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ABSTRACT
We present in detail the description and the analysis of two independent

experiments using Bevalac beams of 16O and 56

Fe. From their results it is
concluded that the reaction mean free paths of relativistic projectile
fragments, 3< Z < 26, are shorter for a few centimeters after emission than
at large distances where they are compatible with values predicted from
experiments on beam nuclei. The probability that this effect is due to a
statistical fluctuation is <1O“39 The effect is enhanced in later
generations of fragments, the correlation between successive generations
suggesting a kind of "memory" for the anomaly. Various systematic and
spurious effects as well as conventional explanations are discussed mainly on
the basis of direct experimental observations internal to our data, and found
not to explain our results. The data can be interpreted by the relatively
rare occurrence of anomalous fragments that interact with an unexpectedly
large cross section. The statistical methods used in the analysis of the
observations are fully described.

16 56

[ NUCLEAR REACTIONS 0 and “"Fe at 2 AGeV on emulsion nuclei; reaction mean

free paths of primary beams and projectile fragments measured and compared. ]
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I. INTRODUCTION AND HISTORY

Observations in nuclear research emulsion that have given provocative
evidence for short reaction mean free paths of relativistic projectile
fragments of highmenergy heavy ions in the cosmic radiation have been reported
sporadically since 1954. The first evidence for "anomalous" extranuclear
cascading induced by heavy primary cosmic-ray nuclei was given by Mi?Oﬂeeja

2 and Tokunaga, et 51,3 suggested that

Subsequent observations by Yagoda
secondaries and later generations in the cascades might have a mfp (mean free
path) five to ten times shorter than the value expected from a geometrical
overlap mode?d that was in reasonable agreement with values observed for
"primary" nuclei. In 1959 Friedlander and Sp?rchez5 examined six cosmic-ray
initiated cascades and found a difference between the mfp of "first" énd
"second" generation fragments., The first systematic studies of the effect
were performed by Judek,6 On the basis of mfp measurements of relativistic
cosmic-ray primary and secondary nuclei involving about 1000 interactions,
Judek concluded that a few percent of the secondary nuclei with charges
1 <7 <4 interact with anomalous mfps of the order of 3 cm and that the stars
produced by the "anomalous" particles had the characteristics of "typical"
nuclear interactions as observed in emulsion. Evidence for short mfps for
secondary relativistic fragments was also reported by Cieghorne7

Because of limited statistics, possible systematic uncertanties, and the
implausibility, even impossibility, of such a nuclear component within known
nuclear physics, these enigmatic observations have never been widely
recognized nor accepted. 1In 1972 Judek exposed nuclear emulsions to the

2.1 AGeV 160 beam of the Bevalac and obtained a partial confirmation of her

earlier cosmic ray resu?tseg The aim of the present collaborative Bevalac
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experiment was to obtain sufficient statistics to decide whether there is
evidence for a short mfp for PFs (projectile fragments) emitted from the

? 16O.and 56

interactions of ~2 AGeV Fe beams with target nuclei in
nuclear track emulsions. Our results provide this evidence.

A summary of our results, based on a total of 1460 interactions of PFs in
emulsion stacks exposed to Bevalac beams, independently scanned and measured
at the National Research Council (NRC) of Canada and Lawrence Berkeley

10

Laboratory (LBL), is as follows: a) Over the first few centimeters after

emerging from a nuclear interaction (~10 gmicm2 of matter traversed or,

equivalently, ~10“11

s proper time) the PFs exhibit significantly shorter

mfps than those derived from "normal" beams of the same charge 7Z: (b) at
larger distances from the emission point, the mfps revert to values compatible
with those for "normal" beam nuclei: and (c) the observations are not
compatible with a homogeneous lowering of the mfp and require the presence of
at least one component with an unexpectedly high reaction cross section.

. . . . . . 1
Since our first communication on this subject9“0

results of two
independent experiment511912 have shown essential agreement with these
conclusions.

The emulsion technique and the results derived therefrom on primary beams

are well estab?‘ishedelgﬁ‘121 The basic method we have used is known as

along-the-track scan, where one simply follows each track until it either

interacts or exits the detector. An interaction in such a scan is defined to
be the emission of at least one charged hadronic track, either from the
projectile or the struck target nucleus in the emulsion. Preceding

experiments have yielded by this method the mfps of primary beam nuclei to a
12
r

statistical precision of ~3% Specific to this result, mfps for &He9 R
14 15

N, and 160 had been obtained at LBL"" and for 18O at NRﬁg. As
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part of the present experiment, mfps for primary “Ar and gsFe were

measured at LBL and for dHe and 56

Fe at NRC. The primary beam mfp
measurements were done in all cases at about 2 AGeV, with some measurements
also performed at lower energies to obtain information on energy dependence.
We found no such dependence within tﬁe accuracies of our measurements. As
will be shown, the 2 AGeV primary beam measurements are in good agreement with
the measurements on PFs beyond about 5 cm from their points of emission.

Below this distance, we observe significant and regular deviations from both
the primary beam measurements and the "large distance" observations. Further,

the results of the two independent observations concerning PFs from 56

Fe at
LBL and 160 at NRC, are in agreement.

This paper is organized in six sections. In Section II that follows, we
discuss what one would reasonably expect to be the reaction properties of PFs
based on known nuclear physics. Section II] describes the technigques used in
this experiment and the systematics they imply.

In view of the potential importance of our results it behooved us to
examine in detail several subsets of the data. By necessity, these subsets,
having qualitatively different responses to various systematic or spurious
effects, do also have a different statistical behavior. For these reasons,
Section IV presents the formal statistical methods needed to analyze the data
in a cogent fashion with mathematical details given in Appendices A and B.
Section IV also includes a discussion of the Monte Carlo simulations used to
test the formalism and its physical approximations in the light of the
material given in Sections II and III. Sectior. V and Appendix C descrihe the
results using the methods of Section IV, and Section VI summarizes the
conclusions of the investigation.

A note on notations: Asterisks * will refer to estimates, bars to sample

averages, and angular brackets < > to expectation values.
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IT1. BASIC CONCEPTS AND EXPECTATIONS

To deem that an observation is anomalous, one must first establish
normality. 1In the present case, we need to know the normal interaction
behavior of nuclei in emulsion, particularly nuclei of kinetic energy hetween
1.5 and 2 AGeV. This is given in its simplest form by the total (or
inclusive) reaction mfp, denoted by 1. While the measurement techniques and
the statistical properties of various estimates for » will be discussed Tater,
the mfp has a simple physical interpretation in terms of number densities of

target nuclei and c¢ross sections, namely:
)\—Ek ] cr:i j—]
o obs

Here k is the number of different nuclides in the emulsion, n; is the
14

(1)

i

obs is the cross

number of nuclei/unit volume of nuclide "i", " and ¢

section for the projectile to interact in a visually observahle manner with
component "i"., The cross section %obs is defined to include the detection
efficiency. Note that a large Tobs corresponds to a short a. However,
because emulsion is a heterogeneous mixture of elements, one necessarily

measures i, not o Nonetheless, a knowledge of the properties of a

obs”

carries over to information about obs

To an excellent approximation, the ”gbs's in guestion are just a
constant fraction of the total reaction cross section. Two properties of
heavy jon reaction cross sections are important here: from about 0.5 AGeV to
22A GeV i) the “ops 2rC essentially constant and i7) they are well described

by a geometrical dependences16
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In its simplest approximation, the geometrical dependence of the reaction

cross section is expressed in the Bradt-Peters Formgd

01, = e (713 + a1 L g7 (9)
where o and § are constants and A19A2 are the baryon numbers of target
and projectile. If AY/3 5> a3 _ s, then o « A7/3,
Because A «= Z near the valley of stability (V0S), one might roughly
expect that ¢ « 22/3 with the same restriction as above. This suggests a
more general relationship of the form:
A= A7 (2)

In fact, Eq. (3) adequately fits the primary beam data, with b ~ 0.4
The equations to be solved for estimating A and b are presented in
Section IV. Using these, one obtains two fits; one for NRC, the other for LBL.

*
At NRC: A

20,9 % 2.5 cm, b = 0.43 £ 0.04

At LBL: A" = 32.2%2.5¢em, b = 0.44 £ 0,03

it
]

While the consistency of the observations is evident, we stress that these are
measurements of beam nuclides limited to the VOS.

It is evident that not only VOS nuclides are present among the PFs but
also isotopes away from the VOS, as well as various excited states with
lifetimes ct by 1 ecm. To incorporate the deviations these effects might
produce in the mfps (which are really a function of Z, A and quantum state)
one has two alternatives. The first, obviously, is to measure empirically all
these mfps. It is equally obvious that the logistics of such a measurement
would be intractable. The second alternative, albeit somewhat less secure, is
to obtain calculated values of mfps based on realistic mode1317 that use
other experimental data, such as form factors and detection efficiency. This
we have done. The results are displayed in Fig. 1, along with the

experimental observations and a power-law fit to these data.



T
The small circular points in Fig. 1 are the calculated values of a{Z) for
nuclei of charge 7 at 2 AGeV in emulsion obtained from Karol's "soft-spheres®

mode1917

The mfp measurements on primary beams at 2 AGeV, indicated by the
large circles and triangles, are well represented by the calculations,
assuming the values of the parameﬁers used in the Karol formalism given in
Ref. 15. In several cases the multiple values of the mfp at the same Z
illustrate the dependences of A(Z) on the isotopic mass A of the projectile.
The straight line is the fit to the combined LBL-NRC data sets, a(Z) = 30.4
Z"O“44 cm. While the general trend is reproduced, there does appear to be a
theoretical prediction that the mfps for the Z = 3,4,5 isotopes will fall
below the fitted ”Hnese18 Additionally, isotopic "noise" is visible. In

Section IV-C, which concerns the Monte Carlo simulations of the experiment,

the methodology for dealing with these aspects of the mfps will be examined.
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IT1. METHOD OF OBSERVATION AND SYSTEMATICS

In this section, three main points are discussed: 1) the guantities
measured, ii) how the measurements were conducted, and iii) the problem of
systematic errors posed by these measurements.

i) Beams, stack characteristics and scanning procedures. Two stacks of

I1ford G-5 nuclear research emulsion pellicles, nominally 600 um thick, were

exposed at the Bevalac to relativistic heavy ion beams parallel to the

2

emulsion surfaces. Stack I, 50 pellicles, of size 15 x 30 ¢cm”, was exposed

to 2.1 AGeV 16O and scanned and measured at NRC: stack 11, 42 pellicles of

2, was exposed to 1.88 AGeV 56Fe and scanned and measured

16

size 7.5 x 12 cm
at LBL. The track densities of the "0 and 56?@ beams were ~5 and
~3 % 103 cm“29 respectively. The stacks were processed separately at

LBL. A l-mm?

grid was photographed on each pellicle before the latter was
removed from its respective stack, mounted on glass and processed.

