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ABSTRACT 

We present in detail the description and the analysis of two independent 

experiments using Bevalac beams of 
16

0 and 
56

Fe. From their results i! is 

concluded that the reaction mean free paths of relativistic projectile 

fragments, 3 ~ Z ~ 26, are shorter for a few centimeters after emission than 

at large distances where they are compatible with values predicted from 

experiments on beam nuclei. The probability that this effect is due to a 

statistical fluctuation is <10-
3

• The effect is enhanced in later 

generations of fragments, the correlation between successive generations 

suggesting a kind of "memory" for the anomaly. Various systematic and 

spurious effects as well as conventional explanations are discussed mainly on 

the basis of direct experimental observations internal to our data, and found 

not to explain our results. The data can be interpreted by the relatively 

rare occurrence of anomalous fragments that interact with an unexpectedly 

large cross section. The statistical methods used in the analysis of the 

observations are fully described. 

[ NUCLEAR REACTIONS 
16

0 and 
56

Fe at 2 AGeV on emulsion nuclei; reaction mean 

free paths of primary beams and projectile fraqments measured and compared. ] 



I. INTRODUCTION AND HISTORY 

Observations in nuclear research emulsion that have given provocative 

evidence for short reaction mean free paths of relativistic projectile 

fragments of high~energy heavy ions in the cosmic radiation have been reported 

sporadically since 1954. The first evidence for "anomalous" extranuclear 

cascading induced by heavy primary cosmic-ray nuclei was given by Mi1one.
1 

Subsequent observations by Yagoda2 and Tokunaga, et a1. 3 suggested that 

secondaries and later generations in the cascades might have a mfp (mean free 

path) five to ten times shorter than the value expected from a geometrical 

overlap model 4 that was in reasonable agreement with values observed for 

11 primary" nuclei. In 1959 Friedlander and Sptrchez 5 examined six cosmic-ray 

initiated cascades and found a difference between the mfp of 11 first 11 and 

11 Second'' generation fragments. The first systematic studies of the effect 

were performed by Judek. 6 On the basis of mfp measurements of relativistic 

cosmic-ray primary and secondary nuclei involving about 1000 interactions, 

Judek concluded that a few percent of the secondary nuclei with charqes 

1 ~ Z ~ 4 interact with anomalous mfps of the order of 3 em and that the stars 

produced by the 11 anomalous 11 particles had the characteristics of 11 typical 11 

nuclear interactions as observed in emulsion. Evidence for short mfps for 

secondary relativistic fragments was also reported by C1eghorn. 7 

Because of limited statistics, possible systematic uncertanties, and the 

implausibility, even impossibility, of such a nuclear component within known 

nuclear physics, th~se enigmatic observations have never been wide1y 

recognized nor accepted. In 1972 Judek exposed nuclear emulsions to the 

2.1 AGeV 16o beam of the Bevalac and obtained a partial confirmation of her 

earlier cosmic ray resu1ts. 8 The aim of the present collaborative Bevaiac 



experiment was to obtain sufficient statistics to decide whether there is 

evidence for a short mfp for PFs (projectile fragments) emitted from the 

interactions of ~2 AGev9 16o and 56Fe beams with target nuclei in 

nuclear track emulsions. Our results provide this evidence. 

A summary of our results, based on a total of J460 interactions of PFs in 

emulsion stacks exposed to Bevalac beams~ independently scanned and measured 

at the National Research Council (NRC) of Canada and Lawrence Berkeley 

Laboratory (LBL), is as follows: 10 a) Over the first few centimeters after 

emerging from a nuclear interaction (-10 gm/cm2 of matter traversed or, 

equivalently, -1o-11 s proper time) the PFs exhibit significantly shorter 

mfps than those derived from 11 norma1 11 beams of the same charge Z: (b) at 

larger distances from the emission point, the mfps revert to values compatible 

with those for 11 normal 11 beam nuclei: and (c) the observations are not 

compatible with a homogeneous lowering of the mfp and reouire the presence of 

at least one component with an unexpectedly high reaction cross section. 

Since our first communication on this subject, 10 results of two 

independent experiments11 , 12 have shown essential agreement with these 

conclusions. 

The emulsion technique and the results derived therefrom on primary beams 

are well established. 13 ' 14 The basic method we have used is known as 

along-the-track scan, where one simply follows each track until it either 

interacts or exits the detector. An interaction in such a scan is defined to 

be the emission of at least one charged hadronic track, eit~er from the 

projectile or the struck target nucleus in the emulsion. Preceding 

experiments have yielded by this method the mfps of primary beam nuclei to a 

statistical precision of -3%. Specific to this result, mfps for 
Ll. 12r He, 

' 

14N, and 16o had been obtained at LBL 15 and for 160 at NRr8. As 
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part of the present experiment, mfps for primary 40Ar and ~°Fe were 

measured at LBL and for 
4

He and 
56

Fe at NRC. The primary beam mfp 

measurements were done in all cases at about 2 AGeV, with some measurements 

also performed at lower energies to obtain information on energy dependence. 

We found no such dependence within the accuracies of our measurements. As 

will be shown, the 2 AGeV primary beam measurements are in good agreement with 

the measurements on PFs beyond about 5 em from their points of emission. 

Below this distance, we observe significant and regular deviations from both 

the primary beam measurements and the "large distance" observations. Further, 

the results of the two independent observations concerning PFs from 5 ~Fe at 

LBL and 16o at NRC, are in agreement. 

This paper is organized in six sections. In Section II that follows, we 

discuss what one would reasonably expect to be the reaction properties of PFs 

based on known nuclear physics. Section III describes the technioues used in 

this experiment and the systematics they imply. 

In view of the potential importance of our results it behooved us to 

examine in detail several subsets of the data. By necessity, these subsets, 

having qualitatively different responses to various systematic or spurious 

effects, do also have a different statistical behavior. For these reasons, 

Section IV presents the formal statistical methods needed to analyze the data 

in a cogent fashion with mathematical details given in Appendices A and B. 

Section IV also includes a discussion of the Monte Carlo simulations used to 

test the formalism and its physical approximations in the light of the 

material given in Sections II and III. Sectio~ V and Appendix C describe the 

results using the methods of Section IV, and Section VJ summarizes the 

conclusions of the investigation. 

A note on notations: Asterisks *will refer to estimates, bars to sample 

averages, and angular brackets < > to expectation values. 



II. BASIC CONCEPTS AND EXPECTATIONS 

To deem that an observation is anomalous, one must first establish 

normality. In the present case, we need to know the normal interaction 

behavior of riuclei in emulsion, particularly nuclei of kinetic energy hetween 

1.5 and 2 AGeV. This is given in its simplest form by the total (or 

inclusive) reaction mfp, denoted by A· While the measurement techniques and 

the statistical properties of various estimates for A will be discussed later, 

the mfp has a simple physical interpretation in terms of number densities of 

target nuclei and cross sections, namely: 

[ k . J-1 
" = ?: n i cr ~b s • 

l:::l 

Here k is the number of different nuclides in the emulsion, n. is the 
1 

number of nuclei/unit volume of nuclide "i",
14 

and cr~bs is the cross 

section for the projectile to interact in a visually observable manner with 

component "i". The cross section aobs is defined to include the detection 

efficiency. Note that a large rrobs corresponds to a short A. However, 

because emulsion is a heterogeneous mixture of elements, one necessarily 

measures A, not crobs· Nonetheless, a knowledge of the properties of A 

carries over to information about crobs" 

To an excellent approximation, the cr~bs's in question are just a 

constant fraction of the total reaction cross section. Two properties of 

(1) 

heavy ion reaction cross sections are important here: from about 0.~ AGeV to 

~2A GeV i) the aobs ar~ essentially constant and ii) they are well descrihed 

by a geometrical dependence. 16 



-6-

In its simplest approximation. the geometrical dependence of the reaction 

cross section is expressed in the Bradt-Peters form, 4 

where r
0 

and o are constants and ApA2 are the baryon numbers of tarqet 

and proJ·ectile. If A113 >> A113 - o, then A213 
1 2 (JO:: • 

Because A a: Z near the valley of stability (VOS), one might roughly 

expect that cr a: z213 with the same restriction as above. This suggests a 

more general relationship of the form: 

(?) 

A ~ Az-b (1) 

In fact, Eq. (3) adequately fits the primary beam data, with b ~ 0.4 

The equations to be solved for estimating A and b are presented in 

Section IV. Using these, one obtains two fits: one for NRC, the other for LRL. 

* * At NRC: A = 28.9 % 2.5 em, b = 0.43 : 0.04 

* * At LBL: A = 32.2% 2.5 em, b = 0.44 : 0.03 

While the consistency of the observations is evident, we stress that these are 

measurements of beam nuclides limited to the VOS. 

It is evident that not only VOS nuclides are present amonq the PFs but 

also isotopes away from the VOS, as well as various excited states with 

lifetimes CT > 1 em. To incorporate the deviations these effects miqht 
'V 

produce in the mfps (which are really a function of Z, A and quantum state) 

one has two alternatives. The first. obviously, is to measure empirically all 

these mfps. It is equally obvious that the logistics of such a measurement 

would be intractable. The second alternative, albeit somewhat less secure, is 

to obtain calculated values of mfps based on realistic models
17 

that usP 

other experimental data, such as form factors and detection efficiency. This 

we have done. The results are displayed in Fig. 1, along with the 

experimental observations and a power-law fit to these data. 



The small circular points in Fig. 1 are the calculated values of ~(Z) for 

nuclei of charge Z at 2 AGeV in emulsion obtained from Karol's "soft-spheres" 

model. 17 The mfp measurements on primary beams at 2 AGeV, indicated by the 

large circles and triangles, are well represented by the calculations, 

assuming the values of the paramet~rs used in the Karol formalism given in 

Ref. 15. In several cases the multiple values of the mfp at the same Z 

illustrate the dependences of A(Z) on the isotopic mass A of the projectile. 

The straight line is the fit to the combined LBL-NRC data sets, A(Z) = 10.d 

z-0· 44 em. While the general trend is reproduced, there does appear to be a 

theoretical prediction that the mfps for the Z = 3,4,5 isotopes wil1 fa11 

below the fitted lines. 18 Additionally, isotopic "noise" is visible. In 

Section IV-C, which concerns the Monte Carlo simulations of the experiment, 

the methodology for dealing with these aspects of the mfps will be examined. 
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III. METHOD OF OBSERVATION AND SYSTEMATICS 

In this section, three main points are discussed: i) the quantities 

measured, ii) how the measurements were conducted, and iii) the problem of 

systematic errors posed by these measurements. 

i ) stack characteristics and scanni 

Ilford G-5 nuclear research emulsion pellicles, nominally 600 um thick, were 

exposed at the Bevalac to relativistic heavy ion beams parallel to the 

emulsion surfaces. Stack I, 50 pe11icles, of size 15 x 30 em?. was exposed 

to 2.1 AGeV 16o and scanned and measured at NRC: stack II. 42 pel1ic1es of 

size 7.5 x 12 cm2• was exposed to 1.88 AGeV 56Fe and scanned and measurerl 

at LBL. The track densities of the 160 and 56Fe beams were -s and 

-3 x 103 cm-2• respectively. The stacks were processed separately at 

LBL. A 1-mm2 grid was photographed on each pellicle before the latter was 

removed from its respective stack, mounted on glass and processed. 

At both NRC and LBL, an unbiased forward "along-the-track" scan was 

used. This means that a primary track was picked up on a scan line as it 

entered the stack; this scan line was 2 mm from and parallel to the leading 

(milled) edge of each pellicle in the Fe stack, and at 5 mm in the 0 stack. 

The track was examined to insure that it did not interact before the scan 

line. The Fe primaries were followed until they either interacted or left the 

pellicle: the 0 primaries were followed until they interacted or left the 

stack. When the primary interacts, any PF produced is called a secondary. 

When a secondary PF interacts, any PF produced is a tertiary, and so on. An 

example of a primary-secondary-tertiary 11 two-1ink chain" event is shown in 

Fig. 2. All PFs of Z ~ 3, regardless of generation (secondary, tertiary, ... ), 

were followed until they interacted or left the stack. 



Table I summarizes the data base for this experiment, givina the number 

of interactions observed for the primary 
16

0 and 
56

Fe beams and for 

projectile fragments versus generation. 

