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Anomalous percolation properties of growing networks
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We describe the anomalous phase transition of the emergence of the giant connected component in scale-free
networks growing under mechanism of preferential linking. We obtain exact results for the size of the giant
connected component and the distribution of vertices among connected components. We show that all the
derivatives of the giant connected component Siz&er the raté of the emergence of new edges are zero at
the percolation threshold,, andSeexp{—d(y)(b—by) "2, where the coefficierd is a function of the degree
distribution exponenty. In the entire phase without the giant component, these networks are in a “critical
state.” The probabilityP(k) that a vertex belongs to a connected component of ekdizef a power-law form.

At the phase transition poinB(k)~ 1/(k In k)2 In the phase with the giant componeR(k) has an exponen-
tial cutoff atk.«1/S. In the simplest particular case, we present exact results for growing exponential networks.
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I. INTRODUCTION lar to each other, and the phase transition is of infinite order.

From a physical point of view, networks may be equilib- Furthermore, we show than the entire phase without the
rium and nonequilibrium. For example, to the class of equi-giant connected component such growing networks are in a
librium networks belong classical random graphs with ran-‘critical state.” In this state, the probabilitP(k) that a ran-
domly distributed connections introduced by Esdand domly chosen vertex belongs to a connected component of
Renyi [1,2] and their generalization§3—6]. Percolating the sizek is of a power-law form.
properties of equilibrium networks are well studigi4,7—
13]. The behavior of these networks near the threshold point, Il. MODEL AND DEGREE DISTRIBUTION
that is, near the point of the emergence of the giant con-
nected component, is similar to percolation on an infinite-
dimensional lattice.

On the other hand, the most important real netwdtke R
Internet and the World wide web, for instanceave the povyer-law degree d'St”bUt'p'{Qﬂ: .
growing total numbers of the vertices and, thus, are nonequi- (1) At €ach increment of time, a new vertex is added to the
librium [14—19. The growth of networks, which is often a _network, so that the total number of vertices in the network

. P t.
self-organization process, produces a number of intriguin . . . .
effectsg[15 20,21. P P g és (ii) Simultaneouslyb new undirected links are distributed

Very recently, it was found that the percolation transition PEWeen vertices according to the following rule. The prob-
in growing networks is of a quite different nature than in @Pility that a new edge connects a pair, ¢) of vertices is
equilibrium oneg22]. (Note that the notions of percolation Proportional to @, +a)(a,+a), whereq, andq, are the

and a giant connected component are meaningful only in the€9rees of these verticea,is some positive constant that
large network limit) In Ref. [22], for the growing network plays the role of _add|t|0nal attractiveness of vertices for new
with an exponential degree distributiddegree is the num- ©d9es28], andb is also an arbitrary positive constant. Mul-
ber of connections of a vertiit was found numerically that  {iPIe edges are forbiddefin principle, they are nonessential
this transition is of infinite order. All the derivatives of the TOF large network_s o )
size of the giant connected componéihie percolating clus- The degree distributioP(q) of the network(degree is
ter) are zero at the percolation threshold. the total number of connections of a ventean be easily

Here we propose a theory of the anomalous percolatio@Pt@ined using standard consideratiofisr example, see
transition in growing networks including the most interesting X&fs-[28—33). It is of the form

and important growing scale-free networks. Also, as a par-

For constructing the scale-free network, we apply the
mechanism of preferential attachment of new eddés23—
26]. Here we use one of the simplest models producing

ticular case, the exponential growing networks are consid- Tla+1+ 2
ered. Thus, we present the complete exact description of the _ a 2b I'(gta)
. . . P(q)=|1+ == )
percolation transition both for the scale-free and exponential 2b I'(a) a
growing networks. These cases have been turned to be simi- Ilg+a+2+
(1)
*Electronic address: sdorogov@fc.up.pt where I'( ) is the y function. For largeq, P(q)e«q 7,
"Electronic address: jfmendes@fc.up.pt where y=2+a/(2b). It is convenient to introduce a new
*Electronic address: alnis@samaln.ioffe.rssi.ru notation{=+y—2=al/(2b). In the limit {—, the v expo-
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nent approaches, and one can check that the degree distri- 2+a 2
bution turns to be exponential. 1+2bm k— >7a) [
k-1
Ill. EVOLUTION OF CONNECTED COMPONENTS — S(k—1)+b 2+a\? D (._ 2
According to the above rules, a new vertex may have no 2b+al = 2+a
connections, so disjoint vertices and components are cer-
tainly present in the network. We focus on the distribution of X k—j— 57 g/ MMk 3

the sizes of connected componeftiisters of mutually con-
nected verticdsand on the size of the giant connected com-

ponent, How dofinite connected components grow with randomly chosen vertex belongs to a connected component
time? Here we present an elementary consideration of th\?/ith k vertices, that isP(k)=kn, . Let us introduce it

evolution of connected components. For a rigorous derivafransform‘g(z)=2°° knz*. Similarly, n(z)=3%_.nz". To
8 = &k=1KTk& " ' = <k=1ks -

tion of our main equations, see Appendix A. For the large . ; N
L . . approach our aim, that is, the description of the connected

network, it is almost impossible that both the ends of a new I .
. - component statistics and the giant connected component, we

edge are being attached to the same finite connected compo-

nent. Let us use the following essential circumstahcahe Tlﬁtd find /g(z')l'-h On? SeeES (g)]:?g(z)jznA(z) ag.d )2(2)
large network,the finite size connected components are al- ~ 0 zg(z)/z. Then, from Eq See also Appendix swe

most surely treeObviously, this is not the case for the giant obtain the equation

