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Multitime correlation functions provide useful probes for the ensembles of trajectories underlying
the stochastic dynamics of complex systems. These can be obtained by measuring their optical
response to sequences of ultrashort optical pulse. Using the continuous time random walk model for
spectral diffusion, we analyze the signatures of anomalous relaxation in two-dimensional four wave
mixing signals. Different models which share the same two point joint probability distribution show
markedly different lineshapes and may be distinguished. Aging random walks corresponding to
waiting time distributions with diverging first moment show dependence of 2D lineshapes on initial
observation time, which persist for long times. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2793786�

I. INTRODUCTION

Simple relaxation theories break down when the relax-
ation is nonexponential and assumes, for example, a
stretched-exponential or an algebraic form. Such anomalous

relaxation has been observed in numerous physical systems
ranging from single molecules and quantum dot spectral dif-
fusion in fluorescence blinking trajectories,1–6 protein
folding,7,8 charge-carrier transport, geophysical processes,
and in economics.9–13 Stochastic dynamics can be fully de-
scribed by ensembles of trajectories of collective variables.14

Statistical analysis of stochastic trajectories results in a hier-
archy of multipoint correlation functions which carry in-
creasing levels of information. Two point correlation func-
tions provide the simplest measure of fluctuations and the
most common evidence for anomalous relaxation. They are
the easiest to sample experimentally and to predict theoreti-
cally. However, they do not uniquely characterize the system.
Many models can be constructed that have the same two
point correlations but very different higher order correlation
functions. Anomalous dynamics implies that many times-
cales are relevant. These may represent various dynamical
variables or metastable configurations in polymers or glassy
systems.15–17 Treating all relevant variables explicitly is not
always possible. Some calculations only include directly ac-
cessible variables �such as the transition frequency in spec-
tral diffusion�18 and use a master equation for their probabil-
ity densities; all other variables are projected out and
represented through memory functions. The long time
memories characteristic of anomalous relaxation are not
compatible with the ordinary Markovian approximation
which assumes fast memory loss. The master equations de-
rived in this case19,20 are thus limited to two point correlation

functions and do not carry enough information to describe
the multipoint correlation and response functions.21,22

Several practical strategies may be employed toward the
simulation of multipoint correlation functions. One option is
to use Markovian master equations with a large number of
collective variables. Another possibility is to assume har-
monic �Gaussian� processes which are exactly solvable.23,24

All information is then contained in the spectral density,
which may be tailored to give long tailed correlations.17,25 A
different class of solvable models are continuous time ran-
dom walks �CTRWs�,26,27 which assume the erasure of all
memory �renewal� when the relevant dynamical variables are
changed �jumps�. They portray the dynamics as a generalized
random walk with a distributed waiting time or length for
stochastic jumps between various states. Memory enters this
model solely through the time t elapsed from last renewal
time. Anomalous behavior is observed when the waiting time
distribution function �WTDF� ��t� for the next jump has long
tails. We have recently proposed that lineshapes in coherent
multidimensional optical spectroscopy may be used to probe
anomalous multipoint correlation functions.28 Algebraic sin-
gularities at transition frequencies and power-law cross-peak
dynamics were predicted in the two-dimensional optical re-
sponse of a two level chromophore to three laser pulses
whose frequency undergoes a stochastic two state jump con-
tinuous time random walk with a power-law waiting time
density function ��t�� t−�−1. In this paper we present more
detailed simulations for this model and further demonstrate
how it may be used to probe aging effects in systems that
never equilibrate. Frequency domain signals such as linear
absorption are ill defined in aging systems since they depend
on the measurement time window. Two-dimensional correla-
tion spectroscopy �2DCS� is a time-domain technique that
uses ultrashort pulses. Such signals should provide unam-
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biguous signatures for aging, since all delay times are fully
controlled. Different models may be distinguished by higher
order nonlinear techniques.

We shall focus on two classes of WTDF which lead to
anomalous spectral lineshapes. We assume asymptotic alge-
braic decay ��t�� t−�−1 which shows significant deviations
from normal relaxation for 0���2.29–32 For 1���2 sta-
tionary ensembles may be described by a proper choice of
initial condition, which implies a special WTDF for the first
jump ���t� which represents how the system was prepared.
The anomalous multipoint correlations observed in fluores-
cence traces of conformation dynamics of flavin proteins25

showed symmetries due to microscopic reversibility typical
for stationary processes.

For 0���1, stationary ensembles cannot be con-
structed. System properties necessarily depend on the time
elapsed from the initial preparation even when it is very
long. This phenomenon is known as aging. Such random
walks show fractal behavior related to Levy stable distribu-
tions, which generalize the Gaussian distributions of ordi-
nary diffusion.29 This case is fundamentally more compli-
cated than 1���2: such random walks are nonergodic,33

their time and ensemble averages may differ,34 and special
sample preparation for each run of the experiment is needed.
Signatures of aging were observed in fluorescence blinking
of single CdSe quantum dots, with ��0.5.4,5,35 This is in
agreement with the Sparre-Andersen theorem36–38 which
states that the first passage time of random walk with any
symmetric distribution of jump lengths �including Levy
flights� has a universal asymptotic �t−3/2 decay. The origin
of these long tailed WTDF is not fully understood.