At both NRC and LBL, an unbiased forward "along-the-track" scan was
used. This means that a primary track was picked up on a scan line as it
entered the stack: this scan Tine was 2 mm from and parallel to the leading
(milled) edge of each pellicle in the Fe stack, and at 5 mm in the 0 stack.
The track was examined to insure that it did not interact before the scan
line. The Fe primaries were followed until they either interacted or left the
pellicle; the 0 primaries were followed until they interacted or left the
stack. When the primary interacts, any PF produced is called a secondary.
When a secondary PF interacts, any PF produced is a tertiary, and so on. An
example of a primary-secondary-tertiary "two-link chain" event is shown in
Fig. 2. A1l PFs of 7 = 3, regardless of generation (secondary, tertiary,...),

were followed until they interacted or left the stack.
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Table 1 summarizes the data base for this experiment, giving the number

6O and 56

of interactions observed for the primary ] Fe beams and for
projectile fragments versus generation.

Projectile fragments, as indicated by their name, are nuclei produced at
low velocities in the projectile frame. Hence at v = 3Fthey are emitted in a
narrow forward angular cone having velocities essentially that of the
projectile. The average momentum shift in the laboratory frame of a PF
relative to its parent is only on the order of -150 MeV/c at = 3 AGeV/c?gg a
momentum, i.e. energy, loss that is smaller than that caused by ionization in
the emulsion. We shall examine this point in the discussion of the energy
spectra of the PFs (Sec. VIB.4). At the energies used in this work, PFs of
Z > 3 are confined to a forward cone that is characterized by the Fermi
momentum of the fragments within the projectile ﬁuc’:‘!et.ase‘]9 We accepted PFs
within the forward 6° cone, with all angular measurements being corrected for
the shrinkage in the thickness of the processed pellicles,

In this experiment an interaction ("star") was defined as the emission of
at least one (observable) charged hadronic track at the vertex in addition to
the fragment under investigation. At LBL the distances were estimated to

100 uym by use of the 1 mm2

grid imprinted on the pellicles, the grid heing
checked by microscopefstage coordinates. At NRC the stage coordinates were
used directly, with a verification of distances obtained from the grid
coordinates.

A1l data at LBL were rescanned by a different observer using a somewhat
different technique from the initial scan. Since one could imagine the
potential pitfall of differential scanning efficiency (a scanner being more
observant immediately following a vertex), the scanners hackscanned all

interacting PFs proceeding backward from all observed interaction vertices,

and forward rescanned all noninteracting PFs from their emission point.
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At NRC, searches for charge-changing interactions missed in scanning were
conducted by repeated charge measurements along the track. The charges of all
primary nuclei were determined at the interaction vertex, or, in the case of
noninteracting tracks, at about 5 mm from the entrance edge of the stack. The
charges of PFs were determined near their emission vertex as well as at the
next interaction vertex, if they interacted, or at the exit point from the
stack if no interaction were detected. If any charge change was observed, the
tracks were carefully rescannéd for the missed interaction. This naturally
increased the detection efficiency for certain classes of stars at NRC
relative to LBL, namely stars with a small charge change to the next
generation PF. In both experiments, the scanning was done under =500X
magnification, with questionable vertices examined under higher power, where
spatial resolution of 5 1 um is obtainable.

We defer discussion of certain potential vertex misidentification and
background problems to Section VI,

ii) Charge measurements. Because the mfp of a nuclide is a function of its

baryon number A, hence Z, charge measurements via mean gap length and §-ray
densities were carried out for PFs Z > 3. The measurements of charge of the
PFs in this experiment were greatly simplified by the persistence of

19

(relativistic) beam velocity, ” which enabled us to assume that the Tinear

density of 8-rays of the PFs was proportional to Zzs

The LBL and NRC groups utilized both §-rays and linear track structure to
determine the charges of tracks: their techniques differed in significant
details, this difference being primarily attributable to the much higher y-ray
densities of the fragments Z > & occurring in the Fe stack. For 7 ¢ 5, the
LBL group estimated charge from the lacunarity L of the track, given by

. . . a
Z =yf|1n L|, where L is the fractional linear transparency of the track,1

In the range 6 < Z < 26, charge was deduced from the "lacunarity" of §-ravs,
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where L is defined here to be NE/NT’ i.e., the ratio of the number of times
no §-rays are observed in a cell Tength S (typically 15 um) to the total
number of .cells examined. In this technique a §-ray is defined to be one that
projects radially a minimum of ~1.5 um from the center of the %rack.?o

To determine the reproducibility of the charge measurements, the method of
repeated observations was used at LBL. A track was chosen at random that héd
been first measured to give charge 219 say. Subsequent independent observa-
tions were made on different segments of the same track, yielding measurements

Z . ZNQ The deviations 21»22, 21@23,,6921«ZN were histogrammed, and since

5 o
for the different le the results of ziazi were compatible, one final histogram
was produced, Fig. 3 (LBL). This yielded an empirical charge reproducibility
of %] charge unit from 6 < Z < 26. These deviations were obtained at different
depths and in different plates to verify the correction for development gradi-
ents and to test the uniformity of the stack. Further, they were examined for
a systematic shift with distance into the stack: such a shift could indicate a
change in track structure due to a slowing of the fragment. No sucﬁ shifts
were found, lending further credence to the assumption that one was in fact
dealing with relativistic PFs.

Two main procedures of &-ray counting were employed at NRC, the counting
of all §-rays {a) with four or more grains and (b) that extended »1.2 ym from
the center of the track. Procedure (a) was used in the early stages of this
work. Procedure (b), although more time consuming, gave results consistent
with those of (a). A track segment of about 5 mm was used for each count,
depending on the particle's charge. The charge distribution obtained from
§-ray measurements using (b) is given in Fig. 3 (NRC), showing a statistical
accuracy of 1/3 charge unit for 5§ < Z < 8 and of about 1/4 charge unit for
l =3 and 4. Gap-density measurements were found to give complete charage

resolution for Z = 3 and 4 in 1 mm of track length.

ii1) Energy Spectrum. The only technique available in this experiment

to measure the energy spectrum of PFs is that deduced from the guantity ps
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resulting from multiple scattering measurements. However, at the energies
involved in the present experiment, such measurements’are not nearly sensitive
enough to provide an accurate energy spectrum. Multiple scattering
measurements carried out at NRC provide proof that the PFs were gqualitatively
in excess of 1 AGeV (for Z/A = 1/2) and entirely consistent with the
calculated energy spectrum,

To calculate the energy spectra of the interacting beams and PFs we
incorporated several pieces of information.

i) We assumed the values given in the literature for the specific
jonization constante14
ii) Spectrometer measurements have shown that the longitudinal momentum
distributions of PFs in the laboratory frame are characteristically

Gaussian shaped, with mean shifts <Py > = -150 MeV/c in total momentum and

standard deviations typically 450 MeV/c.'®

Let us consider a PF of

mass A = 10 that is emitted from a parent nucleus of total momentum of 25

GeV/c, assuming the persistence of velocity. At the -3 standard

deviation level, the PF would be shifted downward by -1.5 GeV/c, or ahout

6% of its total momentum at beam velocity. In terms of kinetic energy,

this is about an & degradation. Hence, even in this worst case

analysis, we conclude that the effect of kinetic energy/nucleon Toss at
emission of a PF relative to its parent is small compared to the energy
losses caused by ionization in the emulsion.

The resultant calculated energy spectra for the PFs in the experiment
utilizing this information are displayed in Fig. 4. As can be seen, none of
the PFs would have had an energy below 1 AGeV and few below 1.5 AGeV.

The important conclusion that comes from this calculation is that,
because of the near energy independence of the reaction cross section for

16

energies E 2 1 AGeV,”” we are assured that the expected mfps, 1{Z), of the

PFs are constant, independent of position in the emulsion detectors.
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IV. STATISTICS OF MEAN FREE PATH MEASUREMENTS

From its very beginning, the problem of the anomalously short mean free
paths of projectile fragments has been plagued by the relatively small
statistical samples involved, which entailed--to a certain extent,
justifiably--a general mistrust about the reality of the effect.

However, samples of arbitrary size are susceptible to exact statistical
treatment; this should enable one to extract the maximum amount of information
from the data available. The éim of the analysis is to test the null
hypothesis (n.h.), which states——in physical terms--that projectile fragments
are just ordinary nuclei, with no exceptional physical properties. We shall
return to the quantitative formulation of this n.h. below.

The statistical problems that must be addressed in such a treatment of
the data are

i) How to estimate a mean free path in a detector of finite dimensions
(especially dimensions comparable to the mean free paths involved):

ii) How to test the n.h. in the presence of a secondary "beam" with a
wide charge spectrum. Indeed, since the mfp depends on the fragment's charge,
the test must be carried out on subsamples characterized by individual
charges; in any experiment with statistics comparable to ours, this
necessarily implies subsamples of relatively small size;

iii) Assuming that an adequately constructed test has rejected the n.h.,
how to extract from the data the pertinent information about the physical
parameters characterizing the objects responsible for the anomaly.

The presen? section deals with this set of problems. Fortunately, most
of the statistical tests, estimators, and distribution laws involved in such a
treatment turn out to be of the "text-book" type and only a few variations on

themes familiar from radioactive decay have had to be derived here. This
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section states definitions and results; details and/or proofs are given in
Appendices Al to A5.

