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Anomalous percolation properties of growing networks

S. N. Dorogovtsev,1,2,* J. F. F. Mendes,1,† and A. N. Samukhin2,‡

1Departamento de Fı´sica and Centro de Fı´sica do Porto, Faculdade de Cieˆncias, Universidade do Porto, Rua do Campo Alegre 687
4169-007 Porto, Portugal

2A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
~Received 8 June 2001; published 19 November 2001!

We describe the anomalous phase transition of the emergence of the giant connected component in scale-free
networks growing under mechanism of preferential linking. We obtain exact results for the size of the giant
connected component and the distribution of vertices among connected components. We show that all the
derivatives of the giant connected component sizeSover the rateb of the emergence of new edges are zero at
the percolation thresholdbc , andS}exp$2d(g)(b2bc)

21/2%, where the coefficientd is a function of the degree
distribution exponentg. In the entire phase without the giant component, these networks are in a ‘‘critical
state.’’ The probabilityP(k) that a vertex belongs to a connected component of a sizek is of a power-law form.
At the phase transition point,P(k);1/(k ln k)2. In the phase with the giant component,P(k) has an exponen-
tial cutoff atkc}1/S. In the simplest particular case, we present exact results for growing exponential networks.
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I. INTRODUCTION

From a physical point of view, networks may be equili
rium and nonequilibrium. For example, to the class of eq
librium networks belong classical random graphs with ra
domly distributed connections introduced by Erdo¨s and
Rényi @1,2# and their generalizations@3–6#. Percolating
properties of equilibrium networks are well studied@3,4,7–
13#. The behavior of these networks near the threshold po
that is, near the point of the emergence of the giant c
nected component, is similar to percolation on an infini
dimensional lattice.

On the other hand, the most important real networks~the
Internet and the World wide web, for instance! have the
growing total numbers of the vertices and, thus, are none
librium @14–19#. The growth of networks, which is often
self-organization process, produces a number of intrigu
effects@15,20,21#.

Very recently, it was found that the percolation transiti
in growing networks is of a quite different nature than
equilibrium ones@22#. ~Note that the notions of percolatio
and a giant connected component are meaningful only in
large network limit.! In Ref. @22#, for the growing network
with an exponential degree distribution~degree is the num
ber of connections of a vertex!, it was found numerically tha
this transition is of infinite order. All the derivatives of th
size of the giant connected component~the percolating clus-
ter! are zero at the percolation threshold.

Here we propose a theory of the anomalous percola
transition in growing networks including the most interesti
and important growing scale-free networks. Also, as a p
ticular case, the exponential growing networks are con
ered. Thus, we present the complete exact description o
percolation transition both for the scale-free and exponen
growing networks. These cases have been turned to be s
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lar to each other, and the phase transition is of infinite ord
Furthermore, we show thatin the entire phase without the
giant connected component such growing networks are
‘‘critical state.’’ In this state, the probabilityP(k) that a ran-
domly chosen vertex belongs to a connected componen
the sizek is of a power-law form.

II. MODEL AND DEGREE DISTRIBUTION

For constructing the scale-free network, we apply t
mechanism of preferential attachment of new edges@15,23–
26#. Here we use one of the simplest models produc
power-law degree distributions@27#:

~i! At each increment of time, a new vertex is added to
network, so that the total number of vertices in the netwo
is t.

~ii ! Simultaneously,b new undirected links are distribute
between vertices according to the following rule. The pro
ability that a new edge connects a pair (m,n) of vertices is
proportional to (qm1a)(qn1a), whereqm and qn are the
degrees of these vertices,a is some positive constant tha
plays the role of additional attractiveness of vertices for n
edges@28#, andb is also an arbitrary positive constant. Mu
tiple edges are forbidden~in principle, they are nonessentia
for large networks!.

The degree distributionP(q) of the network~degree is
the total number of connections of a vertex! can be easily
obtained using standard considerations~for example, see
Refs.@28–33#!. It is of the form

P~q!5S 11
a

2bDGS a111
a

2bD
G~a!

G~q1a!

GS q1a121
a

2bD ,

~1!

where G( ) is the g function. For largeq, P(q)}q2g,
where g521a/(2b). It is convenient to introduce a new
notationz[g225a/(2b). In the limit z→`, the g expo-
©2001 The American Physical Society10-1
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nent approaches̀, and one can check that the degree dis
bution turns to be exponential.

III. EVOLUTION OF CONNECTED COMPONENTS

According to the above rules, a new vertex may have
connections, so disjoint vertices and components are
tainly present in the network. We focus on the distribution
the sizes of connected components~clusters of mutually con-
nected vertices! and on the size of the giant connected co
ponent. How dofinite connected components grow wit
time? Here we present an elementary consideration of
evolution of connected components. For a rigorous der
tion of our main equations, see Appendix A. For the lar
network, it is almost impossible that both the ends of a n
edge are being attached to the same finite connected co
nent. Let us use the following essential circumstance.In the
large network,the finite size connected components are
most surely trees.Obviously, this is not the case for the gia
connected component. This fact is the key issue of perc
tion theory for networks@3,4,9#. One can check that the num
ber of edges in a finite connected component~tree! with k
vertices is equal tok21. Therefore, the total degree of th
component equals 2(k21), and the probability that a new
edge is attached to the component is proportional to 2k22
1ka. This value should be normalized. Taking into accou
that the total degree of the network is equal to 2bt, we find
that this probability is@(21a)k22#/@(2b1a)t#.

