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Abstract. Near the gap in a photonic bandgap material the effective index of
refraction can become less than unity and in fact can approach zero at the band
edge itself-leading to ultra-refractive optical effects . We illustrate this effect
quantitatively in a simple one-dimensional Kronig-Penney model of a three-
dimensional bandgap structure . As a complement to index-enhancing schemes
involving lasing without inversion, ultra-refractive optics with photonic band
materials has many applications, including laser accelerators and lenses of
ultra-short focal lengths .

1 . Introduction
Recently Scully and Fleischhauer et al. have predicted the existence of an

ultra-high index of refraction with zero absorption in a coherently prepared atomic
system (called phaseonium) that exhibits lasing without inversion [1, 2] . The
present authors have considered local field effects in such systems and have
predicted that you can expect a further, frequency-specific, absorptionles index
enhancement of many orders of magnitude due to the local field interaction [3] .
Scully has pointed out a few of the many applications for such a high-index
material, for example, laser accelerators that require a precise control of the optical
phase velocity [1, 4], and optical microscopes with increased resolving power . Now
that lasing without inversion has been seen experimentally the realization of such
high-index materials seems to be near at hand [5] .

It seems natural then as a complement to the work of Scully and colleagues,
that we could seek additional more easily manufactured materials, other than
coherently prepared atomic systems, that can alter the index in such a striking
fashion. It is in this vein that we propose photonic bandgap (PBG) materials as a
possible candidate . In current prototypes of PBG materials the structure is about
85% air and so losses are less than in a homogeneous dielectric .

It is well understood now, theoretically and experimentally, that a carefully
chosen periodic dielectric lattice may exhibit frequency bandgaps for all photon
polarizations and directions of propagation [6-13] . In particular, it has been
pointed out that the dispersion relation, and hence the optical group and phase
velocities, in such a material will have very unusual properties [11, 12] . Although
there has been mention of the application of these novel properties to lensing,
particularly in the microwave regime where prototypical samples of bandgap
materials are currently readily manufactured, no quantitative analysis seems to
have been done [14] .
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In the following, we shall develop the analytical expression for the effective
index of refraction in a simple model of a three-dimensional PBG material
developed by John and Wang [121 . We find that near certain band edges the phase
velocity tends towards infinity, and hence the index of refraction towards zero as
you approach the bandgap . Upon noting that the refractive or resolving power of
an optical system depends upon the ratio of n t to n 2 , we then may strive to increase
the refractive power by either drastically increasing n l-the Scully approach using
phaseonium-or by drastically decreasing n2the approach we advocate here using
PBG materials. In the next Section, we begin by developing the effective index
formula in the simple one-dimensional model of a three-dimensional PBG struc-
ture of John and Wang [12] .

2 . A simple model of a photonic band structure
In the model of John and Wang [12] they assume a material such that,

regardless, of polarization or propagation direction, the photon always encounters
precisely the same periodic index variation . Of course such a material cannot
exist-but yet the approximation allows us to treat three-dimensional structure
analytically as a one-dimensional problem while maintaining the original three-
dimensional flavour . Selecting a particular x axis through the material, we shall
assume a periodic step function for the index of the form .

a i

	

b i

(n t ,

	

xe(b/2, a+b/2)+md,
n2, xE(-b/2,b/2)+md,

where the steps have index values of n t and n2 with widths a and b, respectively,
with d=a+b being the period of the lattice, and m=0, ±1, ±2, . . . the translation
factor . This periodic array is illustrated in figure 1 .

a+b/2

(1)

Figure 1 . Here, we show a one-dimensional periodic dielectric array used to model a
three-dimensional photonic bandgap material . The alternating dielectric regions of
indices n l and n2 have width a and b with d=a+b the lattice period. The dispersion
relation, cu=cw(k), can be obtained by ensuring that the first and second derivative of
the modal functions ak(x) are continuous across the I-III and III-II interfaces, and
by invoking Block's theorem .
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We have given details of the calculation of the Bloch eigenmodes and disper-
sion relation in this model in a previous work, and we summarize the results here
[15] . We seek the solution to the one-dimensional wave equation for the spatial
part of the electromagnetic eigenmode ak(x), namely,

ak(x)+ n2 (c 2 wk ak(X) =O,

	