Definition of the mean free path. The basic concept of this experiment

is the reaction mean free path. If the target medium is homogeneous or if it
has a length scale of inhomogeneity very small compared to the scale of the
interaction distancess14 the mean free path of a homogeneous particle beam
appears as the parameter A in the differential equation

dN -N

E?g =Tx ()

Here, NO is the number of particles incident on a target slab of thickness

dx; some physical process, characterized by i, removes particles from the
beam. The solution of this egquation is well known to be the negative
exponential; specifically, the probability density for an interaction distance

x is given by

£(x) =%-e“"” g (5)

Except for the fact that we are dealing with track lengths rather than with
time intervals, this is just the law of radicactive decay and many well-known
results from this field {especially their application to the spontaneous decay
in flight of unstable elementary particles) can be taken over to our analysis.
The probability density, Eq. (5), leads to several consequences.
Foremost is the property that the negative exponential "has no memory".
Physically, this means that any infinitesimal slab dx is equivalent to any
other slab in which the particle may suffer an interaction, irrespective of
the location of the slab. The fact that a particle has not interacted up to

dx has no influence on its fate in dx.
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Any given sample of tracks in a detector of finite length can be

separated into two classes, viz.
i) those that did interact within the detector and

ii) those that left the detector without interacting. One may choose to
extract information on A either by considering tracks of type i) and ii)
together or by considering only the distribution of interaction distances of
class i).

A. Method A

The first method of estimation, which shall be denoted as method A, uses
a moment of the interaction distance distribution as well as information about
those tracks that did not interact.

The second, which we shall denote as method B, will be dealt with in the
following subsection IV-B.

The concept of method A can be formulated as follows:
1) Assume a is a constant.
2) Follow tracks until N interactions are observed, N = 1.
3)  Sum the total path lengths followed for both the interacting and
noninteracting tracks, where the path length of a particle's track is the
length from its initial observation, i.e., either the scan line for beam
particles or the location of the parent interaction for PFs, until its
interaction point or its exit from the detector. Denote this sum by SN“
4) Define the estimate of the mfp as

Voo Sy/N. (6)

a) Distribution of the total path length in an infinite detector. In

*
order to establish that a» deviates sigrificantly from some expected value A
*
one would like to know the distribution law of A , given A and N. For
practical reasons it is preferable to investigate instead the distribution law

of the total path length SN’ given 1 and N.
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In an infinite detector, all tracks must interact: if the individual
1nteract1on length of the 1th track is X then by definition
ji: X.. Since the distribution of X given a, is known, Eq. (5),
the probabiiity density of SN is obtained by N-fold convolution of Eq. (5)
(see Appendix Al), which yields the I'-distribution [21]
S

£(S.)dS, = — (Eﬁjf 1 e KE' Sn (7)
N N = TNY \x A ‘

As any T-distribution of (integer) order N can be transformed by a change of
variable to a XZ distribution (see Appendix A2) it follows that the quantity

25

2 N
— (8)

h

oit

is distributed like y2 with 2N degrees of freedom.

b) Case of a finite detector. Having established the distribution of

SN in an infinite detector, one can now apply it to the case of a finite
detector. As long as there is an essentially unlimited number of tracks so
that in any repeat experiment one can go to the Nth interaction, the
distribution of SN must be the same. To establish this fact, we invoke the
no-memory property. Simply regard each track length in an infinite detector
as made up of noninteracting segments plus the last segment, which terminates
in the N-th interaction. In an infinite detector, each track must interact,
causing N to be identical to the number of tracks; in a finite detector, N is
related to the flux NO by the binomial distribution at fixed flux, so that
one in principle requires an arbitrary amount of flux to ensure that one
reaches N in all cases. In fact, let T be the distance available for
observation (i.e. the potential path) and Pr = 1- e”T/A: then N 1is

distributed binomially
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NO N (NO~N)
W(N) = N PT (1 - PT) . (9)

For NO » oo andF%P finite, Eq. (9) tends toward a Poisson

T
distribution and Eqgs. (7) and (8) hold.
From the known properties of the X2 distributionszz it follows that

%
the relative rms deviation of SN and hence of » at a given N is rigorously

o

AF T

NL/2 - (10)
But, because the X2 distribution is only asymptotically normal (as N » «)
and quite skew at finite N, the rms deviation (Eg. 10) should not be converted
into "standard", i.e. Gaussian, confidence levels unless the sample size is
very large. In practical terms this means that at a given x, "upward"
fluctuations, i.e. A* > A, may be considerably more probable than "downward"
ones.

A final remark: because of the linear relationship between A* and SN
at fixed N, it follows that <A*> = A, 1.8. A* is a consistent estimate for
Ao

c) Method A'., Having established that the estimate x* = SN/N
depends essentially only on the mfp A and N and is independent of detector
size, one can subdivide a data sample and consider A*(n) with n some
variable, on which 1 has a known theoretical dependence. Likewise, using
Eq. (3) one may construct A%(ﬂ)e In particular, n may profitably be taken
to be the distance after the point of first observation of a track as defined
above; call this distance D. In this case it is clear that a constant a (or A)
is independent of D, and hence <A*> should also be independent of D. One may
N and N binned in distance intervals Dj:< D < Dj+1’ which

%
should give compatible results for x» irrespective of j. This method of

thus consider S
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* b 4
examining Ao (D), and especially A (D) (for a fixed value of b), will be

termed Method A'.

d) Pooling information from PFs with different charges. To increase

statistics (especially in Method A') one may choose to replace a set of
AZ values, each measured at a given Z, by the best estimate for A from
this set.

As a consequence of the X2 distribution of hz, Eq. (8), we use the
method of maximum likelihood to estimate values of A and b in the power law
approximation i = AZ“b from a set of A; measurements, say with NZ
stars each. First, we take the logarithms of the probability density of the

«% distribution [Eq. (A.14)]

% NAZZb :
gn f = gn(1/2)- anr(N) + (N - 1) Qn(sz)a N&nA + NbanZ - i (11)
Equating the derivatives with respect to A and b to zero, and letting
*
s, =2 (Z)N_, one obtains A", b" as solutions of the following
system of equations.
% *
5,2 25,1z
Z - : (12a)
2N 2. N,anZ
Z Z
z Z
*
vs,7°
* Z
. S (12b)
5 Z

e) Comparison of two estimated mfps. In practice one is often

* *
confronted with the necessity of comparing two values of 1 , say Al and
*
Azg supposedly pertaining to measurements of the same physical process.
This situation occurs either when one deals with two independent measurements

*
or when one wishes to compare values of » under different physical
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conditions, which may be assumed to have no influence on the value of x. Let

%* x*
Al and AZ be the expectation values of Al and 12, respectively.,
The n.h. to be tested is then

A=Ay A (13)

It turns out that a convenient test quantity for this n.h. is the ratio

ek}

I
waw
N | 3
————
o
S
p—

As long as Eq. (13) is true, F obeys a well-known distribution law, the

so-called F—or variance ratio——distribution (see Appendix A3}, irrespective

of the concrete value of A, with ZNl and 2N2 degrees of freedom (N1 and

* *
N2 are the sizes of the samples from which Al and A, were

derived): The cumulative distribution function (CDF) of this distribution is

l,- N

N2 oF
PF = P ((F ) = m t (NZ + Nlt) dt 5 (15)
0

where B is the beta function. PF is tabulated, e.g. in ref. 22, and has the

general property of CDFs, namely that it is uniformly distributed between O

and unity [or briefly PF is distributed U(0,1)]. Hence, its expectation

)ﬁZ/ZQ

value is 1/2, its dispersion is o, = (12 Consider a set of v values

of PF that have been obtained from pairs of A; and Ag, where it is

only necessary that the n.h., Eg. (13), be true separately for each pair, i.e.

x» may vary from one pair to the next. Then one may build the sample mean of

the P values

P

<

! ﬁi
= P . . (16)
) F,i

For large v (in practice for V2 10) the quantity
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Pe - 172
N (17)

is approximately a normal deviate of zero mean and unit variance. An exact
way of testing the n.h., Eq. (13), at finite v will be given below.

f) Comparison of many estimated mfps. Consider the case when a set of,

* * ¥*
say, v values Alg Aze oo xv have been measured, with‘Nl,

N,y ... N stars. Further, let r,, A,, ... A be the mfps that we
2 v 1° 72 v

expect from physical considerations (a special case could be A=Ay eee =
Av = ), which occurs, e.g., in method A'). A convenient test statistic can
be constructed as follows:

1)  compute for each x* the CDF of the SN distribution

P ( he 2Ny (Eg. A.15)

Si
2) Note that, because each PSi is distributed U(0,1), its logarithm
is exponentially distributed and hence the gquantity
92 = -2 n P (18)
i~ Si
obeys a x2 distribution with two degrees of freedom.

3) Compute the sum

2
9=

- 2
1=

] g‘i s (19)

2

Because of the additivity of x° variables, g° is itself

xzadistributed with 2v degrees of freedom and can, hence, be used to test
the consistency of the k* values with their expectations.

Incidentally, the same statistical test can be used to pool in an exact
A;)
S in Eq. (18) by the PFi values
[Eg. (15)]; then 92 tests the hypothesis that all (A?ig Azi) pairs

way the information from many pairs of (a values, Eqs. (14)

*
15
and (15). One has just to replace the P

have the same expected Aia
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B. Method B

Thus far the statistical analysis has been concerned with both
interacting ahd noninteracting tracks. It is necessary to consider also the
case when only interacting tracks are used, for the additional insight we gain
into the nature of the effect and because certain types of information are
simply not available in any other way. To illustrate the first reason, we
remind that if the n.h. is true, methods A and B must yield consistent
estimates for i, irrespective of detector geometry. If, however, the n.h.
must be rejected, methods A and B become dependent on the relative geometry of
the detector, and of the events, and their results will disagree by amounts
that depend on the abundance and properties of the objects responsible for the
anomaly.