The resulting equation for the numberNk(t) of connected
components of sizek at time t is

Nk~ t11!5d~k21!1F122b
~21a!k22

~2b1a!t GNk~ t !

1b(
j 51

k21
~21a! j 22

~2b1a!t

~21a!~k2 j !22

~2b1a!t

3Nj~ t !Nk2 j~ t !, ~2!

whered(k21) is a convenient notation for the Kroneck
symbol. The first term on the right-hand side of Eq.~2! ac-
counts for the emergence of new vertices. The second t
describes the decrease of the number of connected com
nents of the sizek due to attaching of new edges to th
vertices of these components. The last term on the right-h
side of Eq.~2! accounts for the fusion of connected comp
nents into larger ones of the sizek. Here again we have use
the largeness of the network to present the terms of the
in the factorized form~see Ref.@27#!. The limit a→` cor-
responds to the absence of any preference. In this case,
edges connect the pairs of randomly chosen vertices, and
~2! takes the form of the master equation derived in R
@22#. We emphasize that Eq.~2! is nonlinear unlike maste
equations for degree distribution@28,29#.

IV. MAIN EQUATIONS

When t→`, the ratioNk(t)/t approaches the stationar
valuenk . The equation for it is of the form
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F112b
21a

2b1a S k2
2

21aD Gnk

5d~k21!1bS 21a

2b1aD 2

(
j 51

k21 S j 2
2

21aD
3S k2 j 2

2

21aDnjnk2 j . ~3!

Our main matter of interest is the probabilityP(k) that a
randomly chosen vertex belongs to a connected compo
with k vertices, that isP(k)5knk . Let us introduce itsZ
transform:g(z)[(k51

` knkz
k. Similarly, n(z)[(k51

` nkz
k. To

approach our aim, that is, the description of the connec
component statistics and the giant connected component
must find g(z). One sees thatg(z)5zn8(z) and n(z)
5*0

zdzg(z)/z. Then, from Eq.~3! ~see also Appendix A!, we
obtain the equation

g~z!2z12b
21a

2b1a S zg8~z!2
2

21a
g~z! D

3H 12
21a

2b1aFg~z!2
2

21a
n~z!G J 50. ~4!

If the giant connected component is absent, that is,g(1)
51, all the connected components are almost surely tree
(k@(21a)k22#Nk5(2b1a)t, i.e., (21a)g(1)22n(1)
52b1a, and we obtain the necessary conditionn(1)51
2b wheng(1)51. One can easily check that Eq.~4! satis-
fies this condition.

Using the convenient combination

h~z![12
21a

2b1a
g~z!1

2

2b1aE0

z dz

z
g~z!, ~5!

we rewrite Eq.~4! in the form

g~z!2z2bz
d

dz
h2~z!50. ~6!

Therefore,

n~z!5E
0

z dz

z
g~z!5b@h2~z!21#1z. ~7!

Substituting Eqs.~6! and ~7! into Eq. ~5!, we finally obtain
the equation

~21a!zh~z!h8~z!2h2~z!1~11z!h~z!2z~12z!50,
~8!

wherez[g225a/(2b). One sees thatg(0)5n(0)50, so
Eq. ~8! must be supplied with the boundary conditionh(0)
51. From Eqs.~6! and ~7!, a simple relation betweeng(z)
andh(z) follows

g~z!5
a

21a F11
2

a
z1

1

z
h2~z!2

11z

z
h~z!G . ~9!
0-2
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From Eq.~8!, using Eq.~9!, we can obtain theZ transform
g(z) of the basic distributionP(k) for finite connected com-
ponents. When the giant connected component is abs
g(1)51 andn(1)512b as shown above. Then, from Eq
~5!, it follows that h(1)50. As usual@9#, if the giant con-
nected component exists, its sizeS can be related to
g(1), S512g(1). After the introduction of new variable
and function,y[z21/(21a) and w(y)/y[h(z)/(11z), Eq.
~9! takes the canonical form of the Abel equation of t
second kind

w8~y!w~y!2w~y!5
z

11z
~y212a2y!. ~10!

The boundary condition for Eq.~10! corresponding to the
conditionh(0)51 is w(y)→y/(11z) asy→`.

Settingy51 in Eq. ~10!, we see that two situations ar
possible. Ifw(1)50, the giant connected component is a
sent. Whenw(1)Þ0, the giant connected component
present, andw8(1)51. Then, one can obtain from Eqs.~6!
or ~9! the expression for the size of the giant connected co
ponent

S512g~1!5
a

21a

~11z!2

z
w~1!@12w~1!#. ~11!

Thus, our problem is reduced to the analysis of the soluti
to Eq. ~10!.

V. PHASE DIAGRAM

The simplest problem we must solve is to indicate
region of the parametersb and a or, equivalently,z and a
where the giant connected component is present. The d
analysis of Eq.~10! ~see Appendix B! yields the following
picture ~see Fig. 1!. When z.z* [312A2, the giant con-
nected component is absent below the phase transition

a~z!5
1

4
~z1z21!2

3

2
. ~12!

For z,z* , the trivial phase transition line isa50. The ab-
sence of the giant connected component ata50 is obvious.
Indeed, whenz[a/(2b) is fixed, from a→0 it follows b
→0. In turn, zero input flow of edges produces a set
disjoint vertices.

