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Abstract  
A systematic study of optical and transport properties of the Hubbard model, 

based on the Metzner-Vollhardt dynamical mean-field approximation, is reviewed. 
This model shows interesting anomalous properties that are, in our opinion, 
ubiquitous to single-band strongly correlated systems (for all spatial dimensions 
greater than one) and also compare qualitatively with many anomalous transport 
features of the high-Tc cuprates. This anomalous behaviour of the normal-state 
properties is traced to a 'collective single-band Kondo effect', in which a 
quasiparticle resonance forms at the Fermi level as the temperature is lowered, 
ultimately yielding a strongly renormalized Fermi liquid at zero temperature. 
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1. I n t r o d u c t i o n  a n d  s u r v e y  

The discovery of the high-Tc superconductors based on CuO compounds [ 1] has led 

to a large amount of theoretical work about the peculiar properties of these materials. 

While initial work concentrated on explaining the anomalous high transition 

temperatures and possible exotic mechanisms for the superconductivity, it became 

obvious that an understanding of the superconducting mechanism is linked to an 

understanding of the anomalous normal-state properties of these compounds (for 

reviews of relevant experiments see [2]). Most prominent among these are the linear 

(in T) resistivity, a linear (in T) nuclear magnetic resonance (NMR) relaxation rate of 

the Cu spins, a Hall coefficient which is positive and goes through a (roughly) 

doping-independent maximum and a Hall angle cot OH = p ( T ) / R H ( T )  that grows like 

T 2 over a rather wide temperature region (figure 1 [3]). Furthermore, the optical 

conductivity shows a Drude peak with a width 1/z ~ T [4], consistent with the linear 

behaviour of the resistivity and a pronounced midinfrared peak at frequencies above 

the Drude peak (figure 2 [5]). 
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Experimental optical conductivity of T1BazCa2Cu309 (from [5]). Note the prominent 
midinfrared peak at about 1500 cm 1. 

Early on, it was argued [6] that most of these anomalous properties can be explained 

by two special features appearing simultaneously in these materials. 

(1) They are strongly correlated, that is their (effective) local Coulomb interaction 

is comparable with or larger than the characteristic kinetic energy of the relevant 

carriers. 

(2) They are highly anisotropic with the electrons confined to the CuO planes 

characteristic for these compounds. 

This mixture of strong correlations and effective two-dimensional (2D) character is 

unusual and can only be found (apart from the cuprates and other perovskites) in some 

uranium-based heavy-fermion compounds such as  UPt3.  The great interest in the 

high-temperature superconductors has led to a number of  interesting new theories 

which, although based on the assumption of strongly correlated carriers, focused mainly 

on the 2D character of the CuO planes. Most prominent are the concept of resonating 

valence bonds due to Baskaran and Anderson [7], recent efforts by Solyom [8] and 

Anderson [9] to understand the electronic properties phenomenologically in terms of 

a Luttinger-liquid fixed-point (known from the theory of one-dimensional (1 D) electron 

systems), the phenomenological marginal Fermi-liquid theory of Varma et al. [ 10], and 

the anyon concept emerging from a mapping of the 2D electron system onto a nonlinear 

o model due to Lee and Nagaosa [ 11 ]. While the second and third ansatze have not been 

ruled out, both the first and the last are insufficient to account for the experimental data 

of these systems. 

However, even in the theories of Anderson and of Varma et al. one needs additional 

assumptions about relaxation times [9] or dynamical quantities [10] to account 

consistently for all anomalies. Both theories also lack a thorough microscopic 

foundation. It is unclear how the special form of the single-particle self energy and the 

dynamical susceptibility (necessary for the marginal Fermi-liquid picture) will emerge. 

Even introducing a special three-body scattering vertex [12] does not resolve this 

difficulty, since it merely shifts the problem to another level. A foundation for 

Anderson' s Luttinger-liquid picture is even less firm. The special feature of 1D systems, 

namely that the exchange of charge over a given site is strongly hindered by the 

Coulomb correlations, while the exchange of spin costs almost no energy [13] (which 

leads to the strict separation of spin and charge degrees of freedom), may already be 
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absent in two dimensions, since a physical electron may move 'around'  any other via 

a path in the plane. Recent studies on the stability of the possible low-energy fixed points 

in interacting fermion models also suggest that it is the Fermi-liquid rather than the 

Luttinger-liquid fixed point that is stable in two dimensions (unless the small- 

momentum-transfer couplings become singular) [14]. 

There is another feature of  strongly correlated systems that is usually ignored in 

dealing with the cuprates. From the experimental and theoretical investigation of 

heavy-fermion compounds it is known that the strong correlations themselves already 

lead to anomalous features in the magnetic and transport properties of metals. These 

systems are usually three dimensional (3D) in nature and, despite their complicated 

band structure [15], one can explain their physical properties qualitatively (and to some 

extent even quantitatively) by merely taking into account one strongly correlated 

localized band hybridizing with one uncorrelated conduction band [ 16]. This suggests 

that the prominent anomalous features of  the heavy-fermion materials are intrinsic to 

the strong local correlations. Thus to understand unambiguously the origin of any 

anomalous behaviour in systems with strong electronic correlations, it is necessary to 

discriminate between those properties that are intrinsic and arise directly from the strong 

(local) electron-electron scattering, and those that are connected to the geometry of the 

underlying lattices, for example the 2D character of  the Cu-O planes in the cuprates. 

In previous publications [ 17, 18] we demonstrated that, even for the simplest model 

of strong local correlations, the single-band Hubbard model, interesting anomalous 

results for several different transport quantities occur which appear to be intrinsic 

properties of  strongly correlated systems. This latter statement is motivated by the fact 

that our calculations use the Metzner-Vollhardt 'dynamical mean-field approximation'  

(for a review of the d = ~ approach see [19]), which may be viewed as the fermionic 

equivalent of  the standard non-local mean-field description of models for magnetism. 

As is well known, such a 'proper '  mean-field description will in general reproduce the 

intr insic  features of  the underlying model. Fluctuation corrections should affect only 

phase transitions and the quantitative values of  temperature scales. 