On the other hand, if, for example, one wishes to compare some statistic
concerning the mfp for events tagged by a characteristic of their interaction
star (1ike, among others, its multiplicity), the information can be derived

from samples of interacting tracks only.

a) The r-link chain topology. Let us begin with the simplest case, the

observation of a single interacting track. If the n.h. is true, there is a
known single mfp A. One measures two quantities, the interaction distance, X,
and the potential path, T, which is the maximum distance over which the
individual track could have been observed within the stack (T is practically
the same for all beam tracks and changes with each individual track for PFs).
Starting from Eq. (5), we obtain the probability density for X at a given

potential path T 21

(1/3)e~*/A

0 =05

(20)
l-e

the CDF of which
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1-e~*/2

= (21)
=e=T/A

P (X) =
1 1

is distributed U(0,1). Equations (20) and (21) are useful in two ways, viz.
i) the CDF Pl can be used to test the n.h. From a large number N of

p values one either tests whether E& is consistent with 1/2 or one

1i
computes 929 Eq. (19), and performs the XZ test.
ii) the product of N probability densities, Eg. (20), is used to

construct the logarithmic 1ike1§hood

L= [ 2 e e - e‘”")} , (22)

_ N
where X = (1/N) E: Xi; the maximum likelihood estimate for A is therefore
1=]
the solution of the transcendental eqguation

* = T
A o= X * .
e‘l"/}\_1

(23)

The width of the likelihood curve and implicitly the error assigned to A* are
functions of N and T/x and increase rapidly as T/x approaches unity 21 . For
T/a >> 1, Eq. (23) turns into Eg. (6) with the error given by Eg. (10).

If each event has a different T-value, Eqs. (22) and (23) are easily
generalized, see e.g. ref. 21,

We shall refer to all the above results as the one-link case.

However, the single track is not the only topology with which one must
deal. Another common topology is the r-link chain. This is the topology when
one has r(r 21) PF collisions in a row. Consider the most frequently

encountered case of r = 2 on which we have concentrated here, i.e. the

two-1ink chain topology. This topology is illustrated in Fig. 2, which is a
56

microprojection drawing of a 1.88 AGeV " Fe interaction ("star") that leads

to a two-link chain, where the secondary PF, with mfp AX9 interacts after a
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distance X from the vertex of the primary 56Fe interaction, and the
tertiary, with mfp Ay interacts after a distance Y from the vertex of the
interaction of the secondary PF. Tﬁe sum of the path lengths of the PFs
S=X+Y is indicated, as is T, the potential path length available for the
secondary PF for interacting in the emulsion stack.

There are several different probability distributions one may construct
from the X and Y in a two-link topology given the mfps and T. One is PZ(X)s
another PZ(Y)9 which uses the X and Y information from each link
separately. On the other hand, one may combine all the information into one
variable, S = X + Y, the total length of the two-link event chain and consider

Pz(Sngxx,A and the likelihood derived from this CDF. Since the

v
charges ZX’Z
b

Y are what one actually measures, and one then assumes

-b .
A, = M Ay = AZ,", one may write P2(51T9ZX’ ZYQA,b) and

X X
examine the likelihood as a function of one parameter, e.g. A.
By solving the pertinent differential equations (Appendix A5), the CDFs

for X, Y, and S can be written in the general form

_u
AN )

where u is either X, Y or S,
TX = TS =T, TY = T-X (25)

and the functions .8 are:
if Ay £ 2

XTI (26)

_X

A X ,
1-e (1 + X& if Ay = Ay = A,
nY/kY

=1 -e in both cases  (27)
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and

(28)

with

(29)

Note that all PZp are distributed U(0,1) if the n.h. is true and all the
pertinent tests, especially the reduction to a xz distribution, Eg. (19),
apply implicitly. Furthermore, it is noteworthy that PZ(X) and PZ(Y) are
statistically independent; hence, a scatter plot of PZ(X) Vs PZ(Y) should
populate uniformly the unit plane. One simple test for uniformity is to
divide this unit plane into quadrants by the lines P2<X) =1/2, PZ(Y) =
1/2 and test all possible asymmetries between any two quadrant populations
Mij or of linear combinations thereof.

Assigning indices 1 and 2 to events with P2u=< 1/2 and > 1/2
respectively one can test for deviations from zero of such asymmetry

coefficients as, e.g.

C= My, =M + M (30)

11 = Mpp) 1 (Myp *+ Myg)

Equation (30) will be applied to the data obtained via method B in Sec. V-B,

to test P,.(X) and P,(Y) for statistical independence. The confidence

2( 2(

levels assigned to C come from the multinomial distribution of the Mije
Finally, let us consider a situation in which the n.h. has been rejected

by any or by all the tests mentioned hereto. If one is able to construct an

alternate hypothesis, it is necessary to establish procedures for
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investigating its parameters. More specifically, if one makes the simplest
alternate hypothesis (hereafter denoted by Hl) that only one sort of
quasi-stable (over at least a few cm of flight path) "anoﬁaTons"23 are
responsible for the efféct, we are interested in their relative abundance
and their (assumedly unique) mfp Ay

Most events are obviously individual interacting PFs, which are one-link
chains. Hence, one needs to use a modified one-link formula to obtain P
values and likelihood functions. Assuming each track has a probability o« of
being an anomalon with a mfp Ay Eg. (21) can be generalized to

=X/xz eX/xa

(1-a)(1l-e ) + al-e

) (31)
)

Pl(X1T9AZ§a9Aa) =

=T/AZ =T/Aa

(1-a)(1-e ) + a(l-e

Differentiating Eq. (31), it is straightforward to calculate the 1iké11hood as

the product of the densities

=X/ Y
(1-a) %uae Zy %m e a
Z a
O = TS T (32)
(1-a)(1-e J+ a(l-e )

for each (X,T) pair given the charge Z of the track.
C. Monte Carlo Simulations
A1l the analysis in this section has been restricted to "exact"
statistics, "exact" in guotations because the results of the statistical
treatment are exact under assumptions valid only in a somewhat idealized

b

world. In all methods depending on the hypothesis a, = AZ ~, both this

L
form and the assumption that the exponent b is the same fcr PFs as well as for

VOS occupants is an idealization. The F-test (independent of A), with the ratios F
grouped as to laboratory and measured charge, needs only an assumption of

relative homogeneity. This is our most powerful tool. Furthermore, when
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applying method A, one typically constructs SN not according to its rigorous
definition (total path length up to, but not beyond, N stars) but including
all the path length observed, including a track segment beyond the Nthstaro
Although this correction is negligible in large samples, it may conceivably
matter in the much smaller samples collected, e.g., at fixed charge,
especially in the third or later generations. Finally, in any concrete
experiment the incident flux is really finite.

How should one test whether or not these idealizations have any
physically signif%cant effect on the results? One possibility is to attempt
ever improved analytic approaches. Since the number of physical effects one
wishes to include may grow, this would involve a growing complexity of the
statistical methods without any necessary gain in physical understanding.
Another possibility is to use the methods based on idealized assumptions and
anaiyze the results of simulations (which incorporate violations of the
idealizations) by these same methods. In this subsection, the Tatter approach
is elected.

A Monte Carlo simulation computer program was written. The output of
this program was a data set in the identical computer format as the actual
data of the experiment and hence could be analyzed by the same programs that
were used to obtain the results.

The basic component in the simulation is the generation of random
interaction distances, assuming that these come from the negative exponential
distribution. These distances will be called SID, simulated interaction
distances. SIDs clearly depend on mfp, and the whole point of the simulation
is to select the mfps (and topologies) from physical considerations.

Since we want to simulate something as close to the actual data set as

possible, we used the primary interaction distances and topologies (i.e.,
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secondary PF tracks) as actually observed., The interaction distances alone
will not generate tertiary and later generations unless a topology is assigned
at the interaction vertex of a PF. To do this, all topologies (actually
observed in the experiment, e.g., 0 » B + Li, Ca~ 0+ C, Ca» 0 + 2 Li, etc.)
were stored in the computer grouped according to the charge of the parent;
given the charge of the interacting PF, a topology was selected at random.
The topology PF » no further PFs (all Z < 3) was also allowed to occur at
random with its measured frequency. Through these procedures, simulated
events were generated.

A PF was deemed to have interacted whenever its SID was less than its
available potential path. SIDs were kept to machine accuracy but were written
on the simulated data file rounded off as the original observations. Thus,
any error induced by rounding was incorporated. The only remaining question
is how to assign mfps to individual tracks.

The known systematics were incorporated into the simulation, by modifying
the mfps from model calculations. For each true Z, calculated mfps from a

realistic geometrical model were used917

not Az"b. For each true Z, a

true mfp was assigned, incorporating isotopic noise; sometimes Z = 8 was given
the mfp of 160, sometimes 1809 etc. To get the true Z from the observed Z
(the charge on the data file), an error was selected from the observed
Z-reproducibility distribution (Fig. 3) coupled with a systematic bias if so
chosen. Thus, both charge misidentification and isotopic noise were

included. In fact, to keep the calculation robust against small changes in A,
the isotopic effects were even increased by a factor of 2. If, e.g., isotope
(Z,A') was predicted to have a 3% change in mfp from the VOS occupant (Z,A), a

factor of 6% was actually used.
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Thus, many copies of the pseudo-data were produced. Each copy was fed
through the analysis program package and pseudo-results generated. We briefly
present the result of analyzing all these pseudo-data put together, first for
method A and then method B.

1) Method A. We present in Fig. 5 the P(F) distribution for Monte
Carlo events grouped according to laboratory and charge and subjected to the
same distance cut as the experimental data, viz. 2.5 c¢cm. The mean and RMS

deviation of this distribution are P = 0.50 £ 0,02 and D. = 0.296 = 0.012:

P
both values are consistent within errors with the expected <P> = 1/2 and DP
=0, Similarly, results for A* were observed not to depend on either
distance from the parent star or the generation of the PF, as expected if the
n.h. were true,

2) Method B. Here again, things are as expected under the n.h. For
illustration, we examined the distribution of PZ(S) in the simulated two-Tink
chains and the pertaining likelihood curve. We find PZ(S) = 0.50 = 0.02;
the Tikelihood curve averaged over 100 Monte Carlo repeats is displayed in
Fig. 6. It peaks at A* = 29.6, with rms deviations as illustrated.

