M).113,114

In this review we discuss the relationship between T -
symmetry breaking and the Hall effect at H = 0. We
focus on the case when the T symmetry is broken by
Coulomb interactions which generate magnetically or-
dered states whose spatially averaged magnetization van-
ishes in the absence of relativistic spin-orbit coupling.
When materials in this class have a finite Hall conduc-
tivity, we will refer to them as anomalous Hall antiferro-
magnets. As we will discuss, the refined definition of zero
averaged magnetization in the absence of spin-orbit cou-
pling is relevant, since the crystal symmetries consistent
with an anomalous Hall effect also allow a small but non-
zero spatially averaged magnetization when spin-orbit
coupling is turned on. One important characteristic of
anomalous Hall antiferromagnets is that the Hall vector
can be allowed or excluded by symmetry depending on
the orientation of the magnetic-order (Néel) vector. In
contrast, ferromagnets have an anomalous Hall vector al-
lowed for any orientation of M.

Non-relativistic magnetic order and time-reversal
symmetry breaking in antiferromagnets. We first
analyze the symmetry conditions for the Hall effect in
crystals composed of two sublattices. They can contain,
besides magnetic atoms, also non-magnetic atoms, and
the corresponding elements between the two sublattices
are chemically equivalent. Among those, we focus on
crystals whose nuclear-position (charge) structure has at
least one spatial symmetry operation (translation, inver-
sion, rotation, or a combination of these) that transposes
one sublattice onto the other – a sublattice-transposing
symmetry.112,115

Non-relativistic electron-electron Coulomb interac-
tions can lead to quantum ground states that have non-
zero magnetic moments on the two sublattices. The
transposing symmetry then favors states with magnetic
moments of precisely equal magnitudes. Ferromagnetic
order with a strong non-relativistic magnetization cor-
responds to a parallel alignment of the sublattice mo-
ments. An anti-parallel order, on the other hand, gives a
strictly zero net magnetization in the absence of spin-
orbit coupling.112,115 In the following section we will
see that when the sublattice-transposing symmetry is
a crystal translation or inversion, the Hall effect is ex-
cluded by symmetry, as commonly assummed in anti-
ferromagnets. However, unexpectedly rich physics, in-
cluding the possibility of a Hall effect, opens up when
the sublattice-transposing symmetry contains a crystal
rotation.37–39,85,90–93

Note, that in the absence of the transposing symme-
try, the sublattice moments will generically have unequal
magnitudes and even an anti-parallel coupling of the sub-
lattice moments will generate a net non-relativistic mag-
netization. In systems of this type, commonly referred
to as ferrimagnets, the non-relativistic magnetization can
be comparable in strength to that of ferromagnets. Fer-
rimagnets are not addressed further in this review.116

Spin-orbit coupling and Hall vector. The Hall vec-

tor is an orbital response function. When the relativis-
tic spin-orbit coupling terms are included in the Hamil-
tonian, T -symmetry breaking in the spin-space can be
macroscopically probed by the Hall response.1,20,21,37

Two-sublattice magnetic crystals with antiparallel sub-
lattice moments are described by the Néel vector L =
M1 −M2, where M1(2) is the magnetic moment of the
first (second) sublattice. As we explain in detail below,
a Hall response can occur when the presence of the Néel
vector and spin-orbit coupling lowers the symmetry of
the system sufficiently to allow for a T -odd axial vector.
Before analyzing these symmetry conditions, we first re-
call how to apply symmetry operations in the presence of
spin-orbit coupling, and then we inspect the symmetry
transformation rules for the Néel vector.112,115

When we discussed magnetic order in the absence of
relativistic spin-orbit coupling above, we assumed invari-
ance under mutual rotations of charge and spin spaces,
i.e. that the spin and charge sectors were uncoupled, and
implicitly recognized that spin is invariant under trans-
lation and inversion. The sublattice-transposing symme-
try operations were then considered only in the crystal
charge space. In the presence of spin-orbit coupling, how-
ever, the spin and charge spaces are coupled, and rotation
symmetry operations have to be applied jointly in both
spaces.

From the above definition of the Néel vector we see
that its symmetry transformation rules include those of
a T -odd axial vector since M1(2) are T -odd axial vectors.
On top of that, however, the Néel vector also flips if the
symmetry operation is sublattice-transposing.

When spin-orbit coupling is included, a sublattice-
transposing symmetry may persist or may be broken.
If all the sublattice-transposing symmetries are removed
when spin-orbit coupling is included, the Néel vector
transforms as a T -odd axial vector, which means that
the Hall vector is then allowed by symmetry. On the
other hand, when the sublattice-transposing symmetry
is retained in the presence of spin-orbit coupling, the
Néel vector does not transform as an axial vector un-
der this symmetry (recall the extra sign change). In this
case, the Hall effect may or may not be allowed. The re-
sult depends on the specific symmetries of the magnetic
crystal, which we inspect more closely in the following
paragraphs.

Translation or inversion sublattice-transposing
symmetry. When the two-sublattice collinear antifer-
romagnetic state is formed by doubling the unit cell of
the underlying charge crystal, the antiferromagnet has
a t1/2T -symmetry, where t1/2 is a half-unit cell transla-
tion of the antiferromagnetic lattice. This is illustrated
in Fig. 2a. Since t1/2 is a sublattice-transposing sym-
metry operation, and an axial vector is t1/2-invariant,
the Néel vector L flips sign under t1/2. T also re-
verses L, which makes the Néel vector invariant under
the t1/2T -symmetry operation. This confirms that a
t1/2T -symmetric antiferromagnetic crystal can exist. A
T -odd axial Hall vector, on the other hand, is odd un-
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der t1/2T and, therefore, excluded in t1/2T -symmetric
antiferromagnets.