In this review we present a more detailed discussion of the transport properties of 

strongly correlated systems described by the Hubbard model in equation (1) (section 

2). Special emphasis is placed on a thorough discussion of the variation in quantities 

with temperature and doping. We also try to make qualitative contact with recent 

experiments on optical and transport properties of the cuprates. The paper is organized 

as follows. In the next section an introduction into the underlying theory (the so-called 

dynamical mean-field theory) is given. We also give a brief account of  how the transport 

properties are calculated. In section 3 the systematics for several quantities as functions 

of temperature and doping are presented and compared with experiment. A discussion 

and outlook in section 4 conclude the review. 

2. Theoretical background 

The model discussed in this contribution is the single-band Hubbard model [20] 

n = Z ~kckacka -~- U Z ni~ni$. (1) 
ka i 

Our notation is the following: c ~  is the creation operator for an electron in a Bloch state 

with wave-vector k and z component of  spin a, and ni~ is the electron number operator 

for electrons localized at lattice site i with spin a (i.e. the number operator for electrons 

in Wannier orbitals centred at lattice site i). For simplicity we restrict ourselves to a 
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simple hypercubic lattice (in d dimensions) with lattice constant a and nearest- 

neighbour transfer t, that is zk = - 2 t Z ~ _  ~cos (kia); U denotes the local Coulomb 

repulsion. The energy scale is set by 4dP = : t .2 (this is the required scaling for 

non-trivial results as d---> oo) and the quantity t* is thus an appropriate unit for the 

energy. For the cuprates, the width of the lower Cu band is often taken to be about 

0.5 eV. I f  this corresponds to the lower Hubbard band, with a width of about 2t* 

(cf. section 3.1), then t* ~ 0 . 2 5 e V .  

The Hubbard model is perhaps the simplest model of a correlated electronic system, 

since it consists of  a single band of delocalized electrons subject to a local Coulomb 

interaction. It is easier therefore to discriminate between intrinsic effects of the 

correlations (induced by the Coulomb interaction) from band-structure effects. 

Obviously, a more realistic description of a condensed-matter system must take into 

account the existence of more than one band, hybridizations between different bands, 

and also additional local and long-range Coulomb interactions. However, these more 

realistic models may be mapped onto the Hubbard model (1) when excitations into these 

other bands occur only virtually, leading to renormalized values for, for 6xample ek [21 ]. 

Since the purpose of the present contribution is to identify effects intrinsic to the local 

correlations, these other interactions may be neglected. 

Models of interacting electrons on a lattice are difficult to solve because they include 

both local and non-local parts in the Hamiltonian. The fundamental quantum-mechan- 

ical principle of  complementarity implies that one cannot expect to describe such a 

system by either purely localized or purely delocalized states. Approximations starting 

from either side (i.e. bandwidth/U ~ 1 or bandwidth/U >> 1) are not generally applicable 

to the intermediate regime (bandwidth ~ U). To obtain sensible results for the Hubbard 

model in this intermediate regime, the Hamiltonian (1) is usually studied with exact 

diagonalization techniques [22] or quantum Monte Carlo (QMC) methods (for example 

[23]). Both methods share the problem that they can only be applied to comparatively 

small system sizes (about 20 sites in exact diagonalization and about 100 sites in QMC 

(for not too low temperatures)). This restriction seriously affects any attempt to 

determine low-energy low-temperature properties and makes the calculation of  

dynamical quantities and transport properties difficult. An ansatz is therefore needed 

to calculate different physical quantities of  strongly correlated systems that firstly 

maintains the important local correlations and secondly allows calculations to be 

performed in the thermodynamic limit. 

Such a method was proposed by Metzner and Vollhardt [24] and Mtiller-Hartmann 

[25] who observed that the renormalizations due to local two-particle interactions like 

the Hubbard U become purely local as the coordination number of  the lattice increases. 

More precisely, the irreducible single-particle self-energy Xk(z) and the irreducible 

two-particle self-energy F~,k + q(Z, Z') both become independent of  momentum for large 

coordination numbers (2d---~ ~ ) [25, 26]: 

lim [Xk(z)] = 2;(z), 
,t~ ~ (2) 

lim [l'k.k+q(Z,Z')] = F(Z,Z'). 
d - - )  ~ 

One can use standard techniques of  field theory to show that the second relation in 

equation (2) is a necessary consequence of the first for all two-particle self-energies 

[26]. A further consequence of the first relation is that the solution of the Hubbard model 

may be mapped onto the solution of a local correlated system coupled to an effective 

bath that is self-consistently determined by the following five-step process [26-31]. 
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(1) Choose a suitable starting guess for the local self-energy S(z). 

(2) Calculate the local single-particle Green function from its Fourier transform: 

1 S" 1 (3) 
Gu(z) 

~'( [G (k°)(z)] - 1 _ S ( z ) '  

with G(km: = 1/(z + # -- ek) the non-interacting momentum-dependent Green 

function. 

(3) Obtain the effective medium, denoted by fg(z), by subtracting off  the local 

correlations from the Coulomb interaction at site i: 

[ ~ ( Z ) ]  -- 1: = (Gii)- 1 71_ S ( Z ) .  ( 4 )  

(4) Solve the local impurity problem defined by the effective medium N(z) and the 

local Coulomb interaction Uni~'ni.; at site i (via an exact quantum Monte Carlo 

algorithm, or an approximate algorithm based upon a diagrammatic analysis) 

to obtain a new local single-particle Green function G(z). 

(5) Obtain a new self-energy via S ( z ) =  [G(z)] l _  [f#(z)]- 1 and repeat steps 

(2)-(3) until the local Green functions are identical between two successive 

iterations (Gii(z) = G(z)). 

This mapping onto a local problem coupled to an effective bath is reminiscent of  

the standard mean-field description of spin systems. As is well known, such a theory 

emerges systematically from the same limit of  large coordination number [32]. One 

major difference between electronic models and spin models is that in the former the 

Coulomb interaction introduces a non-trivial local dynamic that is preserved in 

the mean-field approach. The molecular field for the electronic mean-field theory is not 

a constant number but is instead a function of the energy, and hence the name 

'dynamical mean-field theory' .  These local electronic mean-field theories have a rich 

history, dating back to the Migdal-Eliashberg [33] theory of superconductivity; 

Metzner and Vollhardt [24] were the first to realize that these mean-field theories 

become exact solutions in the limit of  infinite dimensions.? 

