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Abstract

If a body of dielectric material is coated by a plasmonic structure of negative dielectric
material with nonzero loss parameter, then cloaking by anomalous localized resonance (CALR)
may occur as the loss parameter tends to zero. It was proved in [1, 2] that if the coated
structure is circular (2D) and dielectric constant of the shell is a negative constant (with loss
parameter), then CALR occurs, and if the coated structure is spherical (3D), then CALR does
not occur. The aim of this paper is to show that the CALR takes place if the spherical coated
structure has a specially designed anisotropic dielectric tensor. The anisotropic dielectric
tensor is designed by unfolding a folded geometry.

1 Introduction

If a body of dielectric material (core) is coated by a plasmonic structure of negative dielectric
constant with nonzero loss parameter (shell), then anomalous localized resonance may occur as
the loss parameter tends to zero. To be precise, let Ω be a bounded domain in Rd, d = 2, 3, and D
be a domain whose closure is contained in Ω. In other words, D is the core and Ω \D is the shell.
For a given loss parameter δ > 0, the permittivity distribution in Rd is given by

ϵδ =


1 in Rd \ Ω,
ϵs + iδ in Ω \D,

ϵc in D.

(1.1)

Here ϵc is a positive constant, but ϵs is a negative constant representing the negative dielectric
constant of the shell. For a given function f compactly supported in Rd \ Ω satisfying∫

Rd

f dx = 0 (1.2)

(which is required by conservation of charge), we consider the following dielectric problem:

∇ · ϵδ∇Vδ = f in Rd, (1.3)
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with the decay condition Vδ(x) → 0 as |x| → ∞. The equation (1.3) is known as the quasistatic
equation and the real part of −∇Vδ(x)e

−iωt, where ω is the frequency and t is the time, represents
an approximation for the physical electric field in the vicinity of Ω, when the wavelength of the
electromagnetic radiation is large compared to Ω.

Let

Eδ := ℑ
∫
Rd

ϵδ|∇Vδ|2 dx =

∫
Ω\D

δ|∇Vδ|2 dx (1.4)

(ℑ for the imaginary part), which, within a factor proportional to the frequency, approximately
represents the time averaged electromagnetic power produced by the source dissipated into heat.
Also for any region Υ let

E0
δ (Υ) =

∫
Υ

|∇Vδ|2 dx (1.5)

which when Υ is outside Ω approximately represents, within a proportionality constant, the time
averaged electrical energy stored in the region Υ. Anomalous localized resonance is the phenomenon
of field blow-up in a localized region. It may (and may not) occur depending upon the structure
and the location of the source. Quantitatively, it is characterized by E0

δ (Υ) → ∞ as δ → 0 for all
regions Υ that overlap the region of anomalous resonance, and this defines that region. Cloaking
due to anomalous localized resonance (CALR) may occur when the support of the source, or part
of it, lies in the anomalously resonant region. Physically the enormous fields in the anomalously
resonant region interact with the source to create a sort of optical molasses, against which the
source has to do a tremendous amount of work to maintain its amplitude, and this work tends to
infinity as δ → 0. Quantitatively it is characterized by Eδ → ∞ as δ → ∞.

This phenomena of anomolous resonance was first discovered by Nicorovici, McPhedran and
Milton [15] and is related to invisibility cloaking [11]: the localized resonant fields created by a
source can act back on the source and mask it (assuming the source is normalized to produce fixed
power). It is also related to superlenses [16, 17] since, as shown in [15], the anomalous resonance
can create apparent point sources. For these connections and further developments tied to this
form of invisibility cloaking, we refer to [1, 2, 3, 4, 10] and references therein. Anomalous resonance
is also presumably responsible for cloaking due to complementary media [8, 18, 14], although we
do not study this here.

The problem of cloaking by anomalous localized resonance (CALR) can be formulated as the
problem of identifying the sources f such that first

Eδ :=

∫
Ω\D

δ|∇Vδ|2 dx → ∞ as δ → 0, (1.6)

and secondly, Vδ/
√
Eδ goes to zero outside some radius a, as δ → 0:

|Vδ(x)/
√
Eδ| → 0 as δ → 0 when |x| > a. (1.7)

Since the quantity Eδ is proportional to the electromagnetic power dissipated into heat by the time
harmonic electrical field averaged over time, (1.6) implies an infinite amount of energy dissipated
per unit time in the limit δ → 0 which is unphysical. If we rescale the source f by a factor of
1/
√
Eδ then the source will produce the same power independently of δ and the new associated

potential Vδ/
√
Eδ will, by (1.7), approach zero outside the radius a. Hence, cloaking due to

anomalous localized resonance (CALR) occurs. The normalized source is essentially invisible from
the outside, yet the fields inside are very large.