Environment dynamics affects spectral lineshapes
through modulations of the transition frequencies. However,
extracting the fluctuation timescales from absorption line-
shapes is not always possible and may require additional
assumptions and the introduction of specific models. Nonlin-
ear spectroscopies can distinguish between nonequivalent
dynamical models whose linear response is identical. In
2DCS,39–41 the system is subjected to 3 fs laser pulses �Fig.
1�. The first pulse creates a coherence between the ground
state and an excited state. Time evolution �free induction
decay� during the first interval t1 is related to the absorption
lineshape by a Fourier transform. The second pulse erases
the coherence, bringing the molecule to the ground or an
excited state population. The transition frequency continues
to change by interaction with the environment during the

second interval t2. Finally, a coherence is again created by
the third pulse and detected during the third interval t3. The
various pathways for the density matrix of a two level chro-
mophore in Liouville space are shown in Fig. 2. Correlations
of the lineshapes during the first and the third interval pro-
vide information on environment dynamics during the inter-
vening interval t2. This supplements and greatly expands the
information obtained from linear techniques.

2DCS can monitor dynamical processes at the femtosec-
ond timescale; analogous 2D NMR techniques are com-
monly used to study much slower �millisecond� processes.42

Two-dimensional infrared lineshapes have been used to
probe the structure of peptides,43 the picosecond hydrogen
bonding dynamics by observing coherence transfer in mo-
lecular vibrations for phenol in benzene44 and for acetonitrile
in methanol.45 In the visible, 2DCS techniques have been
used to study exciton transfer in photosynthetic antennas.46

Simulations of 2DCS signals usually employ either Mar-
kovian or Gaussian models for spectral fluctuations. The re-
sponse functions for Markovian fluctuations may be obtained
by Green’s function solution of the stochastic Liouville
equations,47–49 which combine a Markovian master equation
for jump dynamics with the Liouville equation for coherent
evolution. The response functions of a multilevel chro-
mophore linearly coupled to harmonic bath �Gaussian fluc-
tuations� may be obtained by the second order cumulant ex-
pansion using the Wick theorem. All higher response
functions may then be factorized into products of two point
quantities.

In the present work we extend our earlier work28 to
study signatures of aging in 2D lineshapes. In Sec. II we
build a general CTRW multistate jump model and explain
the condition of microscopic reversibility. The theory of 2D
lineshapes is presented in Sec. III. In Sec. IV we discuss
various parameter regimes of anomalous two state jump line-
shapes. In Sec. V we study aging effects in 2CDS spectros-
copy and compare two approaches to describe aging: CTRW
and time-dependent Markovian master equation. The two
models have same evolution of particle densities. The differ-
ences in 2DCS lineshape thus reflect the role of the underly-
ing trajectory picture, i.e., unraveling of the master
equation,14 in multipoint probes.

FIG. 1. Pulse configuration and time variables for a four wave mixing
experiment.

FIG. 2. Feynman diagrams for the third order response of a two level chro-
mophore with wavevector kI=−k1+k2+k3 and kII=k1−k2+k3.
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II. TWO STATE CTRW JUMP MODEL: STATIONARITY,
MICROSCOPIC REVERSIBILITY, AND AGING

In this section we briefly review the anomalous relax-
ation model used in Ref. 28. The multistate jump CTRW

model is defined by a matrix �̂�t� whose ij element is the
WTDF for stochastic jumps from state j to state i. t is the
time from the last jump where all memory is erased. The
matrix is normalized as �i�0

����ij�t�dt=1.
In the simplest two state jump �TSJ� model,48–51 bath has

two states �a and b�. We represent connection of density of
renewals at various times in the a, b space by the matrix:

�̂�t� = 	 0 ��t�

��t� 0

 . �1�

The survival probability �i�t� �that no jump had occurred
from state i for time t� defines the diagonal matrix of survival

probabilities ��̂ij�=�ij�i. It is connected to the waiting time
density function ��t� by � j�t�=�i�t

����ij�t��dt�. The survival
probability matrix thus connects the last renewal with final
time

�̂�t� = 	��t� 0

0 ��t�

 . �2�

The random walk is observed starting at time 0. The WTDF
of the first jump ���t� may differ from ��t� since it depends
on how the system was prepared before t=0. Similarly, the

�̂��t� matrix represents the survival probability for the first
jump.

For a stationary process, the density of jumps to state i,
	i is connected to the total density to be in state i, 
i through


i = 
i�t� = �
0

�

	i�t − t���i�t��dt� = 	i�
0

�

�i�t�dt

= 	i�
0

�

t�
j

��� ji�t�dt = 	i�1;i,

where we have used the fact that all densities 
, 	 are time
independent for stationary process and �1;i�� j�0

�t��� ji�t�dt

is the mean waiting time in the ith state. It then follows that
all �1;i must be finite. The rate for the j→ i jump is

	 j�
0

�

���ij�t�dt =
�0
����ij�t�dt

�1;j

 j .

We can now define the rate coefficients

Aij �
�0
����ij�t�dt

�1;j
for i � j ,

�3�
Aii = − �

j;j�i

A ji.

The stationary density 
 j is thus obtained by the solution of
the balance equation

�
j

Aij
 j = 0.

Using the same arguments, the WTDF for the first jump
is

����ij�t� =
1


 j

�
0

�

���ij�t + t��	 j�− t��dt�

=
�t
���̂�ij�t��dt�

�1;j
. �4�

The stationary condition �Eq. �4�� is closely related to micro-
scopic reversibility. CTRW is reversible if a trajectory i1,
i2 , . . . , in with waiting times �1 ,�2 , . . . ,�n �last time is sur-
vival� is equally probable to its reverse in , . . . , i1 with waiting
times �n , . . . ,�1. We thus require

�in
��n���̂�inin−1

��n−1� ¯ ��̂�i3i2
��2���̂��i2i1

��1�
i1

= ��̂��in−1in
��n���̂�in−2in−1

��n−1� ¯ ��̂�i1i2
��2��i1

��1�
in

�5�

for all paths �sequences and waiting times�. Equation, �5� can
only be satisfied provided �i� the time profile of WTDF is
independent of jump direction ���ij�t�=Tij� j�t�,

52,53 �ii� the
rate coefficients for jump Aij =Tij /�1;j �i� j� must satisfy de-
tailed balance54

Tij
 j

�1;j
=

T ji
i

�1;i
,

and �iii� the probability of the first jump and the last survival
are related through �i��t�=�i�t� /�1;i which recovers Eq. �4�.
Equation, �4� thus expresses microscopic reversibility of a
stationary ensemble: the survival probability coincides with
the probability for the first jump backward.