Next we look at antiferromagnetic crystals with a PT -
symmetry, where P is spatial inversion. An illustra-
tive example is shown in Fig. 2b. Since P does not
flip the sign of an axial vector, the P-symmetry opera-
tion is sublattice-transposing in the presence of the PT -

symmetry, which generates one sign change of L. An-
other sign change is due to T and the Néel vector is,
therefore, invariant under the PT -symmetry operation
and can exist in PT -symmetric crystals. The Hall vec-
tor, on the other hand, is odd under PT and is again
excluded.

h
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FIG. 2. Collinear and non-collinear archetype structures of anomalous Hall antiferromagnets, and magnetic
multipoles. a, An antiferromagnet with a t1/2T sublattice-transposing symmetry, no magnetic multipole, and no Hall effect. If
combined with P-symmetry, the bands are spin-degenerate. b, An antiferromagnet with a PT sublattice-transposing symmetry,
magnetic toroidal dipole, spin-degenerate bands, and no Hall effect. c, A compensated collinear magnet with non-relativistic
alternating spin-polarization in the momentum space and corresponding magnetic toroidal quadrupole Fermi surface that
generates a Hall effect when spin-orbit coupling is included. d, A compensated non-collinear coplanar magnet with a non-
relativistic spin-texture in momentum space due to the non-collinear magnetic order, with a magnetic octupole, that generates
a Hall effect when spin-orbit coupling is included. The red and blue shapes around the atoms represent local magnetization
densities.
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Rotation sublattice-transposing symmetries. Un-
like t1/2T and PT -symmetries, rotation transposing
symmetries do not necessarily exclude the Hall vector.
Whether or not the Hall vector is allowed depends on
other symmetries in the magnetic space group. As an
illustration, we show in Fig. 3a a specific example of a
text-book two-sublattice rutile structure which, besides
magnetic atoms, contains also non-magnetic elements in
the lattice.37,117 Here the non-relativistic collinear anti-
parallel order has a zero net magnetization since the mag-
netic moments of the two sublattices have strictly equal
magnitudes due to either of the two (screw-axis) rotation
transposing-symmetries: t1/2C2x and t1/2C2y. Here C2x(y)

are 2-fold rotation-axis symmetries.
When including spin-orbit coupling and aligning the

Néel vector L along the z-axis (magnetic space group
P4′2/mnm′), the t1/2C2x and t1/2C2y symmetries are re-
tained. This excludes the Hall vector because a vector
cannot be simultaneously invariant under two orthogonal
rotation symmetry axes. On the other hand, for L par-
allel to the x-axis (magnetic space group Pnn′m′), the
t1/2C2y is retained while the other rotation transposing-
symmetry changes to t1/2C2xT . The T -odd Hall vector
is now allowed along the y-axis, i.e., it is orthogonal to L
(Fig. 3a).
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t 1
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2
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TCrystal  - symmetry breakingTMultisublattice

P

FIG. 3. Typical compensated collinear structures with multisublattice T -symmetry breaking. a, A crystal with
rotation sublattice-transposing symmetries and T -symmetry breaking by collinear antiparallel magnetic order and anisotropic
crystal environments that generate a Hall effect. b, In this mechanism, the sign of the Hall effect can be flipped by reversing
the local crystal anisotropies while keeping the sublattice moment directions and the Néel vector fixed. c, Breaking of the PT
symmetry by a compensated four-sublattice collinear order in which the sublattices transposed one onto the other by P have
parallel moments. The red and blue shapes around the atoms represent local magnetization densities.

Another scenario is when L is aligned with the xy-
plane diagonal axis (magnetic space group Cmm′m′).
In this case, the transposing symmetries are removed,
and the Néel vector transforms as a T -odd axial vec-
tor under all remaining symmetries since these are non-
transposing. The Hall vector is then allowed. In the
specific magnetic symmetry space group of the consid-
ered rutile structure for L along the in-plane diagonal,
the Hall vector h ‖ L (Fig. 2c).

We see that in the same magnetic crystal, the Hall vec-
tor can be excluded or allowed by symmetry, depending
on the Néel vector orientation. This makes the anoma-
lous Hall antiferromagnets distinct from ferromagnets, in
which the Hall vector is always allowed by symmetry for
any orientation of the magnetization.

Symmetry rules for the anomalous Hall antifer-
romagnets. Next we review the magnetic symmetry
groups that allow Hall vectors, and specify the Hall vec-
tor orientation determined by the magnetic crystal sym-

metry. Representative examples of anomalous Hall anti-
ferromagnets for each of the symmetry groups are given
in, e.g., Ref. 37 (see also Tab. 1 below). We emphasize
that the symmetry group of a given magnetic crystal de-
pends also on the orientation of the magnetic moments
with respect to the crystal axes.

The symmetry rules for the Hall vector are as follows:

• We study the bulk Hall conductivity in metal-
lic systems which is a macroscopic spatially aver-
aged quantity, i.e., invariant under translation. We
can, therefore, consider only magnetic point groups
which are obtained from the magnetic space groups
by regarding every translation as an identity, i.e.,
also regarding the screw rotational operations as
simple rotations, and glide mirror planes as sim-
ple mirror symmetries.112 Only 31 magnetic point
groups allow for a Hall vector.37,118,119

• Since both current and electric field flip sign un-
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der P, the linear-response conductivity tensor is P-
invariant. We can therefore limit the discussion to
magnetic Laue groups obtained from the magnetic
point groups by regarding inversion as an identity
and the mirror planes as two-fold rotations around
axes orthogonal to the planes. Beside identity, the
only remaining symmetry operations in the mag-
netic Laue groups are then T , rotations, and their
combinations. Only 10 magnetic Laue groups allow
for a Hall vector.37,118,119

• The lowest symmetry Laue group contains just the
identity element. In this case, symmetry does not
prescribe any specific orientation of the Hall vector.
The orientation is then determined purely by the
microscopic properties of the material.

• A magnetic Laue group with only one (beside iden-
tity) symmetry element 2′, which is a combination
of a two-fold rotation and T , restricts the Hall vec-
tor to the plane orthogonal to the rotation axis.

• In all remaining eight magnetic Laue groups labeled
as, 2, 3, 4, 6, 2′2′2, 42′2′, 32′, and 62′2′, the Hall
vector is along the rotation axis not combined with
T (unprimed).