Projectile fragments, as indicated by their name, are nuclei produced at 

low velocities in the projectile frame. Hence at y ~ 3 they are emitted in a 

narrow forward angular cone having velocities essentially that of the 

projectile. The average momentum shift in the laboratory frame of a PF 

relative to its parent is only on the order of -150 MeV/c at~ 3 AGeV/c
19

, a 

momentum. i.e. energy, loss that is smaller than that caused by ionization in 

the emulsion. We shall examine this point in the discussion of the enerqy 

spectra of the PFs (Sec. VIB.4). At the energies used in this work, PFs of 

Z ~ 3 are confined to a forward cone that is characterized by the Fermi 

momentum of the fragments within the projectile nucleus. 19 We accepted PFs 

within the forward 6° cone, with all angular measurements being corrected for 

the shrinkage in the thickness of the processed pellicles. 

In this experiment an interaction (''star") was defined as the emission of 

at least one (observable) charged hadronic track at the vertex in addition to 

the fragment under investigation. At LBL the distances were estimated to 

100 ~m by use of the 1 mm2 grid imprinted on the pellicles, the grid heino 

checked by microscope~stage coordinates. At NRC the stage coordinates were 

used directly, with a verification of distances obtained from the grid 

coordinates. 

All data at LBL were rescanned by a different ohserver usinq a somewhat 

different technique from the initial scan. Since one could imagine the 

potential pitfall of differential scanning efficiency (a scanner being more 

observant immediately following a vertex), the scanners hackscanned a11 

interacting PFs proceeding backward from all observed interaction vertices, 

and forward rescanned all noninteracting PFs from their emission point. 
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At NRC, searches for charge-changing interactions missed in scannino were 

conducted by repeated charge measurements along the track. The charges of all 

primary nuclei were determined at the interaction vertex, or, in the case of 

noninteracting tracks, at about 5 mm from the entrance edge of the stack. The 

charges of PFs were determined near their emission vertex as well as at the 

next interaction vertex, if they interacted, or at the exit point from the 

stack if no interaction were detected. If any charge change was observed, the 

tracks were carefully rescanned for the missed interaction. This naturally 

increased the detection efficiency for certain classes of stars at NRr 

relative to LBL, namely stars with a small charge change to the next 

generation PF. In both experiments, the scanning was done under =~OOX 

magnification, with questionable vertices examined under higher power, where 

spatial resolution of ~ 1 ~m is obtainable. 

We defer discussion of certain potential vertex misidentification and 

background problems to Section VI. 

i i ) measurements. Because the mfp of a nuclide is a function of its 

baryon number A, hence Z, charge measurements via mean qap lenoth and ~-ray 

densities were carried out for PFs Z # 3. The measurements of charge of the 

PFs in this experiment were greatly simplified by the persistence of 

(relativistic) beam velocity, 19 which enabled us to assume that the linear 

density of 8-rays of the PFs was proportional to z2• 

The LBL and NRC groups utilized both 8-rays and linear track structure to 

determine the charges of tracks: their techniques differed in significant 

details, this difference being primarily attributable to the much hiqher y-ray 

densities of the fragments Z > 8 occurring in the Fe stack. For Z ~ ~. the 

LBL group estimated charge from the lacunarity L of the track, given by 

Z cr1/lln L!, where lis the fractional linear transparency of the track. ld 

In the range 6 ~ Z ~ 26, charge was deduced from the "lacunarity" of d-rays, 
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where l is defined here to be NE/NT' i.e., the ratio of the number of times 

no o~rays are observed in a cell length S (typically 15 um) to the total 

number of-cells examined. In this technique a o-ray is defined to be one that 

projects radially a minimum of -1.5 um from the center of the track.?O 

To determine the reproducibility of the charge measurements, the method of 

repeated observations was used at LBL. A track was chosen at random that had 

been first measured to give charge z
1

, say. Subsequent independent ohserva

tions were made on different segments of the same track, yielding measurements 

z2 .•. ZN. The deviations z1-z2• z1-z3, .•• z1-ZN were histoqrammed. and since 

for the different z
1
s the results of z

1
-zi were compatible, one final histogram 

was produced, Fig. 3 (LBL). This yielded an empirical charge reproducibility 

of *1 charge unit from 6 ~ Z ~ 26. These deviations were obtained at different 

depths and in different plates to verify the correction for development gradi~ 

ents and to test the uniformity of the stack. Further, they were examined for 

a systematic shift with distance into the stack: such a shift could indicate a 

change in track structure due to a slowing of the fragment. No such shifts 

were found, lending further credence to the assumption that one was in fact 

dealing with relativistic PFs. 

Two main procedures of d-ray counting were employed at NRC, the countinq 

of all o-rays (a) with four or more grains and (b) that extended >1.~ um from 

the center of the track. Procedure (a) was used in the early stages of this 

work. Procedure (b), although more time consuming, gave results consistent 

with those of (a). A track segment of about 5 mm was used for each count, 

depending on the particle's charge. The charge distribution obtained from 

o-ray measurements using (b) is given in Fig. 3 (NRC), showing a statistical 

accuracy of 1/3 charge unit for 5 ~ Z ~ 8 and of about 1/4 charge unit for 

Z = 3 and 4. Gap-density measurements were found to give complete charae 

resolution for Z = 3 and 4 in 1 mm of track length. 

iii) Energy Spectrum. The only technique available in this experiment 

to measure the energy spectrum of PFs is that deduced from the auantity ps 
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resulting from multiple scattering measurements. However, at the enerqies 

involved in the present experiment, such measurements are not nearly sensitive 

enough to provide an accurate energy spectrum. Multiple scattering 

measurements carried out at NRC provide proof that the PFs were qualitatively 

in excess of 1 AGeV (for Z/A = 1/2) and entirely consistent with the 

calculated energy spectrum. 

To calculate the energy spectra of the interacting beams and PFs we 

incorporated several pieces of information. 

i) We assumed the values given in the literature for the specific 

ionization constant. 14 

ii) Spectrometer measurements have shown that the longitudinal momentum 

distributions of PFs in the laboratory frame are characteristically 

Gaussian shaped, with mean shifts <PII> ~ -150 MeV/c in total momentum and 

standard deviations typically 450 MeV/c. 19 Let us consider a PF of 

mass A = 10 that is emitted from a parent nucleus of total momentum of ?~ 

GeV/c, assuming the persistence of velocity. At the -3 standard 

deviation level, the PF would be shifted downward by -1.5 GeV/c, or ahout 

6% of its total momentum at beam velocity. In terms of kinetic eneroy, 

this is about an ~Ia degradation. Hence, even in this worst case 

analysis, we conclude that the effect of kinetic energy/nucleon loss at 

emission of a PF relative to its parent is small compared to the energy 

losses caused by ionization in the emulsion. 

The resultant calculated energy spectra for the PFs in the experiment 

utilizing this information are displayed in Fig. 4. As can be seen, none of 

the PFs would have had an energy below 1 AGeV and few below 1.~ AGeV. 

The important conclusion that comes from this calculation is that, 

because of the near energy independence of the reaction cross section for 

energies E > 1 AGev, 16 we are assured that the expected mfps, A(Z), of the 
~ 

PFs are constant, independent of position in the emulsion detectors. 



-13-

IV. STATISTICS OF MEAN FREE PATH MEASUREMENTS 

From its very beginning, the problem of the anomalously short mean free 

paths of projectile fragments has been plagued by the relatively small 

statistical samples involved, which entailed--to a certain extent, 

justifiably--a general mistrust about the reality of the effect. 

However, samples of arbitrary size are susceptible to exact statistical 

treatment; this should enable one to extract the maximum amount of information 

from the data available. The aim of the analysis is to test the null 

hypothesis (n.h.), which states--in physical terms--that projectile fragments 

are just ordinary nuclei, with no exceptional physical properties. We shall 

return to the quantitative formulation of this n.h. below. 

The statistical problems that must be addressed in such a treatment of 

the data are 

i) How to estimate a mean free path in a detector of finite dimensions 

(especially dimensions comparable to the mean free paths involved); 

ii) How to test the n.h. in the presence of a secondary "beam" with a 

wide charge spectrum. Indeed, since the mfp depends on the fragment 1 S charge, 

the test must be carried out on subsamples characterized by individual 

charges; in any experiment with statistics comparable to ours, this 

necessarily implies subsamples of relatively small size; 

iii) Assuming that an adequately constructed test has rejected the n.h., 

how to extract from the data the pertinent information about the physical 

parameters characterizing the objects responsible for the anomaly. 

The presen~ section deals with this set of problems. Fortunately, most 

of the statistical tests, estimators, and distribution laws involved in such a 

treatment turn out to be of the "text-book" type and only a few variations on 

themes familiar from radioactive decay have had to be derived here. This 
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section states definitions and results; details and/or proofs are given in 

Appendices A1 to AS. 

Definition the mean free The basic concept of this experiment 

is the reaction mean free path. If the target medium is homogeneous or if it 

has a length scale of inhomogeneity very small compared to the scale of the 

. t t. d. t 14 th f th f h t. 1 b 1n erac 10n 1s ances, e mean ree pa o a omogeneous par 1c e earn 

appears as the parameter A in the differential equation 

dN -N 
0 0 

dX =-A-

Here, N
0 

is the number of particles incident on a target slab of thickness 

dx; some physical process, characterized by A, removes particles from the 

(4) 

beam. The solution of this equation is well known to be the negative 

exponential; specifically, the probability density for an interaction distance 

x is given by 

(5) 

Except for the fact that we are dealing with track lengths rather than with 

time intervals, this is just the law of radioactive decay and many well-known 

results from this field (especially their application to the spontaneous decay 

in flight of unstable elementary particles) can be taken over to our analysis. 

The probability density, Eq. (5), leads to several consequences. 

Foremost is the property that the negative exponential 11 has no memory". 

Physically, this means that any infinitesimal slab dx is equivalent to any 

other slab in which the particle may suffer an interaction, irrespective of 

the location of the slab. The fact that a particle has not interacted up to 

dx has no influence on its fate in dx. 
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Any given sample of tracks in a detector of finite length can be 

separated into two classes, viz. 

i) those that did interact within the detector and 

ii) those that left the detector without interacting. One may choose to 

extract information on A either by considering tracks of type i) and ii) 

together or by considering onl the distribution of interaction distances of 

class i). 

A. Method A 

The first method of estimation, which shall be denoted as method A, uses 

a moment of the interaction distance distribution as well as information about 

those tracks that did not interact. 

The second, which we shall denote as method B, will be dealt with in the 

following subsection IV-B. 

The concept of method A can be formulated as follows: 

1) Assume A is a constant. 

2) Follow tracks until N interactions are observed, N ~ 1. 

3) Sum the total path lengths followed for both the interacting and 

noninteracting tracks, where the path length of a particle 1
S track is the 

length from its initial observation, i.e., either the scan line for beam 

particles or the location of the parent interaction for PFs, until its 

interaction point or its exit from the detector. Denote this sum by SN. 

4) Define the estimate of the mfp as 

* A = SN/N. 

a) Distribution of the total path length in an infinite detector. In 

* 

(6) 

order to establish that A deviates significantly from some expected value A 

* one would like to know the distribution law of A , given A and N. For 

practical reasons it is preferable to investigate instead the distribution law 

of the total path length SN' given A and N. 



In an infinite detector, all tracks must interact: if the individual 

interaction length of the ith track is x., then by definition 
N 1 

SN = ~xi. Since the distribution of xi' given A, is known, Eq. (5), 

i =1 
the probability density of SN is obtained by N-fold convolution of Eq. (5) 

(see Appendix A1), ~hich yields the f-distribution [21] 

As any r-distribution of (integer) order N can be transformed by a change of 

variable to a x2 
distribution (see Appendix A2) it follows that the quantity 

is distributed like x2 
with 2N degrees of freedom. 

b) Case of a finite detector. Having established the distribution of 

SN in an infinite detector, one can now apply it to the case of a finite 

detector. As long as there is an essentially unlimited number of tracks so 

that in any repeat experiment one can go to the Nth interaction, the 

distribution of SN must be the same. To establish this fact, we invoke the 

(7) 

(8) 

no-memory property. Simply regard each track length in an infinite detector 

as made up of noninteracting segments plus the last segment, which terminates 

in the N-th interaction. In an infinite detector, each track must interact, 

causing N to be identical to the number of tracks; in a finite detector, N is 

related to the flux N
0 

by the binomial distribution at fixed flux, so that 

one in principle requires an arbitrary amount of flux to ensure that one 

reaches N in all cases. In fact, letT be the distance available for 

( ) 1 
-T/A . 

observation i.e. the potential path and PT = - e : then N 1s 

distributed binomially 
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For N
0 

~ oo and N
0

PT finite, Eq. (9) tends toward a Poisson 

distribution and Eqs. (7) and (8) hold. 