For the symmetric TSJ considered here �Eq. �1�� we sim-
ply have

���t� =
�t
���t��dt�

�1
=
��t�

�1
�6�

and symmetric densities 
a=
b=1/2.
For 0���1, �1 diverges, and it is impossible to con-

struct a stationary ensemble. Asymptotically the jump rate
decreases to 1/�1 which is 0 in this case.31,55,56 This scenario
applies for arbitrary initial conditions. Many properties now
depend on the initial observation time �aging�. The normal
diffusion constant for a Brownian particle moving on a lat-
tice scales as �1/�1 and its variance grows linearly with
time �Einstein relation� x2�� t /�1. When �1 diverges, the
particle loses its mobility at long times, and its variance
x2� growth grows sublinearly �t� �anomalous diffusion�.
Another remarkable point is that the random walker survives
at initial position for long times and ergodicity is broken. As
a corollary, time averages obtained in single molecule mea-
surements may be different from ensemble averages.34

The simplest way to describe aging is by assuming that
all random walks start by a jump made at some time t0 before
the first laser pulse. The common choice ���t�=��t� implies
t0=0. The dependence on the initial observation time re-
quires a t0-dependent WTDF ���t ; t0�. The consistent choice
of ���t ; t0� will be discussed in Sec. IV.
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III. SPECTRAL DIFFUSION IN 2DCS SIGNALS

We consider a two level chromophore with a ground �g�
and an excited state �e�, transition frequency �eg, and dipole
moment �eg subjected to three short laser pulses with an
electric field E�t�, and described by the Hamiltonian

HS = �e���eg + ��eg�t��e� − E�t��eg��g�e� + �e�g�� , �7�

��eg�t� are stochastic frequency fluctuations caused by inter-
action with the environment and described by the CTRW
dynamics. Observable quantities are obtained by averaging
over all possible stochastic paths of ��eg�t�.57

We associate the frequency fluctuations with different
bath states i, each inducing a transition frequency shift ��i.
In TSJ the transition frequency assumes the values ��eg

=�0 �state a� and −�0 �state b�.
The response of our two level chromophore to three op-

tical pulses is described by the third order response func-
tions. The various contributions to the response function,
known as Liouville space pathways �Fig. 2�, are labeled �.58

During the intervals t j �� j −� j−1, between successive laser
interactions the system’s density matrix is in a given state
���j��= �ee�, �gg�, �eg�, or �ge� with corresponding frequencies
��

�j�=0,0 ,�eg, and −�eg, respectively. The latter are modu-
lated by the state of the bath. The Liouville operator describ-

ing the evolution in the bath state �eg�; 
̇eg= L̂eg
eg is given
by the following matrix in the a, b space:

L̂eg = 	− i�0 0

0 i�0

 , �8�

where L̂ge=−L̂eg, and L̂ee= L̂gg=0.
We next define the generating function 
� by the equa-

tion of motion.

d
�

dt
= − i����t�
� �9�

with initial condition 
��0�=1. Here ����t�=���j��t� for t

� �� j−1 ,� j�. The third order response function for the �th
pathway is then given by R�

�3��t3 , t2 , t1��
��, where  � im-
plies averaging over the ensemble of bath paths. Coherent
signals are generated only in specific phase-matching direc-
tions. Below we focus on the kI=−k1+k2+k3 and kII=k1

−k2+k3 directions. In the rotating wave approximation these
are represented by the four Liouville space pathways shown
in Fig. 2.

The kI �photon echo� signal is58

SI�t3,t2,t1� = 	 i

�

3

�eg
4

e−i�eg�t3−t1��Rii�t3,t2,t1�

+ Riv�t3,t2,t1�� , �10�

and the kII signal is

SII�t3,t2,t1� = 	 i

�

3

�eg
4

e−i�eg�t1+t3��Ri�t3,t2,t1�

+ Riii�t3,t2,t1�� . �11�

For stochastic models such as considered here the bath evo-
lution and equilibrium state are independent of the state of

the system 
ee or 
gg so that Ri=Riii, Rii=Riv.
The third order correlation function for the �th pathway

may be obtained by solving Eq. �9�,

R�
�3��t3,t2,t1� � ��t3���t2���t1�

��exp�− i�
�2

�3

��eg��3��d�3��
�exp��i�

�0

�1

��eg��1��d�1��� , �12�

where the upper sign represents Ri=Riii and the lower Rii

=Riv.
The 2D signals are defined by frequency-frequency

��3 ,�1� correlation plots for a fixed t2.

SI��3,t2,�1� � − Im � � SI�t3,t2,t1�ei��1t1+�3t3�dt1dt3,

�13�

SII��3,t2,�1� � − Im � � SII�t3,t2,t1�ei��1t1+�3t3�dt1dt3.

�14�

We shall also display the following combination, which
shows simpler lineshapes with purely absorptive peaks:59,60

SA��3,t2,�1� � SI��3,t2,− �1� + SII��3,t2,�1� . �15�

The response is represented in a, b space by a matrix Ĝ�

whose jl element accounts for the contribution to R�
�3� from

paths with an initial bath state l and final state j.