Archetype two-sublattice and multiple-sublattice
structures. Antiferromagnets containing only two mag-
netic atoms with antiparallel moments in the unit cell
and no other elements in the crystal have at least
PT -symmetry, and additionally can also have t1/2T -
symmetry. A Hall vector is excluded by either of
these symmetries, and the PT -symmetry also guaranties
that the energy bands are Kramers spin-degenerate over
the entire Brillouin zone. The PT -symmetric antifer-
romagnets can, nevertheless, have a magnetic (polar)
toroidal dipole (Fig. 2b),49,50,53 and can allow for T -
odd second-order magneto-transport phenomena,49,120

and for a field-like Néel spin-orbit torque and associ-
ated electrical switching of the antiferromagnetic order
vector.49,59 CuMnAs or Mn2Au are prominent material
examples with metallic conduction and high Néel tem-
perature falling into this class.49,59,60,121

In anomalous Hall antiferromagnets with two collinear
antiparallel sublattices, the magnetic atoms have to be
complemented by additional (non-magnetic) atoms in the
unit cell.37 The rutile structure in Fig. 3a is an exam-
ple showing explicitly how the non-magnetic atoms con-
tribute to breaking the t1/2T and PT -symmetries. Al-
ternatively, as shown in Fig. 2c, the symmetry break-
ing can be also seen by focusing only on the magnetic
atoms if the real-space anisotropic magnetization densi-
ties are plotted on top of the positions of the magnetic
atoms and their moment orientations. The momentum-
space counterpart is an anisotropic altermagnetic90 spin-
polarization of the non-relativistic energy bands, with
zero net magnetization.37,38,85,86,90,91 The corresponding
Fermi surfaces can have the characteristic symmetry of

a magnetic toroidal quadrupole (Fig. 2c).50,52 (See next
section for more details on the electronic structure.)

A remarkable feature of the Hall effect in this archetype
structure is that it flips sign not only when reversing
L but also when the symmetry-breaking arrangement
of non-magnetic atoms reverses between the two mag-
netic sublattices while keeping the same sign of L (see
Figs. 3a,b). Alternatively, the Hall effect can be turned
on and off by changing the relative angle of the non-
magnetic structures surrounding the magnetic atoms in
the two sublattices, i.e., by turning off and on the t1/2T -
symmetry. Because of this sensitivity to the crystal en-
vironment and crystal fields,90 the mechanism has been
referred to as the crystal Hall effect.37,82 RuO2 is a repre-
sentative room-temperature metallic member of this fam-
ily of anomalous Hall antiferromagnets.37,38,85,86,122,123

Next we include in our discussion typical magnetic
structures with multiple sublattices. A three-sublattice
structure (Fig. 2d), with a sublattice-transposing sym-
metry in the crystal’s charge space of a 3-fold rotation
axis, can host magnetic order with equal magnitudes
of the sublattice moments in the absence of relativis-
tic spin-orbit coupling. Frustrated anti-parallel mag-
netic coupling on the triangular lattice can then result
in a compensated co-planar non-collinear magnetic or-
der with a 120◦ tilt-angle between the sublattice mo-
ments. Because of the non-collinear order, no addi-
tional (non-magnetic) atoms are needed in the lattice
in this case to allow for breaking the t1/2T and PT -
symmetries. Depending on the other symmetries of the
magnetic crystal for a given orientation of the magnetic
moments with respect to the lattice, the Hall vector may
be allowed or excluded, in analogy to the above dis-
cussion of the two-sublattice magnetic structures. The
Hall effect was identified in several members of the fam-
ily of compensated non-collinear Mn3X (X=Ir,Sn,Ge,Pt)
magnets. Instead of a magnetic dipole, these mate-
rials are characterized by a macroscopic magnetic oc-
tupole and a non-collinear spin-texture in the momen-
tum space, induced by the real-space non-collinear order
even in the absence of the relativistic spin-orbit coupling
(Fig. 2d).20–24,48,51,76,80,105,124,125

Four magnetic moments in a unit cell can be arranged
in a compensated antiparallel order without frustration
in their magnetic couplings. If the sublattices transposed
one onto the other by space inversion have parallel mo-
ments (Fig. 3c), the PT -symmetry is broken, opening
a possibility for the Hall effect. This has been demon-
strated in a compensated four-sublattice checkerboard
magnetic phase of Mn5Si3.39 Like the two-sublattice Hall-
effect archetype, its non-relativistic electronic structure
has the altermagnetic90 collinear spin-polarization in mo-
mentum space, generating zero net magnetization.39

Finally, we mention a possibility of a compensated or-
der with non-collinear non-coplanar moments in a four-
sublattice structure. Remarkably, unlike the above con-
sidered co-planar, collinear or non-collinear, magnetic or-
der, this structure can in principle allow for a Hall effect
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without relativistic spin-orbit coupling,19,41,44,45,48,126 in
which case the Hall effect can be invariant under inde-
pendent rotations of the spin-space. However, because of
the non-coplanarity, the T operation is not equivalent to
a 180◦ rotation of the spin space. The absence of a sym-
metry combining the operations of T and 180◦ rotation
of the spin space illustrates the possibility of the T -odd
Hall effect in a non-coplanar compensated magnet in the
absence of the relativistic spin-orbit coupling.48 As in all
systems, the non-coplanar magnetic crystal has to also
break all other symmetries consistent with the presence
of an axial vector.

Weak ferromagnetism. Above we discussed the Hall
effect in the framework of magnetic crystal symmetries
while in the next section we will elaborate on its micro-
scopic origin due to the relativistic Berry-phase. Before
turning to the microscopics, we make a comment here
on notable equilibrium relativistic effects which may also
occur in the anomalous Hall antiferromagnets.