In all cases, a "normal" simulation, using conventional nuclear physics
and the systematics of this experiment, produces normal physics in the sense
that the numbers obtained from the simulation are practically
indistinguishable from the values expected from the idealized model underlying
our equations. Hence, we are compelled to conclude that the statistical
methods presented in Secs. IVA and B are valid for a physical understanding of

the data. The simulation gives results in contradiction with our

observations, as will be shown in Sec. V.
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V. RESULTS
A. Overview

We now proceed to apply the methods of analysis described in Sec. IV to
the results of our experiment. An overview of the tests applied to our data
is given in Table II, which is also meant to illustrate why each of the tests
was necessary.

The first half of this table shows the checks of our methods of analysis
when applied to primary (i.e. "normal") beams. Its second half deals with
fragments emerging from the primary interactions. Here the different rows
refer either to different subsets of the data or to different groupings of a
given subset.

We now discuss these tests in detail.

B. Method A
The first application of this method is presented in Fig. 7, where the

* . 16
mfp Ao observed for primary

0 beam nuclei is plotted as a function of
the distance from the scan line {pick-up point) of the incident beam. The
data are well accounted for by a constant value of A*, the straight-line fit
to the data at A" = 11.9 cm having a’XZ = 7.3, 12 DOF, obtained through the
procedure described in Appendix A4, The observation that x* does not depend
on D is typical of the behavior of all mfp measurements of beam nuclei.
Figure 8 presents the mean-free-path parameter e of all secondary and
later generation PFs, plotted as a function of distance D from the origin of
emission of the PF, The quantitiés A are calculated under the assumption
that » = AZ“b with b = 0.44 for the LBL data and b = 0.43 for the NRC data.
For simplicity of display, we have renormalized all data using a constant mean

value of A = 30.4. The error bars we have assigned to the data points

beam
represent one standard deviation assuming the primary beam value for A. Thus,
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for example, if A" = 20 cm with 100 stars and A, . = 30 cm, then (in the
approximation to which VN statistics apply) A* =20 * 3 cm, not A* = 20 %
2 cm. This is because it is assumed at the outset that all PFs should have
the mfp parameter A as measured on primary beams and that the A* values are
just fluctuations around this value.

In contrast to both expectation and observation on primary beams, the
values for A* are low for the first several centimeters; they become

compatible with A for distances D 2 5 cm. The short mfps at small

beam
distances D imply that there is an excess in the number of interactions at
these distances.

This result can be visualized also by considering the frequency
distributions of interaction distances N(X). For clarity, we have performed
the analysis at fixed potential path Tlo To fix Tls we demanded that each
track could have gone at least T, cm, even if it interacted within T. The
N(X) distributions for T1 = 3 and 9 cm, summed over all PFs, are displayed
as Fig. 9. Examine the Tl = 3 cm result. Here, with a total of 2386
tracks, we expect 504 stars assuming for the mfps the results of the fits to
primary beams. In the data, there are actually 581 stars, a fluctuation
expected to ocCur with a probability 3510°4, The curves in Fig. 9 are
calculated assuming the same mixture of PFs as used in Fig. 8. They are
obviously in good agreement with the data.

To obtain some insight as to the nature of this excess of interactions of
PFs at short distances, we make the simple assumption: In addition to PFs
with "normal® mfps, there is present another species of PFs, "anomalons", that
are produced with probability a, having a constant, "anomalously short", mfp
.. We thereby assume that o and A, are independent of Z, which clearly

a
may be an oversimplification of the physical situation. In this model the
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characteristic shape of the A* versus D curve is due to the removal of
anomalons from the secondary beam by nuclear collisions so that at infinity
the beam consists only of normal nuclei. By the procedures explained in Sec.
1VB, we find that g* = .06 and AZ = 2.5 cm. These results are
illustrated in Fig. 10, where the normalized likelihood contours for the
parameters « and Ay are displayed for 0 < o < 0.5 and 0.1 < Ay < 20 cm,
Although the maximum 1ikelihood occurs at « = 0.06, Ay = 2.5 cm, the data
are compatible with « and Ay several times larger than the most likely
values deduced from this elementary model.

The smooth curves in Fig. 8 and 9 are calculated assuming this model. In
terms of the expectation values of all variables, the value of <A> in the j-th
interval (from Dj to Dj+i) is then

T [(1-a) p, 2, *ap, ;2 12°
51,3 £,i"L a,j "a

<p>: = (33)
J
}Z.: ¢Z’jf(1‘=@) ngj *a pasj]

where ¢Z j is the number of tracks of charge Z, incident on segment j,
-b
A7 = Byoan £
P7,i = -
=D./x ~D., 5/
P, i= N SJ*l "a ] (331)

The calculated dependence of <A> on distance D agrees well with the
observations. The reason the short mfp effect has been termed anomalous is
clearly seen here. If one attempts to increase Ay to, say, 10 cm, there is
no value of o that will reproduce well the observations. They seem to require

the existence of a component of the PFs produced with a few per cent
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probability, with mfps outrageously shorter than any of the primary beams
employed. A value of 10 cm is already ludicrous, considering that this
implies a nucleus of charge in the calcium range among PFs from oxygen! A 2.5
cm component is probably a shorter mfp (i.e., larger cross section) than that
of uranium.

If the short mfp is due to the cooperative effect of a few baryons (a
"damaged zone") bound to a normal nuclear fragment, one could understand the
approximate independence of Ay from charge.

Suppose the "A" of the damaged zone were NE then

N (g + 1) (34)

If we take Ay = 3.5 ¢m, for example, and \7.06 = 7 cm, then Ay = 2.3 cm;

on the other hand, for A7 g = 18 cm and the same Ays Ay 2.9 cm., Thus,

for nuclides from Fe to Li, the equivalent anomalon mfp Ay would change only
from 2.3 cm to 2.9 cm, a difference that is undetectable with the present
statistical accuracy of data. While the assumption of a damaged zone and of
one anomalous component is probably too crude in every detail, it does
reproduce the overall observations.

We now ask the question: Is the appearance of the anomalously short mean
free paths for PFs an artifact caused by the use in our analysis of the power
law fit, Eq. (3), and/or by the intermixing of data from the 16O and 56Fe
experiments? To address this question we shall examine separately the mfp
data from each laboratory at a fixed fragment charge Z. Each group of data

was then subdivided into two sub-groups:

*
i) D<2.5cm yielding Ay s with Ny stars and

*
ii) D>2.5cm yielding Ao with N2 stars.
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We thus obtain a pair of A* values for each charge Z, labeled by NRC or LBL,
evaluated for distances D S 2.5 cm. The distance 2.5 cm is taken to be equal
to Azs the mfp of the "anomalon" component given by the previously
described maximum likelihood fit to the data.

For each pair of A* values take the ratio R = A;/lze Given
the number of stars Nl and NZ’ we compute the probabilities PF for the
measured ratios F under the assumption that A; and A; are from the
same population [Sec. 4, Eq. (15)]. The individual mfp values recorded for
each charge, separately for each primary beam, are shown in Table III along
with the raw data from which they were derived. The CDF values P(<x%),
which test the compatibility of the observed mfp's with those predicted from
Eg. (3), and with measurements on primary beams, are given for illustration
purposes only, since Eg. (3) is known to be only approximately valid. The
weight of the argument rests on the last two columns, which give F and P(F)
for each individual charge and are hence free of the above-ment ioned
approximations. The histogram of the resulting P(F) values is shown in
Fig. 1la. Recall that if the values of Ag and AZ were from the same
populat ion, the probabilities P must be distributed U(0,1). The cross-hatched
area represents the six charges from NRC, and the remaining area the 24 charges
from LBL. It is immediately visible that the observed distribution has an
excess of low P values; the values of P have been calculated such that this
corresponds to A; < *Z‘ As a statistic, the mean probabiiity(ﬁ,
Eq. (16), has the value 0.323, calculated from the unbinned P values. Here
and hereafter deviations of any P value from its expectation P = 1/2 will be
expressed through the value yp, Eq. (17), i.e. in terms of equivalent

standard deviations along with the corresponding one-sided probabilities for

such a deviation to occur as a random fluctuation. In the present case
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Yp = -3.4, a deviation expected to be exceeded by fluctuations about three
times in 104 trials.

In other words, there are fewer than three chances in 104 that the
A; values, taken charge-by-charge and laboratory-by-laboratory, come from
the same population as the A; values. We therefore conclude that the
mfps of PFs are significantly shorter at small distances (i.e. D < 2.5 cm)
from their points of emission, than at greater distances, and that the low
values of A* at short D are not an artifact. More important for its
physical implications, this result is independent of many systematic problems
that potentially plague other methods. It only assumes relative homogeneity
of the mfps of the PFs at fixed Z. Traditional isotopic effects should by no
means cause such an observation. Thus, we are compelled to conclude that
there is something abnormal about the mfps of PFs within the first few cm
after their emission.

In addition to a comparison of A* at different distances after
emission, one can also compare the mfps of PFs from different generations.
Primary beam nuclei do not have a short mfp component, while their progeny
seem to evidence one. Is this effect independent of generation (starting with
the second) or does it change with different PF generations? For example, as
soon as anomalons are assumed to be present, the use of method A for
estimating a fails in the sense that its results are no longer independent of
detector geometry. The reason for this failure is that the relative
population of anomalons among interacting tracks increases as the potential
path decreases. Because the potential paths decrease, on the average, with
increasing generations (which occur at increasing depths in the target), it
follows that, even without any further effects, shorter overall mfps of PFs in

the later generations are to be expected. It is also evident that if some
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conserved quantity is associated with the anomalous PF (e.g., a "damaged"
zone), the anomaly might persist through more than one generation, further
decreasing the average mfp in later generations.

To test whether the mfps change from generation to genératiOﬂS we shall
compare the mfps of secondary PFs with those of tertiary and later generation

PFs. Following the same procedure as above we compute

#

F' *
gen = /iy (34)

The Fgen values, recorded separately for each PF charge and each primary

beam are given in Table IV along with the raw data from which they were derived
(the structure of Table IV is otherwise identical to that of Table III).