R�
�3��t3,t2,t1� = �

jl

�G�� jl�t3,t2,t1��
��l�t = 0� . �16�

For Markovian relaxation ���ij�t�=Tije
−t/�1;j /�1;j each

Ĝ� may be factorized into a product of three Green’s func-
tions representing the time evolution during the t1, t2, and t3

intervals whereby the density matrix is in the ��1�, ��2�, and
��3� states.

Ĝ��t3,t2,t1� = Ĝ��3�
�t3�Ĝ��2�

�t2�Ĝ��1�
�t1� . �17�

Green’s functions can be calculated by solving the stochastic
Liouville equations �SLEs�.47

d
��t�

dt
= �L̂ + Â�
��t� ,

where Â is the matrix of jump rate coefficients �Eq. �3��. The
SLE has recently been applied to describe vibrational 2D
signals for frequency fluctuations modulated by hydrogen
bonding of phenol in benzene,61 conformation changes of
peptides,62 and infrared lineshapes of water.63

The simulation of systems with long memory is much
more complex. Various types of reduced equations of motion
for the CTRW dynamics have been developed19,20 for calcu-
lating the two point correlation functions. These, however,
may not be extended to multipoint quantities required for the
description of 2DCS,64 since the factorization, Eq. �17�, does
not hold for non-Markovian relaxation.
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We have recently64 developed an algorithm for solving
this model. This is based on the successive recurrent con-
struction of a hierarchy of Green’s functions. It relies on the
renewal property computing the CTRW.57 Below we present
an alternative, more intuitive, derivation which is reminis-
cent of Green’s function method.

We need to maintain a bookkeeping of whether or not
there was a jump during each of the three time intervals t1, t2,
t3. For each of the three intervals we must distinguish be-
tween two possibilities, either there was no jump or there

was a least one jump. Ĝ� is thus given by a sum of 23=8
terms each representing one type of path in bath space.

Ĝ��t3,t2,t1� = �
m=1

8

Ĝm
� �t3,t2,t1� . �18�

These terms are depicted in Fig. 3, where the presence of any
��1� jump in a given time interval is represented by the
trajectory touching the time axis.

Ĝm
� are conveniently recast in Laplace space. We define

�our notation is similar to Ref. 65�

�̃
ˆ

�s − L̂� � �
0

�

e−st�̂�t�exp�L̂t�dt .

This implies for our TSJ model

�̃
ˆ

�s − L̂eg� = 	 0 �̃�s − i�0�

�̃�s + i�0� 0

 , �19�

where �̃�s���0
���t�e−stdt is the Laplace transform of �.

�̃
ˆ

�s− L̂� for the survival function is defined similarly

�̃
ˆ

�s − L̂eg� = 	�̃�s + i�0� 0

0 �̃�s − i�0�

 . �20�

Ĝm
� is expressed as a matrix product of the propagators

through the intervals with any jump in the particular interval
�if the trajectory touches the axis in Fig. 3�, with additional
factors for segments connecting different intervals. These en-
sure that the bath state does not change between the last
jump in the earlier interval and the first jump in the later
interval. Both factors will be described below.

We first calculate the evolution for a fixed state of bath
where no jump occurs over several time intervals. Let us
assume that the state is fixed for time tm�

in the mth interval,
until time tl�

in some subsequent lth interval and during all
the intermediate intervals ti, l� i�m. The probability of this

evolution is either �̂, �̂�, �̂, or �̂� depending on the path.
The propagator connecting the state immediately after tm� and
after tl� is given by

�̂��,tl�,tl−1, . . . ,tm� �

= �̂	tl� + tm� + �
i=m+1

l−1

ti

�exp	L̂�l�tl� + L̂�m�tm� + �

i=m+1

l−1

L̂�i�ti
 , �21�

where L̂�i�= ± L̂eg ,0, depending on the state of the density
matrix in the ith interval. This contribution may appear in
several ways. Either for the evolution between the last jump
in the mth interval and the successive jump, first in the lth
interval, or for the very first jump when the tm� interval does
not exist and �→��. It also appears for the survival from
the very last jump when tl� disappear and �→�. Finally,
when no jump occurs, then �→��, tl� is absent, and tm� = t1.

The second ingredient in our calculation is the propaga-
tor between first and last jump in the kth interval described
by the integral equation

�̂��� = �
0

�

�̂�� − ���exp�− iL̂�k��� − �����̂����d��, �22�

with �̂�0�=1̂. The matrix � connects the arrival densities at
two times within the same interval t j. By solving Eq. �22� in
Laplace space, we obtain the following propagator through
the kth interval:

FIG. 3. The eight contributions to Green’s function �Eq. �18�� of the third
order response. Contributions represent paths with �when the line touch the
axis� or without �when the line does not touch the axis� some jump during
each of the three time intervals t1, t2, t3.
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�̂�sk� � �1 − �̃
ˆ

�sk − L̂�k���−1. �23�

This contribution appears provided some jump had occurred
in the kth interval, �i.e., the trajectory touches the axis in the
kth interval in Fig. 3.� Equation �23� can be interpreted as a
summation of a geometric series for paths with 1,2, … jumps
in Laplace space, where time convolutions become simple
multiplications.

All of these factors should be convoluted in time to gen-
erate the trajectory. For instance, the domain of integration
for the first contribution G1

� is shown in Fig. 4:

Ĝ1
��t3,t2,t1�

= �
0

t3

d�6�
0

t3−�6

d�5�
0

t2

d�4�
0

t2−�4

d�3

��
0

t1

d�2�
0

t1−�2

d�1�̂��,�6��̂�t3 − �6 − �5�

��̂��,�5,�4��̂�t2 − �4 − �3��̂��,�3,�2�

��̂�t1 − �2 − �1��̂���,�1� . �24�

This results in a simple product in Laplace space

G̃
ˆ

m
� �s3,s2,s1�

= �̃
ˆ

��,s3��̃
ˆ

�s3�

��̃
ˆ

��,s3,s2��̃
ˆ

�s2��̃
ˆ

��,s2,s1��̃
ˆ

�s1��̃
ˆ

���,s1� .