One example is the magnetocrystalline anisotropy,
which can be present in any magnetically ordered system,
and which tends to align the Néel vector along specific
crystal direction(s). The thermodynamic potential of the
magnet then includes, besides the strong isotropic mag-
netic coupling terms, also weak relativistic terms which
are anisotropic in L.112

Another example of equilibrium relativistic effects is a
non-zero spatially averaged magnetization, M = M1 +
M2. Microscopically, it can originate from a spin-orbit
coupling induced Dzyaloshinskii-Moriya interaction. It
adds to the thermodynamic potential additional weak rel-
ativistic terms which couple L and M.112 In the above
discussed rutile crystal with L parallel to the y-axis, i.e.
when the transposing symmetry t1/2C2x is retained, the
magnitudes of M1 and M2 remain the same even in the
presence of spin-orbit coupling. A weak relativistic M
is allowed by symmetry in a direction orthogonal to L
and corresponds to a small canting of the antiparallel
moments towards the x-axis. In the literature, this rel-
ativistic scenario is commonly referred to as weak ferro-
magnetism. For L aligned with the xy-plane diagonal,
when all sublattice-transposing symmetries are removed
by spin-orbit coupling, the weak relativistic M is due to
slightly unequal magnitudes of the sublattice magnetiza-
tions and, correspondingly, M ‖ L. The system can then
be regarded as a weak ferrimagnet.

Since M is a T -odd axial vector, weak ferromag-
netism (ferrimagnetism) is allowed or excluded follow-
ing the same symmetry conditions as the Hall vector
h(L). We emphasize, however, that h(L) is not driven by
the relativistic weak ferromagnetism or ferrimagnetism.
As shown above, the Hall effect originates from T -
symmetry breaking due to the L-order, which is induced
by non-relativistic Coulomb interactions of a similarly
large strength as the non-relativistic M-order in ferro-
magnets. In both case, the relativistic spin-orbit interac-
tion then couples the T -symmetry breaking to the charge

Hall transport.
Because of the presence of the relativistic weak ferro-

magnetic moment in anomalous Hall antiferromagnets,
the precise application of Onsager relations implies that
h(L,M) = −h(−L,−M). However, the magnitude of
the Hall effect can be driven primarily by the strong
non-relativistic L-order, while weak relativistic M causes
only a small correction.37,38 We emphasize that analo-
gous points regarding the weak relativistic M apply to
the non-collinear anomalous Hall antiferromagnets.22,24

Hall effect and Berry curvature

We now proceed to the microscopic description of the
Hall effect. We limit our discussion to the intrinsic
disorder-independent contribution. This focus is mo-
tivated by previous studies of metallic ferromagnets in
which the intrinsic anomalous Hall conductivity is often
the largest contribution within a typical range of longitu-
dinal conductivities of ∼ 104−106 Ω−1cm−1.1 An exten-
sive discussion of disorder effects in the anomalous Hall
effect can be found in, e.g., Ref. 1. We start this section
by making a few qualitative remarks on the connection
between the intrinsic contribution to the Hall effect and
the Berry phase.

Berry phase. The intrinsic contribution to the an-
tisymmetric Hall conductivity is given by the Kubo
formula,127,128

σa
xy =

e2

~
∑
n′ 6=n

∫
BZ

d3k

(2π)3
f [εn(k)]

× 2Im[〈unk|∂kxĤ(k)|un′k〉〈un′k|∂kyĤ(k)|unk〉]
[εn(k)− εn′(k)]2

. (1)

Here f [εn(k)] is the Fermi-Dirac distribution function,
εn(k) is the energy of the equilibrium Bloch state in band
n with crystal quasi-momentum k, unk(r) is the periodic
part of the Bloch wavefunction diagonalizing the crystal
Hamiltonian Ĥ(k), and ∇kĤ(k)/~ is the velocity oper-
ator.

The Kubo formula (1) can be rewritten by noting that

∇k〈unk|Ĥ(k)|un′k〉 = 0 and ∇k〈unk|un′k〉 = 0 from
which it follows that1,8,129

〈unk|∇kĤ(k)|un′k〉
εn(k)− εn′(k)

= 〈∇kunk|un′k〉 (2)

and

σa
xy = −e

2

~
∑
n

∫
BZ

d3k

(2π)3
f [εn(k)]Bzn(k), (3)

where

Bn(k) = ∇k ×An(k)

An(k) = i〈unk|∇kunk〉. (4)
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Eqs. (1)-(4) show a direct connection between the Hall
effect and a general concept of the geometrical Berry
phase.1,7,8,128–132 Berry’s concept is based on consider-
ing a non-degenerate energy eigenstate evolving adia-
batically when parameters of the system’s Hamiltonian
change slowly in time. Apart from a familiar dynam-
ical phase proportional to the time integral of energy,
the wavefunction can acquire an additional phase factor.
When completing a closed loop in the parameter space,
which in Eqs. (1)-(4) is represented by the crystal mo-
mentum space, this additional factor is called the Berry
phase.8 Since it is given by a path integral of the Berry
connection An(k), i.e. is independent of the rate of the
adiabatic parameter change, the Berry phase is geomet-
rical.

Using Stoke’s theorem, the Berry phase can be ex-
pressed as an integral of the Berry curvature Bn(k) over
an area enclosed by the loop. The Berry phase concept
applies in general to any parameter space. A promi-
nent example is the Aharonov-Bohm phase in the real-
space.8 An(k) (and Bn(k)) in Eq. (4) can be viewed as
a k-space analogue of the electrodynamic vector poten-
tial (and magnetic field) generating the Aharonov-Bohm
phase.

Berry-phase quantum and anomalous Hall ef-
fects. We first recap some of the key observations made
in earlier studies of the quantum and anomalous Hall ef-
fects induced by the magnetic dipole.

When applying the T -symmetry operation on the
Berry curvature in Eq. (4) we get, T Bn(k) = −Bn(−k)
since T is antiunitary, i.e., includes complex conjuga-
tion. This implies that in T -invariant systems, Bn(k) =
−Bn(−k), and the integral of Bn(k) vanishes, consistent
with a vanishing Hall effect.

In analogy to Gaussian curvature, the integral over any
closed 2D surface of the Berry curvature is an integer
multiple of 2π where the integer C is called the Chern
topological invariant.128,130,132 A 2D Brillouin zone is an
example of the closed 2D surface. It is topologically
equivalent to a torus since states with crystal quasi-
momenta separated by a reciprocal lattice vector are
identical.