F h k t . f th 2 d. t . b t. 22 . t f 11 th t rom t e nown proper 1es o eX 1s r1 u 1on, 1 o ows a 

* the relative rms deviation of SN and hence of A 

a(SN) _ 0
/..* _ N-1/2 

SN - /..* -

at a given N is rigorously 

But, because the x2 distribution is only asymptotically normal (as N ~ oo) 

(9) 

(10) 

and quite skew at finite N, the rms deviation (Eq. 10) should not be converted 

into "standard'', i.e. Gaussian, confidence levels unless the sample size is 

very large. In practical terms this means that at a given 1, "upward" 

* fluctuations, i.e. 1 > 1, may be considerably more probable than 10 downward" 

ones. 

* A final remark: because of the linear relationship between A and SN 

* * at fixed N, it follows that <A > = 1, i.e. A is a consistent estimate for 

A • 

* c) Method A'. Having established that the estimate A = SN/N 

depends essentially only on the mfp A and N and is independent of detector 

* size, one can subdivide a data sample and consider A (n) with n some 

variable, on which A has a known theoretical dependence. likewise, using 

* Eq. (3) one may construct A (n). In particular, n may profitably be taken 

to be the distance after the point of first observation of a track as defined 

above; call this distance D. In this case it is clear that a con~tant A (or A) 

* is independent of D, and hence <A > should also be independent of D. One may 

thus consider SN and N binned in distance intervals Dj ~ D ~ Dj+
1

, which 

* should give compatible results for A irrespective of j. This method of 
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* * examining A (D), and especially A (D) (for a fixed value of b), will be 

termed Method A1
• 

d) Pooling information from PFs with different charges. To increase 

statistics (especially in Method A') one may choose to replace a set of 

* AZ values, each measured at a given Z, by the best estimate for A from 

this set. 

As a consequence of the x2 
distribution of h

2
, Eq. (8), we use the 

method of maximum likelihood to estimate values of A and b in the power law 

approximation A = AZ-b from a set of A; measurements, say with Nz 

stars each. First, we take the logarithms of the probability density of the 

x2 
distribution [Eq. (A.14)] 

* ~n f = ~n(1/2)- ~nr(N) + (N - 1) ~n(NAz)- N~nA + Nb~nz - (11) 

Equating the derivatives with respect to A and b to zero, and letting 

* * * S = A (Z)N , one obtains A , b as solutions of the following 
z z 

system of equations. 

(12a) 

* A = (12b) 

e) Comparison of two estimated mfps. In practice one is often 

* * c0nfronted with the necessity of comparing two values of A • say A
1 

and 

* A
2

, supposedly pertaining to measurements of the same physical process. 

This situation occurs either when one deals with two independent measurements 

* or when one wishes to compare values of A under different physical 
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conditions, which may be assumed to have no influence on the value of A. Let 

* * A
1 

and x
2 

be the expectation values of Al and A
2

, respectively. 

The n.h. to be tested is then 

(13) 

It turns out that a convenient test quantity for this n.h. is the ratio 

(14) 

As long as Eq. (13) is true. F obeys a well-known distribution law, the 

so-called F--or variance ratio--distribution (see Appendix A3), irrespective 

of the concrete value of A, with 2N
1 

and 2N
2 

degrees of freedom (N
1 

and 

* * N
2 

are the sizes of the samples from which x
1 

and x
2 

were 

derived): The cumulative distribution function (CDF) of this distribution is 

r 
0 

(15) 

where B is the beta function. PF is tabulated, e.g. in ref. 22. and has the 

general property of CDFs, namely that it is uniformly distributed between 0 

and unity [or briefly PF is distributed U(O,l)]. Hence, its expectation 

value is 1/2, its dispersion is cr = (12)-
112

. Consider a set of v values 
u 

of PF that have been obtained from pairs of x~ and A;. where it is 

for each i.e. 

A may vary from one pair to the next. Then one may build the sample mean of 

the P values 

- = 1 ~ 
PF - - L. PF . • 

v j:l • 1 

For large v (in practice for v > 10) the quantity 
'\; 

(16) 
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Yp = au/ Tv 
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is approximately a normal deviate of zero mean and unit variance. 

way of testing the n.h., Eq. (13), at finite v will be given below. 

(17) 

An exact 

f) Comparison of many estimated mfps. Consider the case when a set of, 

* * * say, v values 1
1

, 1
2

, ••. lv have been measured, with N
1

, 

N
2

, •.• Nv stars. Further, let 1
1

, 1
2
, •.. 1v be the mfps that we 

expect from physical considerations (a special case could be 1
1 

= 1
2 

= 

1 = 1), which occurs, e.g., in method A'). A convenient test statistic can 
v 

be constructed as follows: 

* 1) compute for each 1 the CDF of the SN distribution 

Ps;( h
2 

I A;,N;) (Eq. A.15) 

2) Note that, because each Ps; is distributed U(0,1), its logarithm 

is exponentially distributed and hence the quantity 

g? = -2 Q,n P
5

. 
1 l 

obeys a x2 
distribution with two degrees of freedom. 

3) Compute the sum 

2 g. 
1 

Because of the additivity of x2 variables, g2 is itself 

x2
-distributed with 2v degrees of freedom and can, hence, be used to test 

* the consistency of the 1 values with their expectations. 

(18) 

(19) 

Incidentally, the same statistical test can be used to pool in an exact 

* * way the information from many pairs of (1
1

, 1
2

) values, Eqs. (14) 

and (15). One has just to replace the PSi in Eq. (18) by the PFi values 

2 * * [Eq. (15)]; then g tests the hypothesis that all (1 1;, 12;) pairs 

have the same expected 1 .• 
1 
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B. Method B 

Thus far the statistical analysis has been concerned with both 

interacting and noninteracting tracks. It is necessary to consider also the 

case when only interacting tracks are used, for the additional insight we gain 

into the nature of the effect and because certain types of information are 

simply not available in any other way. To illustrate the first reason, we 

remind that if the n.h. is true, methods A and B·must yield consistent 

estimates for A, irrespective of detector geometry. If, however, the n.h. 

must be rejected, methods A and B become dependent on the relative geometry of 

the detector, and of the events, and their results will disagree by amounts 

that depend on the abundance and properties of the objects responsible for the 

anomaly. 

On the other hand, if, for example, one wishes to compare some statistic 

concerning the mfp for events tagged by a characteristic of their interaction 

star (like, among others, its multiplicity), the information can be derived 

from samples of interacting tracks only. 

a) The r-link chain topology. let us begin with the simplest case, the 

observation of a single interacting track. If the n.h. is true, there is a 

known single mfp A. One measures two quantities, the interaction distance, X, 

and the potential path, T, which is the maximum distance over which the 

individual track could have been observed within the stack (T is practically 

the same for all beam tracks and changes with each individual track for PFs). 

Starting from Eq. (5), we obtain the probability density for X at a given 

potential path T 
21 

( ) -X I A 
f (X) = 1/A e 

1 1_e-T/A 
(20) 

the CDF of which 
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is distributed U(O,l). Equations (20} and (21) are useful in two ways, viz. 

i) the CDF P
1 

can be used to test the n.h. From a large number N of 

P
1

; values one either tests whether P
1 

is consistent with 1/2 or one 

computes g
2

, Eq. (19), and performs the x2 
test. 

ii) the product of N probability densities, Eq. (20), is used to 

construct the logarithmic likelihood 

l = -N [ f + in A + Q,n (1 - e ~ T I A ) ] ( 2 2 ) 

N 
where X= (1/N) l: Xo; the maximum likelihood estimate for A is therefore 

0 l 1 
l"' 

the solution of the transcendental equation 

* The width of the likelihood curve and implicitly the error assigned to A are 

21 
functions of N and T/A and increase rapidly as T/A approaches unity For 

T/>.. >> 1, Eq. (23) turns into Eq. (6) with the error given by Eq. (10). 

If each event has a different T-value, Eqs. (22) and (23) are easily 

generalized, see e.g. ref. 21. 

We shall refer to all the above results as the one-link case. 

However, the single track is not the only topology with which one must 

deal. Another common topology is the r-link chain. This is the topology when 

one has r(r ~1) PF collisions in a row. Consider the most frequently 

encountered case of r = 2 on which we have concentrated here, i.e. the 

two-link chain topology. This topology is illustrated in Fig. 2, which is a 

microprojection drawing of a 1.88 AGeV 
56

Fe interaction ("star 11
) that leads 

to a two-link chain, where the secondary PF, with mfp AX' interacts after a 
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distance X from the vertex of the primary 
56

Fe interaction, and the 

tertiary, with mfp Ay' interacts after a distance Y from the vertex of the 

interaction of the secondary PF. The sum of the path lengths of the PFs 

S =X+ Y is indicated, as is T, the potential path length available for the 

secondary PF for interacting in the emulsion stack. 

There are several different probability distributjons one may construct 

from the X andY in a two-link topology given the mfps and T. One is P
2

(X), 

another P
2

(Y), which uses the X andY information from each link 

separately. On the other hand, one may combine all the information into one 

variable, S =X+ Y, the total length of the two-link event chain and consider 

P
2

(S!T,xX,AY) and the likelihood derived from this COF. Since the 

charges Zx,Zy are what one actually measures, and one then assumes 

-b -b ( I ) xx = AZX ,Ay = AZy , one may write P2 S T,Zx• Zy,A,b and 

examine the likelihood as a function of one parameter, e.g. A. 

By solving the pertinent differential equations (Appendix AS), the COFs 

for X, Y, and Scan be written in the general form 

where ~ is either X, Y or S, 

and the functions ~ are: 
~ 

-rx p-1 T P [ 

{1-p) e 1 

1Ty 

X 

1 - e A (1 + !) 
A 

-Y/"Ay 
= 1 - e 

(24) 

(25) 

(26) 

in both cases (27) 
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and 

1 - [
oe- ~ 

- (1- o) 

s 0 ] 
- ~ o-1 . 

e 1f 

with 

Ax 
p = A.X-A.Y 

Note that all P2\l are distributed U(O,l) if the n.h. is true and all the 

pertinent tests, especially the reduction to a x2 
distribution, Eq. (19), 

apply implicitly. Furthermore, it is noteworthy that P
2

(X) and P
2

(Y) are 

statistically independent; hence, a scatter plot of P
2

(X) vs P
2

(Y) should 

populate uniformly the unit plane. One simple test for uniformity is to 

divide this unit plane into quadrants by the lines P
2

(X) = 1/2, P
2

{Y) = 

1/2 and test all possible asymmetries between any two quadrant populations 

M .. or of linear combinations thereof. 
1J 

Assigning indices 1 and 2 to events with P2u ~ 1/2 and > 1/2 

respectively one can test for deviations from zero of such asymmetry 

coefficients as, e.g. 

(28) 

(29) 

(30) 

Equation (30) will be applied to the data obtained via method B in Sec. V-B, 

to test P
2

(X) and P
2

(Y) for statistical independence. The confidence 

levels assigned to C come from the multinomial distribution of theM ... 
lJ 

Finally, let us consider a situation in which the n.h. has been rejected 

by any or by all the tests mentioned hereto. If one is able to construct an 

alternate hypothesis, it is necessary to establish procedures for 
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investigating its parameters. More specifically, if one makes the simplest 

alternate hypothesis (hereafter denoted by H
1

) that only one sort of 

' 23 
quasi-stable (over at least a few em of flight path) "anomalons" are 

responsible for the effect, we are interested in their relative abundance 

and their (assumedly unique) mfp "a· 

Most events are obviously individual interacting PFs, which are one-link 

chains. Hence, one needs to use a modified one-link formula to obtain P 

values and likelihood functions. Assuming each track has a probability a of 

being an anomalon with a mfp A. , Eq. (21) can be generalized to 
a 

(31) 

Differentiating Eq. (31), it is straightforward to calculate the likelihood as 

the product of the densities 

1 -X/A.z 1 -X/A. 
{1-a) - e + - e a 

A.z "a 
f (X) "' ---.......,......,.......--.---....-....--

-T!A.z -T/A. 
(1-a)(l-e )+ a(l-e a) 

(32) 

for each (X,T) pair given the charge Z of the track. 

C. Monte Carlo Simulations 

All the analysis in this section has been restricted to "exact" 

statistics, "exact 11 in quotations because the results of the statistical 

treatment are exact under assumptions valid only in a somewhat idealized 

world. -b In all methods depending on the hypothesis "z = A Z , both this 

form and the assumption that the exponent b is the same fer PFs as well as for 

VOS occupants is an idealization. The F-test (independent of A), with the ratios F 

grouped as to laboratory and measured charge, needs only an assumption of 

relative homogeneity. This is our most powerful tool. Furthermore, when 
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applying method A, one typically constructs SN not according to its rigorous 

definition (total path length up to, but not beyond, N stars) but including 

all the path length observed, including a track segment beyond the Nthstar" 

Although this correction is negligible in large samples, it may conceivably 

matter in the much smaller samples collected, e.g., at fixed charge, 

especially in the third or later generations. Finally, in any concrete 

experiment the incident flux is really finite. 