In the recent papers [1, 2] the authors developed a spectral approach to analyze the CALR
phenomenon. In particular, they show that if D and Ω are concentric disks in R2 of radii ri and re,
respectively, and ϵs = −1, then there is a critical radius r∗ such that for any source f supported
outside r∗ CALR does not occur, and for sources f satisfying a mild (gap) condition CALR takes
place. The critical radius r∗ is given by r∗ =

√
r3e/ri if ϵc = 1, and by r∗ = r2e/ri if ϵc ̸= 1. It is also
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proved that if ϵs ̸= −1, then CALR does not occur: Eδ is bounded regardless of δ and the location
of the source. It is worth mentioning that these results (when ϵc = −ϵs = 1) were extended in [7]
to the case when the core D is not radial by a different method based on a variational approach.
There the source f is assumed to be supported on circles.

The situation in three dimensions is completely different. If D and Ω are concentric balls in R3,
CALR does not occur whatever ϵs and ϵc are, as long as they are constants. We emphasize that
this discrepancy comes from the convergence rate of the singular values of the Neumann-Poincaré-
type operator associated with the structure. In 2D, they converge to 0 exponentially fast, but in
3D they converge only at the rate of 1/n. See [2]. The absence of CALR in such coated sphere
geometries is also linked with the absence of perfect plasmon waves: see the appendix in [7]. On
the other hand, in a slab geometry CALR is known to occur in three dimensions with a single
dipolar source [11]. (CALR is also known to occur for the full time-harmonic Maxwell equations
with a single dipolar source outside the slab superlens [6, 11, 19].)

The purpose of this paper is to show that we are able to make CALR occur in three dimensions
by using a shell with a specially designed anisotropic dielectric constant. In fact, let D and Ω be
concentric balls in R3 of radii ri and re, and choose r0 so that r0 > re. For a given loss parameter
δ > 0, define the dielectric constant ϵδ by

ϵδ(x) =


I, |x| > re,

(ϵs + iδ)a−1

(
I+

b(b− 2|x|)
|x|2

x̂⊗ x̂

)
, ri < |x| < re,

ϵc

√
r0
ri
I, |x| < ri,

(1.8)

where I is the 3× 3 identity matrix, ϵs and ϵc constants, x̂ = x
|x| , and

a :=
re − ri
r0 − re

> 0, b := (1 + a)re. (1.9)

Note that ϵδ is anisotropic and variable in the shell. This dielectric constant is obtained by push-
forwarding (unfolding) that of a folded geometry as in Figure 1. (See the next section for details.) It
is worth mentioning that this idea of a folded geometry has been used in [12] to prove CALR in the
analogous two-dimensional cylinder structure for a finite set of dipolar sources. Folded geometries
were first introduced in [9] to explain the properties of superlenses, and their unfolding map was
generalized in [12] to allow for three different fields, rather than a single one, in the overlapping
regions. Folded cylinder structures were studied as superlenses in [20] and folded geometries using
bipolar coordinates were introduced in [5] to obtain new complementary media cloaking structures.
More general folded geometries were rigorously investigated in [14].

Figure 1: unfolding map
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For a given source f supported outside Bre let Vδ be the solution to{
∇ · (ϵδ∇Vδ) = f in R3,

Vδ(x) → 0 as |x| → ∞,
(1.10)

and define

Eδ = ℑ
∫
R3

ϵδ∇Vδ · ∇Vδ dx, (1.11)

where Vδ is the complex conjugate of Vδ. Let F be the Newtonian potential of the source f , i.e.,

F (x) :=

∫
R3

G(x− y)f(y)dy, (1.12)

with G(x − y) = − 1
4π|x−y| . Since f is supported in R3 \ Bre , F is harmonic in |x| < R for some

R > re and can be expressed there as

F (x) =
∞∑

n=0

n∑
k=−n

fk
n |x|nY k

n (x̂), (1.13)

where Y k
n (x̂) is the (real) spherical harmonic of degree n and order k.

The following is the main result of this paper.