A quantum Hall system with an integer Landau level
filling factor6 corresponds to an insulating 2D crys-
tal with a unit cell area enclosing a magnetic flux
quantum.7,127,128,130–132 The integral of the Berry cur-
vature over the 2D Brillouin zone then gives a quantized

Hall conductance σ2D
xy = C e2

h .

A direct extension to 3D insulators implies that the
Hall conductivity is semi-quantized, given by σxy =

Gz
e2

h , where Gz is the z-component of a reciprocal lattice

vector.133,134

In metallic systems, the Berry curvature Hall con-
ductivity has a non-quantized part which in ferromag-
nets is referred to as the intrinsic anomalous Hall
effect.1,10,129,135,136 A strong contribution to the Berry
curvature occurs near band (anti)crossings. In ferro-

magnets these are typically accidental, but their pres-
ence and position in the Brillouin zone can be also
imposed by crystal symmetry.30,31,137–140 A prominent
example of band crossings are Weyl points which al-
ways come in pairs and together act as momentum-
space Berry curvature counterparts of real-space mag-
netic dipoles.29,37,100,102,141–144

The Hall conductivity tends to be dominated by the
Berry curvature from (anti)crossings near the Fermi level.
This can be seen when approximating the sum in Eq. (1)
by including only the two nearby bands close to a band
(anti)crossing. The Berry curvature is equal in magni-
tude but has opposite signs for each band, and a contri-
bution will occur only for the parts of the Brillouin zone
where one is occupied and the other one is not. Alterna-
tively, this can also be deduced by rewriting in Eq. (1)
the factor 2f [εn(k)] as (f [εn(k)] − f [εn′(k)]), which is
mathematically equivalent.1,127

As an illustrative example of the Hall effect in metal-
lic ferromagnets we show in Fig. 4a-c energy bands and
the Berry curvature of a model two-band 2D system
with a Hamiltonian H = Hk + HR + HZ, where the
kinetic energy term, Hk(k) = 2t (cos kx + cos ky) 1, the
relativistic Rashba spin-orbit coupling term, HR(k) =
λ (sin kxσy − sin kyσx), the non-relativistic momentum-
independent spin-coupling term due to the ferromagnetic
order, HZ = ∆σz, and σ is the vector of Pauli spin matri-
ces. Around the Γ-point we can expand the Hamiltonian
as,

H(Γ,k) = 4t+ tk2 + λ (kxσy − kyσx) + ∆σz, (5)

and obtain the Berry curvature for the two bands
as,1,129,145–147

B(k)± = ∓ λ2∆

2(λ2k2 + ∆2)3/2
. (6)

In Figs 4b,c we plot the Berry curvature for the lower
band. Since the ferromagnetic coupling is typically much
stronger than the spin-orbit coupling, the model gives a
weak and nearly constant B(k) (Fig. 4b), and a corre-
spondingly weak Hall conductance. On the other hand,
the band (anti)crossing scenario around the Γ-point is
illustrated in this model in the opposite regime of the
ferromagnetic coupling much weaker than the spin-orbit
coupling. It shows how a large Hall conductance can arise
in ferromagnets from a Berry curvature strongly peaked
at the (anti)crossing (Fig. 4c).

In the complex band structure of real metallic ferro-
magnets, many of these, typically accidental, Berry cur-
vature hotspots, contribute with one or the other sign,
and add to generate the net intrinsic contribution to the
Hall effect. This means that the sign of the Hall effect
can vary depending on the detailed microscopic param-
eters of the system and the magnitude of the Hall effect
can accidentally be small for parameters around the sign-
change. We point out, however, that the Hall vector in
ferromagnets is not prohibited by symmetry for any mag-
netization direction.
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FIG. 4. Comparison of Berry curvatures in a model ferromagnet (a-c) and anomalous Hall antiferromagnet
(d,e). a, Model spin-up and spin-down bands (red and blue) split by the non-relativistic ferromagnetic coupling, and band
splitting (black) when a strong Rashba spin-orbit interaction is included to generate an (anti)crossing at the Γ-point. b, A
nearly constant weak Berry curvature of the lower band for weak Rashba spin-orbit coupling. c, Berry curvature strongly
peaked at the (anti)crossing for strong Rashba spin-orbit coupling. d, Model band structure with opposite non-relativistic
spin-splittings in valleys around M1 and M2 points. When the Rashba spin-orbit interaction is included (black), the bands
still cross at the Γ-point which is imposed by the alternating nature of the spin-oplarization in the momentum space. e,
Corresponding anisotropic Berry curvature around the Γ-point band-crossing. The plotted Berry curvatures in panels b, c, and
e are normalized, as highlighted by the color scale-bar.

Berry-phase in anomalous Hall antiferromag-
nets. We can now compare the Berry phase phe-
nomenology of ferromagnets and anomalous Hall antifer-
romagnets. We start from the collinear magnets whose
non-relativistic bands have the altermagnetic90 splitting
of spin-up and spin-down bands.37–39,50,85–87,90–92,148,149

The alternating spin-polarization implies that, apart
from accidental Berry curvature hotspots analogous
to the typical ones in ferromagnets, there are band
(anti)crossings at the transitions in the Brillouin zone
from one sign of spin-splitting to its opposite. These
(anti)crossings are thus not accidental, but imposed by
the symmetry of the altermagnetic spin-polarization in
momentum space.90

In Fig. 4d we show an illustrative toy-model
example.39,92 The model is obtained by taking the
same kinetic and relativistic Rashba terms as used
above for a model ferromagnet, and replacing the non-
relativistic ferromagnetic coupling with an alternating
non-relativistic spin-momentum coupling term, HAFZ =
2∆ (cos kx − cos ky)σz. Here the Néel vector is set along
the z-axis. Around the Γ-point, the Hamiltonian is given

by,

H(Γ,k) = 4t+ t
(
k2x + k2y

)
+ ∆

(
k2x − k2y

)
σz

+ λ (kxσy − kyσx) . (7)