Although the solution of the effective local system is still a highly non-trivial matter, 

it has the great advantage that one is able to work directly in the thermodynamic limit. 

Note that the lattice structure has not been completely eliminated from the problem. 

It enters indirectly via the free density of  states (DOS), when momentum summations 

are converted to energy integrals, and it enters in the evaluation of susceptibilities, 

which soil maintain a (weak) momentum dependence. 

Three methods have proven to be most successful in solving the remaining local 

problem: a QMC scheme based on the work of Hirsch and Fye [34], (see also [30, 35]), 

a perturbational method known as the non-crossing approximation (NCA) [36] and the 

so-called iterated perturbation theory based on low-order expansion of Z(z)  in U 

[31,37]. The latter is, however, strictly limited to the case (n} = 1 [38] and thus of no 

use for our purpose. The remaining two methods have of course also both their merits 

and disadvantages and may be viewed as complementary to each other, providing a 

means of accessing many different quantities of interest. A more detailed discussion 

of the limitations of  both approaches can be found in our earlier publications [17, 39]. 

t The Migdal-Eliashberg dynamical mean-field theory becomes exact only in the limit of 
small phonon frequency. If the phonon frequency is large enough, vertex corrections must be 
included in the dynamical mean-field theory. 
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Figure 3. Diagrammatic representation of the first two contributions to the conductivity. 
The second diagram contains a full particle-hole vertex insertion. The latter is momentum 
independent, that is the k sums on both sides can be performed independently. Since the 
current vertex and the single-particle Green functions are of different parities (with respect 
to their k dependence), the second and all higher-order diagrams identically vanish. 

Knowledge of the single-particle self-energy and the local two-particle vertex 

functions (which can also be determined from the same local problem) enables one to 

calculate physical quantities. As an illustration of this, an extended discussion of 

magnetism in the Hubbard model may be found in [39-4 1 ]. Other quantities of  interest 

include the transport coefficients, the optical conductivity, the thermopower and the 

Hall coefficient. For example, the conductivity can be calculated exactly in 

the dynamical mean-field theory by the following procedure: figure 3 shows the 

leading diagrams in the expansion of the conductivity. As was discussed earlier, the 

particle-hole vertex appearing in the second and all higher-order diagrams is 

momentum independent. This means that the k sums on the left and right end of all 

diagrams, except for the simple bubble, may be performed independently. Since the 

current operator contains the k gradient of  the kinetic energy, and the Green functions 

are k dependent only through eu, these sums identically vanish. Thus the conductivity 

is given by the simple bubble only [17, 42, 43]. The evaluation of the bubble leads to 

axx(09) = he2 ( ~  d~ f(~) - - f ie  + 09) 1 S '  (Oek] 2 
Ak(e)Ak(e + 09), (5) 

2ha J_ ~ 09 19 ~'~ \Okx/ 

which reduces to 

= e2x f °~ de { -  OJ(e)] l  (0ek] 2 

2ha J -  o~ \ 05 / N ~ \Okx/ [Ak(~)]2' (6) 

for the dc conductivity, where a is the lattice constant, the spectral weight satisfies 

Ak(09): = - - ( l / x ) I m  [Gk(09)], andf(~): = 1/[1 + exp (fie)] is the Fermi function. With 

hie 2 ~  2.6 × 10 4 f~ the constants in front of  equation (6) can be evaluated to yield 
a0 ~ 1 0 - 3 _ 1 0 - 2 p f ~ - l c m  1 

The Drude weight D may be determined by extrapolation of the Matsubara- 

frequency current-current correlation function using the method proposed by Scalapino 

etal.  [44]. This method sets a criterion to determine whether the ground state of  a system 

is a metal, insulator or superconductor, by determining the asymptotic form of the 

current-current susceptibility in the x direction, Axx(q, iVn) where vn = 2n~T. 

Specifically, the Drude weight D is given by 

D = 7t lim [( - Tx)e 2 - A~x(q = 0, 2~iT)]. (7) 
T---~ 0 

Here, ( - Tx) is the average kinetic energy per site, divided by the number of  lattice 

dimensions. 
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Comparison of equations (5) with the standard expressions for transport coefficients 

[45] in the relaxation-time approximation shows that a variety of other transport 

coefficients may be calculated if one identifies 

rxx(e): = ~ \Okx/ [Ak(e)]2 (8) 

as the transport relaxation time. For example, the electronic contribution to the 

thermopower becomes [43, 45] 

kB _ L12 kB 
S = - ]e-~ fl ~ '  le] -- 86 I, tV K -  1, (9) 

where Ljk are the standard transport integrals 

Ljk = de _ Of(e)_ zj(e)e ~ - 1. (10) 
- ~  O e /  

It is known from studies of  heavy-fermion systems that the relaxation-time 

approximation is sufficient to understand most zero-field properties. The Hall 

coefficient, however, is more sensitive to the approximations involved. Within the 

standard relaxation-time approximation the Hall coefficient satisfies 

1 Lli 

RH -- _ ]e I L21" (11) 

Note that both Lli and L21 are positive, implying that the Hall coefficient is always 

negative and that the transport is electron like. Experiments, on the other hand, show 

that Rn can change sign in intermediate or low-temperature regions, and that the Hall 

coefficient is usually positive with an anomalous temperature dependence. An 

explanation for this theoretical deficiency was proposed by the phenomenological 

introduction of a 'skew-scattering' term [46]. However, a more refined treatment of the 

field-dependent conductivity can be performed [47]. The result is 

~xyH _ _  2rt2ie] 3aB lot d~o (0f(~o)~ 1 ~ (0ek~ z 02ek 3 

3h 2 \0~-~ I N - ~  \OkJ 
_ ~ ~ [Ak(~o)] (12)  

for the Hall conductivity. Here, B is the external magnetic field which points in 

the z direction. The constants in equation (12) can be rearranged according to 

]el3aB/h 2 = aolelaZB/h and ]ela2B/h-~ 10-SB (1 /T-  '). Inserting the values for a0, we 

obtain RH = a~y/aZx-~ 10-s -10-9B(m 3 cT-1) as the unit for the Hall coefficient. 