Theorem 1.1 (i) If ϵc = −ϵs = 1, then weak CALR occurs and the critical radius is r∗ =
√
rer0,

i.e., if the source function f is supported inside the sphere of radius r∗ (and its Newtonian
potential does not extend harmonically to R3), then

lim sup
δ→0

Eδ = ∞, (1.14)

and there exists a constant C such that

|Vδ(x)| < C (1.15)

for all x with |x| > r20re
−1. If, in addition, the Fourier coefficients fk

n of F satisfy the
following gap condition:

[GC1]: There exists a sequence {nj} with n1 < n2 < · · · such that

lim
j→∞

ρnj+1−nj

nj∑
k=−nj

njr
2nj
∗ |fk

nj
|2 = ∞

where ρ := re/r0, then CALR occurs, i.e.,

lim
δ→0

Eδ = ∞, (1.16)

and Vδ/
√
Eδ goes to zero outside the radius r20/re, as implied by (1.15).

(ii) If ϵc ̸= −ϵs = 1, then weak CALR occurs and the critical radius is r∗∗ = r0. If, in addition,
the Fourier coefficients fk

n of F satisfy

[GC2]: There exists a sequence {nj} with n1 < n2 < · · · such that

lim
j→∞

ρ2(nj+1−nj)

nj∑
k=−nj

njr
2nj

0 |fk
nj
|2 = ∞,
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then CALR occurs.

(iii) If −ϵs ̸= 1, then CALR does not occur.

We emphasize that [GC1] and [GC2] are mild conditions on the Fourier coefficients of the
Newtonian potential of the source function. For example, if the source function is a dipole in
Br∗ \Be, i.e., f(x) = a ·∇δy(x) for a vector a and y ∈ Br∗ \Be where δy is the Dirac delta function
at y, [GC1] and [GC2] hold and CALR takes place. A proof of this fact is provided in the appendix.

Similarly one can show that if f is a quadrupole, f(x) = A : ∇∇δy(x) =
∑2

i,j=1 aij
∂2

∂xi∂xj
δy(x) for

a 3× 3 matrix A = (aij) and y ∈ Br∗ \Be, then [GC1] and [GC2] hold.

2 Proof of Theorem 1.1

Let ri, re and r0 be positive constants satisfying ri < re < r0, as before. For given constants κc,
κs and κm, and a source f supported outside Bre , let uc, us and um be the functions satisfying

△uc = 0 in Br0 ,

△us = 0 in Br0 \Bre ,

△um = f in R3 \Bre ,

uc = us, κc
∂uc

∂r
= κs

∂us

∂r
on ∂Br0 ,

us = um, κs
∂us

∂r
= κm

∂um

∂r
on ∂Bre ,

um(x) → 0 as |x| → ∞.

(2.1)

We emphasize that the domains of uc, us, and um are overlapping on re ≤ |x| ≤ r0 so that the
solutions combined may be considered as the solution of the transmission problem with dielectric
constants κc, κs and κm in the folded geometry as shown in Figure 1. We unfold the solution into
one whose domain is not overlapping, following the idea in [12].

In terms of spherical coordinates (r, θ, ϕ), the unfolding map Φ = {Φc,Φs,Φm} is given by
Φm(r, θ, ϕ) = (r, θ, ϕ), r ≥ re,

Φs(r, θ, ϕ) =

(
re −

re − ri
r0 − re

(r − re), θ, ϕ

)
, re ≤ r ≤ r0,

Φc(r, θ, ϕ) =

(
ri
r0

r, θ, ϕ

)
, r ≤ r0.

(2.2)

Then the folding map can be written (with an abuse of notation) as

Φ−1(x) =


x, |x| > re,

−ax+ bx̂, ri < |x| < re,
r0
ri
x, |x| < ri,

(2.3)

where a and b are constants defined in (1.9).
Let κ(x) be the push-forward by the unfolding map Φ, namely,

κ(x) =


κm| det∇Φm(y)|−1∇Φm(y)∇Φm(y)t, |x| > re,

−κs| det∇Φs(y)|−1∇Φs(y)∇Φs(y)
t, ri < |x| < re,

κc| det∇Φc(y)|−1∇Φc(y)∇Φc(y)
t, |x| < ri,

(2.4)

where x = Φ(y). By straight-forward computations one can see that κ = ϵ given in (1.8) if we set

κm = 1, κs = −(ϵs + iδ), κc = ϵc. (2.5)
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Moreover, the solution Vδ to (1.10) is given by