The histogram of the values of P(Fgen) is given in Fig. 1lb. There are six

charges from NRC and 23 from LBL (there were not enough tertiary tracks of

Z =21 to obtain any interactions). The one SD confidence interval about

<P> = 1/2 is icu(Zg)‘l/Z; the observed mean is P = 0.387, which has

Yp = -2.11, Eg. (17). However, we note that the highest P value recorded is
0.778. The probability to observe zero events in the uniform distribution,

out of 29 attempts, with the binomial distribution parameter p = 0.778 is

7310“4° Hence, the mere absence of any value of P(F__ ) > 0.778 1is

gen
unusual, as one would expect about six counts in this interval.
This also appears to some extent in the values of A* for different
generations. Secondaries have A;I
[11 = 25.2 cm, 264 stars. This has a probability of

= 28.8 cm, 1196 stars, while later

generations have A
* *

rrr < e
indicative of a larger admixture of anomalons in later generations. We shall

about 0.03 to occur. At face value, A A a result that is

return to this topic in Section VB.
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Another technique we have used to examine the mfp data is to pool them

within charge bins 3 < 7 < 8 (where PF's from both 16 56

0 and “"Fe primaries
contribute), 9< 7 <16 and 17 < Z < 26 (where only PF's from OFe
contribute), and to evaluate A; and A; without use of the
length-weighting factor st The results are tabulated in Table V. For
comparison, the prediction from Ay = 30.4 Z°0“44 cm, weighted by the
actual distribution of charges in each bin, is presented, this being the
average fit to both NRC and LBL primary VOS beam data. The pooling was done
by summing the total path length observed within the appropriate distance and
charge intervals and dividing this by the number of stars. Again, inspection
of the data in Table V reveals that within 2.5 cm of emission, PFs have short
mfps, while at longer distances, primary beam expectations are essentially
fulfilled. The values of Y for D S 2.5 cm, assuming A, = AZ°O°44, are
also listed in Table V. These estimates are 3.3 standard deviations apart,
having a probability Pe, Eq. (15) of 5.107"
C. Method B

After having observed by means of method A an apparent shortening of A*
in the first several cm, we now turn our attention to method B, in order to
extract the specific information inherent to those PFs that interacted.

First we consider all one-link chains. There are 1460 PF induced stars
in these chains and assuming that A has the values predicted by the LBL and
NRC fits to primary VOS beams, we obtain the Pl(x) histogram shown in

Fig. 12. The mean of the distribution is Py = 0.469 # o  (1460)™"/.

This corresponds to Yp = -4.1 or to a probability of 2 1O=Se

The logarithmic likelihood curve of these data is displayed in Fig. 13:

24

the peak is at A = 22.8 cm. The primary beam value is down three orders

of magnitude on the likelihood curve. Furthermore, the same data within the
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context of method A (which includes noninteracting tracks) yield A* =

28.2 cm, a value that is down by two orders of magnitude on the likelihood
curve. Thus, R < A*e However, as stressed in Sec. IV, the method A and
method B estimates must be consistent if the n.h. is true. One case for which
this is expected, and found to be patently true is demonstrated in Fig. 14,

160—mmethod B--1ikelihood curve and the Method A

where the NRC primary
result are displayed.

We now turn to two-link chains (Fig. 2), which offer us the opportunity
to study correlations between successive generations of PFs. For Z = 3, there
are 215 secondary-tertiary chains. In fact, there are 222 cases of tertiary
stars, which means there are a few "forks". In the case of fork-type events,
we arbitrarily selected one of the branches at random, thus converting a fork
topology to chain topology.

Consider Fig. 15, which presents the likelihood curves for A given the
observed X, Y, and S = X + Y measurements for each event. As demonstrated
here, secondaries that gave a tertiary that interacted have XX = 21.8 cm,
tertiaries have KY = 18.2 c¢m, and the total length of the chain S has KS =
19.8 ¢m. Once the n.h. is rejected by the results of the preceding
paragraphs, the inequality KY < KX could be qualitatively predicted by
assuming a constant probability for emission of anomalons in all generations.
Indeed, as already stated, the stars in the third and later generations are
more heavily "infested" by anomalons because of their shorter average
potential paths.

However, if one plots PZ(X) against PZ(Y)9 i.e. if one looks for
possible correlations between the links in two-link chains, an interesting
observation emerges.

X) and P

As they have been defined in Sec. IV, the quantities P Y)

2( 2(
are independent and each should obey a uniform distribution from O to 1 if the
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n.h. is true; hence, a scatter plot of PZ(X) versus PZ(Y) should uniformly
populate the unit plane. The result is shown in Table VI, where we have binned
the data in two intervals of P, viz. 0 to 1/2 and 1/2 to 1, on both axes. The
asymmetry coefficient C, Eq. (30), has the value (75-46)/(47+47) = 0.3: this
is to be compared with the expectation <C> = 0 = 0.1. In terms of
probability, the observed value deviates by 3 SD from its expectation.

We demonstrate in Table VI that a Tow value of PZ(X) gives rise to a
low value of PZ(Y)G Because a low P value corresponds to a short
interaction distance (corrected for potential path), it follows that this
result can be interpreted as a clear hint of "memory", by which we mean a
"short" PF parent gives rise on the average to a "short" PF progeny. This
property of memory would follow naturally if conserved quantum numbers are
involved in the interactions of the hypothetical anomalons. Further

implications of the numbers in Table VI are discussed in Appendix C.



-39-
VI. DISCUSSION OF RESULTS
A. Statistical Fluctuations

The first objection to the reality of the effects discussed in the
present paper is that they are the results of statistical fluctuations. We
summarize here the different (though not completely independent) tests that
show that this would be a very unusual fluctuation indeed:

1) Using method A and the power-law approximation for Ay there are
fewer than 5 chances in 105 that all PFs would have had the same A as the
primary beams.

2) Using method B (i.e. the subset of interacting tracks only) and the
same power-law, both the mean of Pi (one-link chains) and the corresponding
Tikelihood curve strengthen this conclusion.

3) We believe that, because of its freedom from assumptions about Ar(Z),

the F-test performed at fixed charge gives the strongest evidence for the fact

that the mfp is shorter immediately after emission of a PF than at large
distances. The chances for a statistical fluctuation are in this case about 3
in 10%.

These highly implausible probability levels could be raised to quite
acceptable values if we abandon the n.h. and assume that our PFs are
"infested" by objects with an unexpectedly high reaction cross section. As
was shown in Sec. V, one can fit the data by assuming that 94% of PFs have
A, as given by the fit on primary beams and that 6% of PFs have Ay =
2.5 cm, independent of Z. This Xa corresponds to a conventional nuclear
reaction cross section on the order of, or larger than, urenium.

Taken literally, the results imply the existence of a new state of
multibaryonic matter with a hadronic reaction cross section two to ten times

larger than the normal VOS nuclide of the same charge. However, before
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drawing such a far-reaching conclusion, we must exhaust all other avenues of
interpretation.
B. Possible Systematic Effects and Conventional Explanations

The obvious suspicion is that the interpretation of this experiment may
be influenced by systematic errors, by unappreciated conventional effects, or
even combinations of these. We survey here those systematic and conventional
effects that seem to us to be crucial for assessing the implications of our
observations.,
1. Measurement of Distance

A trivial systematic, such as the incorrect assignment of interaction
distances or potential paths, has been ruled out by internal checks and by
remeasurements. Likewise, we have checked the data stream against the
scanner's original notes and scan sheets. In every case, all computed'
quantities (such as SN/N) were stable to at least four significant digits.
The Monte Carlo simulation also incorporated the rounding of position
coordinates to 100 um units, as actually done at LBL, without pathological
conseguences.
2. Inhomogeneities in the Emulsion

The possibility of gross defects or inhomogeneities in the emulsion
composition itself must also be examined. The emulsion stacks used at LBL and
NRC were manufactured at ILFORD, Ltd., at different times: that both could be
identically defective is unrealistic., Such gross defects would induce
variations in sensitivity and affect the reproducibility of charge
measurements and especially the primary mfp. None of these effects were
observed. Moreover, such effects would correlate with absolute positions in
the plates, rather than relative distances after a star: this also was not

seen.
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3. Charge

An important question to address is whether or not a systematic error in
the charge measurements would have affected the interpretation of the
results, Obviously, this would systematically assign the measured mfp to the
wrong charge Z: however3 it would do so at all distances from the origin of
the PF. We have made observational checks and Monte Carlo simulations to
investigate the possible influence of such systematic effects on our
conclusions. First, we observe that the charge measurements do not depend on
distance from the emission point of a PF. Second, by Monte Carlo procedures,
we introduced systematic shifts of 1, 2, and 3 charge units into the data.
Although these shifts in charge do affect the absolute predicted mfp values
for all charges, they indeed have no significant effect on the relative values
of the measured mfps.

For track lengths on the order of 1 mm or larger, the statistical error
of 1 charge unit that was attained appears quite adequate for the
requirements of this experiment on the basis of the Monte Carlo calculations.
For shorter distances, the charge balance method was used, which requires
detection of all relativistic singly charged tracks and correction for both
meson production and charge exchange. Although the accuracy of charge
measurements for distances <1 mm is not known, one has the option to discard
all track lengths (interacting or not) less than some cutoff distance from an
interaction and examine the significance of the results after this cut. We
have done this by selecting cutoff distances up to 5 mm and have found no
changes in the conclusions from either the method A or B type of analysis.

4, Energy Spectrum of PFs
Because the total reaction cross sections are remarkably constant for

16

beam energies 0.87-2.1 AGeV,”” the inclusion of PFs with energies as low as
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0.5 AGeV, for example, would have little effect on the measured mfps. If
anything, inclusion of low energy PFs would bias the data against a short mfp
effect. WNoting that the beam kinetic energy is ~2 AGeV, the energy-loss rates
are at their minimum values. Hence, PFs with energies ¢2 AGeV would
necessarily have higher specific ionization and, as a resu?t; would be
assigned larger apparent charges. Such PFs would therefore be presumed to
have mfps shorter than their actual values. However, these considerations may
not be of practical concern since ionization (charge) measurements made at
various points along the tracks of PFs gave no evidence for a significant
background of mid-rapidity PFs, as would be revealed by their increasing
ionization rates with path length.