The Berry curvature near the Γ-point band-crossing is
then given by,

B(k)± = ∓ λ2∆
(
k2x − k2y

)√
λ2
(
k2x + k2y

)
+ ∆2

(
k2x − k2y

)2 . (8)

In Fig. 4e we plot B(k) for the lower band. It is qualita-
tively distinct form the Berry curvature of the model fer-
romagnet shown in Fig. 4c. The Berry curvature around
the band-crossing is anisotropic, reflecting the toroidal
quadrupole character of the non-relativistic altermag-
netic band structure. Unlike the more isotropic Berry
curvature near the ferromagnetic hotspot, Fig. 4e illus-
trates that the integral of the Berry curvature around the
hotspot can vanish. This corresponds to the Néel vector
orientation prohibiting the Hall vector by symmetry. As
mentioned earlier in this review, the Hall effect can be
turned on when the symmetry of the magnetic crystal is
lowered by reorienting the Néel vector.
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The Berry curvature hotspots associated with the
(anti)crossings for selected Néel vector orientations that
allow a Hall vector are seen in relativistic density func-
tional theory (DFT) calculations in Fig. 5 for the rutile
crystal RuO2 with two antiparallel magnetic sublattices.
The results shown in Figs. 5a-c again reflect the magnetic
toroidal quadrupole symmetry of the non-relativistic al-
termagnetic band structure (Figs. 2c and 4d,e). We point
out that the spin splitting in RuO2 is on the ∼ eV scale,
i.e., comparable to spin splittings in typical ferromag-
nets. Note that in RuO2, the Hall vector is excluded by
symmetry for the Néel vector along the tetragonal c-axis
([001]) which, incidentally, tends to be the easy axis in
bulk and thin-film samples.37,38,122,123 The observation
of the Hall effect thus requires a reorientation of the Néel
vector from the [001]-axis, e.g., by applying a magnetic
field.37,38

The DFT calculations also verified that the Hall ef-
fect remains virtually unchanged when artificially forc-
ing the weak relativistic magnetization to zero (see
Figs. 5d,e).20,37,38 The Hall contribution due to the sym-

metry breaking by the crystal and antiparallel-magnetic
order remains dominant even when artificially introduc-
ing in the calculations an unrealistically large net magne-
tization by increasing the canting angle well beyond the
ground state value (Figs. 5d,e). This highlights on the
microscopic level that the Hall effect is not a consequence
of the weak relativistic magnetization.

Figs. 6a-c show results in non-collinear Mn3Sn, Mn3Ge
and Mn3Pt.36,76,150 These figures illustrate the presence
of Weyl points near the Fermi level, as well as Berry cur-
vature hotspots at the Fermi surface at accidental band-
(anti)crossings.

In Fig. 6d we also illustrate calculations of a quantized
Hall effect for the Fermi level in the band-gap of a 2D
Chern insulator realized in a compensated non-coplanar
magnetic structure.151

Finally, we point out that the Berry curvature
mechanism gives quantitatively consistent predictions
of the magnitude of the Hall effect measured in
the metallic compensated magnetic crystals with two
and four collinear sublattices, and three non-collinear
sublattices.20–24,37–39,48,76,152

a

b c
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a b

c d
e
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M, B
M, B
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M2

M2M1
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ky

X

S
Y

Γ

|B | (Å2)

FIG. 5. Band structure, Berry curvature and Hall effect calculations in a metallic compensated collinear
magnet. a, Non-relativistic (red and blue) and relativistic (black) bands in RuO2 with an alternating band splitting on a
∼eV scale (highlighted by the arrow). b, Berry curvature with hotspots at band (anti)crossings imposed by the alternating
spin-polarization in the momentum space. For the Néel vector along the [100]-axis, the integrated Berry curvature is along
the canting-induced weak relativistic magnetization, i.e., orthogonal to the Néel vector. c, Same as b for the Néel vector
along the [11̄0]-axis and the integrated Berry curvature is along the weak relativistic magnetization parallel to the Néel vector.
d, First-principles calculation of the dependence on the canting angle of the Hall conductivity (σxz) and its separation into
the small magnetization-induced anomalous Hall contribution (σAHE

xz ), which is odd in the canting angle, and the dominant
Hall contribution due to the symmetry breaking by the crystal and antiparallel-magnetic order (σCHE

xz ), which is even in the
canting angle. e, The dependence on the canting angle of the [100]-component of spin of one Ru-sublattice (Sx), sum of the
[010]-components of spin of the two Ru-sublattices (Sy), and sum of the [010]-components of the orbital magnetization of the
two Ru-sublattices (Ly). Adapted from Refs. 37.
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Summary of experimentally identified materials

Order System Synthesis TN (K) ρH(µΩcm) σAH (S/cm) T (K) (H (T)) SG (MSG) Other systems

Mn3Sn22 SC 420 4 20 300 (0) P63/mmc (Cm′cm′ )

Mn3Ge [23],24 SC 380 0.1 400 5 (0.1) P63/mmc (C2′/m′)
Mn3Pt76 20 nm 360 98 20 (0) Pm3m (R3m′)
Mn3Sn124 40 nm > 300 1.5 17 300 (0) P63/mmc

NCAF

*Mn3Sn125 30 nm epi. 0.05 21 300 (0) P63/mmc
RuO2

38 27 nm > 300 0.05 330 10 K (30) P42/mnm (Pnn′m′ )
Mn5Si339 12 nm epi. 240 0.3 5 110 (0) P63/mcm (1)
(Ca,Ce)MnO3

153 20 nm ∼ 120 1 15 (1-1.5) Pnma (Pn′ma′)
*CoNb3S6

154 SC 27.5 1 27 23 (0) P6322
CAF

*CoNb3S6
155 40-90 nm 29 2 400 5 (0) P6322

*Pr2Ir2O7
19,156 ∼ 20 1 10 1 (0) Fd3m UCu5

44, Nd2Ir2O7
157

NCP
Mn5Si345,[158,159] SC, 40-160 nm 66 2 102 25 (5) P63/mcm (PCbcn)