�25�

We have already calculated Laplace domain �̃ �Eq.
�23��, � can be easily transformed as well, leading to equiva-
lent results to those reported in Appendix C of Ref. 64. Equa-

tion �25� is finally expanded in terms of the matrices �̂, �̂
and the complete expressions agree with Appendix D of Ref.
64, where it was obtained in a different way.

Since the response functions �Eq. �12�� are causal, the
2D lineshapes �Eq. �14�� may be obtained by analytical con-
tinuation of s1, s3 �the Laplace variable conjugate to t1 and
t3�. The t2 variable is obtained by reverse Laplace transform
using Bromwich integral,

SI��3,t2,− �1� =
�eg

4

��3 Im �
−i�

i�

ds2es2t2

�R̃ii�s3 = − i��3 − �eg�,s2,s1 = i��1 − �eg�� ,

SII��3,t2,�1� =
�eg

4

��3 Im �
−i�

i�

ds2es2t2

�R̃i�s3 = − i��3 − �eg�,s2,s1 = − i��1 − �eg�� .

For t2=0 these integrals may be calculated analytically.
The resulting two-interval functions may be alternatively ob-
tained by directly building the two interval �t3 , t1� response
function.

IV. LINESHAPES FOR STATIONARY ANOMALOUS
RANDOM WALKS

Microscopic reversibility in stationary ensembles im-
plies that SI�t3 , t2 , t1�=−SI

*�t1 , t2 , t3� which in the frequency
domain gives

SI��3,t2,− �1� = SI��1,t2,− �3� . �26�

Similarly SII�t3 , t2 , t1�=SII�t1 , t2 , t3� which implies

SII��3,t2,�1� = SII��1,t2,�3� . �27�

Combining Eqs. �26� and �27� with Eq. �15�, we obtain
the following symmetry of the lineshape:

SA��3,t2,�1� = SA��1,t2,�3� . �28�

Thus SI, SII, and SA are symmetric to the interchange of �1

and �3.
When during the t3 interval the bath has lost its memory

of its state during t1 �e.g., normal relaxation with t2→��, the
response functions may be factorized as

SI�t3,t2,t1� = 2�i/��K�t3�K*�t1� �29�

and

SII�t3,t2,t1� = 2�i/��K�t3�K�t1� . �30�

Here

K�t� � �i/���eg
2

e−i�egt�exp�− i�
0

t

��eg���d���
is the linear response function for stationary ensembles. Its
Fourier transform gives the absorption lineshape

WA��� � Im �
0

�

K�t�exp�i�t�dt . �31�

�The absorption of a nonstationary ensemble is not propor-
tional to the Fourier transform of the linear response
function.50�

Using Eqs. �29�–�31�, SA then reduces to the product of
the linear absorption lineshapes66

�SA��3,t2 → �,�1� = 4WA��1�WA��3� . �32�

Algebraic memory decays will result in a slow convergence
to this asymptotic lineshape. In addition, as will be shown
below, the spectra diverge at certain frequencies where the
factorization �Eq. �32�� does not hold.

We shall consider a specific model of anomalous relax-
ation with the WTDF:30,64

FIG. 4. Integration time variables in Eq. �24�.
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�̃�s� =
1

1 + �1s/�1 + ��As��−1�
, 1 � �� 2, �33�

�1 is the mean of ��t�, while �A controls the long time alge-
braic tails �W�t���A

�−1�1 / t�+1.
Note that Eq. �6� may be conveniently represented in

Laplace space

�̃��s� =
1 − �̃�s�

s�1
.

We first consider the linear response obtained from one-
interval Green’s function

K�t� = �
jl

Q jl�t�
�0�l.

The kernel may be calculated by

Q̂�t� = �̂���,t� + �
0

t

d�2�
0

t−�2

d�1�̂��,�2�

��̂�t1 − �2 − �1��̂���,�1� .

Transforming into the Laplace space domain yields50,64,65

Q̃
ˆ

�s� = �̃
ˆ
��s − L̂� + �̃

ˆ
�s − L̂��1 − �̃

ˆ
�s − L̂��−1�̃

ˆ
��s − L̂� .

�34�

Combining Eqs. �31�, �33�, and �34� we finally get

W�� + �eg� =
2�0

2

��0
2 − �2�2Re

1

�1 + �A
�−1��i�0 − i���−2 + �− i� − i�0��−2� + i�� − �0�−1 + i�� + �0�−1 . �35�

In all plots we use dimensionless frequency units
�� j −�eg� /�0 by setting �eg=0, �0=1. In Fig. 5 we display
the absorption spectrum in the slow ��1�0�1, top� and the
fast ��1�0�1, bottom� fluctuation limits. The lineshape has
two peaks at �= ±1 and in the fast fluctuation limit we ob-
tain a finite central peak.50,64 The fraction of particles that
remained at the initial position is significant �not exponen-
tially small� at all times. This results in the divergence of
peaks at �= ±1

W��� � C����−2, �36�

with C=cos���1−� /2���A
�−1 /2, and where the detuning is

���−�eg−�0 for �=1 and ���−�eg+�0 for
�=−1 peak.50,64

The parameter � controls the peak singularity. For �
→2 the divergence is cured and we approach the Markovian
lineshape. For fast fluctuations �0�1�1 the central peak
grows, as �1 becomes shorter. This is reminiscent of the mo-

tional narrowing for the Markovian case. However, the two
divergent peaks still retain an anomalous lineshape.