How should one test whether or not these idealizations have any 

physically significant effect on the results? One possibility is to attempt 

ever improved analytic approaches. Since the number of physical effects one 

wishes to include may grow, this would involve a growing complexity of the 

statistical methods without any necessary gain in physical understanding. 

Another possibility is to use the methods based on idealized assumptions and 

analyze the results of simulations (which incorporate violations of the 

idealizations) by these same methods. In this subsection, the latter approach 

is elected. 

A Monte Carlo simulation computer program was written. The output of 

this program was a data set in the identical computer format as the actual 

data of the experiment and hence could be analyzed by the same programs that 

were used to obtain the results. 

The basic component in the simulation is the generation of random 

interaction distances, assuming that these come from the negative exponential 

distribution. These distances will be called SID, limu1ated lnteraction 

distances. SIDs clearly depend on mfp, and the whole point of the simulation 

is to select the mfps (and topologies) from physical considerations. 

Since we want to simulate something as close to the actual data set as 

possible, we used the primary interaction distances and topologies (i.e., 
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secondary PF tracks) as actually observed. The interaction distances alone 

will not generate tertiary and later generations unless a topology is assigned 

at the interaction vertex of a PF. To do this, all topologies (actually 

observed in the experiment, e.g., 0 ~ B + li, Ca ~ 0 + C, Ca ~ 0 + 2 li, etc.) 

were stored in the computer grouped according to the charge of the parent; 

given the charge of the interacting PF, a topology was selected at random. 

The topology PF ~no further PFs (all Z < 3) was also allowed to occur at 

random with its measured frequency. Through these procedures, simulated 

events were generated. 

A PF was deemed to have interacted whenever its SID was less than its 

available potential path. SIDs were kept to machine accuracy but were written 

on the simulated data file rounded off as the original observations. Thus, 

any error induced by rounding was incorporated. The only remaining question 

is how to assign mfps to individual tracks. 

The known systematics were incorporated into the simulation, by modifying 

the mfps from model calculations. For each true Z, calculated mfps from a 

realistic geometrical model were used,
17 

not AZ-b. For each true Z, a 

true mfp was assigned. incorporating isotopic noise; sometimes Z = 8 was given 

16 . 18 
the mfp of 0, somet1mes 0, etc. To get the true Z from the observed Z 

(the charge on the data file), an error was selected from the observed 

Z-reproducibility distribution (Fig. 3) coupled with a systematic bias if so 

chosen. Thus, both charge misidentification and isotopic noise were 

included. In fact, to keep the calculation robust against small changes in A, 

the isotopic effects were even increased by a factor of 2. If, e.g .• isotope 

(Z,A') was predicted to have a 3% change in mfp from the VOS occupant (Z,A), a 

factor of 6% was actually used. 
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Thus, many copies of the pseudo-data were produced. Each copy was fed 

through the analysis program package and pseudo-results generated. We briefly 

present the result of analyzing all these pseudo-data put together, first for 

method A and then method B. 

1) Method A. We present in Fig. 5 the P(F) distribution for Monte 

Carlo events grouped according to laboratory and charge and subjected to the 

same distance cut as the experimental data, viz. 2.5 em. The mean and RMS 

deviation of this distribution are P = 0.50 ± 0.02 and OP = 0.296 ± 0.012~ 

both values are consistent within errors with the expected <P> = 1/2 and OP 

* = (J • 

u 
Similarly, results for A were observed not to depend on either 

distance from the parent star or the generation of the PF, as expected if the 

n.h. were true. 

2) Method B. Here again, things are as expected under the n.h. For 

illustration, we examined the distribution of P
2

(S) in the simulated two-link 

chains and the pertaining likelihood curve. We find P
2

(S) = 0.50 ± 0.02; 

the likelihood curve averaged over 100 Monte Carlo repeats is displayed in 

* Fig. 6. It peaks at A = 29.6, with rms deviations as illustrated. 

In all cases, a "normal 11 simulation, using conventional nuclear physics 

and the systematics of this experiment, produces normal physics in the sense 

that the numbers obtained from the simulation are practically 

indistinguishable from the values expected from the idealized model underlying 

our equations. Hence, we are compelled to conclude that the statistical 

methods presented in Sees. IVA and B are valid for a physical understanding of 

the data. The simulation gives results in contradiction with our 

observations, as will be shown in Sec. V. 
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v. RESULTS 

A. Overview 

We now proceed to apply the methods of analysis described in Sec. IV to 

the results of our experiment. An overview of the tests applied to our data 

is given in Table II, which is also meant to illustrate why each of the tests 

was necessary. 

The first half of this table shows the checks of our methods of analysis 

when applied to primary (i.e. "normal") beams. Its second half deals with 

fragments emerging from the primary interactions. Here the different rows 

refer either to different subsets of the data or to different groupings of a 

given subset. 

We now discuss these tests in detail. 

B. Method A 

The first application of this method is presented in Fig. 7, where the 

* 16 mfp A observed for primary 0 beam nuclei is plotted as a function of 

the distance from the scan line (pick-up point) of the incident beam. The 

* data are well accounted for by a constant value of A , the straight-line fit 

to the data at).*= 11.9 em having a x2 = 7.3, 12 DOF, obtained through the 

* procedure described in Appendix A4. The observation that A does not depend 

on 0 is typical of the behavior of all mfp measurements of beam nuclei. 

* Figure 8 presents the mean-free-path parameter A of all secondary and 

later generation PFs, plotted as a function of distance 0 from the origin of 

emission of the PF. The quantities A* are calculated under the assumption 

-b 
that A = AZ with b = 0.44 for the LBL data and b = 0.43 for the NRC data. 

For simplicity of display, we have renormalized all data using a constant mean 

value of Ab = 30.4. The error bars we have assigned to the data points 
earn 

represent one standard deviation assuming the primary beam value for A. Thus, 
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* for example, if A = 20 em with 100 stars and A = 30 em, then (in the 
beam 

* * approximation to which IN statistics apply) A = 20 ± 3 em, not A = 20 ± 

2 em. This is because it is assumed at the outset that all PFs should have 

* the mfp parameter A as measured on primary beams and that the A values are 

just fluctuations around this value. 

In contrast to both expectation and observation on primary beams, the 

* values for A are low for the first several centimeters: they become 

compatible with Abeam for distances 0 ~ 5 em. The short mfps at small 

distances 0 imply that there is an excess in the number of interact ions at 

these distances. 

This result can be visualized also by considering the frequency 

distributions of interaction distances N(X). For clarity, we have performed 

the analysis at fixed potential path T
1

. To fix T
1

, we demanded that each 

track could have gone at least T
1 

em, even if it interacted within T. The 

N(X) distributions for T
1 

= 3 and 9 em, summed over all PFs, are displayed 

as Fig. 9. Examine the T
1 

= 3 em result. Here, with a total of 2386 

tracks, we expect 504 stars assuming for the mfps the results of the fits to 

primary beams. In the data, there are actually 581 stars, a fluctuation 

expected to occur with a probability 3.10-
4

. The curves in Fig. 9 are 

calculated assuming the same mixture of PFs as used in Fig. 8. They are 

obviously in good agreement with the data. 

To obtain some insight as to the nature of this excess of interactions of 

PFs at short distances, we make the simple assumption: In addition to PFs 

with 11 normal 11 mfps, there is present another species of PFs, "anomalons", that 

are produced with probability a, having a constant, "anomalously short", mfp 

Aa· We thereby assume that a and Aa are independent of z. which clearly 

may be an oversimplification of the physical situation. In this model the 
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* characteristic shape of the A versus 0 curve is due to the removal of 

anomalons from the secondary beam by nuclear collisions so that at infinity 

the beam consists only of normal nuclei. By the procedures explained in Sec. 

* * IVB, we find that a ~ 0.06 and Aa ~ 2.5 em. These results are 

illustrated in Fig. 10, where the normalized likelihood contours for the 

parameters a and Aa are displayed for 0 < a < 0.5 and 0.1 < Aa < 20 em. 

Although the maximum likelihood occurs at a = 0.06, Aa = 2.5 em; the data 

are compatible with a and A several times larger than the most likely 
a 

values deduced from this elementary model. 

The smooth curves in Fig. 8 and 9 are calculated assuming this model. In 

terms of the expectation values of all variables, the value of <!1> in the j-th 

interval (from Dj to Dj+i) is then 

<A>. = 
J 

t ti z ' } (1-a ) p z • j"· z + a p a ' j A a l Z b 

z 

where 0z . is the number of tracks of charge Z, incident on segment j, 
.J 

Az = A z-b 
beam 

Pz . 
• J 

-D./Az 
= e J 

(33) 

( 33 I) 

The calculated dependence of <A> on distanceD agrees well with the 

observations. The reason the short mfp effect has been termed anomalous is 

clearly seen here. If one attempts to increase Aa to, say, 10 em, there is 

no value of a that will reproduce well the observations. They seem to require 

the existence of a component of the PFs produced with a few per cent 
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probabi 1 ity, with mfps outrageously shorter than any of the primary beams 

employed. A value of 10 em is already ludicrous, considering that this 

implies a nucleus of charge in the calcium range among PFs from oxygen! A 2.5 

em component is probably a shorter mfp (i.e •• larger cross section) than that 

of uranium. 

If the short mfp is due to the cooperative effect of a few baryons (a 

"damaged zone") bound to a normal nuclear fragment, one could understand the 

approximate independence of Aa from charge. 

Suppose the "A 11 of the damaged zone were AW; then 

If we take AW = 3.5 em, for example. and AZ= 26 = 7 em, then Aa ~ 2.3 em; 

on the other hand, for AZ=3 = 18 em and the same Aw• Aa ~ 2.9 em. Thus, 

(34) 

for nuclides from Fe to Li, the equivalent anomalon mfp Aa would change only 

from 2.3 em to 2.9 em, a difference that is undetectable with the present 

statistical accuracy of data. While the assumption of a damaged zone and of 

one anomalous component is probably too crude in every detail, it does 

reproduce the overall observations. 

We now ask the question: Is the appearance of the anomalously short mean 

free paths for PFs an artifact caused by the use in our analysis of the power 

law fit, Eq. (3), and/or by the intermixing of data from the 
16o and 

56
Fe 

experiments? To address this question we shall examine separately the mfp 

data from each laboratory at a fixed fragment charge Z. Each group of data 

was then subdivided into two sub-groups: 

* i ) D ~ 2. 5 em yielding Al , with N1 stars and 

* i i ) D > 2. 5 em yielding A
2 

• with N
2 

stars. 
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* We thus obtain a pair of A values for each charge Z, labeled by NRC or LBL, 

evaluated for distances D ~ 2.5 em. The distance 2.5 em is taken to be equal 

* to Aa' the mfp of the "anomalon" component given by the previously 

described maximum likelihood fit to the data. 

* * * For each pair of A values take the ratio R = A
1

/A
2

. Given 

the number of stars N
1 

and N
2

, we compute the probabilities PF for the 

* * measured ratios F under the assumption that Al and A
2 

are from the 

same population [Sec. 4, Eq. (15)1. The individual mfp values recorded for 

each charge, separately for each primary beam, are shown in Table III along 

with the raw data from which they were derived. The CDF values P(<x
2), 

which test the compatibility of the observed mfp' s with those predicted from 

Eq. (3), and with measurements on primary beams, are given for illustration 

purposes only, since Eq. (3) is known to be only approximately valid. The 

weight of the argument rests on the last two columns, which give F and P(F) 

for each individual charge and are hence free of the above-mentioned 

approximations. The histogram of the resulting P(F) values is shown in 

* * Fig. lla. Recall that if the values of Aland A
2 

were from the same 

population, the probabilities P must be distributed U(O,l). The cross-hatched 

area represents the six charges from NRC, and the remaining area the 24 charges 

from LBL. It is immediately visible that the observed distribution has an 

excess of low P values; the values of P have been calculated such that this 

* * corresponds to Al < A
2

. As a statistic, the mean probabi 1 ity P, 

Eq. (16), has the value 0.323, calculated from the unbinned P values. Here 

and hereafter deviations of any P value from its expectation P = 1/2 will be 

expressed through the value Yp, Eq. (17), i.e. in terms of equivalent 

standard deviations along with the corresponding one-sided probabilities for 

such a deviation to occur as a random fluctuation. In the present case 
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Yp = -3.4, a deviation expected to be exceeded by fluctuations about three 

times in 10
4 

trials. 