Our main matter of interest is the probabilii(k) that a

connected component. This fact is the key issue of percola- 24 2

tion theory for network$3,4,9.. One can check that the num- g(z)—z+2b zg'(2)— —g(z))

ber of edges in a finite connected componéree with k 2b+a 2+a

vertices is equal t&— 1. Therefore, the total degree of this 2+a 2

component equals R 1), and the probability that a new x{l— b a g(z)— mn(z) Jzo. 4

edge is attached to the component is proportionalke 2
+ka. This value should be normalized. Taking into accountjs ¢, giant connected component is absent, thaigi(g,)

that the total degree of the network is equal t2we find  _ 1 5)i'the connected components are almost surely trees, so
that this probability if (2+a)k—2]/[(2b+a)t]. s [(2+a)k—2]N, = (2b+a)t, ie., (2+a)g(l)—2n(1)
The resulting equation for _the numbe(t) of connected —2b+a, and we obtain the necessary conditiofll)=1
components of sizé at timet is —b wheng(1)=1. One can easily check that E@) satis-
fies this condition.

(2+a)k—2 Usin . o
Sl _ g the convenient combination
N(t+1)=8(k—1)+|1—2b Zbran N (t)
1 . . hz)=1 2+a 2 JZdZ
Y (2+a)j—2 (2+a)(k—j)—2 (D=1-5739@% 5573 . —9(2), )
=1 (2b+ajt (2b+a)t
we rewrite Eq.(4) in the form
XNj(ON- (1), i)
d
where 8(k—1) is a convenient notation for the Kronecker 9(2)—Z—b2d—zh2(2)=0- (6)

symbol. The first term on the right-hand side of EB). ac-
counts for the emergence of new vertices. The second termnerefore,
describes the decrease of the number of connected compo-
nents of the sizek due to attaching of new edges to the zdz )
vertices of these components. The last term on the right-hand n(z)= fo — 9(2)=b[h%(2)—1]+z. )
side of Eq.(2) accounts for the fusion of connected compo-
nents into larger ones of the sikeHere again we have used Substituting Egs(6) and (7) into Eq. (5), we finally obtain
the largeness of the network to present the terms of the suge equation
in the factorized formsee Ref[27]). The limit a—o cor-
responds to the absence of any preference. In this case, new(2+a)zh(z)h'(z) —h?(z) + (1+ ¢)h(z)— {(1—2)=0,
edges connect the pairs of randomly chosen vertices, and Eq. (8)
(2) takes the form of the master equation derived in Ref.
[22]. We emphasize that Eq2) is nonlinear unlike master where{=y—2=al/(2b). One sees thaj(0)=n(0)=0, so
equations for degree distributig@8,29. Eq. (8) must be supplied with the boundary conditib(O)
=1. From Egs(6) and(7), a simple relation betweeg(z)
IV. MAIN EQUATIONS andh(z) follows

Whent—oo, the ratioN,(t)/t approaches the stationary . a 2 1., 1+¢
valuen, . The equation for it is of the form 9(2)= 2+a 1+ 52+ Zh (2) Th(z) ' ©
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From Eq.(8), using Eq.(9), we can obtain th& transform
g(2) of the basic distributioP(k) for finite connected com-

ponents. When the giant connected component is absent,

g(1)=1 andn(1l)=1-b as shown above. Then, from Eq.
(5), it follows thath(1)=0. As usual[9], if the giant con-
nected component exists, its siZe can be related to
g(1), S=1—g(1). After the introduction of new variable
and function,y=z"Y?"® and ¢(y)/y=h(2)/(1+¢), Eq.
(9) takes the canonical form of the Abel equation of the
second kind

e (Ye(y)—e(y)= 1éz(y‘l“"‘—y)- (10

The boundary condition for Eq.10) corresponding to the
conditionh(0)=1 is ¢(y)—Yy/(1+{) asy—o.

PHYSICAL REVIEW& 066110
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FIG. 1. Phase diagram of the growing scale-free network. Here,

a is additional attractiveness of vertices for new edges, &nd/

Settingy=1 in Eq. (10), we see that two situations are —2=al(2b), whereb is the value of the input flow of new edges.

possible. If¢(1)=0, the giant connected component is ab-
sent. Whene(1)#0, the giant connected component is
present, andp’(1)=1. Then, one can obtain from Eq®)

or (9) the expression for the size of the giant connected com
ponent

(1+9)?
¢

Thus, our problem is reduced to the analysis of the solution
to Eq.(10).