In the limit of large coordination number, and for a simple hypercubic lattice, the 

k sums in equations (8) and (12) can be further simplified to yield 

1 (Oek]2K(ek) 2 f ~  
N ~  \Okxl =~1 _~ deNo(e)K(e) (13) 

and 

fo~ 1 (Oek~ 2 02e~ 1 
d~ No(e)eK(e), (14) 

with K(ek) an arbitrary function depending on k through ek only, and 

N0(c): = exp [(e/t*)z]/~(llZt*) the non-interacting DOS. 

Examination of equations (5) and (12)-(14) shows that the electronic conductivity 

is a 1/d effect and that the Hall effect enters to order 1/d 2. In our calculations we 



Properties o f  high-To superconductors 195 

determine lowest-order quantities and calculate the coefficient of the 1/d term for axx 

and the coefficient of the 1/d 2 term for axy (i.e. a~--+daxx and ~xy---->dZcTxy). 
Note, however, that RH = axy/aZx enters to zeroth order and requires no rescaling! 

Another important probe of the high-temperature superconductors involves NMR. 

The spin-lattice relaxation time T1 characterizes the time needed to align the nuclear 

spins along the direction of the field. The local NMR relaxation rate satisfies 

1 

T1 co--> 0 

where Z(0)) is the local dynamic spin susceptibility. Similarly, the spin-echo decay rate 

(or transverse nuclear relaxation rate) T2~ is another probe of the spin dynamics in the 

cuprates. T2G satisfies a more complicated relation [48, 49] 

with z(k) the static momentum-dependent spin susceptibility, C an overall normaliza- 

tion factor and F(k) the relevant form factor. The form factor involves the local site and 

the nearest-neighbour shell and assumes the form 

2t 
F(k) = 1 + y ~ ek, (17) 

in infinite dimensions. Here, 3: is a constant of  order 1. The static susceptibility turns 

out to be a function of - ek/d 1/2 = :X (in infinite dimensions), with X = 0 corresponding 

to the local susceptibility. The integrals over the form factors can be performed, to yield 

1 ~2 C(272z2(X:O)  1 dz(X) 2 ~ (18) 

=d -2 x=o: 

The inverse spin-echo decay rate is a 1/d 1/2 effect in infinite dimensions, and it is 

effectively proportional to the local susceptibility, since the derivative of the 

momentum-dependent susceptibility with respect to X is an order of  magnitude smaller 

than the susceptibility itself in the region of interest (see, for example, figure 1 of  [40]). 

In fact, we neglect the derivative term when evaluating T2~ (T2c ~ 1/)~(X = 0)). 

3. Discussion of  the results 

3.1. Single-particle properties 

3.1.1. Theory 
Before we present results for the transport properties, we shall summarize some of 

the basic physics in the Hubbard model that is obtained from the dynamical mean-field 

theory. The Coulomb parameter U is fixed at U = 4. This choice may appear to be 

arbitrary at a first glance especially since it lies close to the Mott phase boundary, but 

the main effect of  U (when one is off half filling and is in the strong-coupling regime) 

is to determine the characteristic low-energy scale [39], and U = 4 is a convenient 

choice for numerical and presentational reasons. 

As the temperature is lowered, the Hubbard model in infinite d is found to always 

be a Fermi liquid [11,30], except for the region of phase space where it is magnetic 

[40, 41]. A Fermi liquid is defined by a self-energy that has the following structure: 

Re [22(09 + i0+)] = Re [22(0)] + co(1 - Z )  + O(0)2), 
(19) 

Im [Z(0) + i0 + )] = - F + 0(0)2), 
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Figure 4. Single-particle DOS of the Hubbard model for different dopings 6 = 1 - (n) at an 
inverse temperature fl = 43-2. At half-filling (6 = 0) the DOS has a gap between the lower 
and upper Hubbard bands. Away from half-filling a resonance occurs at the chemical 
potential in addition to the lower and upper Hubbard bands. This resonance becomes 
broader with increasing 6 and finally merges with the lower Hubbard band. The broken 
curve at 6 = 0 displays the (shifted) non-interacting DOS. 

with F oc T 2 for temperatures T ~  To, the characteristic low-temperature scale. (The 

effective Fermi temperature To decreases to zero as half  filling is approached whenever  

U is larger than the critical value for the Mott  transition [18], and the Fermi-liquid- 

theory form of  equation (19) still holds for  moderate temperatures, with the only change 

being that F ~ T for T >  To.) The spectral weight  then assumes the form 

1 F 
Ak(co) 7Y / ' 2  _.~ ( c o Z  d- 8 F - -  8k) 2 "[- --In.../_l.k c~CO), (20) 

with the Fermi level defined by eF: = # -- Re Z(0) and A~nc(co) denoting the (rather 

structureless) incoherent contributions to the spectral function. The spectral function 

includes a delta function at zero temperature (Ak(co)--> 6(coZ + e F -  ek)+A~n°(co)) 

because the broadening F vanishes in that limit. The single-particle DOS N(co) is 

defined to be the integral o f  the spectral function over all momentum:  

N(co): = ~ Ak(co). (21) 
k 

Figure 4 shows the evolution o f  the single-particle density o f  states as a function 

of  doping for a fixed temperature (fl = 43.2). In addition, the (shifted) DOS for the 

non-interacting system has been added for comparison (broken curve at 6 = 0). 

At half-filling, the doping satisfies 6 = 0, and the system shows a pseudo-gap in the 

DOS. Very similar results are seen in iterated second-order perturbation theory [37]. 

Note that the lower and upper Hubbard bands centred at co --~ _+ U/2 have the same 

approximate width as the free DOS but are decreased by a factor o f  two f rom the 

unperturbed height owing to the correlations. A w a y  from half-filling (6 ~ 0), a sharp 

resonance appears near the chemical  potential. As the doping 6 increases, the width o f  

this resonance also increases and it starts to merge with the lower Hubbard band. 