Vδ(x) =


um ◦ Φ−1(x) if |x| > re,

us ◦ Φ−1(x) if ri < |x| < re,

uc ◦ Φ−1(x) if |x| < ri,

(2.6)

and by the change of variables x = Φs(y) and (2.4), we have

Eδ = ℑ
∫
R3

ϵ(x)∇Vδ(x) · ∇Vδ(x) = δ

∫
re<|y|<r0

|∇us(y)|2 . (2.7)

Suppose that the source f is supported in |x| > R for some R > re. Then the solution u to
(2.1) can be expressed in |x| < R as follows:

uc(x) =
∞∑

n=0

n∑
k=−n

akn|x|nY k
n (x̂), if |x| < r0,

us(x) =
∞∑

n=0

n∑
k=−n

(bkn|x|n + ckn|x|−n−1)Y k
n (x̂), if re < |x| < r0,

um(x) =
∞∑

n=0

n∑
k=−n

(ekn|x|n + dkn|x|−n−1)Y k
n (x̂), if re < |x| < R,

(2.8)

where the coefficients satisfy the following relations resulting from the interface conditions:

aknr
n
0 = bknr

n
0 + cknr

−n−1
0 ,

eknr
n
e + dknr

−n−1
e = bknr

n
e + cknr

−n−1
e ,

κca
k
nnr

n
0 = κs(b

k
nnr

n
0 − ckn(n+ 1)r−n−1

0 ),

κs(b
k
nnr

n
e − ckn(n+ 1)r−n−1

e ) = κm(eknnr
n
e − dkn(n+ 1)r−n−1

e ).

By solving this system of linear equations one can see that

akn = ane
k
n, bkn = bne

k
n, ckn = cne

k
n, dkn = dne

k
n,

where

an =
−ρ2n+1(2n+ 1)2κmκs

(n2 + n)(κs − κc)(κs − κm)− ρ2n+1((n+ 1)κs + nκc)((n+ 1)κm + nκs)
, (2.9)

bn =
−ρ2n+1κm(2n+ 1)((n+ 1)κs + nκc)

(n2 + n)(κs − κc)(κs − κm)− ρ2n+1((n+ 1)κs + nκc)((n+ 1)κm + nκs)
, (2.10)

cn =
−r2n+1

e κmn(2n+ 1)(κs − κc)

(n2 + n)(κs − κc)(κs − κm)− ρ2n+1((n+ 1)κs + nκc)((n+ 1)κm + nκs)
, (2.11)

dn = −nr2n+1
e [ρ2n+1(κm − κs)((n+ 1)κs + nκc) + (κs − κc)(nκm + (n+ 1)κs)]

(n2 + n)(κs − κc)(κs − κm)− ρ2n+1((n+ 1)κs + nκc)((n+ 1)κm + nκs)
. (2.12)

Here ρ is defined to be re/r0
Let F be the Newtonian potential of f , as before. Since u − F is harmonic in |x| > re and

tends to 0 as |x| → ∞, we have
ekn = fk

n . (2.13)

So um (the solution in the matrix) is given by

um(x) = F (x) +
∞∑

n=0

n∑
k=−n

fk
ndn|x|−n−1Y k

n (x̂). (2.14)
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Since |dn| ≤ Cr2n0 , we have

|um(x)− F (x)| ≤ C
∞∑

n=0

n∑
k=−n

|fk
n |r2n0 |x|−n−1 < ∞ (2.15)

if |x| = r > r20re
−1. This proves (1.15).

The solution in the shell us is given by

us(y) =
∞∑

n=0

n∑
k=−n

fk
n(bn|y|n + cn|y|−n−1)Y k

n (ŷ). (2.16)

Using Green’s identity and the orthogonality of Y k
n , we obtain that∫

re<|y|<r0

|∇us(y)|2 =

∫
|y|=r0

us
∂us

∂r
−
∫
|y|=re

us
∂us

∂r

=
∞∑

n=0

n∑
k=−n

|fk
n |2
[
(bnr

n
0 + cnr

−n−1
0 )(nbnr

n
0 − (n+ 1)cnr

−n−1
0 )r0

]
−

∞∑
n=0

n∑
k=−n

|fk
n |2
[
(bnr

n
e + cnr

−n−1
e )(nbnr

n
e − (n+ 1)cnr

−n−1
e )re

]
=

∞∑
n=0

n∑
k=−n

|fk
n |2
[
n|bn|2(r2n+1

0 − r2n+1
e )− (n+ 1)|cn|2(r−2n−1

0 − r−2n−1
e )

]
≈

∞∑
n=0

n∑
k=−n

n|fk
n |2
(
|bn|2r2n+1

0 + |cn|2r−2n−1
e

)
.