" 2+a

S=1-g9(1) e(D[1-e(1)]. (@11

V. PHASE DIAGRAM

The solid line[see Eq.(12)] indicates the phase transition of the

emergence of the giant connected component. WheB8+24/2,
the giant connected component is abse$t Q) only on thea=0
line. The dashed line shows the percolation threshold line for the
equilibrium random graph with the same degree distributbres
the growing scale-free network under consideration. Inset: the same

phase diagram but plotted on axesHh).

line. In growing networks we have a quite different situation.
és shown in Appendix B, the size of the giant connected
component near the phase transition line takes the form

—1/2
[(2+a) 1 } 13

(1+p* 4

w

2

S(§,a)=D(§)eXD{

The simplest problem we must solve is to indicate the

region of the parameteds and a or, equivalently,{ and a

where the giant connected component is present. The dire

analysis of Eq(10) (see Appendix Byields the following
picture (see Fig. 1L When ¢>¢*=3+2/2, the giant con-

El:'the dependence of the factdron ¢ is plotted in Fig. 2. One
Sees that, in the case of the network with an exponential
degree distribution, i.e., whefi—, the factorD tends to a
constant value 0.39. ... On theother sideD linearly ap-

nected component is absent below the phase transition Iineproaches zero at=¢*

1 3
a(§)=Z(§+§*1)—§. (12

For < *, the trivial phase transition line @=0. The ab-
sence of the giant connected componeraal is obvious.
Indeed, wherny=a/(2b) is fixed, froma—0 it follows b

—0. In turn, zero input flow of edges produces a set o
disjoint vertices.

For comparison, in Fig. 1, we show the percolation

threshold line for the equilibrium random graph with the
same degree distributiofl) as our growing scale-free net-
work [see the dashed lina(¢)=({—3)/2]. This follows

from the Molloy-Reed criterion for the existence of the giant
random graphs,

connected component in equilibrium
Sq-0(a°—20)P(q)>0 [3,4].

VI. CRITICAL BEHAVIOR

A. Size of the giant component

In the following, to simplify our expressions, we shall use
the notation

e2+ay 1| y
la+p? 4 49
f
0.6k -]
xO.SQO
&
& 03}
348"
% 20 . 20 60

In equilibrium networks, the size of the giant connected FIG. 2. Dependence of the coefficibtof the exponent in Eq.

component linearly approaches zero at the phase transiti

qn3) on . Here,{=y—2=al(2b).
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1 the Appendix A. Note that all the loops are in the giant com-
ponent since finite components are treelike. The equation for
0.8 /is
_— /=2 _[(2+a)S+2/]? (19
k4 S 21+¢ S
0.4
Here we do not present its trivial solution. Near the phase
02 sis™ transition, where the giant component is smafl=[(2
+a)S]#/[2(1+0)].
00 6 B. Distribution of vertices among connected components

The distribution of vertices among connected components
FIG. 3. FactorF in Eq. (17) versus{. F(0)=0.95. ... is one of the key issues in percolation theory. In Appendix B,
we calculate the probability?(k) that a randomly chosen
For the exponential network, i.e., wheh-o, we have\ vertex belongs to a connected component of the leize
=.2|b—1/g. At the point of the emergence of the giant connected com-
All the derivatives of the giant connected component sizgP@nent, we obtain
over the deviation from the critical line are zero. In particu-
lar, let us consider the deviation offrom the critical line P(K) = 2_a 1 (20)
b.=b.({) [the form ofb.({) follows from Eq.(12)]. In this 2+a k2In2k’
case,S(¢Z,b) is of the form
Here,a=a({) is given by the relation(12) for the critical
a1+t line. The factor 2/(2+a) in Eq.(20) approaches zero at the
S(¢,b)=D({)exp — 202 Job.|” (15  point ¢=¢*. Equation(20) must be compared with the cor-
e responding result for percolation on the equilibrium net-
In the limit of the exponential networki—, where by works and infinite-dimensional lattices, whePék) <k > at
=1/8, we obtain

the percolation thresholi8,4,9,34.
Furthermore, we find that in the entire phase without the
giant connected componerR(k) is of a power-law form. In

S(Z—o0,b)=05D . .. exg — Tt 0 (16  this phase, far from the phase transition, i.e., when the pa-
’ 2y2 \b—b, rameter\ is not small[see the definitior{14)],
In Appendix C, we present a simple direct derivation of Eq. Pk)~k (=20, (21)

(16). The factor in the index of the exponent g (2/2) N
—1.111 ... thatis, in agreement with the result of numerics N the same phase, near the phase transition(lidg P(k)

in Ref.[22]. has a power-law tail
For smalla and 0</<{*, that is, near the other transi- 398
tion Iine. (@=0, 0<¢<*) on the phase diagram, the siz.e P(k) = N[ (2+a)k] 24 (22)
of the giant connected component behaves in the following 2+a
way:

for Ink>1/\, and coincides with the threshold distribution
S(¢,a)=F({)a. (17) (20 in the region KInk<1/\.
This power-law form is in striking contrast to the expo-
The factorF versus¢ is plotted in Fig. 3. All the derivatives nentially decreasing’(k) both above and below the perco-
of F over{ are zero at the poirit= ¢*. Near this point, when lation threshold for standard percolatif@4] including per-

ais small andZ=¢* + ¢, Eq. (15) takes the form colation on equilibrium networks. Equatiof20) indicates
that the growing network is in a “critical state” in the entire
S(e,2)=0.63L...aexp—2m[a—4(32—4)e] 3. phase without the giant connected component. Note that this
(18) is valid both for the scale-free and exponential growing net-
works.
Equation(18) is valid whena—4(3\2—4)e>0. Thus we In the phase with the giant connected componéi(k)

see that the phase transition of the emergence of the giahgs an exponential tail. Near the phase transition, for the
connected component in growing networks is in sharp conlarge values of connected component sizks-[a/(2
trast to that in equilibrium nets. We shall discuss the nature-a)]S™*, we obtain the following behavior:

of this anomalous phase transition in Sec. VII.