(2)

where n(x) is given by equation (1). The eigenvector solution yields the form of the
eigenmode function ak(x), and the eigenvalue solution implies a dispersion rela-
tion, w=w(k), relating the frequency w to the wave-number k . It is an advantage,
in this John and Wang one-dimensional model for a three-dimensional PBG
structure, that the solution can be expressed in an analytical and closed-form
result. By way of contrast, in an actual PBG material, such as the Yablonovite
structure, intensive numerical methods are required to solve the three-dimensional
wave equation. To solve equation (2), we first make use of the fact that n(x) is
constant in the nl and n2 regions . Hence, equation (2) for the wave equation may
be written in a piecewise fashion as

Let us consider the three regions I, II, and III centred about the origin, as
indicated in figure 1 . Due to the constancy of index n in these regions, we may
immediately write down the most general solutions in regions I and III as

ak(x) = A exp (iµ k x) + B exp (- iµkx),

	

(4 a)

ak'(x) = C exp (ivkx) + D exp (- ivkx),

	

(4 b)

where we have defined the unitless parameters µk -nlwk/c, vk =n2wk /c. The
unknown constants A, B, and D are to be determined by imposing the appropriate
boundary conditions at the dielectric interfaces, as well as the Floquet-Bloch
theorem. In fact, Bloch's theorem requires that the solution ak(x) in region II
must be identical to that in I with an appropriate translation and a phase factor,
namely

ak(x) = exp (- ikd) a,(x + d)

=exp(-kd){A exp[iµk(x+d)]+Bexp[-iµk(x+d)]},

	

(4 c)

where k=k((o) is the overall wave-number for the lattice . The requirement that
the tangential components E and B be continuous across the dielectric interfaces
becomes a requirement for the continuity of ak(x) and ak(x) at these points [15] .
Application of these boundary conditions yields a four-by-four homogeneous
matrix equation for the unknown coefficients A, B, C, and D, determining the
eigenfunctions ak(x) and eigenvalues wk . However, a solution for such a homo-
geneous system exists only if the determinant of the coefficient matrix is identi-
cally zero. This requires the satisfaction of a dispersion relation of the form [15]

n2w2
kak(x)+

c2
ak(x)=O, xe (b/2, a+b/2)+md, (3 a)

n2w2
xe(-b/2,b/2)+md. (3b)ak(x)+ c2 k ak(x)=O,
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1

	

Cnlwalcos n2wb n1 +n2

	

ntwa

	

n 2wb
k(w)=a arccos cos	

c

	

c

	

2n

	

sin	 sin	 . (5)
tn2

	 c	 c

Note that it is more convenient to give k=k((o) rather than the more conventional
w=w(k) due to the nature of the solution . In order to model the Yablonovite
structure [6, 7], we choose n 1 =1 .0, n 2 =4 .0, a/d=0 .85, and b/d=0 .15 since
Yablonovite is mostly air holes of about an 85% filling fraction surrounded by a
thin-walled framework of high dielectric constant . Notice that the period length d
is arbitrary, and hence so is the scale of the lattice . Our results then hold for
wavelengths of arbitrary length, and gaps appear so long as 2 = d .

3 . Effective index of refraction
In figure 2 we now plot kd versus wd/c from equation (5) for the above-

mentioned values of the lattice parameters . We see the band and bandgap structure
clearly . As in solid state, we note from the slope of the curves that the group
velocity vy -dw/dk approaches zero at the band edges where a standing wave is
formed . More interesting for our purpose here is that the phase velocity v 4,-w/k
tends towards infinity at the three band edges in figure 2 where kd--+0 and
wd/c=4 .0, 4 .8, and 8 .0, respectively . Since the index of refraction is defined as
n-c/v4,, this implies that n-->0 at these points . Explicitly, the index is given by

kc
n-c/v4,=-

w

=mod arccos cos
Cnlcoai

cos (n2wb)- 2 i 22
sin

C

nlwa)
sin

Cn2wb)]
. (6)

In figure 3 we plot n versus wd/c for the same lattice parameters, n 1 =1, n2 = 4,
a/d=0 .85, and b/d=0 . 15. You can see that the effective index of refraction is

kd

6 wd/c

Figure 2 . Choosing n 1 =1 . 0, n2 =4 .0, a/d=0.85, and b/d=0 . 15 as our lattice parameters-
we plot here the dispersion relation, equation (5), in form k((O)d versus wd/c . Notice
from the slope of the curve that the group velocity, vg =_dw/dk, tends to zero at the
band edges, but that the phase velocity v4 ==_w/k tends to infinity at some of the edges .
Hence, standing waves are formed at the band edges-as in solid-state-and the index
of refraction n - c/vq, can be zero here .
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2 6

Figure 3 . We plot the effective index of refraction neff((o)=_c/v,,, given by equation (6) .
The anomalous index can approach a maximum of only n <_ max (n f ,n 2 }, but near a
band edge we can get n-p 0, leading to unusual refractive properties in a photonic
bandgap material .

substantially less than unity at frequencies near the band edges where cod/c=4 .0,
4 . 8, and 8 .0 .