For dopings 6 > 0.4 both low-energy peaks become indistinguishable, implying that the 

system has become an uncorrelated metal. The upper Hubbard band seen in figure 4 

is, on the other hand, well separated from the low-energy excitations by a pseudo-gap 

of  order U and thus contributes only to high-energy features in for example the optical 

conductivity [17]. 
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Figure 5. (a) The evolution of the density of states when U = 4 and 6 = 0.188. The development 
of a sharp peak at the Fermi surface is correlated with the reduction of the screened local 
moment Tzu(T), as shown in the inset. Hence the development of the peak may be 
associated with a resonant Kondo screening of the spins. (b) The real and imaginary parts 
of the self-energy for various temperatures when U = 4 and 6 = 0-188. Note that as the 
temperature is lowered, Im [S(co)] becomes parabolic in 09, indicating the formation of a 
Fermi liquid. 

F igure  5 col lects  the behav iour  o f  the D O S  (figure 5 (a))  and the real  and imag ina ry  

parts o f  the s ingle-par t ic le  se l f -energy (figure 5 (b)) as the temperature  is reduced  at 

f ixed doping  (6 = 0.188). The  resonance  at /2 appears  to be s t rongly tempera ture  

dependent ,  vanishing as T increases.  For  low temperatures  T ~  To, the peak  is centred 

near  the chemica l  potential ,  and the height  saturates to the value o f  the non- interact ing 

DOS No(cO = 0) = 1/rt 1/2 ~ 0.56. The  upper  bound  for  the local  DOS fo l lows from the 

fo l lowing  s imple  argument  (that does  not require  Fermi- l iqu id- theory  behaviour) .  S ince  

the se l f -energy is k independent ,  the interact ing DOS m a y  be writ ten as 

N(cO)= f _oo d No( ) (-1)  Im (22) 

with ~: = cO - S(cO + i0 + ) being a complex  number .  A p p l y i n g  the mean-va lue  theorem,  

we obta in  

N(co) = N0(¢) de - Im = No(~) ~< N0(0), 
c~ 

(23) 

with a sui tably chosen ~. This impl ies  that we must  a lways  have N(co) ~< N0(0) = 1]7~ 1/2, 

but it does not tell  us whether  and where  this max ima l  value  will  be reached (al though 

the m a x i m u m  is at tained at co = - eF/Z as T--+ 0 for a Fermi  liquid). Since, on the other  

hand, the local  D O S  is obta ined  f rom an effect ive s ingle- impur i ty  Anderson  model ,  we  

expect  strong resonant  scattering at # in the corre la ted  l imit ,  that is the sys tem tends 

to provide  a large DOS near the Fermi  level.  However ,  it  cannot  bui ld  up a D O S  
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Values of the Kondo scale To for different dopings when U = 4. 

6 = 1 - (n) To 

0-0680 0.0177 
0.0928 0.0273 
0.1358 0.0478 
0.1878 0-0730 
0-2455 0.1074 

everywhere, but has to adjust itself in such a way that the sum rule in equation (23) is 

fulfilled. The system therefore satisfies a delicate self-consistent Friedel sum rule. 

The development of the observed resonance as T---~ 0 is accompanied by a strong 

reduction is the effective local magnetic moment T)~ii(Z) (see inset of figure 5 (a)). This 

simultaneous appearance of the resonance at # and vanishing of the effective local 

moment suggests that this effect may be attributed to a Kondo-like quenching of the 

local magnetic moment in the system [18, 39]. The corresponding low-energy scale, 

which also sets the width of the resonance at/2 seen in figures 4 and 5, may be estimated 

from 1/Zii(T = 0) and is given in the table. Note, however, that unlike conventional 

Kondo systems described by Anderson's model, where one uncorrelated band couples 

to a localized correlated state, leading to the quenching of the latter's moments, there 

exists only one type of electron in the Hubbard model (1) which provides the band that 

is used to quench its own moments. This is a new effect which we propose to be called 

the 'collective single-band Kondo effect'. 

We can also examine the spectra obtained from the self-energy by angle-resolved 

photoemission spectroscopy (ARPES). Although it is a crude approximation, we 

assume that the local self-energy describes the self-energy of a two-dimensional 

Hubbard model on a square lattice. Taking a cut along the F - M  direction in the Brillouin 

zone we obtain the spectra shown in figure 6 for U = 4,/~ = 43.2, (n) = 1 (figure 6 (a)) 

and (n )=0 .8122  (figure 6(b)) (note that this approximation does not distinguish 

between a cut along the diagonal F - M  or along the kx and ky axes U - X - M  because the 

self-energy is local and does not depend upon k). While the system is clearly insulating 

and not Fermi liquid like at half-filling, a typical quasiparticle peak appears when the 

Fermi surface is crossed away from half-filling. In addition two strongly damped bands 

(the lower and upper Hubbard bands) can be seen at higher energies in both figures. 

When the data in figure 6 (b) is multiplied by the Fermi function (at/~ = 43-2), one 

arrives at the typical ARPES result in figure 7. This is quite analogous to what is seen 

in QMC simulations for true 2D clusters [51]. 

Using the peak positions in figure 6 as a definition of the quasiparticle energies Ek, 

yields the band structure shown in figure 8. At half-filling (figure 8 (a)) there are two 

cosine-like bands below and above/2, which represent the lower and upper Hubbard 

bands respectively. They are separated by an indirect gap of order U/2. Away from 

half-filling, the upper and lower Hubbard bands are flattened relative to their values at 

half-filling (with the most flattening occurring near the Fermi level). In addition, a 

dynamically generated flat quasiparticle band can also be seen. This band is the flattest 

of the three and has a surprisingly small dispersion near the X point, which compares 

qualitatively with those obtained for small 2D Hubbard-clusters [51,52], and supports 

the conjecture that the dynamical mean-field theory already gives an accurate picture 

for the single-particle properties down to d = 2. Note that the flatness near the X point 
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Figure 6. Angle-resolved spectra for U = 4,/? = 43-2 and (a) (n) = 1 and (b) (n} = 0.8122 along 
the F-M direction of a 2D Brillouin zone. As expected at half-filling, the system shows 
a gap at/~ throughout the entire zone. Away from half-filling a quasiparticle peak develops 
when the Fermi surface is crossed. In addition, there are strongly damped features at the 
position of the upper Hubbard band. The data for half-filling were obtained with the NCA. 

arises from both the flatness of the non-interacting band structure, and the many-body 

renormalizations that reduce the quasiparticle band width. 