In other words, there are fewer than three chances in 10
4 

that the 

* A
1 

values, taken charge-by-charge and laboratory-by-laboratory, come from 

* the same population as the A
2 

values. We therefore conclude that the 

mfps of PFs are significantly shorter at small distances (i.e. D < 2.5 em) 

from their points of emission, than at greater distances, and that the low 

* values of A at short D are not an artifact. More important for its 

physical implications, this result is independent of many systematic problems 

that potentially plague other methods. It only assumes relative homogeneity 

of the mfps of the PFs at fixed Z. Traditional isotopic effects should by no 

means cause such an observation. Thus, we are compelled to conclude that 

there is something abnormal about the mfps of PFs within the first few em 

after their emission. 

* In addition to a comparison of A at different distances after 

emission, one can also compare the mfps of PFs from different generations. 

Primary beam nuclei do not have a short mfp component, while their progeny 

seem to evidence one. Is this effect independent of generation (starting with 

the second) or does it change with different PF generations? For example, as 

soon as anomalons are assumed to be present, the use of method A for 

estimating A fails in the sense that its results are no longer independent of 

detector geometry. The reason for this failure is that the relative 

population of anomalons among interacting tracks increases as the potential 

path decreases. Because the potential paths decrease, on the average, with 

increasing generations (which occur at increasing depths in the target), it 

follows that, even without any further effects, shorter overall mfps of PFs in 

the later generations are to be expected. It is also evident that if some 
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conserved quantity is associated with the anomalous PF (e.g., a "damaged 11 

zone), the anomaly might persist through more than one generation, further 

decreasing the average mfp in later generations. 

To test whether the mfps change from generation to generation, we shall 

compare the mfps of secondary PFs with those of tertiary and later generation 

PFs. Following the same procedure as above we compute 

* * 
F gen "" A II I I A. II (34) 

The Fgen values, recorded separately for each PF charge and each primary 

beam are given in Table IV along with the raw data from which they were derived 

(the structure of Table IV is otherwise identical to that of Table III). 

The histogram of the values of P(Fgen) is given in Fig. 11b. There are six 

charges from NRC and 23 from LBL (there were not enough tertiary tracks of 

Z = 21 to obtain any interactions). The one SO confidence interval about 

<P> = 1/2 is ±au(29)~ 112 ; the observed mean is P = 0.387, which has 

Yp = -2.11, Eq. (17). However, we note that the highest P value recorded is 

0.778. The probability to observe zero events in the uniform distribution, 

out of 29 attempts, with the binomial distribution parameter p "'0.778 is 

7.10-
4

• Hence, the mere absence of any value of P(Fgen) > 0.778 is 

unusual, as one would expect about six counts in this interval. 

* This also appears to some extent in the values of A for different 

* generations. Secondaries have AII = 28.8 em, 1196 stars, while later 

* generations have AIII = 25.2 em, 264 stars. This has a probability of 

* * about 0.03 to occur. At face value, AIII < AII' a result that is 

indicative of a larger admixture of anomalons in later generations. We shall 

return to this topic in Sect ion VB. 
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Another technique we have used to examine the mfp data is to pool them 

within charge bins 3 Z ~ 8 (where PF's from both I
6o and 

56
Fe primaries 

contribute), 9 ~ Z ~ I6 and I7 ~ Z ~ 26 (where only PF's from 56Fe 

* * contribute), and fo evaluate "I and :>..
2 

without use of the 

length-weighting factor zb. The results are tabulated in Table V. For 

comparison, the prediction from "z = 30.4 z-
0

•
44 

em, weighted by the 

actual distribution of charges in each bin, is presented, this being the 

average fit to both NRC and LBL primary VOS beam data. The pooling was done 

by summing the total path length observed within the appropriate distance and 

charge intervals and dividing this by the number of stars. Again, inspection 

of the data in Table V reveals that within 2.5 em of emission, PFs have short 

mfps, while at longer distances, primary beam expectations are essentially 

fulfilled. The values of A* forD 5 2.5 em, assuming :>.. = Az-
0

·
44

, are 
z 

also listed in Table V. These estimates are 3.3 standard deviations apart, 

having a probability PF' Eq. (15) of 5.10-
4

• 

C. Method B 

* After having observed by means of method A an apparent shortening of A 

in the first several em, we now turn our attention to method B, in order to 

extract the specific information inherent to those PFs that interacted. 

First we consider all one-link chains. There are I460 PF induced stars 

in these chains and assuming that "z has the values predicted by the LBL and 

NRC fits to primary VOS beams, we obtain the P
1 

(X) histogram shown in 

Fig. 12. The mean of the distribution is PI = 0.469 ±au (1460)-I/
2

• 

This corresponds to Yp = -4.I or to a probability of 2 10-
5

• 

The logarithmic likelihood curve of these data is displayed in Fig. 13: 

the peak is at A= 22.8 cm.
24 

The primary beam value is down three orders 

of magnitude on the likelihood curve. Furthermore, the same data within the 
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* context of method A (which includes noninteracting tracks) yield A 

28.2 em, a value that is down by two orders of magnitude on the likelihood 

A * 
curve. Thus, A< A • However, as stressed in Sec. IV, the method A and 

method B estimates must be consistent if the n.h. is true. One case for which 

this is expected, and found to be patently true is demonstrated in Fig. 14, 

16 
where the NRC primary 0~-method B--likelihood curve and the Method A 

result are displayed. 

We now turn to two-link chains (Fig. 2), which offer us the opportunity 

to study correlations between successive generations of PFs. For Z ~ 3, there 

are 215 secondary-tertiary chains. In fact, there are 222 cases of tertiary 

stars, which means there are a few "forks 11
• In the case of fork-type events, 

we arbitrarily selected one of the branches at random, thus converting a fork 

topology to chain topology. 

Consider Fig. 15, which presents the likelihood curves for A given the 

observed X, Y, and S =X+ Y measurements for each event. As demonstrated 

"' 
here, secondaries that gave a tertiary that interacted have Ax= 21.8 em, 

A 

tertiaries have Ay = 18.2 em, and the total length of the chainS has As = 

19.8 em. Once the n.h. is rejected by the results of the preceding 
A A 

paragraphs, the inequality Ay <Ax could be qualitatively predicted by 

assuming a constant probability for emission of anomalons in all generations. 

Indeed, as already stated, the stars in the third and later generations are 

more heavily "infested" by anomalons because of their shorter average 

potential paths. 

However, if one plots P
2

(X) against P
2

(Y), i.e. if one looks for 

possible correlations between the links in two-link chains, an interesting 

observation emerges. 

As they have been defined in Sec. IV, the quantities P
2

(x) and P
2

(Y) 

are independent and each should obAy a uniform distribution from 0 to 1 if the 
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n.h. is true; hence, a scatter plot of P
2

(X) versus P
2

(Y) should uniformly 

populate the unit plane. The result is shown in Table VI, where we have binned 

the data in two intervals of P, viz. 0 to 1/2 and 1/2 to 1, on both axes. The 

asymmetry coefficient C, Eq. (30), has the value (75-46)/(47+47) = 0.3; this 

is to be compared with the expectation <C> = 0 ± 0.1. In terms of 

probability. the observed value deviates by 3 SO from its expectation. 

We demonstrate in Table VI that a low value of P
2

(X) gives rise to a 

low value of P
2

(Y). Because a low P value corresponds to a short 

interaction distance (corrected for potential path), it follows that this 

result can be interpreted as a clear hint of 11 memory", by which we mean a 

"short 11 PF parent gives rise on the average to a "short 11 PF progeny. This 

property of memory would follow naturally if conserved quantum numbers are 

involved in the interactions of the hypothetical anomalons. Further 

implications of the numbers in Table VI are discussed in Appendix C. 
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VI. DISCUSSION OF RESULTS 

A. Statistical Fluctuations 

The first objection to the reality of the effects discussed in the 

present paper is that they are the results of statistical fluctuations. We 

summarize here the different (though not completely independent) tests that 

show that this would be a very unusual fluctuation indeed: 

1) Using method A and the power-law approximation for Az there are 

fewer than 5 chances in 10
5 

that all PFs would have had the same ~as the 

primary beams. 

2) Using method B (i.e. the subset of interacting tracks only) and the 

same power-law, both the mean of P
1 

(one-link chains) and the corresponding 

likelihood curve strengthen this conclusion. 

3) We believe that, because of its freedom from assumptions about A(Z), 

the F-test performed at fixed charge gives the strongest evidence for the fact 

that the mfp is shorter immediately after emission of a PF than at large 

distances. The chances for a statistical fluctuation are in this case about 3 

in 10
4

. 

These highly implausible probability levels could be raised to quite 

acceptable values if we abandon the n.h. and assume that our PFs are 

11 infested 11 by objects with an unexpectedly high reaction cross section. As 

was shown in Sec. V, one can fit the data by assuming that 94% of PFs have 

Az as given by the fit on primary beams and that 6% of PFs have Aa = 

2.5 em, independent of Z. This A corresponds to a conventional nuclear 
a 

reaction cross section on the order of, or larger than, uranium. 

Taken literally, the results imply the existence of a new state of 

multibaryonic matter with a hadronic reaction cross section two to ten times 

larger than the normal VOS nuclide of the same charge. However, before 
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drawing such a far-reaching conclusion, we must exhaust all other avenues of 

interpretation. 

B. Possible Systematic Effects and Conventional Explanations 

The obvious suspicion is that the interpretation of this experiment may 

be influenced by systematic errors, by unappreciated conventional effects, or 

even combinations of these. We survey here those systematic and conventional 

effects that seem to us to be crucial for assessing the implications of our 

observations. 

1. Measurement of Distance 

A trivial systematic, such as the incorrect assignment of interaction 

distances or potential paths, has been ruled out by internal checks and by 

remeasurements. Likewise, we have checked the data stream against the 

scanner's original notes and scan sheets. In every case, all computed 

quantities (such as SN/N) were stable to at least four significant digits. 

The Monte Carlo simulation also incorporated the rounding of position 

coordinates to 100 ~m units, as actually done at LBL, without pathological 

consequences. 

2. Inhomogeneities in the Emulsion 

The possibility of gross defects or inhomogeneities in the emulsion 

composition itself must also be examined. The emulsion stacks used at LBL and 

NRC were manufactured at ILFORD, Ltd., at different times; that both could be 

identically defective is unrealistic. Such gross defects would induce 

variations in sensitivity and affect the reproducibility of charge 

measurements and especially the primary mfp. None of these effects were 

observed. Moreover, such effects would correlate with absolute positions in 

the plates, rather than relative distances after a star: this also was not 

seen. 
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3. Charge 

An important question to address is whether or not a systematic error in 

the charge measurements would have affected the interpretation of the 

results. Obviously, this would systematically assign the measured mfp to the 

wrong charge Z; however, it would do so at all distances from the origin of 

the PF. We have made observational checks and Monte Carlo simulations to 

investigate the possible influence of such systematic effects on our 

conclusions. First, we observe that the charge measurements do not depend on 

distance from the emission point of a PF. Second, by Monte Carlo procedures, 

we introduced systematic shifts of 1, 2, and 3 charge units into the data. 

Although these shifts in charge do affect the absolute predicted mfp values 

for all charges, they indeed have no significant effect on the relative values 

of the measured mfps. 

For track lengths on the order of 1 mm or larger, the statistical error 

of 1 charge unit that was attained appears quite adequate for the 

requirements of this experiment on the basis of the Monte Carlo calculations. 

For shorter distances, the charge balance method was used, which requires 

detection of all relativistic singly charged tracks and correction for both 

meson production and charge exchange. Although the accuracy of charge 

measurements for distances <1 mm is not known, one has the option to discard 

!ll track lengths (interacting or not) less than some cutoff distance from an 

interaction and examine the significance of the results after this cut. We 

have done this by selecting cutoff distances up to 5 mm and have found no 

changes in the conclusions from either the method A or B type of analysis. 

4. Energy Spectrum of PFs 

Because the total reaction cross sections are remarkably constant for 

beam energies 0.87-2.1 AGev,
16 

the inclusion of PFs with energies as low as 
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0.5 AGeV, for example, would have little effect on the measured mfps. If 

anything, inclusion of low energy PFs would bias the data against a short mfp 

effect. Noting that the beam kinetic energy is -2 AGeV, the energy-loss rates 

are at their minimum values. Hence, PFs with energies ~2 AGeV would 

necessarily have higher specific ionization and, as a result, would be 

assigned larger apparent charges. Such PFs would therefore be presumed to 

have mfps shorter than their actual values. However, these considerations may 

not be of practical concern since ionization (charge) measurements made at 

various points along the tracks of PFs gave no evidence for a significant 

background of mid-rapidity PFs, as would be revealed by their increasing 

ionization rates with path length. 