For comparison, in Fig. 1, we show the percolati
threshold line for the equilibrium random graph with th
same degree distribution~1! as our growing scale-free ne
work @see the dashed linea(z)5(z23)/2#. This follows
from the Molloy-Reed criterion for the existence of the gia
connected component in equilibrium random grap
(q50

` (q222q)P(q).0 @3,4#.

VI. CRITICAL BEHAVIOR

A. Size of the giant component

In equilibrium networks, the size of the giant connect
component linearly approaches zero at the phase trans
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line. In growing networks we have a quite different situatio
As shown in Appendix B, the size of the giant connect
component near the phase transition line takes the form

S~z,a!5D~z!expH 2
p

2 F z~21a!

~11z!2
2

1

4G21/2J . ~13!

The dependence of the factorD on z is plotted in Fig. 2. One
sees that, in the case of the network with an exponen
degree distribution, i.e., whenz→`, the factorD tends to a
constant value 0.590 . . . . On theother side,D linearly ap-
proaches zero atz5z* .

In the following, to simplify our expressions, we shall u
the notation

l[Uz~21a!

~11z!2
2

1

4U
1/2

. ~14!

FIG. 1. Phase diagram of the growing scale-free network. H
a is additional attractiveness of vertices for new edges, andz5g
225a/(2b), whereb is the value of the input flow of new edges
The solid line@see Eq.~12!# indicates the phase transition of th
emergence of the giant connected component. Whenz,312A2,
the giant connected component is absent (S50) only on thea50
line. The dashed line shows the percolation threshold line for
equilibrium random graph with the same degree distribution~1! as
the growing scale-free network under consideration. Inset: the s
phase diagram but plotted on axes (z,b).

FIG. 2. Dependence of the coefficientD of the exponent in Eq.
~13! on z. Here,z5g225a/(2b).
0-3
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For the exponential network, i.e., whenz→`, we havel
5A2ub21/8u.

All the derivatives of the giant connected component s
over the deviation from the critical line are zero. In partic
lar, let us consider the deviation ofb from the critical line
bc5bc(z) @the form ofbc(z) follows from Eq.~12!#. In this
case,S(z,b) is of the form

S~z,b!5D~z!expH 2
p

2A2

11z21

Ab2bc
J . ~15!

In the limit of the exponential network,z→`, where bc
51/8, we obtain

S~z→`,b!50.590 . . . expH 2
p

2A2

1

Ab2bc
J . ~16!

In Appendix C, we present a simple direct derivation of E
~16!. The factor in the index of the exponent isp/(2A2)
51.111 . . . , that is, in agreement with the result of numeri
in Ref. @22#.

For smalla and 0,z,z* , that is, near the other trans
tion line (a50, 0,z,z* ) on the phase diagram, the siz
of the giant connected component behaves in the follow
way:

S~z,a!5F~z!a. ~17!

The factorF versusz is plotted in Fig. 3. All the derivatives
of F overz are zero at the pointz5z* . Near this point, when
a is small andz[z* 1e, Eq. ~15! takes the form

S~e,a!50.631 . . .a exp$2A2p@a24~3A224!e#21/2%.

~18!

Equation~18! is valid whena24(3A224)e.0. Thus we
see that the phase transition of the emergence of the g
connected component in growing networks is in sharp c
trast to that in equilibrium nets. We shall discuss the nat
of this anomalous phase transition in Sec. VII.

We close this subsection by the exact result for the re
tive total numberl of loops in the network~the ratio of the
total number of loops in the network to its sizet) obtained in

FIG. 3. FactorF in Eq. ~17! versusz. F(0)50.95 . . . .
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the Appendix A. Note that all the loops are in the giant co
ponent since finite components are treelike. The equation
l is

l 5
1

2

1

11z
@~21a!S12l #2. ~19!

Here we do not present its trivial solution. Near the pha
transition, where the giant component is small,l >@(2
1a)S#2/@2(11z)#.

B. Distribution of vertices among connected components

The distribution of vertices among connected compone
is one of the key issues in percolation theory. In Appendix
we calculate the probabilityP(k) that a randomly chosen
vertex belongs to a connected component of the sizek.

At the point of the emergence of the giant connected co
ponent, we obtain

P~k!>
2a

21a

1

k2 ln2 k
. ~20!

Here, a5a(z) is given by the relation~12! for the critical
line. The factor 2a/(21a) in Eq. ~20! approaches zero at th
point z5z* . Equation~20! must be compared with the cor
responding result for percolation on the equilibrium n
works and infinite-dimensional lattices, whereP(k)}k25/2 at
the percolation threshold@3,4,9,34#.

Furthermore, we find that in the entire phase without
giant connected component,P(k) is of a power-law form. In
this phase, far from the phase transition, i.e., when the
rameterl is not small@see the definition~14!#,

P~k!;k24l/(122l). ~21!

In the same phase, near the phase transition line~12!, P(k)
has a power-law tail

P~k!5
32a

21a
l2@~21a!k#2224l ~22!

for ln k@1/l, and coincides with the threshold distributio
~20! in the region 1! ln k!1/l.

This power-law form is in striking contrast to the exp
nentially decreasingP(k) both above and below the perco
lation threshold for standard percolation@34# including per-
colation on equilibrium networks. Equation~20! indicates
that the growing network is in a ‘‘critical state’’ in the entir
phase without the giant connected component. Note that
is valid both for the scale-free and exponential growing n
works.