3.1.2. Experiment 
Only qualitative comparisons can be made between experimental photoemission 

spectroscopy (PES) and inverse photoemission spectroscopy (IPES) and theoretically 

generated spectra, because the experimental resolution broadening, the selection rules 

for the matrix elements, and the internal dynamics of the scattering and relaxation 

processes ultimately alter the experimentally measured spectrum from its theoretical 

counterpart. In addition (with the exception of first-principles calculations), simplified 

electronic models are used that are restricted to specific energy regions (mostly the 

low-energy regions). Nevertheless one may at least identify certain features of  

the model with trends found in experiments. 

The spectra measured by PES and IPES of the cuprates have as their most interesting 

trend an increase in spectral weight close to the valence band of the insulating parent 

compound as the system is doped (for a review see [53]). This behaviour is completely 

different from what one expects in a simple rigid-band picture in which the spectrum 

should be insensitive to doping with only the Fermi energy changing. Obviously, a 
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Figure 7. The data in figure 6(b) for F-M multiplied by the Fermi function (at fl = 43.2) and 
restricted to the low-energy part (a.u., arbitrary units). This is the type of spectrum that 
would typically be observed in an ARPES experiment (for example [57]). Data for k 
beyond 0.4(rt, ~) were dropped because these features are cut off by the Fermi function. 

similar trend is observed in the theoretical spectra where the quasiparticle resonance 

due to the collective Kondo effect develops right at the top of the lower Hubbard band 

as the system is doped (see figure 4). 

The quasi-2D nature of the cuprates is especially appealing to the application of 

ARPES measurements. Accordingly the cuprates have been exhaustively studied with 

this technique [50, 54-57]. The general behaviour found for the low-energy portion of 

the ARPES results agrees with our results in that an experimental feature that might 

be identified with the quasiparticle peakt  crosses the Fermi level in the F - M  direction 

just like the theoretical result in figure 7. Assuming the low-energy excitations to be 

Fermi liquid like [58] produces a quasiparticle band structure that also shows flat bands 

near the X point of the Brillouin zone [57, 69, 60] identical with the theoretically 

generated quasiparticle band in figure 8. Since our results were obtained within a 

dynamical mean-field theory that is rather insensitive to details of  the underlying lattice 

structure, the agreement between experiment and theory is strong evidence that the 

low-energy single-particle dynamics are produced by strong electronic correlations 

independent of  the dimensionality! 

3.2. Optical conductivity 

3.2.1. Theory 

The optical conductivity t-(co) is another important probe of a strongly correlated 

system. It measures the rate at which electron-hole pairs are created by photons of  

frequency ~o. Figure 9 shows the results [61 ] for a(co) obtained from equation (5) when 

6 = 0.068 for a variety of  temperatures (figure 9 (a)) and results f o r / / =  43.2 and various 

dopings 6 (figure 9 (b)). The Drude peak at o9 = 0 develops with decreasing temperature. 

In addition there appears a small midinfrared peak at co ~ 1. As shown in figure 9 (b), 

t The assumption of this peak being Fermi liquid like is still heavily discussed (for example 
[50, 58]). 
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Band structure for the Hubbard model obtained from the self-energy in figure 6. 

this peak is more pronounced for small 8 but remains visible even at larger doping. 

In addition, it is strongly temperature dependent and clearly visible only for the lowest 

temperatures. We attribute it to excitations from the lower Hubbard band to the 

quasiparticle band at the chemical potential. The last feature in a (~)  is a roughly 

temperature-independent peak at co ~ U owing to the charge excitations from the lower 

part of  the spectrum, that is from the lower Hubbard band and the quasiparticle peak 

at #, to the upper Hubbard band (cf. figure 5). 

The insets of  figure 9 show the development of  the Drude weight as obtained from 

equation (7) as a function of doping (figure 9 (b)) and the width of the Drude peak as 

function of temperature (figure 9 (a)). The latter was obtained by fitting the generic form 

O T 
o- (o .~  - - +  O )  - - -  - -  ( 2 4 )  

rt 1 + "gZfD2 

to the low-frequency regions in figure 9 (a). The Drude weight initially increases 

linearly with 6 and then saturates to its maximal value at 6 ~ 0.5, before decreasing. 

This behaviour can be understood in terms of  a simple picture. The Drude weight is 

determined by the carrier density and effective mass via D ~ n/m*. From the doping 

dependence of the quasiparticle peak in the spectra in figure 4, one may assume that 

m * - l ~  6. The carrier density, on the other hand, is given by n ~ 1 - - 6 ,  that is 

D ~ 6(1 - 6). This expression explains the behaviour for small doping as well as the 
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Figure 9. (a) Optical conductivity against co for various temperatures when 6 = 0.068. Note 
that at low temperatures, when the Kondo peak becomes pronounced in the DOS, a 
midinfrared feature begins to appear in a(og). As shown in the inset, if we fit these data 
to a Drude form, then the width of the Drude peak is found to increase roughly linearly 
with T. (b) Filling dependence of the optical conductivity when U = 4 and fl = 43.2. 
Note that for larger 6 the midinfrared and Drude peaks begin to merge, so that the latter 
is less distinct. The inset shows the evolution of the Drude weight D as a function of doping. 
D is determined by the extrapolation method of [44]. 

maximum, which should lie at •max ~ 0"5, and explains how the character of  the carriers 

changes from being hole like near half-filling to being electron like at low densities. 

The width 1/z of the Drude peak displays a linear behaviour 1/z ~ T for T ~  < 0.1. 

This dependence may be traced back to the development of the Kondo peak below To. 

Note that the intercept of the linear region does not lead to 1/z o 0 as T o  0 as required, 

implying that for very low temperatures the Drude width decreases more rapidly 

(1/z - -  T2), as expected for a Fermi liquid. 

3.2.2. Experiment  

When one tries to make contact with experiment, care has to be taken about the 

energy scales. The single-band Hubbard model should only be used to describe 

low-energy features of the cuprates [63]. It does not make sense to use our results 

beyond ~o ~ 2 in a comparison with experimental data because the higher-energy bands, 

corresponding to the charge-transfer insulating behaviour of the parent compounds, 

have been neglected in the mapping to a single-band Hubbard model. 