GdPtBi160 SC 9.2 60 30-200 10 (4) F43m (Ccc) Gd(Nd)PtBi161
C

EuTiO3
162 5.5 5 20 2 (2) I4/mcm (Fm′mm) Eu(Sm)TiO3,163 Nd2Ir2O7

164

TABLE I. List of material representations of anomalous Hall antiferromagnets. We group the materials into four archetypes:
non-collinear (NCAF), collinear (CAF), non-coplanar (NCP) and canted (C). We also list whether the material was synthesized
in bulk single-crystal (SC) or thin film (of a given thinckness). Next we list the Néel temperature, Hall resistivity and
conductivity, temperature of the experiments and applied magnetic field. Finally we give the crystal space group (SG) and
magnetic space group (MSG), and other systems with corresponding structure in which Hall measurements were also reported.
Star marks systems with unconfirmed magnetic ordering. References in brackets mark papers from which we took the Hall
data listed in the table.

Perspectives

In this last section we look at anomalous Hall antifer-
romagnets from a broader perspective. We discuss their
emerging role at the intersection of fundamental and ap-
plied physics fields involving multipole magnetism, spin-
momentum locking, topological phases, spintronics, and
dissipationless nano-electronics.

Louis Néel stated in his Nobel lecture that anti-
ferromagnetic substances do not appear to have any
practical applications.165 In another part of Néel’s lec-
ture, he mentioned that effects depending on the square
of the spontaneous (sublattice) magnetization should
show the same variation in antiferromagnets as in
ferromagnets.165 Initial work in the nascent field of an-
tiferromagnetic spintronics discounted Néel’s first state-
ment, and invoked his second by appealing to magnetic
anisotropy energy for memory, anisotropic magnetore-
sistance for reading, and, damping-like spin-torque for
writing functionalities.61,166–169 Consistent with Néel’s
second statement, the magnetic anisotropy energy is
given by terms in the thermodynamic potential that
are even in the sublattice magnetization Mi,

112,165 and
the anisotropic magnetoresistance corresponds to the T -
even, and therefore also Mi-even, symmetric conductiv-
ity components.56–58,61,170 The damping-like torque ∼
Mi× (Mi×p) is in the same category.61,166,167 Here p is
a uniformly spin-polarized current which can be injected
into the antiferromagnet from a relativistic injector.59 No
ferromagnet is needed for any of these three basic func-
tionalities of a relativistic antiferromagnetic spintronic
memory device.61

These initial efforts45,115,154,158,165,171 did not consider

leveraging favorable symmetry types, and were instead
firmly embedded within a traditional picture focusing
just on the mutually compensating role of spins on mag-
netic sublattices. Antiferromagnetic spintronics made a
step forward with the demonstration of electrical switch-
ing in a lower-symmetry collinear two-sublattice antifer-
romagnet by a field-like spin-torque ∼Mi×pi, where pi

has opposite sign on the two sublattices. This enabled
the first experimental demonstration of functional anti-
ferromagnetic memory cells.59–63,121,172 The devices in
question employed the antiferromagnetic crystals CuM-
nAs or Mn2Au, both of which have T -symmetry and P-
symmetry broken, but are PT -invariant.59,60 As we have
explained, this still protects the spin-degeneracy of the
energy bands across the entire Brillouin zone and corre-
sponds to T -symmetric Laue groups, i.e., excludes the
magnetic dipole and the T -odd linear response Hall ef-
fect. However, the PT -invariance accompanied by bro-
ken P and T symmetries, and the related (polar) mag-
netic toroidal dipole (Fig. 2b),49,50,53 signal richer physics
than anticipated within the traditional Néel picture of
antiferromagnets. For example, besides being switch-
able by a field-like spin-torque,49,59–61,63,121 the magnetic
toroidal dipole antiferromagnets also allow for electrical
detection of the Néel vector reversal by a T -odd second-
order magnetoresistance.49,120

The spintronic phenomena discussed above are typ-
ically considered in systems with an ordinary metallic
conduction. Antiferromagnets, however, occupy a rich
materials landscape which makes it possible to realize
more exotic phases associated with the PT -symmetry.
These include antiferromagnetic Dirac semimetals with a
topological metal-insulator transition27,28 and magneto-
electric axion topological antiferromagnets.173–176
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The discovery of a robust room-temperature Hall effect
in compensated non-collinear Mn3X (X=Ir,Sn,Ge,Pt)
magnets20–24,76 was a breakthrough which went beyond
Néel’s assumption of equivalence in the behavior of an-
tiferromagnets and ferromagnets only in effects that de-
pend on the square of the spontaneous (sublattice) mag-
netization. Anomalous Hall antiferromagnets exhibit
analogous behavior to ferromagnets for an effect which
is odd in the (sublattice) magnetization. Remarkably,
unlike ferromagnets, they exhibit the T -odd Hall effect
while having zero magnetic dipole in the absence of rel-
ativistic spin-orbit coupling. On the other hand, the
non-collinear magnetic order does generate a magnetic
octupole48,80,105 (Fig. 2d), which is the next term after
the dipole in the T -odd magnetic multipole expansion.

Beside providing a mechanism for electrical read-
out functionality in spintronic devices,76,80 the Hall
effect in the compensated Mn3X magnets led to
the realization of its optical and thermo-electric T -
odd counterparts,74,75,108,151 known under the terms
Kerr/Faraday effect and Nernst effect, respectively.64,69

Moreover, prompted by the Hall effect studies, the com-
pensated non-collinear magnets were also identified as
generators of the spin-polarized currents,77,78 which in
ferromagnets underpin commercial electrical reading and
writing based on giant (tunneling) magnetoresistance
and spin-transfer torques.94–98 Bipolar electrical cur-
rent manipulation of compensated non-collinear mag-
nets using the same protocol as developed for ferro-
magnetic spintronics has been demonstrated up to THz
speeds.80,106,177

While replicating several of the key effects driving fer-
romagnetic spintronics, non-collinear magnetic order pro-
hibits a generation of spin-conserved phenomena even
when the relativistic spin-orbit coupling is diminished.
Protecting the spin is, however, a central problem in
spintronics in its quest to complement charge-based mi-
croelectronics.