5. Differential Scanning Efficiencies

Another concern is the the effect of a possible differential scanning
efficiency. In this scenario, a short mfp could come about if an observer
detects events more efficiently at short distances rather than at larger
distances from a star. We note that in this experiment the "correct" mfp,
i.e., the beam value, is observed at large distances and that an excess number
of interactions is seen at short distances.

Any bias that is capable of reproducing Figs. 8 and 9 or Table III must
be given serious consideration. One such obvious systematic is scanning bias,
particularly a detection efficiency that is distance dependent.

Consider again the defining equation of the mfp

dN/dx = -N/x (35)
If one imagines some small interval aAx in which one has incident N tracks, a
perfect observer would detect aN = N (ax/a) interactions. An observer whose
efficiency is ¢ (0 < <1) would only observe aN' = ¢ N (ax/x)

interactions. Thus, in the presence of inefficiency, Eq. (35) is replaced by
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dN/dx = =N(e/x) (36)

This, of course, is identical to Eq. (35) with »' = a/e. Hence, all the

analysis of Sect. IV proceeds through with this new A'. This implies that a

* k4 *
useful estimate of ¢ is e* = AR/A where » 1is the value obtained on
*

R
completing the rescan.

the first scan, and x», is the value on the identical events after

As mentioned earlier, LBL rescanned all events in which, on the initial
scan, the primary Fe was observed to give rise to a secondary PF of charge
=3. At NRC, tracks were reexamined by charge measurement; a "missed"
interaction was located, in this method, whenever a new vertex with visible
hadron emission was found by "backscanning" from the point where the change in
charge of the PF was first detected.

We summarise the findings of the rescan in Table VII. Here, we g%&e the
value of A*'before the rescan and after the rescan for each laboratory as a
function of the interaction distance of the PF, viz. within the first 2.5 cm
after emission and at longer distances. The value of e*g the efficiency, is
Jjust the ratio of the A* values before and after the rescan values. In the
presence of a differential efficiency, we would have expected that the values
of e* be distance dependent; as can be seen by inspection,they are not. LBL
was ~90% efficient for a single scan, and NRC was ~97% efficient, normalized
to the ultimate values obtained for each laboratory separately.

6. Distance of Confusion

Owing to the high multiplicities of PFs within the forward fragmentation
cone, it is conceivable that the interaction of PFs that occur at short
distances from an interaction vertex actually occur before the ionization
tracks of the PFs are visually resolved from each other. Under such
circumstances charge measurements would be in error, as would the resultant

estimates of xza
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We have defined the confusion distance of a particular event to be the
distance downstream from the interaction vertex beyond which all tracks
emitted from the interaction are completely resolved. In emulsion, two
particle tracks are visually resolved when separated by 1-2 um, depending on
the charges of the particles. Figure 16 presents the distribution of

56Fe

confusion distances of PFs from a random sample of 1.88 AGeV
interactions. The distribution shows an exponential decrease at distances up
to ~300 um, with a negative logarithmic slope of about 100 uym as illustrated.
The max imum confusion distance in this sample was ~1 mm, attributable to a
pair of Z = 2 PFs, quite possibly an example of the decay of a 88@

fragment. We note that a confusion distance of ~1 mm is equal to the path
length in emulsion necessary for colinear PFs at beam rigidity R =6 GV to
separate by ~1 um through multiple Coulomb scattering alone.

We conclude that beyond 3-500 um, and certainly within 1 mm, virtually
all PFs are effectively resolved, with charges and secondary interactions
identifiable, These distances are 1 to 2 orders of magnitude less than Ay ®
2.5 c¢m that characterizes the short mfp component deduced from this
experiment. As was done previously to reveal possible systematic errors in
charge measurements, the elimination of all tracks of PFs (interacting or not)
less than 5 mm in Jength should also suffice to eliminate the short mfp effect
if it were attributable to nonresolved tracks. As mentioned above, we found
no changes in the conclusions of our analysis before and after such
path-Tlength cutoffs were invoked.

7.  Background Stars

The sources of background stars are those attributable to random

background from radioactive contamination {a~decay), neutrons, and charged

particles and to background correlated with the particular event under
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examination, from neutrons or, possibly, minimum ionizing tracks. A
background event is one in which the path of a primary or PF track under
investigation passes within ~2 um from the vertex of a background star.

Such candidate background events would appear as stars with no noticeable
change in charge and/or direction of the incident track. A direct estimate of
the number of background events is made as follows: The typical density of all
background stars in our emulsions exposed to 56Fe in a volume (10 x 1.2 x

0.6 mm3

) centered on the primary track and located immediately downstream
from primary interactions is ~1 star/mmse Taking the cross sectional area

of an average jonization track to be ~4 umzs the total number of background
events expected within the first cm of the primary Fe interactions (for ~3000
PF tracks) is about 0.1 events, about one-half of which would be recognized as
due to natural radioactive a-decay chains by their characteristic ranges and
eliminated by the scanner. A background of events one order of magnitude
greater than this estimate would still have a negligible effect on the
conclusions of the experiment.

We may also test for the presence of background stars by a direct
reference to our measurements on PFs. Consider the two-link topology. We
define the charge change aZ to be the change in charge from the secondary to
the tertiary at the secondary-tertiary vertex; e.g., if a secondary of charge
6 gives rise to a tertiary of charge 4, AZ = 2. A background interaction as
defined above must appear as a charge change aZ = 0 or 1, the value 1 coming
from our measured charge reproducibility, Fig. 3. As the maximum charge
change in the NRC data used in this experiment was 8 - 3 = 5, we restrict
consideration of the LBL data to this same range of aAZ as well. After this
restriction, we divide the data into two classes: i) 0<aZ <1 and ii) 2 <

8 < 5. We compute the ratio R of the observed number of 2-1ink chains to the
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number expected from the n.h. for class i) and ii). If we had a
background-star problem, we would expect R for the two clases to differ and
that R for class ii), a class of events that is void of background, to have a
value consistent with unity. However, we observe that R for class i) equals
1.25 # 0.09, while for class ii) R = 1.29 £ 0.10. The fact that these two
values are compatible and that neither is well accommodated if the n.h. is
true (combining them, one has XZ = 16.5, 2 DOF, which has a probability
~equivalent to 3.5 SD), allows us to conclude, as above, that we have no
significant background contamination.
8. Decays-in-Flight: Hyperfragments

Perhaps the most obvious candidates to simulate nuclear interactions of
PFs are decays-in-flight. Hyperfragment decay-in-flight is particularly
appealing in that ¢t = 3 cm is comparable to hypernuclear decay Tength;. We
address the guestion of decays-in-flight from the data directly. Contributors
to decay-in-flight topo1ogiés include hyperfragments, g-delayed proton
emitters, as well as nuclear absorption of a = captured from an atomic
orbit about the PF. In each of these cases, "decay products" have low
velocities in the rest frame of the decaying object. Because y = 3, all decay
products must be relativistic in the laboratory frame: and since no target
interactions are involved, "decay-in-flight" stars will in fact appear as
projectile-fragmentation reactions with no associated target-related prongs,
the so-called Nh = 0 events. Noting that about 12% of primary beam
interactions are of the Nh =0 type,ls we may enquire whether or not there
is an excess of Nh = 0 stars among the PFs significantly above that expncted
for primary beam interactions. Such an excess could then be attributed to

decays in flight.
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Figure 17 is a microprojection drawing of the secondary and tertiary
interactions initiated by an 56Fe primary (schematically indicated) when

both interactions are of the N, = 0 type. The kinematics of the decay of a

h
hyperfragment at y = 3.0 are such that any emitted proton (pion) is restricted
to a forward cone in the laboratory frame of 12° (16°): the minimum velocity

of the proton (pion) emitted at 180° in the c.m. is 8 ~ 0.83 (0.78),

min
which in this limiting case would be observed as a shower particle at 0° with

grain density of 1.2 (TGS)Qmi Consequently, all |Z]| = 1 products of

n
hyperfragment decay in flight will appear as shower particles. Thus
hyperfragment decay events at y = 3 would be restricted to the Nh = 0 class
of interactions, kinematically unable to simulate an interaction that involves
the emission of low-energy target fragmens.

To search for possible evidence within our data for excessive
contributions due to decays in flight, we divided our data on the distribution

of target-prong numbers N, for PF interactions into two groups, N, = 0 and

h h
Nh = 1 populated by "y and Ny stars, respectively. We then examined the
ratios r = no/n1 for the cases when the interaction distances are D < 2.5
and D » 2.5 cm. Based on a subsample of 1189 PF stars, we observe the ratios
r(D <2.5) =0.13 # 0.02 and r(D > 2.5) = 0.16 # 0.02. The mean value of r
for C, N, O primary beams at 2 AGeV is 0.15.

In the interval D < 2.5 cm the number of PF interactions of all potential
paths we observed is 590, 70 greater than expected for normal nuclei (i.e.,
the n.h.). Thus, if all this excess of events were hypothesized to be decays

in flight (N, = 0 events), then the ratio r we would have expected to

h
observe is r = 0.30.
The values of r for D < 2.5 cm are both in contradiction to the

hypothesis of decays in flight but are compatible with the value for primary
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beams. The conclusion we arrive at, then, is that the excess of interactions
we see at distances D < 2.5 cm is not attributable to Nh = 0 events, hence this
excludes the hypothesis of significant contributions to our data by
hyperfragment (and other) decays in flight.

We have also estimated the abundance of relativistic hyperfragments in
our data sample of PFs by referring to Refs. 25 and 26 for the measured,
albeit approximate, production cross sections for free and bound A°s in
nuclear collisions. Based on most conservative approximations, we conclude
that the fraction of PFs that could be hyperfragments is élO”B, The number
of hyperfragment decays in flight contributing to the data is thus £3-5, a
number that, again, cannot account for the experimental observations.