In the phase with the giant connected component,P(k)
has an exponential tail. Near the phase transition, for
large values of connected component sizesk@@a/(2
1a)#S21, we obtain the following behavior:

P~k!5@2p~2ae!3~21a!S23k#21/2expF2
21a

2ae
SkG .

~23!
0-4
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Here, a5a(z) is taken for the transition line~12!, and S
5S(a,z) is the size of the giant component given by E
~13!; e52.73 . . . . For smaller k, namely 1! ln k
!1/l, P(k) takes the form of the threshold distributio
~20!. For lnk;1/l, a crossover regime is present.

VII. INTERPRETATION

All the results of Secs. V and VI were obtained by t
explicit formal analysis of the master equations for growi
networks. Let us discuss the physical nature of the beha
observed above.

To begin with, let us recall that in networks growing u
der mechanism of preferential attachment of edges to v
ces degree distributions of vertices are of a power-law~frac-
tal! form. This means that such networks self-organize i
scale-free structures with the power-law degree distributi
while growing. In fact, they are in a critical state in a wid
range of the values of the network parameters. The gro
under mechanism of the preferential attachment produ
power-law distributions. In principle, this phenomenon c
be called self-organized criticality.

In the present paper, we are interested not in the statis
of vertices but in the statistics of connected components,
is, in the distributions of the number of connections of d
tinct connected components and the distributions of the n
ber of vertices in them. New links are being attached to la
connected components with higher probability, so that la
connected components have a better chance to merge
grow. This produces the preferential growth of large co
nected components even in networks where new edges
attached to randomly chosen vertices, that is, in netwo
without preferential attachment of edges to vertices. S
mechanism of the effective preferential attachment of n
vertices to large connected components naturally produ
power-law distributions of the sizes of connected com
nents and power-law probabilitiesP(k). This ‘‘self-
organized critical state’’ is realized in the growing networ
only if the giant component is absent.

As soon as the giant connected component emerges
situation changes radically. A new channel of the evolut
of the connected components is coming into play, and, w
high probability, large connected components do not grow
to even larger ones but join to the giant component. The
fore, there are few large connected components if the g
component is present, and thenP(k) is exponential.

Thus, in the growing networks, two phases are in con
at the point of the emergence of the giant connec
component—the critical phase without the giant compon
and the normal phase with the giant component. This con
provides the above observed effects. There exists ano
example of a contact of a ‘‘critical phase’’~or of a line of
critical points! with a normal phase, namely, the Berezinsk
Kosterlitz-Thouless phase transition@35,36#. Interestingly,
functional dependences in both these cases have sim
functional forms. This indicates that equations describ
such phase transitions have similar analytical properties.

Connections in nonequilibrium networks are very inh
mogeneously distributed between vertices. We mean
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many edges are captured by old vertices, and few edges
attached to more young vertices—‘‘the rich gets riche
Nevertheless, this statistically inhomogeneous distribution
connections in growing networks is not the direct origin
the observed behavior. Both this inhomogeneity and the c
cal ~or, one can say, power-law, or fractal, or scale-free! dis-
tributions of connected components in the absence of
giant component have the same first cause—the specific
cess of the network growth.

VIII. CONCLUSIONS

In summary, we have presented the theory of percola
in evolving systems, growing networks. We have demo
strated that the interplay of a self-organization process
percolation produces a number of intriguing effects in su
objects. We have obtained exact results for the size of
giant component and the distribution of vertices over co
nected components. An explicit description for the anom
lous phase transition of the emergence of the giant com
nent in these growing networks has been proposed. We h
that our results are of a general nature and can be applie
various growing systems.
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APPENDIX A: RIGOROUS DESCRIPTION OF THE
EVOLUTION OF CONNECTED COMPONENTS

In Secs. III and IV, we have derived our main equation~4!
using a simple but rather heuristic approach. Here we pre
a strict derivation of the equations describing the growth
the network.

Let N(t) be the number of vertices in the growing ne
work at timet. We assume that, with the probabilityp(t)dt,
a new vertex is added to the network during a small ti
interval dt, i.e., N(t1dt)5N(t)11. The degree of a new
vertex is supposed to be zero.

The total degree of the network is

Q~ t !52L~ t !5 (
i 51

N(t)

qi~ t !, ~A1!

whereL(t) is the total number of edges in the network. W
assume that with probabilityb(t), a new edge emerges be
tween vertices. According to the rule of preferential linkin
that we use in the present paper, the probability that this e
connects verticesi and j is equal to

@qi~ t !1a#@qj~ t !1a#

@Q~ t !1aN~ t !#2
~A2!

for each pair of vertices.
0-5
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If b(t)5const, one can setp(t)5const51, so, in this
case, we have two parameters, namely,b and additional at-
tractivenessa, that determine the growth and the structure
the network. Let us introduce a new object that we call
connectivity matrix of the network,

Si j ~ t !5H 1, if i and j belong to the same

connected component

0, otherwise

~A3!

~this should not be mixed with the adjacency matrix!. Then
ki(t)5( j 51

N(t)Si j (t) is the size of a connected compone
containingi th vertex, that is, the total number of vertices
this component.
06611
f
e

t

The closed equation can be written for the joint distrib
tion function of the total number of vertices in the networ
N, the total degree,Q52L, and the connected compone
sizes,$ki%. Let us define theZ transform of this joint distri-
bution function as

g~N,Q;x,t !5
1

N K d@N~ t !2N#d@Q~ t !2Q#(
i 51

N
xki (t)L .