Two types of experiment have been performed to determine the optical conductivity 

of the cuprates: a Kramers-Kronig analysis was employed to extract o-(09) from 

reflectivity measurements [4, 5, 63-65]; photoinduced absorption has also been used 

[67, 68]. These experiments yield five low-energy trends. 

(1) The midinfrared peak maximum moves to lower frequency and merges with 

the Drude peak as the doping increases; its spectral weight grows very rapidly 

with doping. 
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(2) At a fixed value of doping, spectral weight rapidly moves to lower 09 as T---~ 0, 

but the total weight in the Drude plus midinfrared peaks remains approximately 

constant; the width of the Drude peak decreases linearly with T. 

(3) The insulating phase has a charge-transfer gap; upon doping, the optical 

conductivity initially increases within the gap region. 

(4) There is an isosbestic point, or nearly isosbestic behaviour (in the sense that 

the optical conductivity is independent of doping) at a frequency that is 

approximately half the charge-transfer gap. 

(5) More than one peak is observed in the midinfrared region. 

Most of these trends are observed in the theoretical model; the midinfrared peak is 

observed to move to lower frequency and merge with the Drude peak as a function of 

doping, the optical conductivity rapidly increases within the gap region as the system 

is doped, and there is an isosbestic point at a frequency co ~ 2. In addition, spectral 

weight is transferred to lower frequencies as the temperature is decreased, and the Drude 

width depends linearly on the temperature for a wide range of T, but the total 

Drude plus midinfrared spectral weight increases as T---~ 0. The theoretical model also 
does not display multiple midinfrared peaks. 

These experimental features in the optical conductivity are usually attributed to 

either phonons or impurities but, judging from our results, the low-energy feature may 

also be due to excitations from the lower Hubbard band to a dynamically generated 

quasiparticle band at the chemical potential, that is connected to local or short-range 

spin fluctuations similar to those responsible for transport anomalies in the 

infinite-dimensional periodic Anderson model [43]. Let us stress, however, that we do 

not want to make the point that one is able to explain the normal state of the cuprates 

in all respects quantitatively by studying the single-band Hubbard model in the 

dynamical mean-field theory. We do think that our calculations display the underlying 

physics that drives the anomalous features found in the normal state of the cuprates, 

and they determine the order of  magnitude of the corresponding temperature scale. 

3.3. Transport coefficients 

3.3.1. Theory 
The creation of a dynamical low-energy scale, such as the Kondo temperature 

observed in the Hubbard model above, is known to be accompanied by interesting and 

anomalous features in transport coefficients. In our previous studies we alread~¢ 

described the resistivity and NMR relaxation rate as striking examples for this 

behaviour. Figure 10 summarizes these results. Most prominent is the pronounced linear 

region in p(T) which increases with increased doping. The slope of this region is 

proportional to 1/6 as shown in the inset in figure 10 (a). The thermal conducfivity tc 

was also calculated; however it is not plotted, since to a very good approximation, it 

follows the Wiedemann-Franz law ~c cc T/p. Figure 10 (b) presents the results for the 

NMR relaxation rate 1/T1. Here, too, a rather anomalous variation with both temperature 

and doping is found. A linear region in 1/Tl develops as the doping increases, and the 

slope changes sign for 6 ~ 0 . 1 5 .  The doping dependence of 1/T1 is reduced as 

the temperature increases but does not disappear at the temperatures that can be reached 

by the numerical analytic continuation. 

It has been recently argued that the constancy of the ratio TIT/T2o is a test for the 

quantum critical region of the 2D Heisenberg spins in the Cu-O planes of the cuprates 

[68] (even though this theory neglects the charge degrees of  freedom, assuming that 
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Figure 10. (a) Resistivity against temperature for several different dopings when U = 4. 
The open (filled) symbols are for NCA (QMC) results. There is essentially exact agreement 
between the NCA and QMC data for high temperatures. The slope in the linear regime, 
determined by a linear least-squares fit, increases linearly with 1/6 as shown in the inset. 
The units on the vertical axis are approximately 10 3 ~ cm. (b) NMR relaxation rate 1/T~ 
against temperature for different dopings at U = 4t*. The lines are linear fits in the 
anomalous region. 

the most  important effect of  the holes is to add disorder into the spin system). However,  

as seen in figure 11, this ratio also becomes flat at intermediate temperatures within the 

dynamical  mean-field theory in infinite dimensions.  The constant  value of  the ratio 

T1T/T2c increases with increasing doping but  does not change significantly for the 

lowest values of the doping. 

Final ly  we want to report calculations of two other interesting transport coefficients, 

namely  the thermopower S and the Hall coefficient RH. The strange behaviour  of the 
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Figure 11. Ratio of the longitudinal (TO to t r a n s v e r s e  (T2g ~ 1/Zlo~ ) NMR relaxation rates 
multiplied by T. Note how this ratio becomes flat at intermediate values of T, which is 
supposed to be a signal for the quantum critical regime. The constant value of this ratio 
increases with increasing doping but is nearly constant near half-filling. 
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Figure 12. (a) Thermopower and (b) Hall coefficient for four different dopings 6 as functions 
of temperature. In (b), the open symbols (broken curves) are QMC (NCA) results and in 
(a) the solid curves come from a fit to the QMC data (open symbols). In the inset of (a), 
the Hall coefficient RH(T = 0.1852) at a fixed temperature is plotted against 1/6, indicating 
that RH(T = 0-1852) increases roughly in proportion to 1/6, consistent with experimental 
results for the cuprates [70]. The units on the vertical axis are approximately 86 txV K -  1 

for the thermopower in (a) and 10 -9m3 C-1 for RH in (b). 

latter gave rise to a number of speculations about different scattering mechanisms for 

transport with and without a magnetic field [69] and it is thus interesting to look at the 

behaviour of  this quantity within our scheme. Figure 12 compiles the results for S 

(figure 12(a)) and RH (figure 12(b)) for four different dopings as functions of  

temperature. The thermopower shows the sign change at intermediate temperatures that 

is characteristic of  correlated materials. The Hall coefficient, in figure 12 (b), is more 

interesting. It is positive for high temperatures and displays a maximum at intermediate 

temperatures, followed by a strong decrease for lower T, eventually becoming negative 

(qualitatively similar features have been seen in simulations of the 2D Hubbard model 

[71 ]). Interestingly, the position of the maximum is weakly sensitive to doping while, 

as shown in the inset, its height roughly decreases with increasing doping like RH -- 1/6. 