The estimate (2.7) yields

Eδ ≈ δ
∞∑

n=0

n∑
k=−n

n|fk
n |2
(
|bn|2r2n+1

0 + |cn|2r−2n−1
e

)
. (2.17)

(i) Suppose that ϵc = −ϵs = 1. With the notation in (2.5), we have

|(n2 + n)(κs − κc)(κs − κm)− ρ2n+1((n+ 1)κs + nκc)((n+ 1)κm + nκs)| ≈ n2(δ2 + ρ2n+1),

and hence

|bn| ≈
ρ2n

δ2 + ρ2n
, |cn| ≈

δr2ne
δ2 + ρ2n

. (2.18)

It then follows from (2.17) that

Eδ ≈
∞∑

n=0

n∑
k=−n

δnr2ne |fk
n |2

δ2 + ρ2n
. (2.19)

Let

Nδ =
log δ

log ρ
. (2.20)

If n ≤ Nδ, then we have that δ ≤ ρ|n|, and hence

∞∑
n=0

n∑
k=−n

δnr2ne |fk
n |2

δ2 + ρ2n
≥
∑

n≤Nδ

n∑
k=−n

δnr2ne |fk
n |2

δ2 + ρ2n

≥ δmr2m0

m∑
k=−m

|fk
m|2 ≥ δm

2m+ 1
r2m0

(
m∑

k=−m

|fk
m|

)2
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for any m ≤ Nδ. By taking δ to be ρn, n = 1, 2, . . ., we see that if the following holds

lim sup
n→∞

(rer0)
n/2

n∑
k=−n

|fk
n | = ∞, (2.21)

then there is a sequence {nk} such that

lim
k→∞

Eρ|nk| = ∞, (2.22)

i.e., weak CALR occurs.
Suppose that the source function f is supported inside the critical radius r∗ =

√
rer0 (and

outside re) and its Newtonian potential F cannot be extended harmonically in |x| < r∗. Then

lim sup
n→∞

(
n∑

k=−n

|fk
n |

)1/n

> 1/
√
rer0. (2.23)

and consequently, (2.21) holds. This proves that if the source function f is supported inside the
sphere of critical radius r∗, then weak CALR occurs.

If the source function f is supported outside the sphere of critical radius r∗ =
√
rer0, then its

Newtonian potential F can be extended harmonically in |x| < r∗ + 2η for η > 0 and

∞∑
n=0

n∑
k=−n

δnr2ne |fk
n |2

δ2 + ρ2n
≤

∞∑
n=0

n∑
k=−n

nr2n∗ |fk
n |2 ≤ C∥F∥2L2(∂Br∗+η)

< ∞. (2.24)

So Eδ is bounded regardless of δ and CALR does not occur.
Suppose that f is supported inside r∗ and [GC1] holds. Let {nj} be the sequence satisfying

lim
j→∞

ρnj+1−nj

nj∑
k=−nj

njr
2nj
∗ |fk

nj
|2 = ∞.

If δ = ρα for some α, let j(α) be the number in the sequence such that

nj(α) ≤ α < nj(α)+1.

Then, we have

Eδ ≈
∑

n≤Nδ

n∑
k=−n

δnr2ne |fk
n |2

δ2 + ρ2n
≥ ρα

∑
n≤Nδ

n∑
k=−n

nr2ne |fk
n |2

ρ2n

≥ ρ|nj(α)+1|−|nj(α)|
nj(α)∑

k=−nj(α)

nj(α)r
2nj(α)
∗ |fk

nj(α)
|2 → ∞

as α → ∞. So CALR takes place. This completes the proof of (i).

To prove (ii) assume that ϵc ̸= −ϵs = 1. In this case, we have

|bn| ≈
ρ2n

δ + ρ2n
, |cn| ≈

r2ne
δ + ρ2n

,

and

Eδ ≈
∞∑

n=0

n∑
k=−n

δnr2ne |fk
n |2

δ2 + ρ4n
.
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The rest of proof of (ii) is the same as that for (i).

Suppose now that −ϵs ̸= 1. If ϵc = 1, then we have

|bn| ≈
ρ2n

δ + ρ2n
, |cn| ≈

δr2ne
δ + ρ2n

,

and

Eδ ≈
∞∑

n=0

n∑
k=−n

δ(δ2 + ρ2n)nr2ne |fk
n |2

(δ + ρ2n)2
≤

∞∑
n=0

n∑
k=−n

nr2ne |fk
n |2 ≤

∥∥∥∥∂F∂r
∥∥∥∥2
L2(∂Be)

.