We close this subsection by the exact result for the rela- _ 3 —3q—1/2 _ 2+a
tive total number” of loops in the networkthe ratio of the Pk)=[2m(2ae)*(2+2)S k] ex 2ae Sk
total number of loops in the network to its sigeobtained in (23
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Here,a=a({) is taken for the transition lin€¢12), andS  many edges are captured by old vertices, and few edges are
=93(a,{) is the size of the giant component given by Eq.attached to more young vertices—“the rich gets richer.”

(13); e=2.73.... For smaller k, namely XlInk Nevertheless, this statistically inhomogeneous distribution of
<1/\, P(k) takes the form of the threshold distribution connections in growing networks is not the direct origin of
(20). For Ink~1/\, a crossover regime is present. the observed behavior. Both this inhomogeneity and the criti-

cal (or, one can say, power-law, or fractal, or scale¥rdie-
tributions of connected components in the absence of the
VIl INTERPRETATION giant component have the same first cause—the specific pro-

All the results of Secs. V and VI were obtained by the ¢€ss of the network growth.
explicit formal analysis of the master equations for growing
networks. Let us discuss the physical nature of the behavior VIIl. CONCLUSIONS

observed above. In summary, we have presented the theory of percolation

d :'?nbeﬁlnniw:;h, Ifet ru? rre%?i” lthat‘tt mhrr]ﬁtvr\]/fris g(:];Oer;g \L/m;tiin evolving systems, growing networks. We have demon-
er mechanism ot preterential attachment of €dges 10 Verligy o104 that the interplay of a self-organization process and
ces degree distributions of vertices are of a power-{@ac-

. o ercolation produces a number of intriguing effects in such
tal) form. This means that such networks self-organize mtdD P guing

. .~ . objects. We have obtained exact results for the size of the
sce}le-free structures with the pOWer"a‘.N. degree d!str|bu§|onaiant component and the distribution of vertices over con-
while growing. In fact, they are in a critical state in a wide ected components. An explicit description for the anoma-
range of the values of the network parameters. The growt

. / us phase transition of the emergence of the giant compo-
under mech_am;;m .Of the pre_fer_entlal _attachment produceﬁem in these growing networks has been proposed. We hope
power-law distributions. In principle, this phenomenon can

. h r results are of neral nature and can li
be called self-organized criticality, that our results are of a general nature and can be applied to

) . ... various growing systems.
In the present paper, we are interested not in the statistics g gsy

of vertices but in the statistics of connected components, that
is, in the distributions of the number of connections of dis-
tinct connected components and the distributions of the num- s N.D. thanks PRAXIS XXI(Portugal for a research

ber of vertices in them. New links are being attached to largesrant, PRAXIS No. XXI/BCC/16418/98. S.N.D. and
connected components with higher probability, so that largg) F.F.M. were partially supported by the Project No. POCTI/
connected components have a better chance to merge amdgg/FIS/33141. A.N.S. acknowledges the NATO program

grow. This produces the preferential growth of large con-QUTREACH for support. We also thank P. L. Krapivsky for
nected components even in networks where new edges ajgeful discussions.

attached to randomly chosen vertices, that is, in networks
without .preferential attaqhment of edges to vertices. SUCh  AppENDIX A: RIGOROUS DESCRIPTION OF THE
mec;hamsm of the effective preferential attachment of new EVOLUTION OF CONNECTED COMPONENTS
vertices to large connected components naturally produces
power-law distributions of the sizes of connected compo- In Secs. lll and IV, we have derived our main equatign
nents and power-law probabilitiesP(k). This “self-  using a simple but rather heuristic approach. Here we present
organized critical state” is realized in the growing networksa strict derivation of the equations describing the growth of
only if the giant component is absent. the network.
As soon as the giant connected component emerges, the Let AV(t) be the number of vertices in the growing net-
situation changes radically. A new channel of the evolutionwork at timet. We assume that, with the probabilipft) dt,
of the connected components is coming into play, and, witle new vertex is added to the network during a small time
high probability, large connected components do not grow upnterval dt, i.e., M(t+dt)=A(t)+1. The degree of a new
to even larger ones but join to the giant component. Therevertex is supposed to be zero.
fore, there are few large connected components if the giant The total degree of the network is
component is present, and th&{k) is exponential. ATY)
Thus, in the growing networks, two phases are in contact
at the point of the emergence of the giant connected QAt)=2L(1)= 2’1 qi(h), (AD)
component—the critical phase without the giant component
and the normal phase with the giant component. This contaathere £(t) is the total number of edges in the network. We
provides the above observed effects. There exists anothessume that with probabilitp(t), a new edge emerges be-
example of a contact of a “critical phasébr of a line of  tween vertices. According to the rule of preferential linking
critical pointg with a normal phase, namely, the Berezinskii- that we use in the present paper, the probability that this edge
Kosterlitz-Thouless phase transitidi35,36]. Interestingly, connects verticesandj is equal to
functional dependences in both these cases have similar
functional forms. This indicates that equations describing Lai(t)+a][a;(t)+a]
such phase transitions have similar analytical properties. [O(t)+aN(t)]?
Connections in nonequilibrium networks are very inho-
mogeneously distributed between vertices. We mean thdor each pair of vertices.