Finally, we show the quadratic behaviour of  the Hall angle (cot OH = Pxx/Pxy = 1/1~, 

where # is the charge carrier's mobility). The Hall angle is calculated with the NCA 

so that a dense set of  points may be presented at high temperatures, where the analytical 

continuation of QMC data becomes numerically expensive. Here the agreement 

between the NCA and the QMC data is essentially exact (cf. figure 12). Figure 13 plots 

the inverse mobility as function of temperature for two dopings (cf. figure 1 for typical 

experimental temperature and doping dependence in the cuprates). The Hall angle is 

plotted as a function of T 2 in the inset of  figure 13. It shows a roughly linear behaviour 

on this scale. 
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Figure 13. Inverse mobility 1//~ = p/RH = cot O H calculated with the NCA for two dopings as 
function of T for large T. The NCA was used since it is essentially exact at these 
temperatures (cf. figure 12), and significantly less computationally expensive, thus 
allowing us to present a dense data set. In the inset the Hall angle cot OH is plotted as a 
function of T 2. Note the apparent linear behaviour. 

3.3.2. Experiment 

As we have pointed out [18], the theoretical behaviour is consistent with 

the normal-state properties of  hole-doped high-Tc compounds. As is well known, the 

experimental trends observed include the following [2, 70] (cf. also figure 1). 

(1) A (sub)linear variation in the resistivity occurs with temperature, the slope or 

absolute value of p(T) for a given T decreasing with 1/p. 

(2) The NMR rate drops with increasing doping owing to a decrease in the (local) 

spin fluctuations and shows a linear tail with positive slope at intermediate 

temperatures; there is also a tendency towards a change in sign of the slope of 

this linear region with decreasing doping. 

(3) The spin-lattice relaxation rate T~ becomes doping independent at intermediate 

values of the temperature, and the ratio T~T/T26 becomes constant over a similar 
temperature range. 

(4) The Hall coefficient goes through a maximum whose position is roughly 

independent of  doping but whose height decreases proportional to 1/p. 

(5) The Hall angle cot OH is usually found to vary like T 2 over a considerable 

temperature range. 

Since all these features (except the constancy of I/T~ with respect to doping at 

intermediate T) are consistently obtained from the dynamical mean-field theory, 

including the peculiar behaviour of  the Hall angle (without any necessity to resort to 

an exotic ground-state or scattering mechanism) and the constancy of  the ratio T~T/T2G, 
we anticipate that these anomalies are intrinsic properties of  strong local correlations 

and do not specifically depend on the low dimensionality of the cuprates. This statement 

is further supported by the observation that similar features in the NMR and electron 

paramagnetic resonance relaxation rates and the Hall coefficient are also found in 

'conventional '  heavy-fermion materials [16,72]. 
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4. Summary and conclusion 

We presented results for a variety of transport properties that support the conjecture 

that most of the anomalous normal-state properties of  the high-To compounds are 

intrinsic properties resulting from correlation effects in a single-band model. These 

anomalies include a resistivity linear in T and anomalies in the temperature dependence 

of the NMR relaxation rate and thermopower. We also presented a method to calculate 

the Hall conductivity and Hall coefficient that does not rely on the (conventionally used) 

relaxation-time approximation or the introduction of a new scattering mechanism such 

as Coleman's  ' skew scattering'. This new method enabled us to obtain physically 

sensible results for the Hall coefficient, showing a positive sign and a temperature 

dependence characteristic of strongly correlated systems. We also found that the Hall 

angle or inverse mobility of the carriers shows a clear T 2 behaviour as also observed 

in the cuprates. The optical conductivity was found to have a Drude peak at small co, 

a charge excitation peak at co ~ U, and a midinfrared feature that is attributed to 

excitations from the lower Hubbard band to the quasiparticle band dynamically 

generated at the Fermi level. 

Most of these properties also show a distinctive dependence upon doping. The 

Drude weight increases linearly with increasing doping c5 and both the slope of the linear 

region in the resistivity and the Hall coefficient increase as 1/& The midinfrared feature 

in the optical conductivity initially increases rapidly with doping and then decreases 

as 6 increases further (but is still visible up to c5 ~ 0-20). 

These features are also found in the high-To materials and to some extent in 

heavy-fermion or mixed-valence compounds. From our results it seems that 

the appearance and overall temperature dependence of these anomalies is due to the 

existence of strong local correlations that lead to a dynamically generated (strongly 

temperature-dependent) low-energy scale arising from a Kondo-like screening of the 

(local) magnetic moments. The anomalous regions are more pronounced in the present 

case, which may be attributed to the fact that in the Hubbard model only one band exists, 

that is the electrons that form the moments are also responsible for their screening, while 

these different tasks are split between at least two bands in the periodic Anderson model. 

To distinguish between these different physical situations we suggest that the singlet 

formation found in the Hubbard model should be labelled as a collective 'single-band 

Kondo effect ' .  

Motivated by these considerations, we propose that the peculiar anomalies found 

in the cuprates may be viewed as a cross-over phenomenon from a high-temperature 

'normal '  phase to a renormalized Fermi liquid as T--+ 0. The anomalous temperature 

dependence of physical quantities is then obtained from the peculiar T behaviour of the 

developing quasiparticle band at/.c Note that, in several heavy-fermion compounds, true 

Fermi-liquid behaviour is not observed, because the development of the Fermi liquid 

is pre-empted by a phase transition into an ordered state. It was fortuitous that the first 

heavy-fermion compounds studied did have transition temperatures much smaller than 

TK, enabling one to observe the formation of the heavy Fermi liquid first. In the cuprates, 

on the other hand, it may be that the relevant Kondo scale is of  the same order as the 

transition temperatures, and we are in a situation where the mentioned cross-over is 

observed, but that the system undergoes a phase transition before a Fermi liquid forms 

[73]. 
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