It was our original hope that we would obtain exceptionally high values of
effective n near the photonic band edge, as useful as the high n generated in lasing
without inversion systems [1, 5] . However, numerical experimentation and a
subsequent analytical analysis have shown that, for this model, the effective index
neff(co) exceeds neither n t nor n2 . Our disappointment was short-lived, however,
when we realized that a very small index is almost as good as a very large one, since
the refractive power is determined by the ratio nl /n2 . In Scully's proposal he
strives for large nt , but we can obtain the same refractive power (total internal
reflection notwithstanding) by taking n2 to zero near the band edge .

4. Applications
We shall discuss two important applications of the modified index in photonic

bandgap materials : laser acceleration of electrons and ultra-refractive optics .
In schemes that invoke the use of lasers as high-energy electron accelerators,

the electron velocity must match the phase velocity of the laser in order to extract
energy from the field [4] . In the zeroth-order band of our model of a photonic
bandgap material, the effective index may range nt < neff((o) < n 2 . Taking n t z 1
for a vacuum, we see then that in this regime the phase velocity v ., < c and a match
to the electron velocity is possible. Hence, you can engineer a gradient of phase
velocities by controlling the lattice parameters and thus accelerate the electron . In
the experiment of Fontana and Pantell [4], the phase velocity is controlled by a
background gas in the acceleration tube-limiting the total electron energy gain by
electron-atom encounters. However, the Yablonovite structure [7] is mostly empty
space with nice built-in acceleration tubes all the way through . We conclude that
control of the laser phase velocity without electron-gas collisions seems quite
possible in a PBG structure .

A second application, that has immediate practical applications in the micro-
wave regime, is to ultra-refractive optics . Let us consider, in figure 4 (a), a

n
2 .5	 ;

2

1 .5
H

i

1

0 .5 i

i
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sin 0 2 = n1 sin 0 1,
n2

crit =

	

n201 = arcsin - ,
nl

02

(b)

Figure 4 . We illustrate schematically Snell's law, equation (7), and compare the refractive
ability of a homogeneous dielectric (a) to that of a PBG material at a frequency near
the band edge (b) where neff < 1 .

monochromatic light ray incident from air, n1 =1, upon a homogeneous dielectric
slab of index n dielectricc > 1 . This is to be compared to figure 4 (b) where the
dielectric is replaced with photonic bandgap material whose index is less than
unity in the neighbourhood of the ray frequency, in other words, n2BG < 1 and the
frequency is tuned near the band edge . In both cases, Snell's law applies :

(7)

We illustrate generic refractive rays in figure 4 (a) and 4 (b) for n 1 =1 and n2 > 1
and n2 < 1, respectively . For n1 > n 2 , total internal reflection can occur for
incident angles exceeding 0i "t given by

(8)

but inside this angular cone-strong refractive power may be obtained . As you
approach the bandgap, n2 -*0 and hence 01`it-+0, implying that all incident waves
are reflected-as you would expect in the gap .

You can also operate in the regime where n2(c)) > 1 for the PBG material and
construct ordinary refractive elements . The advantage here is that a heavy dielec-
tric with fixed index may be replaced with a much less massive dielectric lattice
(85% air) that can have its index engineered to specifications . Since prototype
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PBG materials are readily available in the microwave regime, the applications in
this frequency range for refractive elements should be obvious .

5 . Summary
We have discussed the novel properties of the effective index of refraction of

PBG material when operating near a band edge, using a quantitative and simple
one-dimensional model of a three-dimensional PPG structure. Two applications
were raised : laser acceleration of electrons and novel refractive optical elements
whose indices of refraction vanish near the photonic band edge . No doubt a
plethora of other applications can be suggested, such as optical delays, filters, and
soliton propagation . In conclusion, we caution that our quantitative study of the
John and Wang model is very elementary and neglects the anisotropy of actual
three-dimensional photonic crystals . In real structures, the effective index is a
tensor quantity so that k vectors of identical magnitude but different unit
directions k will see different refractive indices . Nevertheless, the approach of the
phase velocity to infinity at the band edge will still occur, albeit at different rates
for different k . The purpose of this paper then is to motivate further research into
the refractive properties of true three-dimensional dielectric lattices, with an eye
towards potential applications .
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