ACKNOWLEDGMENTS
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If b(t)=const, one can sgb(t)=const=1, so, in this The closed equation can be written for the joint distribu-
case, we have two parameters, namblgnd additional at- tion function of the total number of vertices in the network,
tractiveness, that determine the growth and the structure of /, the total degreeQ@=2,, and the connected component
the network. Let us introduce a new object that we call thesizes {k;}. Let us define the transform of this joint distri-
connectivity matrix of the network, bution function as

1, if i and | belong tothe same

Sj(t)= connected component (A3) %
. 1
0, otherwise g(MQ;X't):K/' 5[./\/(t)—./\/]5[Q(t)—Q]E in(t)>‘
=
(this should not be mixed with the adjacency matrikhen (A4)

ki(t)zEjle“)ﬁj(t) is the size of a connected component
containingith vertex, that is, the total number of vertices in
this component. Recall thats( ) is the Kronecker symbol. Then,

d N
gV, Qix,t+dt)=(1—dt—b dt)g(V, Q;x,t)+xf, Zl (SMt) +1—N]5[ Q(t) — Q]xK M)

N N
[q®+alla®+all <
2 amranor | & X0 TS0

b dt
+T<6[N<t>—x\ﬂ6[@<t>+2—g]j

N N
X z Sjm(t)[ka(t)_ij(t)+k|(t)]+ 2 Slm(t)[ka(t)_Xkl(t)+kj(t)]:|] > (A5)
m=1 m=1

In the largeV, Q limit, one can substitute the factpt — S;(t)] in Eq. (A5) for 1, therefore

g(N, Q:x,t+dt)=(1—dt—bdt)g(N, Q;x,t) +

1- }v) A%(é[/\f(t)—m 1]o1Q(1) - Q]xki“’>+/%< SN ~N+1]

2b dt
X o[ Q(t)— Q]>X+ b dtg(M Q—Z;X,t)—m< 5[N(t)—./\/]5[ Q(t)—9+2]

<3 g 0+alk () k'<t>>+ 2t <5[Nt) ML) - 0+2]
& a; alk;( NO—2+an)? ( (
N N
X El [a;(t)+a]k;(H)x® IZl [ql(t>+a]xk'“>) > (AB)
= <
[
The sums in Eq(A6) can be easily calculated M) M) 1
> qi(Hxki0=2> [1—k_—t) Xk, (A8)
M) i=1 =1 i
2, Gi(t)ki(t)x®
1 One can see that a general relation
M) MY) MY MY
- (1)xki(® ()= K;(1) (1S,
2 aOxO2 §;()=2 X0 S o . )
ATD 2, a(Oilki(h]=22, [1—W}f[kj<t>] (A9)
=23 [ki(t)~ 140, (A7) : |
=

holds for arbitrary graphs with treelike finite components.
Here we have used the fact that, in the tree ansatz, loops ake&ere f( ) is an arbitrary function. In particular, ffi(k)=1,
absent, S(E{\ftl)qi(t)sij(t)=2[kj(t)—1]. Analogously, then 20(t) = 2[ M(t) = NMeom(t) 1, SON(t) = O(1) + Neon(t),
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where N on(t) is the number of components in the network

at timet. Using these relations, we obtain

g(N, Q;x,t+dt)

1
=(1-dt—bdt)g(N,Q;x,t)+ ( 1- N)g(/\/—l,g;x,t)

1
+/T/9(N_ 1,9;1)x+b dtg(N,Q—2;x,t)

2b dt It
T MO=2+aN) SIM) =N Q) — Q+2]

N
x> [(2+a)ki(t)—2]xki(t)>
=1

2b dt

+m<5[f\f(t)—/\/]5[9(t)—g+2]

N
x| > [(2+a)ki(t)—2]xki(t))

=1

S 2

S 4103

X le 2+a oo >> (A10)

In particular, wherx=1, one obtains the joint probability

that the network containd/ vertices andC= Q/2 edges at
time t,

gV, 210 = (o[ M)~ N[ Q1) — Q) =IL(N, Q;t).

(A11)
From Eq.(A10), we obtain the equation fdd (N, Q;t):
ITL(N, Q;t
(TQ)=H(N—1,Q;t)—H(J\/, o;t)
+ o[ II(N,Q—2;t) —TI(N, Q1) ].
(A12)

Choosing the initial conditiodI(N, Q;tg) = S(N—Np) 8(Q
— Qp), we find the solution of EqA12),
"N 1+(-1)2 %
T AT
(bt)(Q—QO)/z

“[(@=0g2n

(N, 9;t)=

—bt, (A13)

If we assume tha®,=2bt, and Ny=t, for t;— o, then Eq.
(A13) yields IT(N, Q;t)— S(N—t) 8(Q—2bt). This shows
that the total numbers of vertices and edg€sand Q, are, in

fact, rigidly determined in the large network limit. Finally,

using the decomposition
(XKixKy— (xKiy(x49), (A14)

which can be justified in the limit of— o, from Eq.(A10),
we obtain
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9 g
ot 9" 2bra

2 79 2
(2+a)x— —2g

[(2+a)g—2n]=Xx,

2rax 3 2
(@bt 2T a2

(A15)
where n(x,t)= fodyg(y,t)/y. In the stationary case, Eq.
(A15) yields Eq.(4) of Sec. IV.