5. Differential Scanning Efficiencies 

Another concern is the the effect of a possible differential scanning 

efficiency. In this scenario, a short mfp could come about if an observer 

detects events more efficiently at short distances rather than at larger 

distances from a star. We note that in this experiment the ''correct" mfp, 

i.e., the beam value, is observed at larqe distances and that an excess number 

of interactions is seen at short distances. 

Any bias that is capable of reproducing Figs. 8 and 9 or Table III must 

be given serious consideration, One such obvious systematic is scanning bias, 

particularly a detection efficiency that is distance dependent. 

Consider again the defining equation of the mfp 

dN/dx = -N/A (35) 

If one imagines some small interval ~x in which one has incident N tracks, a 

perfect observer would detect ~N = N (~x/A) interactions. An observer whose 

efficiency is E (0 <s ~1) would only observe ~N' = E N (6x/A) 

interactions. Thus, in the presence of inefficiency, Eq. (35) is replaced by 
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dN/dx = ~N(~/A) (36) 

This, of course, is identical to Eq. (35) with A
1 = A/€. Hence, all the 

analysis of Sect. IV proceeds through with this new A'. This implies that a 

* * * 
useful estimate of ~ is ~*=ARIA where A is the value obtained on 

* the first scan, and AR is the value on the identical events after 

completing the rescan. 

As mentioned earlier, LBL rescanned all events in which, on the initial 

scan, the primary Fe was observed to give rise to a secondary PF of charge 

:>3. At NRC, tracks were reexamined by charge measurement; a "missed u 

interaction was located, in this method, whenever a new vertex with visible 

hadron emission was found by "backscanning 11 from the point where the change in 

charge of the PF was first detected. 

We summarise the findings of the rescan in Table VII. Here, we give the 

value of A*· before the rescan and after the rescan for each laboratory as a 

function of the interaction distance of the PF, viz. within the first 2.5 em 

* after emission and at longer distances. The value of ~ , the efficiency, is 

* just the ratio of the A values before and after the rescan values. In the 

presence of a differential efficiency, we would have expected that the values 

* of~ be distance dependent; as can be seen by inspection,they are not. LBL 

was -90% efficient for a single scan, and NRC was -97% efficient, normalized 

to the ultimate values obtained for each laboratory separately. 

6. Distance of Confusion 

Owing to the high multiplicities of PFs within the forward fragmentation 

cone, it is conceivable that the interaction of PFs that occur at short 

distances from an interaction vertex actually occur before the ionization 

tracks of the PFs are visually resolved from each other. Under such 

circumstances charge measurements would be in error, as would the resultant 

estimates of A.Z' 
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We have defined the confusion distance of a particular event to be the 

distance downstream from the interaction vertex beyond which all tracks 

emitted from the interaction are completely resolved. In emulsion, two 

particle tracks are visually resolved when separated by 1-2 ~m, depending on 

the charges of the particles. Figure 16 presents the distribution of 

confusion distances of PFs from a random sample of 1.88 AGeV 
56

Fe 

interactions. The distribution shows an exponential decrease at distances up 

to -300 ~m, with a negative logarithmic slope of about 100 ~m as illustrated. 

The maximum confusion distance in this sample was -1 mm, attributable to a 

pair of Z = 2 PFs, quite possibly an example of the decay of a 
8

Be 

fragment. We note that a confusion distance of -1 mm is equal to the path 

length in emulsion necessary for coli near PFs at beam rigidity R ~ 6 GV to 

separate by -1 ~m through multiple Coulomb scattering alone. 

We conclude that beyond 3-500 ~m, and certainly within 1 mm, virtually 

all PFs are effectively resolved, with charges and secondary interactions 

identifiable. These distances are 1 to 2 orders of magnitude less than A ~ 
a 

2.5 em that characterizes the short mfp component deduced from this 

experiment. As was done previously to reveal possible systematic errors in 

charge measurements, the elimination of all tracks of PFs (interacting or not) 

less than 5 mm in length should also suffice to eliminate the short mfp effect 

if it were attributable to nonresolved tracks. As mentioned above, we found 

no changes in the conclusions of our analysis before and after such 

path-length cutoffs were invoked. 

7. Background Stars 

The sources of background stars are those attributable to random 

background from radioactive contamination (a-decay), neutrons, and charged 

particles and to background correlated with the particular event under 
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examination, from neutrons or, possibly, minimum ionizing tracks. A 

background event is one in which the path of a primary or PF track under 

investigation passes within -2 ~m from the vertex of a background star. 

Such candidate background events would appear as stars with no noticeable 

change in charge and/or direction of the incident track. A direct estimate of 

the number of background events is made as follows: The typical density of all 

background stars in our emulsions exposed to 
56

Fe in a volume (10 x 1.2 x 

0.6 mm
3

) centered on the primary track and located immediately downstream 

from primary interactions is -1 startmm
3

. Taking the cross sectional area 

of an average ionization track to be -4 ~m 2 , the total number of background 

events expected within the first em of the primary Fe interactions (for -3000 

PF tracks) is about 0.1 events, about one-half of which would be recognized as 

due to natural radioactive a-decay chains by their characteristic ranges and 

eliminated by the scanner. A background of events one order of magnitude 

greater than this estimate would still have a negligible effect on the 

conclusions of the experiment. 

We may also test for the presence of background stars by a direct 

reference to our measurements on PFs. Consider the two-link topology. We 

define the charge change ~Z to be the change in charge from the secondary to 

the tertiary at the secondary-tertiary vertex; e.g •• if a secondary of charge 

6 gives rise to a tertiary of charge 4, ~Z = 2. A background interaction as 

defined above must appear as a charge change ~Z = 0 or 1, the value 1 coming 

from our measured charge reproducibility, Fig. 3. As the maximum charge 

change in the NRC data used in this experiment was 8 - 3 = 5, we restrict 

consideration of the LBL data to this same range of 6Z as well. After this 

restriction, we divide the data into two classes: i) 0 ~ 6Z 1 and i i) 2 ~ 

AZ ~ 5. We compute the ratio R of the observed number of 2-link chains to the 
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number expected from the n.h. for class i) and ii). If we had a 

background-star problem, we would expect R for the two clases to differ and 

that R for class ii), a class of events that is void of background, to have a 

value consistent with unity. However, we observe that R for class i) equals 

1.25 ~ 0.09, while for class ii) R = 1.29 ~ 0.10. The fact that these two 

values are compatible and that neither is well accommodated if the n.h. is 

true (combining them, one has x2 = 16.5, 2 OOF, which has a probability 

equivalent to 3.5 SD), allows us to conclude, as above, that we have no 

significant background contamination. 

8. Decays-in-Flight: Hyperfragments 

Perhaps the most obvious candidates to simulate nuclear interactions of 

PFs are decays-in-flight. Hyperfragment decay-in-flight is particularly 

appealing in that CT ~ 3 em is comparable to hypernuclear decay lengths. We 

address the question of decays-in-flight from the data directly. Contributors 

to decay-in-flight topologies include hyperfragments, a-delayed proton 

emitters, as well as nuclear absorption of an captured from an atomic 

orbit about the PF. In each of these cases, "decay products" have low 

velocities in the rest frame of the decaying object. Because y ~ 3, all decay 

products must be relativistic in the laboratory frame: and since no target 

interactions are involved, "decay-in-flight" stars will in fact appear as 

projectile-fragmentation reactions with no associated target-related prongs, 

the so-called Nh = 0 events. Noting that about 12% of primary beam 

15 
interactions are of the Nh = 0 type, we may enquire whether or not there 

is an excess of Nh = 0 stars among the PFs significantly above that exp~cted 

for primary beam interactions. Such an excess could then be attributed to 

decays in flight. 
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Figure 17 is a microprojection drawing of the secondary and tertiary 

interactions initiated by an 
56

Fe primary (schematically indicated) when 

both interactions are of the Nh = 0 type. The kinematics of the decay of a 

hyperfragment at y = 3.0 are such that any emitted proton (pion) is restricted 

to a forward cone in the laboratory frame of 12° (16°); the minimum velocity 

of the proton (pion) emitted at 180° in the c.m. is a . ~ 0.83 (0.78), 
m1n 

which in this limiting case would be observed as a shower particle at Oo with 

grain density of 1.2 (1.3)gmin' Consequently, all IZI = 1 products of 

hyperfragment decay in flight will appear as shower particles. Thus 

hyperfragment decay events at y = 3 would be restricted to the Nh = 0 class 

of interactions, kinematically unable to simulate an interaction that involves 

the emission of low-energy target fragmens. 

To search for possible evidence within our data for excessive 

contributions due to decays in flight, we divided our data on the distribution 

of target-prong numbers Nh for PF interactions into two groups, Nh = 0 and 

Nh ~ 1 populated by n
0 

and n
1 

stars, respectively. We then examined the 

ratios r = n
0

;n
1 

for the cases when the interaction distances are D ~ 2.5 

and D > 2.5 em. Based on a subsample of 1189 PF stars, we observe the ratios 

r(D ~ 2.5) = 0.13 ± 0.02 and r(D > 2.5) = 0.16 ± 0.02. The mean value of r 

for C, N, 0 primary beams at 2 AGeV is 0.15. 

In the interval D ~ 2.5 em the number of PF interactions of all potential 

paths we observed is 590, 70 greater than expected for normal nuclei (i.e., 

the n.h.). Thus, if all this excess of events were hypothesized to be decays 

in flight (Nh = 0 events), then the ratio r we would have expected to 

observe is r = 0.30. 

The values of r for D ~ 2.5 em are both in contradiction to the 

hypothesis of decays in flight but are compatible with the value for primary 
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beams. The conclusion we arrive at~ then, is that the excess of interactions 

we see at distances 0 ~ 2.5 em is not attributable to Nh = 0 events~ hence this 

excludes the hypothesis of significant contributions to our data by 

hyperfragment (and other) decays in flight. 

We have also estimated the abundance of relativistic hyperfragments in 

our data sample of PFs by referring to Refs. 25 and 26 for the measured, 

albeit approximate, production cross sections for free and bound Aos in 

nuclear collisions. Based on most conservative approximations, we conclude 

-3 that the fraction of PFs that could be hyperfragments is <10 • The number 
~ 

of hyperfragment decays in flight contributing to the data is thus ~3-5, a 

number that, again, cannot account for the experimental observations. 

9. Conventional Nuclei 

last, as a conventional explanation of the apparent shortening of the 

mean free path, we consider isotopes and isomers, with decay lengths CT - 1 em. 

a) Isotopes in the ground state. We have already shown by means of the 

Monte Carlo simulation (Sec. IV-C) that the predicted deviations of the 

isotopic cross sections from those at the VOS could not produce our effects. 

b) Isomers. Such nuclei might be assumed to have a larger reaction cross 

section; they would decay to the ground state either by channels that are very 

difficult to observe or would have "decay-in-flight'' topologies that we have 

been ~ble to exclude above (Sec. VI-8.8). To estimate the increase in cross 

section, we calculated the RMS radii in the next shell model orbital 

excitation and then integrated the resulting density of nuclear matter to get 

relative excited state cross sections; we find that the changes in cross 

sections are generally less than 10%. 

In contrast, the results of this experiment would require ~100% of~ 

PFs be produced with reaction cross sections ~20% larger than the VOS nuclide 
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of the same charge.
12 

These cross sections must then return to vas values 

with a mean decay length CT ~ 3 em to reproduce Fig. 8. Even this extreme 

assumption, unlikely as it is, fails to account for the memory effect, Sec. V. 

We now summarize this section: 

a) The comparison of mean free paths of projectile fragments at small and at 

large distances from the emission point, Figs. 11 and 8, rules out a 

homogeneous sample. 

b) Conventional explanations fail to account for our observations on the 

correlations between short tertiary links and short secondary links in 

two-link chains, Table VI, as well as for the results shown in Fig. 11. 

c) Systematic and background effects can be essentially eliminated by the 

observations themselves, e.g., normal mfps observed at large distances from 

the emission point, no anomaly in the 11 decay-in-flight 11 topology at short 

distances. 

10. Implications 

We are thus left in a predicament. Conventional nuclear physics as well 

as systematics fail to explain the observations. The probability of a 

statistical fluctuation in this experiment is ~s.1a- 4 • 

In view of the fact that now two independent groups have reached 

t . 11 th l . l1, 12 •th bl 1 l f essen 1a y e same cone us1ons as we, w1 compara e eve s o 

confidence, the combined probability that the short mfp effect is a 

fluctuation becomes vanishingly small. 