~A4!

Recall thatd( ) is the Kronecker symbol. Then,
g~N,Q;x,t1dt!5~12dt2b dt!g~N,Q;x,t !1
dt

N (
i 51

N
^d@N~ t !112N#d@Q~ t !2Q#xki (t)&

1
b dt

N K d@N~ t !2N#d@Q~ t !122Q# (
j ,l 51

N
@qj~ t !1a#@ql~ t !1a#

@Q~ t !1aN~ t !#2 H (
i 51

N
xki~ t !2@12Sil ~ t !#

3F (
m51

N
Sjm~ t !@xkm(t)2xkj (t)1kl (t)#1 (

m51

N
Slm~ t !@xkm(t)2xkl (t)1kj (t)#G J L . ~A5!

In the largeN,Q limit, one can substitute the factor@12Sil (t)# in Eq. ~A5! for 1, therefore

g~N,Q;x,t1dt!5~12dt2bdt!g~N,Q;x,t !1S 12
1

ND 1

N21
^d@N~ t !2N11#d@Q~ t !2Q#xki (t)&1

1

N ^d@N~ t !2N11#

3d@Q~ t !2Q#&x1b dtg~N,Q22;x,t !2
2b dt

N~Q221aN! K d@N~ t !2N#d@Q~ t !2Q12#

3(
j 51

N
@qj~ t !1a#kj~ t !xkj (t)L 1

2b dt

N~Q221aN!2 K d@N~ t !2N#d@Q~ t !2Q12#

3S (
j 51

N
@qj~ t !1a#kj~ t !xkj (t)D S (

l 51

N
@ql~ t !1a#xkl (t)D L . ~A6!
ts.
The sums in Eq.~A6! can be easily calculated

(
i 51

N(t)

qi~ t !ki~ t !xki (t)

5 (
i 51

N(t)

qi~ t !xki (t)(
j 51

N(t)

Si j ~ t !5 (
j 51

N(t)

xkj (t)(
i 51

N(t)

qi~ t !Si j ~ t !

52(
j 51

N(t)

@ki~ t !21#xkj (t). ~A7!

Here we have used the fact that, in the tree ansatz, loops
absent, so( i 51

N(t)qi(t)Si j (t)52@kj (t)21#. Analogously,

are

(
i 51

N(t)

qi~ t !xki (t)52(
j 51

N(t) F12
1

ki~ t !Gxkj (t). ~A8!

One can see that a general relation

(
i 51

N(t)

qi~ t ! f @ki~ t !#52(
j 51

N(t) F12
1

ki~ t !G f @kj~ t !# ~A9!

holds for arbitrary graphs with treelike finite componen
Here f ( ) is an arbitrary function. In particular, iff (k)51,
then 2Q(t)52@N(t)2Ncom(t)#, so N(t)5Q(t)1Ncom(t),
0-6
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whereNcom(t) is the number of components in the netwo
at time t. Using these relations, we obtain

g~N,Q;x,t1dt!

5~12dt2b dt!g~N,Q;x,t !1S 12
1

NDg~N21,Q;x,t !

1
1

Ng~N21,Q;1,t !x1b dtg~N,Q22;x,t !

2
2b dt

N~Q221aN! K d@N~ t !2N#d@Q~ t !2Q12#

3(
i 51

N
@~21a!ki~ t !22#xki (t)L

1
2b dt

N~Q221aN!2 K d@N~ t !2N#d@Q~ t !2Q12#

3S (
i 51

N
@~21a!ki~ t !22#xki (t)D

3S (
j 51

N F21a2
2

ki~ t !Gxkj (t)D L . ~A10!

In particular, whenx51, one obtains the joint probability
that the network containsN vertices andL5Q/2 edges at
time t,

g~N,Q;1,t !5^d@N~ t !2N#d@Q~ t !2Q#&[P~N,Q;t !.

~A11!

From Eq.~A10!, we obtain the equation forP(N,Q;t):

]P~N,Q;t !

]t
5P~N21,Q;t !2P~N,Q;t !

1d@P~N,Q22;t !2P~N,Q;t !#.
~A12!

Choosing the initial conditionP(N,Q;t0)5d(N2N0)d(Q
2Q0), we find the solution of Eq.~A12!,

P~N,Q;t !5
tN2N0

~N2N0!!
e2t

11~21!Q2Q0

2

3
~bt!(Q2Q0)/2

@~Q2Q0!/2#!
e2bt. ~A13!

If we assume thatQ052bt0 andN05t0 for t0→`, then Eq.
~A13! yields P(N,Q;t)→d(N2t)d(Q22bt). This shows
that the total numbers of vertices and edges,N andQ, are, in
fact, rigidly determined in the large network limit. Finally
using the decomposition

^xkixkj&→^xki&^xkj&, ~A14!

which can be justified in the limit oft→`, from Eq.~A10!,
we obtain
06611
t
]g

]t
1g1

2b

2b1a F ~21a!x
]g

]x
22gG

2
2b

~2b1a!2F ~21a!x
]g

]x
22gG@~21a!g22n#5x,

~A15!

where n(x,t)5*0
xdyg(y,t)/y. In the stationary case, Eq

~A15! yields Eq.~4! of Sec. IV.
If the giant component is absent, g(1,t)

5 limx→1,N→`g(x,N;t)51. In addition, if all the finite con-
nected components in the network are treelike, we have

n~1,t !5K 1

N~ t ! (
i 51

N(t)
1

ki~ t !L 5 KNcom~ t !