If the giant component is absent, g(1t)

=limy 10 9(x,N;t)=1. In addition, if all the finite con-
nected components in the network are treelike, we have

1 M) 1 .A/'com(t)
n(l't):</\/(t) 2 ki<t>>:< MY >

M- )
My T

(A16)

that is, the “tree condition.” The following equation can be
written for n(x,t)

an 2b
tE+n+2b+a[(2+a)g—2n]

[(2+a)g—2n]?=x. (A17)

" (2b+a)?

Equation(A17) can be used for the determination of the
number of loops in the giant connected component that co-
incides with the total numbemM of loops in the network
since all the finite connected components are treeliké.
indicates the extent of the deviation of the giant component
structure from a tree. One sees th&i=L+1-N, L
=bt,N=t, hence, the total number of edges in the giant
component is equal to

bt—; (k—1)N,(t)=t b—Zk (K—1)n(t)

=t[b—g(1)+n(1)]. (A18)
Subtracting from this expression the total number of vertices
in the giant component, that isS=t[1—g(1)], we obtain
M=t[n(1)—(1-b)]. Itis convenient to introduce the rela-
tive number of loops fot—

M
/ETZn(l)—(l—b). (A19)

Substitutingn(1) from Eq.(A19) into Eq.(A17) taken at the
pointx=1, we obtain the exact equation for,

/ [(2+a)S+2/].

“2bta (A20)

This equation also follows from E¢9). Near the phase tran-
sition, the giant component is small, so that
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(2+a)2Sz

/=b 2b+a

(A21)

APPENDIX B: ANALYSIS OF EQ. (10

Note, that Eq.(10) remains unchanged, f—1/{. How-
ever, the condition thap/y—1/(1+¢) at y—, is not in-
variant under this change, and f¢x<1 we have to choose
another solution then fo{>1. Here we analyze the solu-
tions of Eq.(10) aty—« and aty—1. The comparison of

both the regions will allow us to obtain the phase diagram

and to find the essential features of the probabiifk) that
a vertex belongs to a connected component of thelsize

If y—o, the termy 12 on the right-hand side of Eq.
(10) may be neglected, and we obtain the equation

{
(1+9)?

o o—p=— y. (B1)

This equation has two solutions, which are linearyin ¢
=y/(1+¢{) and ¢=¢y/(1+). It is the first one, which
must be chosen, because it correspondg(t)=0. Let us
denote the physical solution of E.0) as¢,, and asp,, the
other one, which has the asymptotic foy/(1+¢) aty
—oo, If {>1, then o,(y)<g,(y) for y>1. This follows
from the uniqueness property of a solution of Ef0). On

the contrary, if{<1, the physical solution is a higher one,

e1= 2.

At y—1, after the linearization of the right-hand side of

Eq. (10) with respect toy—1 we obtain

omo=—g+8l0-1: p= S @va-g
elome=—|7+B|(y=1) B_(1+§)2( a)= -
(B2)

After the substitutionp=(1—y), Eq. (B2) takes the form

2

dy ( 1
(y—l)l//d—y—— ¥=5| +B|
and can be easily solved
pdy
InNf[C(y-1)]=—- | ——————.
nicty-1)] f(¢;—1/2)2+,3

HereC is the integration constant. The sign @fdetermines
a full picture of the set of the solutions of E@B2).

At first, let us consider the cagg= —\?<0. In this case,
Eq. (B2) has three families of solutions, real fpr-1. These
families can be written in the implicit form as

o 1 (4N - 1/2
C(y_l): Ty— E"‘)\

¢

XH_

—1/(4N) - 1/2
_ A)

N[ -

. (B3
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1 o | U@ -12
Cly-D= E_)\_ry
o 1 | U@y-1
X Ty—z—h) , (B4)
1 o | UEN-12
Cly-D=|35~— 1oy
1 o | V@)1
X §+)\_1Ty) (B5)

In the family (B3), 1/2+Xx<¢@(1—y)<+=, in Eq. (B4),
12-A<e@(l-y)<1/2+\, in Eq. (B5), —w<@(l-y)
<1/2—\. Only the families(B3) and (B5) should be taken
into account, because, for the familg4), we haveg”(1)

< 0. Here a physical solution is realized in the fam(iBg) if
(<1, and in the family(B5) when {>1. The distinctive
feature of the solutioneB3) is that they have nonzero value
asy—1, ¢(1)=1/C. This proves that wheti<1, the giant
component is always present. For the solutions of the family
(B5) we have¢(1)=0, which means the absence of the
giant component fof>1 and8<<0. Wheny—1, we obtain
from Eq. (B5)

e(y)=(y—1)

1
5_)\+C/(y_1)4)\/(12)\)} (BG)

whereC’ is some constant of the order of unityNf~1.
If B=\?>0, the solution may be conveniently expressed
as

® 1 2 —1/2
C(y—1)=[ H—E) +22
1 [m 1/ ¢ 1 }
Xex —Zg+arcta X ry—z .