The existence of at least one new type of multicharged, presumably 

multibaryon, state with a hadronic reaction cross section between two and te1 

times that of a vas ground state nuclide of the same charge would explain the 

observations. 
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This simple model, involving one single kind of anomalon , quasi-stable 

over the distances observed here, is evidently not the only possible 

* explanation. All or part of the A (D) curve (Fig. 8), could, e.g., be due 

not only to removal of anomalons by nuclear collisions with an enormous cross 

section but also to removal by visually unobservable decay processes leading 

to a u norm a 1 n g r ou n d s t ate n u c 1 i de • 

Numerically, the following difficulties arise in such an alternative 

interpretation: 

i) a cross section 11 only 11 twice normal could be accommodated by the data, 

assuming, however, that~ PFs are born as anomalons (a~ 1) and that their 

mean decay length CT is of the order of A • 
a 

i i) If the extreme assumption a= 1 is abandoned, any a< 0.5 will 

require again very large cross sections, which would produce a fast rise of 

* the A (D) curve even if CT >> A • 
a 

Recently, several speculative models suggesting new states of hadronic 

matter exhibiting properties akin to those of our hypothetical anomalons have 

d · h 1 · 
27

- 30 T d t f h d 1 h . l d d appeare 1n t e 1terature. o a e. none o t ese mo e s ave y1e e 

quantitative predictions for comparison with this experiment. 

New investigations addressing the obvious questions as to lifetimes, 

production, and interaction mechanism of the presumed anomalous component are 

in progress in our laboratories. 
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Appendix A. 

1. Distribution of the Total Path Length 

Given the probability density for one track length X. in an infinite 
1 

detector 

we seek the probability density for the sum of N such X-values 

N 

SN = L x. . 1 1 
1= 

i.e., theN-fold convolution of densities given by eq. (A.1). This is by 

definition 

x. 
1 N dX. --

Tf-1 e A.. 
. 1 A. 
1= 

(A .1) 

(A.2) 

(A.3) 

Here the a-functions ensure that all lengths are positive and the o-function 

represents the constraint (A.2). Thus, e.g., for N = 2 one obtains by 

elementary integration 

(A.4) 

For the general case the folding is most easily performed by means of moment 

generating functions (m.g.f.) Gu(t) where u is either x
1 

or SN. By 

definition 

J
oo tX. 1 

GX.(t) :: e 
1 

f.(X.)dX. = -
1 

t 
1 0 l 1 1 -A. 

For a folding of N independent variables one has 

(A. 5) 
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since all X. have the same probability density (A.l) and hence the same 
1 

m.g.f. (A.5). 

Taking the inverse Laplace transform of Eq. (A.6) we obtain Eq. (7). 

2. Conversion of path-lengths S into X
2
-variates 

Let 

The m.g.f. for y is then 

00 1.. 

G (t) "'f ety e- 2 dy 1 
yi J

0 
2 = 1-2t 

Replacing SN, Eq. (A.2) by 

2 2SN 
h :: -A.-

we obtain the m.g.f. for h2 

1 
G 2(t) = N • 
h (1-2t) 

The meaning of h
2 

becomes evident if we invoke the properties of normal 

(A.6) 

(A. 7) 

(A.8) 

(A.9) 

(A.lO) 

deviates. Let Z. be a normal deviate of zero mean and unit variance. The 
J 

m.g.f. for the square of zj is then 

1 
Gz2 (t) = 1/2 

j (1-2t) 
(A.ll) 

and that of any sum of v such squares 

(A.12) 
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is 1 
G 

2 
( t ) = -----:-::c 

X {1-2t) v 

Identifying Eqs. (A.lO) and (A.l3) we see that h
2

, i.e. 2SN/A is indeed a 

x2
-variate; since N = v/2, 2SN/A is x2

-distributed with 2N degrees of 

freedom, Q.E.D. 

The advantage of the change of variables from SN to h
2 

lies in the 

fact that the probability density 

h2 

W(h 2) = [2Nf(N)]-l(h 2)N-l e- ~ 

and its CDF 

h2 

P
5

(h
2

) = s W(t)dt 
0 

(A.13) 

(A.14) 

(A.15) 

are well tabulated and adequate algorithms for computers are available (see, 

e.g., ref. 22 ). 

3. Distribution of the Ratio F 

An important consequence of the x2
-distribution of 2SN/A is the 

* possibility to reduce the comparison of two A values to a well-known 

distribution law. Indeed, the ratio F can be rewritten as follows (in obvious 

notation) 

(A.16) 

As is well known, (see, e.g., ref. 22), the ratio of two x2
-deviates, each 

divided by their number of degrees of freedom (v
1 

and v
2

) obeys the 

so-called F (or variance ratio) distribution, commonly used in variance 

analysis. Its probability density is: 
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W(F) (A.17) 

where B is the Beta-function. Identifying the numbers of degrees of freedom 

v
1 

and v
2 

with 2N
1 

and 2N
2 

respectively we obtain the integral 

probability (CDF) ofF given in Eq. (15). 

Figure 18 shows an example of the F-distribution, for the case of Z = 11 

secondaries in the LBL sample, where 15 interactions were recorded before 

D = 2.5 em, 12 beyond. 

The expected mean value ofF is N
2

/(N
2
-1); the mode of the 

distribution lies at N
2

(N
1
-1)tN

1
(N

2
+1). Both values are indicated on 

the graph along with the median value computed from Eq. (15) (setting 

P(<F) = 1/2). The observed va 1 ue of F ,F b , is shown together with (shaded 
0 s 

area) the integral P(<Fobs). 

4. ~C_h_i~~a~r~e_d_T~e~s_t~in~M~e_t~h~o~d_A __ ' 

We construct a goodness of fit test for comparing a set of mfp values 

using the 11 traditional" concept of the x2
-test. let SN with N stars be 

the total sample, so that I= SN/N. let the sample be divided into M 

subsamples, say s. and n., i = 1 to M. For each value s., construct 
l l 1 

2 - 2 
Zi = 2s

1
/A, which is distributed X with 2ni DOF. We calculate 

then the integral probab il i ty p. of the Z.-distribution, Eq. (A.15). 
1 l 

each p. we compute that va 1 ue of a normal deviate ~. that has the same 
l Ml 

one-sided integral probability Now let 
2 L: 2 

Assuming p .• q = ~ .. 
l i::; 1 1 

2 the values s., n. to come from a population with the same mfp A, q is 
1 1 

For 

distributed 1 ike x2 
with M-1 OOF. This is what we have done, for example, 

when we report in Sec. V-A that the NRC primary 
16

0 measurements of the mfp, 
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plotted as a function of distance after pickup, Fig. 7, are fit by a constant 

mfp A. We point out that the properties of the x2
-distribution were used by 

us in two other contexts in Sees. IVA and B and Appendix A, 2 and 3. 

5. Differential Equations Governing the 2-Link Chain Topology 

We give here the explicit differential equations that can be integrated 

to give the probability densities used in Sec. IV-B. 

where N
1 

is the number of tracks of generation i and N
2 

is the number of 

tracks of generation i+l, e.g., N
1 

and N
2 

refer to secondary and tertiary 

tracks, respectively. 

Appendix B. 

Monte Carlo Simulation of Detector Response 

( A.l8) 

One other feature was incorporated into the Monte Carlo simulation that 

deserves mention. If one calculates a priori expected mfps based on 

geometrical cross sections in emulsion, without normalizing to any observed 

emulsion mfp, one soon discovers that the predicted mfps are much shorter than 

the observed ones, including the observations on primary VOS beams. This is 

due mainly to detector inefficiencies and in part also observer inefficiencies 

for certain channels, particularly quasi-elastic reactions at low momentum 

transfer. One can prove mathematically that if one misses a constant fraction 

p of events with a mfp ATH (the theoretical unnormalized mfp), the observed 

mfp A = ATH/(1 - p) and the measured X values will obey again an exponential 

law. 
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To simulate this situation, a value of p = 1/2 was actually assumed, 

i.e., emulsion was considered only 50% efficient. After having the program 

assign a mfp as explained above (including charge assignment and isotopic 

effects), this value was divided by two and then an SID was generated. If 

t~is distance were within the stack, another random number was generated. If 

it were less than 0.5, a "visually detected" interaction was assumed to have 

occurred; if not, another random interaction distance using the same X/2 was 

generated and the program proceeded in like fashion until the track suffered a 

detected interaction or left the stack. 

Appendix C. 

Further Implications of the Two-Link Chain Topology 

We now examine the P
2

(X) vs P
2

(Y) unit plane in further detail by 

referring to Fig. 19a,b. In Fig. 19a, we have divided the P
2

(Y) sample into 

two parts, the first for which P
2

(X) ~ 1/2 [area (a)] and the other for 

which P
2

(X) > 1/2 [area (b)]. Similarly, we have divided the P
2

(X) sample 

into two parts for which P
2

(Y) ~ 1/2 [area (d)] and P
2

(Y) > 1/2 [area 

(c)], Fig. 19b. Because P
2

(Y) is independent of P
2

(X), and vice versa, 

under the n.h. we expect the means of all the samples of P
2 

to be 1/2. 

Taken at face value, the interpretation of the data as presented in Fig. 

19a and b leads to several qualitative conclusions. For mnemonic as well as 

for physical reasons, we shall denote P ~ 1/2 as "short 11 and P > 1/2 as 

"normal". This notation alludes to the fact that "short" X or Y values 

correspond to events enriched in anomalons, whereas the 11 normaP X or Y values 

are depleted in anomalons, hence should behave more like a beam of normal 

nuclei. 

First, let us consider areas (a) and (d), where we note that 

i) if P
2

(X) ~1/2 (short), theP
2

(Y) = 0.438 (122 stars) 

and, 
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ii) if P
2

(Y) ~ 1/2 (short)~ the P
2

(X) = 0.435 (122 stars) 

In these cases, the selection of events having a "short'' X(Y) link results in 

"short" Y(X) link~ in that both the P
2

(Y) and P2(X) values are <1/2. Item 

i) is a restatement of the result from Sec. V,B that a 11 Short" PF parent gives 

rise to a "short" PF progeny (memory). Second, consider areas (b) and (c), 

where we see that 

iii) if P
2

(X) > 1/2 (normal), then P
2

(Y) = 0.509 (93 stars) 

and, 

iv) if P
2

(Y) > 1/2 (normal), then P
2

(X) = 0.502 (93 stars). 

In other words, the selection of events with a "normal" X(Y) link leads to 

"normal 11 P
2

(Y) and P
2

(X) = 1/2 values. We have therefore extracted a 

subsample of the two-link chain data that exhibit "normal" behavior. This 

result speaks against isotopic and related conventional nuclear physics, for 

if this were the root cause of the short-mfp effect one would expect that P
2 

+ 0.5 in both instances. Too, even though the fit of beam mfps to a power-law 

expression cannot be exact, the PF data do not categorically reject such a 

fit, as one symptom of a rejection would be P
2 

+ 1/2. 

A third observation is that for case iii), the fact that P
2

(Y) = 0.509 

does not differ significantly from 1/2 indicates that the seemingly "normal" 

P
2

(X) > 1/2 secondary population does not seem to produce anomalous 

tertiaries as copiously as do normal primaries (where P
1

(X) = 0.469, Fig. 

12). If this is not simply a statistical fluctuation (see Table VI), one 

possible explanation for this observation would be the existence of an energy 

threshold for anomalon producton. A similar energy dependence is also 

suggested by Judek's cosmic-ray observations.
6 
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Table I. Numbers of observed interactions. 16o data are 

from NRC, 
56

Fe from LBL. 

160 

Primary beams 1460 

Projectile fragments, z ~ 3 

Generation 

2 609 

3 101 

4 16 

5 2 

6 1 

7 1 

56 Fe Tot 1 

946 2506 

590 1199 

121 222 

18 34 

1 3 

1 

1 



-63-

Captions for Tables II-IV 

Table II: Overview of the different· statistical tests applied to our data 

and of the motivation for their use. The table lists the quantities 

necessary to test both the 11 normality 11 of the accelerator beams and :the 

11 abnormality" of projectile fragments, using either interacting tracks 

~(method B) or interacting as well as noninteracting tracks 

(method A). The confidence levels express the probability that the 

result could have occurred as a statistical fluctuation assuming the null 

hypothesis ("normality") to be true. 

Table III: Detailed experimental information used in the F-test for the 

comparison of estimated mean free paths at small and at large distances D 

from the origin of the projectile fragments. For each primary beam and 

for each fragment charge the table lists: the numbers of tracks incident 

on the segment under consideration, the number of interactions occurring 

in the segment, the estimated mean free path and the cumulative 

probability for this value to occur as a fluctuation assuming the null 

-b 
hypothesis as well as the parameterization AZ = AZ to be valid. 