N~ t ! L
5 KN~ t !2Q~ t !/2

N~ t ! L→12b, ~A16!

that is, the ‘‘tree condition.’’ The following equation can b
written for n(x,t)

t
]n

]t
1n1

2b

2b1a
@~21a!g22n#

2
b

~2b1a!2
@~21a!g22n#25x. ~A17!

Equation~A17! can be used for the determination of th
number of loops in the giant connected component that
incides with the total numberM of loops in the network
since all the finite connected components are treelike.M
indicates the extent of the deviation of the giant compon
structure from a tree. One sees thatM5L112N, L
5bt,N5t, hence, the total number of edges in the gia
component is equal to

bt2(
k

~k21!Nk~ t !5tFb2(
k

~k21!nk~ t !G
5t@b2g~1!1n~1!#. ~A18!

Subtracting from this expression the total number of verti
in the giant component, that is,tS5t@12g(1)#, we obtain
M5t@n(1)2(12b)#. It is convenient to introduce the rela
tive number of loops fort→`

l [
M
t

5n~1!2~12b!. ~A19!

Substitutingn(1) from Eq.~A19! into Eq.~A17! taken at the
point x51, we obtain the exact equation forl ,

l 5
b

2b1a
@~21a!S12l #2. ~A20!

This equation also follows from Eq.~9!. Near the phase tran
sition, the giant component is small, so that
0-7
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l >b
~21a!2

2b1a
S2. ~A21!

APPENDIX B: ANALYSIS OF EQ. „10…

Note, that Eq.~10! remains unchanged, ifz→1/z. How-
ever, the condition thatw/y→1/(11z) at y→`, is not in-
variant under this change, and forz,1 we have to choose
another solution then forz.1. Here we analyze the solu
tions of Eq.~10! at y→` and aty→1. The comparison of
both the regions will allow us to obtain the phase diagr
and to find the essential features of the probabilityP(k) that
a vertex belongs to a connected component of the sizek.

If y→`, the termy212a on the right-hand side of Eq
~10! may be neglected, and we obtain the equation

w8w2w52
z

~11z!2
y. ~B1!

This equation has two solutions, which are linear iny, w
5y/(11z) and w5zy/(11z). It is the first one, which
must be chosen, because it corresponds tog(0)50. Let us
denote the physical solution of Eq.~10! asw1, and asw2, the
other one, which has the asymptotic formzy/(11z) at y
→`. If z.1, then w1(y),w2(y) for y.1. This follows
from the uniqueness property of a solution of Eq.~10!. On
the contrary, ifz,1, the physical solution is a higher on
w1.w2.

At y→1, after the linearization of the right-hand side
Eq. ~10! with respect toy21 we obtain

w8w2w52S 1

4
1b D ~y21!; b5

z

~11z!2
~21a!2

1

4
.

~B2!

After the substitutionw5(12y)c, Eq. ~B2! takes the form

~y21!c
dc

dy
52F S c2

1

2D 2

1bG ,
and can be easily solved

ln@C~y21!#52E c dc

~c21/2!21b
.

HereC is the integration constant. The sign ofb determines
a full picture of the set of the solutions of Eq.~B2!.

At first, let us consider the caseb52l2,0. In this case,
Eq. ~B2! has three families of solutions, real fory.1. These
families can be written in the implicit form as

C~y21!5S w

12y
2

1

2
1l D 1/(4l)21/2

3S w

12y
2

1

2
2l D 21/(4l)21/2

, ~B3!
06611
C~y21!5S 1

2
2l2

w

12yD 1/(4l)21/2

3S w

12y
2

1

2
2l D 21/(4l)21/2

, ~B4!

C~y21!5S 1

2
2l2

w

12yD 1/(4l)21/2

3S 1

2
1l2

w

12yD 21/(4l)21/2

. ~B5!

In the family ~B3!, 1/21l,w(12y),1`, in Eq. ~B4!,
1/22l,w(12y),1/21l, in Eq. ~B5!, 2`,w(12y)
,1/22l. Only the families~B3! and ~B5! should be taken
into account, because, for the family~B4!, we haveg9(1)
,0. Here a physical solution is realized in the family~B3! if
z,1, and in the family~B5! when z.1. The distinctive
feature of the solutions~B3! is that they have nonzero valu
asy→1, w(1)51/C. This proves that whenz,1, the giant
component is always present. For the solutions of the fam
~B5! we havew(1)50, which means the absence of th
giant component forz.1 andb,0. Wheny→1, we obtain
from Eq. ~B5!

w~y!'~y21!F1

2
2l1C8~y21!4l/(122l)G , ~B6!

whereC8 is some constant of the order of unity ifl;1.
If b5l2.0, the solution may be conveniently express

as

C~y21!5F S w

12y
2

1

2D 2

1l2G21/2

3expH 2
1

2l
Fp
2

1arctanF1

l S w

12y
2

1

2D G GJ .

~B7!

This form of presentation was chosen to ensure a smo
crossover between Eqs.~B5! and ~B7! at smalll. All solu-
tions of this set take nonzero values asy→1

w~1!5
1

C
expS 2

p

2l D . ~B8!