(B7)

This form of presentation was chosen to ensure a smooth
crossover between Eq&5) and (B7) at small\. All solu-
tions of this set take nonzero valuesyas 1

1 T
(P(l)ZE exr{ —§>

This means, that fof>1, the valueB=0 corresponds to the
point of the emergence of the giant connected component in
the network. Taking into account the definition gfin Eq.
(B2), we arrive at the expressidi?2) for the critical line in
the (¢,a) plane.

Let as consider now the critical regiojg|<1. If 8=0,
the solutions of Eq(B2) are given by

(B8)

Y
e(y)= 5

1
Yy—cy-n1r  ®

where, by definition, the Lambert function/(z) is a proper
solution of the equationVexpV=z. If —e 1<z<0, W
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has two real branches, the one for whidh—0 asz— —0, (1+¢)? ) (2+ayks
and the other for whichV— —c in the same limit.z= Plo=a(2ta)—7r—k | 72 ¢ (1ts)e :
—e1is the branching point for both these branches. When (B13)
the integration constar@ is positive, one must choose that
real negative branch df\(z), which tends to—« asy—1 At the threshold we have
+0. This ensures a smooth crossover between @&fs.and
(B7) ash—0. ) s?
The behavior of the distribution near the critical line may e(1ts)~ Z(1+ In(Cs))’ (B14

be treated analytically, if we know the integration constant
C=C(?) in Eq. (B9), that may be obtained by numerical where we have taken into account, that the appropriate
integration of Eq(10) at the critical line, given by Eq12).  branch of Lambert function has the asymptotic foiv
Indeed, as +y—1>exp(—m/2\), the argument of arctan in (—2)=~Inz as|z|<1. Then, deforming the integration con-
Eq. (B7) becomes negative and large. Then, using thdour to the one along the shores of the (—=,0) cut, and
asymptotic expression, arctas —/2+ 1/z, one can see that calculating the jump across the cut to the leading order in
the solution(B7) turns into the solutiorfB9) with the same  1/Ink, we obtain
integration constant. Hence, substituting EqB8) into the

expression for the size of the giant compon@ri), account-

ing for the relation(12), and recalling thak = 3, whereB PO~53 Ik (B15)
is defined in Eq(B2), one arrives at the expressi¢id) for
the giant component size. The resulting fadi(¢) in this When <0, that is, in the phase without the giant con-
expression is equal to nected component, and the strong inequakitgl is not
, valid, we have from Eq(B6)
2a(f) ¢(°—6,+1
D({)= = : (B10) (1 2 A AN
C()  2LC(9) e(1+s)~s (5 N At A=
(B16)

Now let us consider the distribution function for con-
nected componentB(k) at the threshold and near it. This is with some constant coefficiedt;~ 1. Only the second term

the inverseZ transform ofg(2) in the square brackets is singular and yields nonzero contri-
bution. Substitution of Eq(B16) into Eq. (B13) yields
dz
P(k)= fﬁz—wig(Z)Z‘k‘l, (B11 P(k)~Ak 274, (B17)

) o which is valid if If(2+a)k]>1/\, and A is a constant. At
where the integration is performed along the contour around \,51ierk one should use expression fe(1+s), valid at
z=0, lying inside the unit circle. After integration by parts, larger s. If In s<1/\, from Eq. (B5) the equation fore(1

accounting for Eq(6), this expression takes the form +s) follows
K)=8(k—1 akﬂg dz h%(z)z ¥t (B12 Cs= 2¢ 1 N 2¢ 1 - B18
P(k)=o(k— )+z omn @z (B12 5=| 5 expy| — . (B19®

whose solution is given by the functia(y), taken precisely

i ; i ; — y—l(2+a)
L;](t;(;(?u;;r;g: ht/h((?L +|2)tevg\]/;agcl;?ainvar|abley X and at the threshold, Eq(B9). Therefore, as ¥In[(2+a)k]
<1/\, the distribution function assumes the threshold form,
(1+0)? dy Eqg. (B15). o _ _
P(k)=S8(k—1)+a(2+a)—=——k | = ?(y)y@rak Above the thresholdi.e., in the phase with the giant con-
2{ c 2mi nected componeptB>0, the argument of the arctan func-

tion in Eq. (B7) is positive and large, and the formula
wherec is some integration contour, lying to the right pf ~ arctare~m/2— 1/z may be used. Thus, we obtain the form of
=1 point. Atk>1, the positiony, and character of singu- the solution
1
s
Csex;{ 5”

this integral. Close to the transition line we have either the _S
: ; : , o(1+s)~ 1+
singularity aty.=1, if 8<0, or aty.=1—¢, <1, if B 2

>0. Hence, whem=/8>1, andk is large enough, the

vicinity of y=1 vyields the main contribution to the above

integral. Then one can extend the integration contour tdrhis expression is valid if [sexp(@@/2\)]<1/\. The Lam-
+io, Changing the integration variablg=1+s, and as- bert function)\(z) has a square-root-type singularityzat
suming thats is small, we finally obtain the expression for —e —1, which ensures the exponential-type behavior of
the largek part of the connected component distribution,  P(k) at the largesk. Let us substitute EqB19) into Eq.

larity with the highest value ofy | determine the value of
(B19)
W
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(B13), retaining only the relevant term. Changing the inte-

gration variables= C 1z exp{—[#/(2\)]+2}, we find the ex-
pression for the distribution

xXexC Y(2+a)e” " kz&+3z].