In Fig. 6�a� we display the SI��3 ,−�1�, SII��3 ,�1�, and
SA��3 ,�1� signals for slow fluctuations �0�1�1 and t2=0.
Similar to the Markovian case,61 all panels show two diago-
nal peaks at ��3 ,�1�= �1,1� and �−1,−1�. However, the
peaks are non-Lorentzian and divergent. SI and SII diverge
along the �1= ±1, �3= ±1 lines, but much of this divergence
is canceled in SA which only diverges at peaks �1,1� and
�−1,−1�.

We next examine the analytic structure of these diver-
gencies for the �1=1 and �3=1 lines. The slowest decay is
connected with the survival function for the first jump

���t�� t1−�. Ĝ�
8 is thus the most rapidly divergent term. The

analysis of peak divergencies thus reduces to the Ĝ�
8 contri-

bution. We denote �3��3−�eg−�0 and �1��1−�eg

−�0 and find

FIG. 5. �Color online� Linear absorption for slow
�1�0=2 �top panel� and fast �1�0=0.2 fluctuations and
different � as indicated. �0�A=0.5.
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SI8��3,t2 = 0,− �1� = −
�4

�3 Im
�̃��− i�3� − �̃��i�1�

�1 + �3
,

�37�

SII8��3,t2 = 0,�1� =
�4

�3 Im
�̃��− i�3� − �̃��− i�1�

�1 − �3
.

The lineshapes �Eqs. �39�� diverge along the lines �3=0
and �1=0. The divergent peak structure is summarized in
Table I. The left column corresponds to situation when �3

is held fixed at a small but nonzero value and �1 ap-
proaches the singular point 0. Thus we consider �1��3

and �̃��i�1�� �̃��−i�3�. With the asymptotic expansion

�̃��s� � �A
�−1

s�−2, �38�

we get the asymptotic form of divergent SI��3 ,−�1�, and
SII��3 ,�1� shown in the Table I. In the right column we
similarly approach the singular line at �3=0. We have veri-
fied these analytic asymptotic results numerically �not
shown, it also qualitatively agrees with Fig. 6�a��.

SI and SII have opposite signs, and their combination SA

is finite due to interference. The divergencies are only seen at
the �1,1� and �−1,−1� peaks, and not along the entire �1

= ±1 and �3= ±1 lines, since the SI ,SII divergencies cancel.
SA is finite, but nondifferentiable along these lines.

We next examine more closely the variation along the
�1=0 axis.

SA8��3,t2 = 0,�1 = 0� =
− 2�eg

4

�3

Im �̃��i�3�

�3
.

The asymptotic expansion �Eq. �38�� yields the analytical
peak structure at �3�0.

SA��3,t2 = 0,�1 = 0� � B�3
�−3,

�39�

B =
2�eg

4

�3 �A
�−1 sin���2 − ��/2� .

The analytic structure of the �−1,−1� peaks is the same. This

follows from the assumed ��̂�ab= ��̂�ba symmetry of TSJ
model, which implies S���3+�eg , t2 ,�1��eg�
=S��−�3+�eg , t2 ,−�1��eg�; upper sign applies for �=I
lower for �=II,A. Based on Fig. 6�a�, the peaks are more
localized with steeper contours for smaller �. In all cases we
see a dip at �0,0�.

The two peaks induced by Ĝ8 are universal and survive
even for the case of fast fluctuations �0�1�1, as shown at
Fig. 6�b�. Rapid changes during t1 and t3 induce a new peak
at the average frequency �0,0� �motional narrowing�. The SA

�0,0� peak is Lorentzian: The starlike contours, best seen for
�=1.2, correspond to a product of two Lorentzians along �1

and �3. The SI and SII lineshapes are similar. Both may be
described by a statistical mixture of rapidly fluctuating par-
ticles responsible for the central peak, with the static phase
responsible for the divergent peaks at the fundamental fre-
quencies. Surprisingly, this picture is most pronounced for
small �=1.2 where all peaks are well separated. Increasing �
broadens the �−1,−1� and �1,1� peaks, making them interfere
with the central peak, and the Lorentzian shape becomes less
pronounced as �→2.

The variation of SA with t2 in the slow fluctuation limit is
displayed in Fig. 7. For t2 longer than the mean waiting time
�1 fractions of trajectories have different frequencies in the t1

and t3 intervals, as described by the G6 contribution resulting
in new cross peaks at �−1,1� and �1,−1�. Since we are in the
slow fluctuation limit the peaks are still well resolved. Both
diagonal and cross peak contours are elongated along the
�1,3= ±1 directions. Nevertheless the decay of the G6 con-
tribution t1,3

�−3 �compared to the diverging t1,3
�−2 decay of G8

which is relevant for diagonal peaks� is integrable and thus
the cross peaks do not diverge. Another notable point is the
breakdown of Eq. �32� at �1,3= ±1. Memory loss is not com-

FIG. 6. �Color� �A� The SI��3 ,0 ,−�1� �top�, SII��3 ,0 ,�1� �middle�, and
SA��3 ,0 ,�1� �bottom� signals �Eq. �15�� for the WTDF �Eq. �33�� at t2=0,
for slow fluctuations �0�1=2.0, and �A /�1=0.25, �=1.2 �left�, 1.5
�middle�, 1.8 �right�. �Color� �B� The same as �A� but for fast fluctuations
�0�1=0.2, and �A�0=0.5, �=1.2 �left�, 1.5 �middle�, 1.8 �right�.
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plete since the algebraic functions do not factorize. At other
frequencies the lineshapes approach this limiting lineshapes
�Eq. �32�� algebraically as t1−�.28 These simulations illustrate
the capacity of 2DCS to probe anomalous relaxation during
the t2 interval.