Since the source function f is supported outside the radius re, we have∥∥∥∥∂F∂r
∥∥∥∥
L2(∂Be)

≤ C∥f∥L2(R3),

and Eδ is bounded independently of δ. The case when ϵc ̸= 1 can be treated similarly.

A Gap property of dipoles

In this appendix we show that the Newtonian potentials of dipole source functions satisfy the gap
conditions [GC1] and [GC2]. We only prove [GC1] since the other can be proved similarly.

Let f be a dipole in Br∗ \ Be, i.e., f(x) = a · ∇δy(x) for a vector a and y ∈ Br∗ \ Be. Then
its Newtonian potential is given by F (x) = −a · ∇yG(x − y). It is well-known (see, for example,
[13]) that the fundamental solution G(x− y) admits the following expansion if |y| > |x|:

G(x− y) = −
∞∑

n=0

n∑
k=−n

1

2n+ 1
Y k
n (x̂)Y k

n (ŷ)
|x|n

|y|n+1
.

So we have

F (x) =
∞∑

n=0

n∑
k=−n

1

2n+ 1
|x|nY k

n (x̂)a · ∇
(

1

|y|n+1
Y k
n (ŷ)

)
,

and hence

fk
n =

1

2n+ 1
a · ∇

(
1

|y|n+1
Y k
n (ŷ)

)
. (A.1)

We show that
n∑

k=−n

nr2n∗ |fk
n |2 → ∞ as n → ∞, (A.2)

and hence [GC1] holds. The following lemma is needed.

Lemma A.1 For any a and ŷ on S2 and for any positive integer n there is a homogeneous
harmonic polynomial h of degree n such that

a · ∇h(ŷ) = 1 (A.3)

and

max
|x̂|=1

|h(x̂)| ≤
√
3

n
. (A.4)
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Proof. After rotation if necessary, we may assume that ŷ = (1, 0, 0). We introduce three homoge-
neous harmonic polynomials of degree n:

h1(x) :=
1

2n
[(x1 + ix2)

n + (x1 − ix2)
n] ,

h2(x) :=
1

2ni
[(x1 + ix2)

n − (x1 − ix2)
n] ,

h3(x) :=
1

2ni
[(x1 + ix3)

n − (x1 − ix3)
n] .

Then one can easily see that

∇h1(ŷ) = (1, 0, 0), ∇h2(ŷ) = (0, 1, 0), ∇h3(ŷ) = (0, 0, 1).

So if we define
h = a1h1 + a2h2 + a3h3,

then (A.3) holds.
Since

max
|x̂|=1

|hj(x̂)| ≤
1

n
for j = 1, 2, 3,

we obtain (A.4) using the Cauchy-Schwartz inequality. This completes the proof. □
Let a and ŷ be two unit vectors, and let h be a homogeneous harmonic polynomial of degree

n satisfying (A.3) and (A.4). Then h can be expressed as

h(x) =
n∑

k=−n

αk|x|nY k
n (x̂),

where

αk =
1

4π

∫
S2

h(x̂)Y k
n (x̂)dS. (A.5)

Because of (A.3), we have

1 = a · ∇h(ŷ) ≤
n∑

k=−n

|αk|
∣∣a · ∇

(
|x|nY k

n (x̂)
)∣∣ .

So there is k, say kn, between −n and n such that

|αkn |
∣∣a · ∇

(
|x|nY kn

n (x̂)
)∣∣ ≥ 1

2n+ 1
. (A.6)

On the other hand, from (A.4) and (A.5), it follows by using Jensen’s inequality that

|αkn |2 ≤ 1

4π

∫
S2

|h(x̂)|2|Y kn
n (x̂)|2dS ≤ 3

n2
.

Thus we have ∣∣a · ∇
(
|x|nY kn

n (x̂)
)∣∣ ≥ n√

3(2n+ 1)
≥ C (A.7)

for some C independent of n.
Now one can see from (A.1) that

|fkn
n | ≥ C

n|y|n+1
(A.8)

for some C independent of n. Since |y| < r∗, we obtain that

n∑
k=−n

nr2n∗ |fk
n |2 ≥ nr2n∗ |fkn

n |2 ≥ C

n

(
r∗
|y|

)2n

→ ∞ as n → ∞,

as desired. It is worth mentioning that the constants C in the above may be different at each
occurrence, but are independent of n.
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