This means, that forz.1, the valueb50 corresponds to the
point of the emergence of the giant connected componen
the network. Taking into account the definition ofb in Eq.
~B2!, we arrive at the expression~12! for the critical line in
the (z,a) plane.

Let as consider now the critical region,ubu!1. If b50,
the solutions of Eq.~B2! are given by

w~y!5
y21

2 H 11
1

W@2C~y21!#J , ~B9!

where, by definition, the Lambert functionW(z) is a proper
solution of the equationW expW5z. If 2e21,z,0, W
0-8
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has two real branches, the one for whichW→0 asz→20,
and the other for whichW→2` in the same limit.z5
2e21 is the branching point for both these branches. Wh
the integration constantC is positive, one must choose th
real negative branch ofW(z), which tends to2` as y→1
10. This ensures a smooth crossover between Eqs.~B5! and
~B7! asl→0.

The behavior of the distribution near the critical line m
be treated analytically, if we know the integration consta
C5C(z) in Eq. ~B9!, that may be obtained by numeric
integration of Eq.~10! at the critical line, given by Eq.~12!.
Indeed, as 1@y21@exp(2p/2l), the argument of arctan in
Eq. ~B7! becomes negative and large. Then, using
asymptotic expression, arctanz'2p/211/z, one can see tha
the solution~B7! turns into the solution~B9! with the same
integration constantC. Hence, substituting Eq.~B8! into the
expression for the size of the giant component~11!, account-
ing for the relation~12!, and recalling thatl5Ab, whereb
is defined in Eq.~B2!, one arrives at the expression~13! for
the giant component size. The resulting factorD(z) in this
expression is equal to

D~z!5
2a~z!

C~z!
5

z226z11

2zC~z!
. ~B10!

Now let us consider the distribution function for co
nected componentsP(k) at the threshold and near it. This
the inverseZ transform ofg(z)

P~k!5 R dz

2p i
g~z!z2k21, ~B11!

where the integration is performed along the contour aro
z50, lying inside the unit circle. After integration by part
accounting for Eq.~6!, this expression takes the form

P~k!5d~k21!1
ak

2z R dz

2p i
h2~z!z2k21. ~B12!

Introducing the integration variabley5x21/(21a) and
w(y), w/y5h/(11z) we obtain

P~k!5d~k21!1a~21a!
~11z!2

2z
kE

c

dy

2p i
w2~y!y(21a)k,

wherec is some integration contour, lying to the right ofy
51 point. At k@1, the positionyc and character of singu
larity with the highest value ofuycu determine the value o
this integral. Close to the transition line we have either
singularity atyc51, if b,0, or at yc512«, «!1, if b
.0. Hence, whenl5Ab@1, and k is large enough, the
vicinity of y51 yields the main contribution to the abov
integral. Then one can extend the integration contour
6 i`. Changing the integration variabley511s, and as-
suming thats is small, we finally obtain the expression fo
the largek part of the connected component distribution,
06611
n

t

e

d

e

o

P~k!'a~21a!
~11z!2

2z
kE

c

ds

2p i
w2~11s!e(21a)ks.

~B13!

At the threshold we have

w2~11s!'
s2

4 S 11
2

ln~Cs! D , ~B14!

where we have taken into account, that the appropr
branch of Lambert function has the asymptotic formW
(2z)' ln z as uzu!1. Then, deforming the integration con
tour to the one along the shores of thes5(2`,0) cut, and
calculating the jump across the cut to the leading order
1/lnk, we obtain

P~k!'
a

21a

1

k2 ln2 k
. ~B15!

When b,0, that is, in the phase without the giant co
nected component, and the strong inequalityl!1 is not
valid, we have from Eq.~B6!

w~11s!'s2F S 1

2
2l D 2

1A1sDG , D5
4l

122l
,

~B16!

with some constant coefficientA1;1. Only the second term
in the square brackets is singular and yields nonzero co
bution. Substitution of Eq.~B16! into Eq. ~B13! yields

P~k!'Ak222D, ~B17!

which is valid if ln@(21a)k#@1/l, and A is a constant. At
smaller k one should use expression forw(11s), valid at
larger s. If ln s!1/l, from Eq. ~B5! the equation forw(1
1s) follows

2Cs5F2w

s
21G21

expH F2w

s
21G21J , ~B18!

whose solution is given by the functionw(y), taken precisely
at the threshold, Eq.~B9!. Therefore, as 1! ln@(21a)k#
!1/l, the distribution function assumes the threshold for
Eq. ~B15!.

Above the threshold~i.e., in the phase with the giant con
nected component!, b.0, the argument of the arctan func
tion in Eq. ~B7! is positive and large, and the formul
arctanz'p/221/z may be used. Thus, we obtain the form
the solution

w~11s!'
s

2 H 11
1

WFCsexpS p

2l D GJ . ~B19!

This expression is valid if ln@sexp(p/2l)#!1/l. The Lam-
bert functionW(z) has a square-root-type singularity atz5
2e 21, which ensures the exponential-type behavior
P(k) at the largestk. Let us substitute Eq.~B19! into Eq.
0-9
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~B13!, retaining only the relevant term. Changing the in
gration variable,s5C21z exp$2@p/(2l)#1z%, we find the ex-
pression for the distribution

P~k!'C23a~21a!2k expS 2
3p

2l D E
c

dz

2p i
z~z11!