V. NONSTATIONARY ENSEMBLES: AGING OF 2D
LINESHAPES

In our earlier work28 we considered nonstationary en-
sembles with 0���1 by assuming that the random walk is
started by a jump at the time origin, coinciding with the first
laser pulse, so that response may be calculated by ��=�. The
lack of microscopic reversibility is reflected in violations of
the symmetry relations �Eq. �28��. The higher mobility dur-
ing the �earlier� t1 interval compared to t3 resulted in broader
peaks along the �1 axis compared to �3.

Here we explore signatures of aging. We consider ran-
dom walks, which start by a jump made at some time t0

before the first laser pulse and examine how the nonlinear
lineshapes vary with t0. The response function then depends
t0 even for t0→�. This is known as aging. All aging effects
are fully described by calculating the WTDF ���t ; t0� for the
first jump which is now t0 dependent which must be consis-
tent with the CTRW dynamics during the t0 period.

���t ; t0� can be calculated along the lines of Eq. �21� by

omitting the coherence evolution L̂�0�=0 during t0,

�̂��t,t0� = �̂�t + t0� + �
0

t0

d�2�
0

t0−�2

d�1�̂�t + �2�

��̂�t0 − �2 − �1��̂��1� .

In Laplace space we find for our TSJ model

�̃��s;s0� =
��̃�s0� − �̃�s��

�1 − �̃�s0���s − s0�
. �40�

The 2D lineshapes may thus be calculated using the algo-
rithm presented in Sec. III. The t0 dependence is obtained by
numerically inverting these Laplace domain formulas.

The long t0 limit may be obtained by setting s0→0. For
CTRW with finite �1 the denominator in Eq. �40� is

1 − �̃�s0� � − s0� d�̃�s�

ds
�

s=0
= �1s0.

This reproduces the WTDF of the first jump for a stationary
random walk ���t ; t0�=��t� /�1.

The lack of stationarity has some important conse-
quences. As pointed in Ref. 50, frequency domain absorption
measurement is no longer given by the Fourier transformed
response function. Thus the absorption of an aging ensemble
cannot be calculated using Eq. �34�. Fortunately, 2DCS
works in the time domain, and the measurement directly
probes the response function. Thus the problems discussed in
Ref. 50 do not apply for impulsive time-domain techniques
such as 2DCS lineshape.

A more subtle point is that due to the lack of equilibra-
tion, the averaging over consecutive pulse sequences may
depend on the experimental data acquisition repetition rate.
Proper definition of the response function requires a careful
preparation ���t� before each pulse sequence.

We have calculated the response functions, the variation
of the lineshape, with the preparation time t0 for the follow-
ing model:

�̃N�s� =
1

1 + ��s��
, � � �0,1� . �41�

This corresponds to a WTDF with algebraic tails ��t�
��� / t�1+�.

We took �=0.98, which is close to the Markovian case
�Eq. �41� for �=1� in the fast fluctuation limit ��0�1. This

TABLE I. SI, SII lineshapes shows divergent growth along the �3=�eg−�0 and �1=�eg−�0 lines. Table I
shows their asymptotic form.

Fixed �3 �1

Varied �1 �3

SI��3,− �1� �
�4

�3 sin���2 − ��/2�� sgn��1�
��1��−2

�3
− sgn��3�

��3��−2

�1

SII��3,�1� �
�4

�3 sin���2 − ��/2�� − sgn��1�
��1��−2

�3
sgn��3�

��3��−2

�1

FIG. 7. �Color� The SA signal �Eq. �15�� for the WTDF �Eq. �33�� for �left to
right� �=1.2,1.5,1.8, and �A /�1=0.25, �0�1=2.0, t2=�1 �top�, t2=2�1

�middle�, t2=10�1 �bottom�.
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choice is motivated by the simpler interpretation of the line-
shapes; we expect it to be closer to the Markovian case than
the rather complex t0=0 shapes presented in Ref. 28. The
effect of t0 could thus be better isolated. In addition, aging
effects appear at arbitrarily long timescales �for suitable
choice of parameters�. This overcomes the difficulty with
strongly anomalous ensembles, whose lineshapes cannot be
obtained by repeated measurements on the same sample,
whose response function is changed between two pulse se-
quences.

The top left panel of Fig. 8 �t0=0� shows fast fluctuation
Markovian contours and only tiny peaks at �1,1� and �−1,
−1�. No signatures of time irreversibility are seen since Eq.
�28� is nearly satisfied. We next increase the aging time t0 as
we move from the top left panel to bottom right panel. The
�1,1� and �−1,−1� peaks appear and grow, while the central
peaks slowly get weaker. This reflects decrease of the jump
rate with time. Some small deviation from the symmetry
relation �Eq. �28�� can be noticed. The process is nearly re-
versible on the �0

−1 timescale which dominates the line-
shapes. A remarkable point is that the central �motional nar-
rowing� peak coexists with these static limit peaks. The
anomalous process is better viewed as a mixture of static and
fluctuating particles, rather than a homogeneous rate.

This clearly distinguishes our algorithm from calcula-
tions based on time-dependent rate master equations, which
do not allow to properly describe memory effects in multi-
point probes. To support this statement we have constructed
Markovian process subjected to the same master equation,
i.e., we require correct prediction of total densities and sub-
sequently apply them to calculate response or multipoint cor-
relation function based on Markovian schemes. The trajec-
tory picture of both approaches is different.67

Consider a Markovian master equation whereby densi-
ties evolve in the same way as the aging random walk for
arbitrary initial densities, i.e., it has same Green’s function
G�t�,


�t� = G�t�
�0� . �42�

The master equation is constructed by differentiating Eq.
�42� with respect to time,

d
�t�

dt
= A�t�
�t�, A�t� �

dG�t�

dt
G−1�t� . �43�

The transition matrix A of time-convolutionless master equa-
tion is thus uniquely defined. Green’s function �Eq. �42�� is
the solution of the master equation

G�t� = expT �
0

t

A�t��dt�. �44�

We consider a symmetric two state dynamics parametrized
by a single function �,

A�t� = 	− ��t� ��t�

��t� − ��t�

 .