The discovery of the Hall effect generated by the com-
pensated collinear magnetic order37,38 in RuO2 thus not
only gave us the opportunity to explain the physics
of anomalous Hall antiferromagnets in a pedagogical
way, borrowing frequently from text-book symmetry for-
malisms developed for collinear magnets.112,115 Anoma-
lous Hall antiferromagnets also represent an emerging
class of materials, one that may allow us to combine
the strengths of antiferromagnetic and ferromagnetic
spintronics concepts and materials, while compensating
for their respective weaknesses. In particular, experi-
mental antiferromagnetic spintronic devices have already
showcased the utility of materials ranging from insula-
tors and semiconductors to metals, while demonstrat-
ing insensitivity to magnetic field perturbations, and
exploiting the greater flexibility in device-geometry al-
lowed in the absence of the dipolar shape anisotropy.
They have also demonstrated electrical and optical writ-
ing pulse-lengths from millisecond to femtosecond, ana-
log time-dependent logic-in-memory functionalities rem-

iniscent of neuromorphic computing elements, and in-
formation coding into metastable atomic-scale magnetic
textures.61,63–65,67–73,178,179 Ferromagnetic digital mem-
ories, on the other hand, owe their commercial success
primarily to the giant magnetoresistive readout signals
and efficient spin transfer torque writing, relying on spin-
conserving electron transport.94–98

The discovery of the Hall effect in the compensated
collinear magnets has led directly to a theory proposal
that the essential spintronic reading and writing princi-
ples based on conserved spin-currents should be readily
available in these systems.39,91–93 Here the suitable com-
pensated collinear magnets have the non-relativistic al-
ternating spin-polarization, and the corresponding Fermi
surfaces can have a characteristic symmetry of a magnetic
toroidal quadrupole (Fig. 2c).37–39,52,83–92

A recent study,90 based on a non-relativistic spin-
symmetry group formalism and focusing on collinear
magnets, has established that the non-relativistic alter-
nating spin-polarization in the momentum space is not an
exotic anomaly in some antiferromagnetic materials. In-
stead, it has classified the non-relativistic band structures
of collinear magnets by three formally distinct and com-
parably abundant spin-group types. They correspond,
respectively, to (i) ferromagnets with the electronic struc-
ture split into majority and minority spin bands, (ii) anti-
ferromagnets with spin-degenerate bands across the en-
tire Brillouin zone, and (ii) the so called altermagnets
whose spin polarization alternates in both real and mo-
mentum space while generating zero net magnetization.90

Finally, we highlight that the Hall effect break-
throughs described in this review open a new av-
enue in the research of topological phases in con-
densed matter.13,14,103,104 The DFT Hall effect studies of
compensated non-collinear Mn3X or collinear CoNb3S6

magnets29,36,37,100,102,144 draw the attention to the
prospect of realizing Weyl semimetals with T -symmetry
breaking by the dipole-free magnetic order. Similarly,
the observed large room-temperature Hall conductivi-
ties in the compensated non-collinear Mn3Sn and Mn3Ge
and collinear RuO2 magnetic crystals,20–24,37,38 which
are metals but have a relatively small density of states
at the Fermi level, open a new angle in the search for
the quantized Hall effect in Chern insulators.40,151,180,181

Moreover, the discovery of the strong alternating spin-
splitting in the non-relativistic band structure of the com-
pensated collinear magnets37–39,85–87,91 is a new opportu-
nity for realizing the topological quantum phases at zero
magnetic field, high temperatures, and in materials with
abundant light elements. These are key prerequisites for
bringing the dissipationless topological nano-electronics
closer to practical applications.
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M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto,
F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva,
and E. V. Chulkov, “Prediction and observation of an

18



antiferromagnetic topological insulator,” Nature 576,
416–422 (2019), arXiv:1809.07389.

102J. Noky and Y. Sun, “Linear Response in Topo-
logical Materials,” Applied Sciences 9, 4832 (2019),
arXiv:2005.11834.

103M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault,
B. A. Bernevig, and Z. Wang, “A complete cata-
logue of high-quality topological materials,” Nature
566, 480–485 (2019).

104Y. Xu, L. Elcoro, Z. D. Song, B. J. Wieder, M. G.
Vergniory, N. Regnault, Y. Chen, C. Felser, and B. A.
Bernevig, “High-throughput calculations of magnetic
topological materials,” Nature 586, 702–707 (2020).

105T. Nomoto and R. Arita, “Cluster multipole dynam-
ics in noncollinear antiferromagnets,” Physical Review
Research 2, 012045 (2020), arXiv:1903.02259.

106H. Tsai, T. Higo, K. Kondou, S. Sakamoto,
A. Kobayashi, T. Matsuo, S. Miwa, Y. Otani, and
S. Nakatsuji, “Large Hall Signal due to Electrical
Switching of an Antiferromagnetic Weyl Semimetal
State,” Small Science 2000025, 2000025 (2021).

107F. R. Lux, F. Freimuth, S. Blügel, and Y. Mokrousov,
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cher, and H. v. Löhneysen, “Switching of a large
anomalous Hall effect between metamagnetic phases
of a non-collinear antiferromagnet,” Scientific Reports
7, 42982 (2017).

160T. Suzuki, R. Chisnell, A. Devarakonda, Y. T. Liu,
W. Feng, D. Xiao, J. W. Lynn, and J. G. Checkelsky,
“Large anomalous Hall effect in a half-Heusler antifer-
romagnet,” Nature Physics 12, 1119–1123 (2016).

161C. Shekhar, N. Kumar, V. Grinenko, S. Singh,
R. Sarkar, H. Luetkens, S.-C. Wu, Y. Zhang, A. C.
Komarek, E. Kampert, Y. Skourski, J. Wosnitza,
W. Schnelle, A. McCollam, U. Zeitler, J. Kübler,
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