3exp@C21~21a!e2p/2lkzez13z#. ~B20!

If (2 1a)k@exp@p/(2l)#, this integral can be calculated i
the saddle point approximation. Notice, however, that
integrand in Eq.~B20! becomes zero at the saddle pointzc
521. To avoid this difficulty, one can perform integratio
by parts, which gives

P~k!'2C22a expS 2
p

l D E
c

dz

2p i
~2z11!

3exp@C21~21a!e2p/2lkzez12z#. ~B21!

Then, the saddle point approximation yields

P~k!'a@2pC3~21a!3k#21/2

3expF2
3p

4l
2

3

2
2C21e2p/2l21~21a!kG .

~B22!

At smaller values ofk, but when, nevertheless, it is sti
possible to use Eq.~B19!, i.e., when (21a)k exp@2p/(2l)#
!1, but u ln@(21a)kexp(2p/2l)#u!1/l, the argument of the
W function in Eq.~B19! becomes large, and we can repla
the Lambert function with logarithm. In the same way
obtaining the threshold distribution~B15!, we get the form of
the distribution

P~k!'
2a

21a
k22 ln22F ~21a!k expS 2

p

2l D G . ~B23!

At even smallerk, the expression forw(11s) at largerusu is
necessary. It may be found from Eq.~B7!, if we assume that
the argument of the arctan function is small and repl
arctanz with z. As a result we obtain

w~s!'
s

2
@124l2 ln~2lCsep/4l!#, ~B24!

which is valid if u ln(lsep/4l)u!1/l. In this region the distri-
bution function is of the form

P~k!'8l2
a

21a
k22. ~B25!

Finally, for k@1, lnk!1/l, Eq. ~B7! for w(11s) at s
;1/@(21a)k# assumes the form~B18!, and as a result we
obtain the distribution function in its threshold form, E
~B15!.
06611
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APPENDIX C: ANOTHER WAY TO GET S„b…
FOR THE EXPONENTIAL NETWORK

Here we show how our result forS(b) can be obtained
directly for the network growing without preferential attac
ment of edges, i.e., in the limita→`. In this particular case
from Eq.~3!, we obtain the master equation for the probab
ity P(k)

t
]P~k!

]t
1P~k!5d~k21!1bk(

j 51

k21

P~ j !P~k2 j !22bkP~k!.

~C1!

This is a basic equation for the evolution of the connec
components. From the long-time limit of Eq.~C1!, the equa-
tion for g(z) follows ~see Ref.@22#!:

zg8~z!5
1

2b

z2g~z!

12g~z!
. ~C2!

The boundary condition for it isg(0)50, so g8(0)
51/(112b).

The threshold solutiong(z,b51/8) approaches 1 atz
51, andg8(1,b51/8)52. For b.1/8, the giant connected
component is present, so that, atz51, the corresponding
solution of Eq. ~C2! is less than 1, andg8(1)51/(2b).
Whenb,1/8, i.e., in the phase without the giant connect
component, the physical solutiong(z51)51, and g8(1)
5(12A128b)/4b. Note thatg(z) approaches the pointz
51 in a nontrivial way. Indeed, the values ofg8(z) are es-
sentially smaller thang8(1) even very close toz51 ~see
below!.

Nearz51, Eq. ~C2! can be written in the form

u~j!
u~j!

dj
5

1

2b
@u~j!2j#, ~C3!

wherej[12z andu[12g. Its solution forb51/8, that is,
the threshold solution, is

u~j,b51/8!52j@12 f ~j!#, ~C4!

where f (j) is the solution of the transcendental equation

ln@j f ~j!#1
1

f ~j!
5 ln c. ~C5!

Here, the constantc50.295 . . . isobtained by the numerica
sewing together with the solutiong(z) of Eq. ~C2! passing
through zero atz50.

For b.1/8, i.e., when the giant connected componen
present, the solution of Eq.~C3! is given by the following
transcendental equation

2
1

A8b21
arctan

4b@u~j!/j#21

A8b21

2 lnAj22u~j!j12bu2~j!5C. ~C6!
0-10
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One can check thatdu(0)/dj51/(2b). The constantC is
fixed by the value of the solution atj50, i.e., u(0)5S,
whereS is the size of the giant connected component

C52
p/2

A8b21
2 lnA2b2 ln S. ~C7!

When b tends to 1/8 from above, forj@S, we expand
arctan@accounting thatu(j),2j in this region# and setb to
1/8 in the logarithms

2
p/2

A8b21
2 ln

1

2
2 ln S5

p/2

A8b21
2

1

12u~j!/~2j!

2 ln@j2u~j!/2#. ~C8!

We sew together this solution forb→1/8 and the threshold
solution ~C4!. One can see that this is possible substitut
Eq. ~C4! into Eq. ~C8!:
ng

t

e

e

. J

e

y

06611
g

2
p

A8b21
1

1

f ~j!
2 ln

S

2
52 ln@j f ~j!#. ~C9!

Accounting for Eq.~C5!, we finally obtain

S52c expF2
p

2A2

1

Ab21/8
G , ~C10!

where the coefficient 2c50.590¯ .
One should note that the accurate sewing procedure

been necessary only for the determination of the coeffic
of the exponent in Eq.~C10!. Indeed, the index of the expo
nent can be easily obtained without consideration of the
two terms on the right-hand side of Eq.~C8! for g(x).
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