3
2

dz
—z

2w (z+1)

P(k)~C 3a(2+a)%k exp(

(B20)

If (2+a)k>exgda/(2\)], this integral can be calculated in

the saddle point approximation. Notice, however, that the

integrand in Eq(B20) becomes zero at the saddle paomt
=—1. To avoid this difficulty, one can perform integration
by parts, which gives

P(k)w—C‘zaexr{—z)f 9z o
N e 2mi

xXexdC Y(2+a)e” " kz&+2z]. (B21)
Then, the saddle point approximation yields
P(k)~a[27C3(2+a)3k] Y2
37 3
_____ —1la—w2 -1
xexr{ w2 e (2+a)k
(B22)

At smaller values ofk, but when, nevertheless, it is still
possible to use EqB19), i.e., when (2-a)k exd —/(2\)]
<1, but|In[(2+a)kexp(—m/2\) ]| < 1/\, the argument of the
W function in Eq.(B19) becomes large, and we can replace
the Lambert function with logarithm. In the same way as
obtaining the threshold distributiqB15), we get the form of
the distribution

2a
P(k)~—k 2In~2

(2+a>kexp( —% } (B23)

At even smallek, the expression fop(1+s) at larger|s| is
necessary. It may be found from E@®7), if we assume that

PHYSICAL REVIEW BE54 066110

APPENDIX C: ANOTHER WAY TO GET S(b)
FOR THE EXPONENTIAL NETWORK

Here we show how our result f&(b) can be obtained
directly for the network growing without preferential attach-
ment of edges, i.e., in the lim#&—oo. In this particular case,
from Eq.(3), we obtain the master equation for the probabil-
ity P(k)

k—1

+P(K)= 5(|<—1)+|ok21 P(j)P(k—])—2bkP(K).
<
(C1)

IP(K)

t

This is a basic equation for the evolution of the connected
components. From the long-time limit of EGC1), the equa-
tion for g(z) follows (see Ref[22)):

1z g(z) -
The boundary condition for it isg(0)=0, so g'(0)

=1/(1+2b).

The threshold solutiorg(z,b=1/8) approaches 1 at
=1, andg’(1,b=1/8)=2. Forb>1/8, the giant connected
component is present, so that, &z£1, the corresponding
solution of Eq.(C2) is less than 1, andy’(1)=1/(2b).
Whenh<1/8, i.e., in the phase without the giant connected
component, the physical solutiog(z=1)=1, andg’(1)
=(1-/1-8b)/4b. Note thatg(z) approaches the poirzt
=1 in a nontrivial way. Indeed, the values gf(z) are es-
sentially smaller tharg’(1) even very close ta=1 (see
below).

Nearz=1, Eq.(C2) can be written in the form

u(é)
dé

whereé=1-z andu=1-—g. Its solution forb=1/8, that is,
the threshold solution, is

1
u(é) gz = zplue) —£l, (C3

u(,b=1/8=2£1-1(&)], (C4

the argument of the arctan function is small and replacavheref (&) is the solution of the transcendental equation

arctarz with z. As a result we obtain

(,D(S)%;[1—4)\2|n(2)\Cse”/4}‘)], (B24)

which is valid if [In(\s&”*")| < 1/x. In this region the distri-
bution function is of the form

—k2

~a)2
P(k)~8\ °Ta

(B25)

Finally, for k>1, Ink<1/\, Eq. (B7) for ¢(1+s) at s
~1[(2+a)k] assumes the forfB18), and as a result we
obtain the distribution function in its threshold form, Eg.
(B15).

=Inc.

IN[£F(&)]+ —— (C5)

f(é)

Here, the constamt=0.2% . . . isobtained by the numerical
sewing together with the solutiog(z) of Eq. (C2) passing
through zero az=0.

For b>1/8, i.e., when the giant connected component is
present, the solution of EQC3) is given by the following
transcendental equation

4b[u(§)/€]-1

1
arctan

 Jab_1 © Jsb—1
—InV&-u(¢)

E+2bui(§)= (C6)
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One can check thadu(0)/dé=1/(2b). The constanC is - 1 s
fixed by the value of the solution &=0, i.e.,u(0)=S, ————+———Inz=—In[£f(&)]. (C9Y
whereSis the size of the giant connected component Jeb—1 f(§) 2
c=— "2 _\ny3b-ms (7
=-— —In —InS. ; ; ;
J8b—1 Accounting for Eq.(C5), we finally obtain
When b tends to 1/8 from above, fof>S, we expand

arctan[accounting thati(£) <2¢ in this regior] and setb to - 1
1/8 in the logarithms S=2cexg — —= —|, C10

J 2\2 Jb—1/8 (C10

/2 1 /2 1
———=-In=--InS= -
Veb—1 2 VBb—1 1-u(£)/(24) where the coefficient @=0.590 -~ .
—In[£—u(£)/2]. (C8) One should note that the accurate sewing procedure has

been necessary only for the determination of the coefficient

We sew together this solution fdr— 1/8 and the threshold of the exponent in EqC10). Indeed, the index of the expo-
solution (C4). One can see that this is possible substitutingnent can be easily obtained without consideration of the last

Eqg. (C4) into Eq. (C8): two terms on the right-hand side of E@8) for g(x).
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