Equation �44� can be solved after a simple algebra. This
gives

G11�t� − G10�t� = exp�− 2�
0

t

��t��dt�� . �45�

Inverting Eq. �45�, the rates can be calculated once Green’s
function is known

��t� =
− d

dt
�G11�t� − G10�t��

2�G11�t� − G10�t��
. �46�

We next adjust Green’s function to agree with those of our
aging random walk. In Laplace space it reads

G11�s� − G10�s� =
��s�

1 + ��s�
=

1 − ��s�

s�1 + ��s��
.

For the model �Eq. �41��,

G11�s� − G10�s� =
��s��

s�2 + ��s���
,

which may be also calculated directly in time domain as
series

G11�t� − G10�t� = �
n=0

�

�− 2�n
�t/���n

��n� + 1�
, �47�

with the gamma function ��y���0
�xy−1e−xdx. The master

equation is thus defined by combining Eqs. �43�, �46�, and
�47�. The rates decay asymptotically �t→�� as ��t�
�� / �2t�. Exponential WTDF’s ��=1� correspond to con-
stant rate �=�−1.

Figure 9 shows the time-dependent rate of the master
equation for various �. Aging effects �decreasing mobility
with time� are reflected in the decreasing rates. Increasing �
the decay is slower when approaching the Markovian limit
��=1� and the rates change slowly for long periods. This
regime is particularly interesting because it may provide suf-
ficient time to measure the rate constant by, e.g., lineshape
experiments and give clear meaning to our arguments. �Di-
verging rates at very small times t�� are integrable and thus
insignificant.�

We shall compare two types of stochastic processes sub-
jected to the same master equation but with different unrav-
eling into trajectories.14 Aging lineshapes for the CTRW
model were already presented at Fig. 8. The second model is

FIG. 8. �Color� Aging effects in 2D lineshapes. The SA signal �Eq. �15�� for
the nonstationary random walk model �Eq. �41�� t2=0, ��0=0.2, �=0.98
for various initial times �from left top to right bottom� t0=0�, 10�, 102�,
103�, 104�, 105�.
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defined by Markovian prescription: The probability of jumps
is independent of the past trajectory. The stochastic Liouville
equations and Green’s function technique may then be used
to calculate the nonlinear response.

R��t3,t2,t1;t0� = ��t3���t2���t1�

��expT��
�2

�3

�A��3�� + L̂�3��d�3��
�expT��

�1

�2

A��2��d�2��
�expT��

�0

�1

�A��1�� ± L̂�1��d�1��� .

We are interested in the peak pattern, which is influenced
by fluctuations on the �0

−1 timescale. We consider a param-
eter regime where the rate does not change significantly on
this timescale, and thus the peak pattern may be analyzed by
a simple approximation of rates independent of t1 and t3 and
analyze aging of t2=0 lineshapes

R��t3,0,t1;t0� = ��t3���t2���t1�exp��A�t0�

+ L̂�3��t3�exp��A�t0� ± L̂�1��t1�� .

We then obtain

S ��3,0,�1;t0�

=
2�4

�3 Re
4�2 − �3�1 ��0

2 − i2���3 + �1�

��1
2 − �0

2 + i2�1����3
2 − �0

2 + i2�3��
,

�48�

where the upper �lower� sign is for  =I � =II� and where
����t0�.

The aging Markovian 2D absorptive lineshapes are pre-
sented at Fig. 10. The central peak is gradually broadened
with increasing time �and decreasing rates� and splits into
two peaks centered along diagonal at fundamental frequency.
These peaks get narrower for long t2.

The significance of the different trajectory picture can be
seen by comparing the two lineshapes at Figs. 8 and 10. We

notice that the crossover to static lineshapes is somewhat
faster at Fig. 10. This is, however, less obvious feature, since
it depends on chosen particular parametrization. The more
significant feature, which distinguishes the two models, is
that the static peaks at fundamental frequencies and the fast
motional narrowing central peak never coexist at Fig. 10 in
contrast to Fig. 8.

This may be explained as the direct signature of
memory. The CTRW model shows two populations: static
and fast fluctuating, i.e., particles are differentiated based on
their histories. In contrast all particles in the Markovian
model have homogenous probabilities for the next jump.
This lack of memory is reflected in the unique peak pattern
with no simultaneous static and fast fluctuating signatures in
the spectrum.

These two models are nonequivalent since they assign
different trajectory pictures to the same density matrix, as is
clearly seen from the higher order correlation functions and
response. The coexistence of both static and fast fluctuations
in spectra clearly reflects the additional information, beyond
the two point correlation functions.

The unraveling of master equations into trajectories is an
important issue. Two-dimensional lineshapes which are sen-
sitive to the trajectories should provide a direct test for the
unraveling schemes.14 Single molecule spectroscopy looks at
the trajectories one at a time. Multidimensional spectroscopy
looks at the entire ensemble but unravels it by the manipu-
lation of coherence.

In summary, our simulations demonstrate that two-
dimensional correlation plots of signals obtained from the
response of the system to sequences of multiple laser pulses
carry specific and direct signatures of complex dynamics.
Such techniques are currently feasible in many spectral re-
gimes, NMR, EPR, the infrared �vibrations, phonons�, and in
the visible �electronic excitations�.
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