The last two columns give the value of the ratio F of the two estimates 

as well as the cumulative probability for F to lie below the observed 

value (without any assumption about the parameterization of Az). 

IV. Detailed experimental information used in the F-test for the comparison 

of estimated mean free paths in the second and in later generation of 

projectile fragments . Except for the definition ofF, the variables 

displayed are the same as in Table III. 
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Labor at or 
and 

Beam 

NRC 

160 

LBL 

y 
PF 

Charge 

z 
3 
4 
5 
6 
7 
8 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

D ~ 2:5 em 

* .,..racks Stars "z 
148 27 12.6 

93 23 8.7 
157 28 12.6 
278 50 12.6 
193 40 10.7 
133 29 9.9 
116 18 14.5 
123 21 13.1 
128 18 15.8 
139 20 15.8 
119 20 13.1 
109 18 13.4 

72 26 5.5 
76 13 12.9 
64 15 9.5 
69 21 6.7 
64 11 12.9 
55 17 6.3 
42 8 11.5 
58 17 7.2 
44 10 9.6 
38 11 7.2 
25 6 8.6 
27 9 6.4 
30 9 6.4 
30 8 8.4 
20 8 5.1 
26 12 3.9 
20 11 3.4 
20 10 3.2 
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Table III 

D > 2.5 em 

P ( <x2) * Tracks Stars "z P(<x2) F P(<F) 

0.040 119 79 13.2 0.004 0.960 0.443 
0.004 69 46 13.9 0.172 0.623 0.039 
0.236 127 78 14.8 0.535 0.853 0.250 
0.320 227 144 15.3 0.936 0.823 0.127 
0.162 150 110 10.9 0.072 0.978 0.463 
0.185 103 71 11.6 0.401 0.860 0.261 
0.132 89 20 22.7 0. 783 0.637 0.087 
0.131 95 32 13.8 0.130 0.946 0.429 
0.556 105 32 15.0 0.433 1.056 0.584 
0.689 111 31 16.5 0.801 10.955 0.445 
0.485 90 24 16.5 0.864 0.796 0.230 
0.620 83 27 15.0 0.829 ~.893 0.364 
0.0002 45 17 14.0 0.764 0.388 0.001 
0.689 59 14 18.7 0.980 0.687 0.170 
0.312 47 12 18.3 0. 977 0.520 0.045 
0.029 45 18 9.9 0.409 0.678 0.113 
0.812 50 19 9.0 0.312 1.435 0.839 
0.049 35 14 10.6 0.632 0.594 0.074 
0.737 32 17 7.6 0.196 1.512 0.848 
0.164 40 21 8.5 0.345 0.848 0.313 
0.596 33 15 9.0 0.513 1.059 0.566 
0.280 26 14 7.0 0.210 1.037 0.542 
0.534 19 12 5.6 0.090 1. 532 0.820 
0.236 18 5 20.4 0.992 0.313 0.016 
0.261 20 9 10.3 0. 779 0.623 0.162 
0. 582 21 8 11.9 0.893 0.709 0.250 
0.140 12 8 5.6 0.199 0.910 0.426 
0.017 13 11 5.3 0.124 0.734 0.229 
0.010 9 8 3.2 0.021 1.042 0.525 
0.011 10 6 7.5 0.546 0.423 0.043 
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Table IV 
Laboratory Third and 

and PF Secondaries later generations 
Beam Charge 

~racks Stars * p ( <X2) * 
P(<X

2 z >..z Tracks Stars 'Az F p (<F) 

3 117 87 13.3 0.003 31 19 11.7 0.042 0.880 0.329 
NRC 4 64 51 12.4 0.042 29 18 11.4 0.093 0.916 0.392 

5 104 73 15.2 0. 645 . 53 33 11.8 0.129 0.775 0.122 
160 6 228 158 15.3 0.949 50 36 11.3 0.165 0.740 0.062 

7 178 140 11.0 0.062 15 10 8.4 0.133 0.758 0.237 
8 128 96 11.2 0.284 5 4 7.6 0.249 0.673 0.285 
3 82 27 20.7 0.647 34 11 14.3 0.192 0.692 0.172 
4 87 41 14.1 0.124 36 12 11.5 0.113 0.811 0.287 
5 95 40 15.4 0.482 33 10 15.0 0.492 0.975 0.500 
6 98 41 15.4 0.689 41 10 19.6 0.871 1.272 0. 778 

LBL 7 79 34 14.8 0.731 40 10 15.6 0.716 1.051 0.580 
8 74 33 15.0 0.845 35 12 12.7 0.542 0.852 0.340 
9 57 36 9.1 0.057 15 7 7.7 0.164 0.849 0.385 

10 49 18 16.3 0.950 27 9 15.0 0.827 0.921 0.440 
11 44 17 16.7 0. 972 20 10 7.7 0.167 0.461 0.035 
12 51 30 8.4 0.115 18 9 7.5 0.190 0.895 0.414 

56 Fe 13 51 25 10.2 0.512 13 5 11.6 0.664 1.136 0.645 
14 41 24 8.4 0.221 14 7 8.0 0.332 0.956 0.490 
15 35 22 9.1 0.425 7 3 7.0 0.371 0.768 0.401 
16 53 36 8.0 0.182 5 2 6.5 0.405 0.820 0.484 
17 34 21 8.9 0.480 10 4 11.0 0.705 1.232 0.695 
18 31 20 7.8 0.295 7 5 4.3 0.097 0.555 0.160 
19 22 16 6.8 0.193 3 2 4.7 0.289 0.683 0.391 
20 23 10 15.2 0.983 4 4 1.8 0.011 0.120 0.002 
21 27 18 7.7 0.456 3 0 ~ - - -
22 23 13 10.0 0.797 7 3 11.0 0.767 1.103 0.613 
23 17 14 5.2 0.073 3 2 6.7 0.494 1.293 0.703 
24 25 22 4.5 0.010 1 1 5.3 0.492 1.191 0.686 
25 19 18 3.4 0.001 1 1 2.1 0.240 0.629 0.461 
26 19 15 5.1 0.085 1 1 0.8 0.097 0.153 0.141 



Table V. 

z 

3-8 

9-16 

17-26 

3-26 
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Estimates for the charge averaged mean free path A and for the 
parameter A at different distances D from the origins of PFs for grouped 
charges. Expected values assuming Eq. 3 are given in the last column. 

* T(D~2.5 em) 
(em) 

12.4 * 0.7 

8.3 * 0.7 

6.0 * 0.6 

* A ( D ~ 2. 5 em) 
(em) 

25.0 * 1.1 

* T (D > 2.5 em) 
(em) 

14.0 * 0.5 

11.6 * 1.0 

8.0 * 0.8 

* A (D > 2.5 em) 
(em) 

30.0 * 1.0 

<A> 
(em) 

14.6 

10.6 

8.4 

<A> 
(em) 

30.4 
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Table VI. Two-by-two table of the P
2

(Y) vs P
2

(X) scatter plot for 

two-link chains 

1 
P2(X) ~ 2 

1 
P2(X) > 2 

P
2

(Y) 1 47 46 >2 

1 
P2(Y) ~ 2 75 47 
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Table VII. Observations on the number of interactions N and estimated value 

LAB 

LBL 

NRC 

* .fl. on the first scan (indicated by 1 in the column headed SCAN) 

and after the rescan (indicated by 2) for each laboratory in the 

* two distance intervals. e: is the estimated scanning efficiency. 

SCAN 

1 

2 

1 

2 

28.66 

25.58 

23.92 

23.87 

D 2.5 em 

N 

286 

364 

183 

197 

* 

0.893 

0.998 

36.08 

32.67 

29.04 

28.00 

D > 2.5 em 

N 

364 

397 

485 

528 

* 

0.905 

0.964 



Fig. 1. 

-70-

Figure Capt ions 

The mean free path A(Z) versus Z. The large circles with error bars 

are the LBL observations on primary beams; the large triangles with 

error bars are the NRC primary observations. The small circles are 

theoretical predictions normalized to primary beam data; the 

appearance of multiple circles for the ·same Z represents isotopes of 

different A. The straight line is 30.4 z-0
·
44 

em, which 

represents the "average" fit to both data sets combined. 

Fig. 2. Microprojection drawing of an interaction of a 1.88 AGeV 56 Fe 

Fig. 3. 

Fig. 4. 

nucleus in emulsion. This primary star produced a two-link chain of 

PF interactions. The Z = 9 secondary PF travels a distance X= 2.6 

em before interacting, giving rise to a Z = 8 tertiary PF that 

interacts after traveling a distance Y = 0.02 em, as well as a Z = 1 

PF (not followed). The total length of the chain isS, and the 

potential path length T is the distance available for the complete 

chain to develop. The longest chain in the data (from 16
o) 

included seventh generation PFs. The variables X, Y, S, and Tare 

defined here for use in Sees. IVB and VC. 

Histograms of 6-ray density with an added charge scale (NRC) and of 

charge reproducibility (LBL). 

The calculated distributions of kinetic energies per nucleon in the 

laboratory frame of PFs for the interactions of 
16

0 (NRC) and 

56Fe (LBL) for the second and for the later generations. 

Fig. 5. Histogram of the distribution of probabilities P(F) for Monte Carlo 

generated events grouped according to charge, laboratory and 

subjected to the same 0 ~ 2.5 em cut as the data. 



Fig. 6. The normalized likelihood curve for the parameter A, Eq. 3, based on 

repeated independent Monte Carlo simulated two-link chains. The 

error bars represent the observed deviations about the mean 

likelihood curve. 

Fig. 7. Measurements of the primary 2.1 AGeV 
16

0 mfp as a function of the 

Fig. 8. 

Fig. 9. 

distance from the scan line. 

* Estimates A for the mfp 'arameter A at different distance D from 

the origins of the PFs: full circles, experiment; dashed line, 

prediction from A. ; solid line, prediction assuming a 6% beam 
-oeam 

admixture of PFs with Aa = 2.5 em. 

Distributions of interaction distances x for events with potential 

paths T ~ T
1

; dashed and solid lines have the same meaning as in 

Fig. 8. 

Fig. 10. Normalized likelihood contours for the parameters Aa and ~. Eq. 

(32), from all 1460 one-link chains. The cross indicates the 

position of the maximum likelihood. 

Fig. 11. Experimental frequency distribution of P(F): a) F
0

, comparison by 

distance from the emission point; b) F , comparison by 
gen 

generation. The dashed line is the expected U(O,l) distribution. 

The points with error bars are the experimental means P, to be 

compared to their expectation <P> = 1/2. The shaded area refers to 

the results from NRC. Compare with Monte Carlo result from the n.h. 

shown in F i g. 5 . 

Fig. 12. The experimental frequency distributio'l of P
1 

(X), Eq. (21). The 

histogram is the data. The solid vertical line is the expected 

value for the mean <P> = 1/2, while the solid circle is the observed 

value of P: the error bars on are the size of the solid circle. 



The dashed line is the expected U(0,1) distribution. Note that the 

ordinate starts at 120 and that the U(0,1) distribution is 

normalized not to the data but to the n.h. 

Fig. 13. The normalized likelihood curve for the parameter A based on the 

same data as in Fig. 12. The maximum likelihood value is A = 22.8 

* em; the method A estimate is A = 28.2 em. 

Fig. 14. The normalized likelihood curve for the parameter 'A from the NRC 

primary 
16

0 data treated as one-link chains. The value of the 

* method A estimator. "A "'11.9 em, is shown and is equal to the 

position of the maximum value of the likelihood curve. 

Fig. 15. The normalized likelihood curves for the parameter A from the 

experimental X, Y, and S of two-link chains. The dashed line is the 

result from the X distribution, the dotted line is the result from 

theY distribution, and the solid line is the S distribution 

rcompare to Fig. 6, where the (S distribution) Monte Carlo 

simulation likelihood curve is displayedl. The curves have been 

slightly displaced vertically at the peak for clarity. 

Fig. 16. Experimental integral distribution of the distance of confusion. 

The straight line corresponds to an exponential distribution with a 

mean distance of confusion of 100 ~m. 

Fig. 17. Microprojection drawing of an 
56

Fe interaction (schematically 

shown) that gives rise to secondary and tertiary PF interactions, 

both of which are of the Nh = 0 type. 

Fig. 18. Shape and characteristic values of a typical F-distribution expected 

for the case of Z = 11 PF's in the LBL (56 Fe) sample. 

Fig. 19. Asymmetry plots on the P
2

(X) vs P
2

(Y) unit plane 

a) P
2

(Y) selected by P2(X). 

b) P
2

(x) selected by P
2

(Y). 
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