9. Conventional Nuclei
Last, as a conventional explanation of the apparent shortening of the

mean free path, we consider isotopes and isomers, with decay lengths ct ~ 1 cm,

a) Isotopes in the ground state. We have already shown by means of the

Monte Carlo simulation (Sec. IV-C) that the predicted deviations of the
isotopic cross sections from those at the VOS could not produce our effects.,
b) Isomers., Such nuclei might be assumed to have a larger reaction cross
section; they would decay to the ground state either by channels that are very
difficult to observe or would have "decay-in-flight” topologies that we have
beenlgbie to exclude above (Sec., VI-B.8). To estimate the increase in cross
section, we calculated the RMS radii in the next shell model orbital
excitation and then integrated the resulting density of nuclear matter to get
relative excited state cross sections; we find that the changes in cross
sections are generally less than 10%.

In contrast, the results of this experiment would require %100% of all

PFs be produced with reaction cross sections >20% larger than the VOS nuclide
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of the same char‘gee12 These cross sections must then return to VOS values
with a mean decay length ct = 3 cm to reproduce Fig. 8. Even this extreme
assumption, unlikely as it is, fails to account for the memory effect, Sec. V.

We now summarize this section:
a) The comparison of mean free paths of projectile fragments at small and at
large distances from the emission point, Figs. 11 and 8, rules out a
homogeneous sample.
b) Conventional explanations fail to account for our observations on the
correlations between short tertiary links and short secondary links in
two-link chains, Table VI, as well as for the results shown in Fig. 11,
c) Systematic and background effects can be essentially eliminated by the
observations themselves, e.g., normal mfps observed at large distances from
the emission point, no anomaly in the "decay-in-flight" topology at short
distances.,
10. Implications

We are thus left in a predicament. Conventional nuclear physics as well
as systematics fail to explain the observations. The probability of a
statistical fluctuation in this experiment is ﬁ5310”4g

In view of the fact that now two independent groups have reached

essentially the same conclusions as we911°12

with comparable levels of
confidence, the combined probability that the short mfp effect is a
fluctuation becomes vanishingly small.

The existence of at least one new type of multicharged, presumably
multibaryon, state with a hadronic reaction cross section between two and ten

times that of a VOS ground state nuclide of the same charge would explain the

observations.
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This simple model, involving one single kind of anomalon , gquasi-stable
over the distances observed here, is evidently not the only possible
explanation. A1l or part of the A*(D) curve (Fig. 8), could, e.g., be due
not only to femova1 of anomalons by nuclear collisions with an enormous cross
section but also to removal by visually unobservable decay processes leading
to a "normal® ground state nuclide.

Numerically, the following difficulties arise in such an alternative
interpretation:

i) a cross section "only" twice normal could be accommodated by the data,
assuming, however, that all PFs are born as anomalons (a = 1) and that their
mean decay length ct is of the order of Ay

ii) If the extreme assumption &« = 1 is abandoned, any o < 0.5 will
require again very large cross sections, which would produce a fast ri;e of
the A*(D) curve even if ct >> Ay

Recently, several speculative models suggesting new states of hadronic
matter exhibiting properties akin to those of our hypothetical anomalons have

appeared in the 1iteraturea27"30

To date, none of these models have yielded
guantitative predictions for comparison with this experiment.

New investigations addressing the obvious questions as to lifetimes,
production, and interaction mechanism of the presumed anomalous component are

in progress in our laboratories.
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Appendix A.

1. Distribution of the Total Path Length

Given the probability density for one track length Xi in an infinite

detector

X.
1
1 7 a
fl(x) 3'{6 ) (Ael)

we seek the probability density for the sum of N such X-values
N
Sy G E S (A.2)

i.e., the N~-fold convolution of densities given by eq. (A.1). This is by

definition

N N
£(sy) = }(xn jew o(sy) &Sy - 2 x) M —te *. (A3

Here the e-functions ensure that all lengths are positive and the s-function
represents the constraint (A.2). Thus, e.g., for N = 2 one obtains by

elementary integration

(@]

2
e * (A.4)

Ll 22
277 A A

f(S

For the general case the folding is most easily performed by means of moment
generating functions (m.g.f.) Gu(t) where u is either Xi or SNG By

definition

X,
- i _
Gy () E e L F00)AX = T (A.5)

For a folding of N independent variables one has
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N
- 1
6 () = TT 6;(t) = ——5 (A.6)
g (£) = TT 6y;(t) Y

since all Xi have the same probability density (A.1) and hence the same
m.g.f. (A.5).
Taking the inverse Laplace transform of Eq. (A.6) we obtain Eq. (7).

2. Conversion of path-lengths S into x*-variates

Let

2X

Replacing Sy, Eq. (A.2) by

25
hz = —}ﬁ s (A.g)

we obtain the m.g.f. for h2

1
6 ,(t) = ——% . (A.10)

h (1-2t)N
The meaning of hz becomes evident if we invoke the properties of normal
deviates. Let Zj be a normal deviate of zero mean and unit variance. The

m.g.f. for the square of Zj is then

o (A.11)
§ (1-20)1 72

and that of any sum of v such squares

AV
N }%,zg (A.12)
J::
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is 1
G ,(t) = o7?

S (A.13)
X (1-2t)

Identifying Eqs. (A.10) and (A.13) we see that h°

, 1.0, ZSN/A is indeed a
xzvvariate; since N = v/2, ZSN/A is xzmdistributed with 2N degrees of
freedom, Q.E.D. |

The advantage of the change of variables from SN to hz lies in the

fact that the probability density

2
h
u(h?) = 23ty e 2 (A.14)
and 1its CDF
h2
pe(h?) = | w(t)at (.15)

are well tabulated and adequate algorithms for computers are available (see,
e.g., ref. 22 ).

3. Distribution of the Ratio F

An important consequence of the xzedistribution of ZSN/A is the
*
possibility to reduce the comparison of two a» values to a well-known

distribution law. Indeed, the ratio F can be rewritten as follows (in obvious

2 2
: (E.)/(i‘z,.) (8.16)
2N1 ZNZ

As is well known, (see, e.g., ref. 22), the ratio of two szdeviat839 each

notation)

divided by their number of degrees of freedom (vl and vz) obeys the
so-called F (or variance ratio) distribution, commonly used in variance

analysis. Its probability density is:



W(F) = (A.17)

v v
o )
where B is the Beta-function. Identifying the numbers of degrees of freedom
vy and Vo with 2N1 and ZNZ respectively we obtain the integral
probability (CDF) of F given in Eq. (15).

Figure 18 shows an example of the F-distribution, for the case of Z = 11
secondaries in the LBL sample, where 15 interactions were recorded before
D=2.5cm, 12 beyond.

The expected mean value of F is Nzl(Nz—l); the mode of the
distribution lies at NZ(Nlal)/Nl(Nzﬂ)° Both values are indicated on
the graph along with the median value computed from Eq. (15) (setting

P(<F) = 1/2). The observed value of F,FO , is shown together with (shaded

bs

area) the integral P(<Fobs)°

4, Chi-Squared Test in Method A'

We construct a goodness of fit test for comparing a set of mfp values
using the "traditional"™ concept of the xz-teste Let SN with N stars be
the total sample, so that % = SN/Ne Let the sample be divided into M
subsamples, say 5 and s i=11% M. For each value S5 construct
Z? = Zsilkg which is distributed XZ with Zni_DOFe We calculate
then the integral probability P of the Zimdistributiong Eg. (A.15). For
each p; we compute that value of a normal deviate %i that has the same
one-sided integral probability P Now Tet qz = ;g% E§, Assuming
the values Si» ﬁi to come from a population with the same mfp 2, q2 is

distributed like X2 with M-1 DOF. This is what we have done, for example,

when we report in Sec. V-A that the NRC primary 160 measurements of the mfp,
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plotted as a function of distance after pickup, Fig. 7, are fit by a constant
mfp A. We point out that the properties of the xzud?stribuiion were used by
us in two other contexts in Secs. IVA and B and Appendix A, 2 and 3.

5. Differential Equations Governing the 2-Link Chain Topology

We give here the explicit differential equations that can be integrated
to give the probability densities used in Sec. IV-B.

dN ~N

_1_ 1

(A.18)
M MM
dZ — xy Ay ?

where Nl is the number of tracks of generation i and N2 is the number of

tracks of generation i+l, e.qg., N1 and NZ refer to secondary and tertiary
tracks, respectively.
Appendix B.
Monte Carlo Simulation of Detector Response

One other feature was incorporated into the Monte Carlo simulation that
deserves mention. If one calculates a priori expected mfps based on
geometrical cross sections in emulsion, without normalizing to any observed
emulsion mfp, one soon discovers that the predicted mfps are much shorter than
the observed ones, including the observations on primary VOS beams. This is
due mainly to detector inefficiencies and in part also observer inefficiencies
for certain channels, particularly quasi-elastic reactions at Tow momentum
transfer. One can prove mathematically that if one misses a constant fraction
p of events with a mfp ATH (the theoretical unnormalized mfp), the observed

mfp A = Aa.,/(1 - p) and the measured X values will obey again an exponential

TH

law.
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To simulate this situation, a value of p = 1/2 was actually assumed,
i.e., emulsion was considered only 50% efficient. After having the program
assign a mfp as explained above (including charge assignment and isotopic
effects), this value was divided by two and then an SID was generated. If
tﬁis distance were within the stack, another random ngmber was generated. If
it were less than 0.5, a "visually detected" interaction was assumed to have
occurred; if not, another random interaction distance using the same /2 was
generated and the program proceeded in like fashion until the track suffered a
detected interaction or left the stack.

Appendix C.
Further Implications of the Two-Link Chain Topology

We now examine the PZ(X> Vs P2(Y) unit’p1ane in further detail by
referring to Fig. 19a,b. In Fig. 19a, we have divided the PZ(Y) sample into
two parts, the first for which PZ(X) < 1/2 [area (a)] and the other for
which P_(X) > 1/2 [area (b)]. Similarly, we have divided the PZ(X) sample

2

into two parts for which PZ(Y) < 1/2 [area (d)] and P (Y) > 1/2 [area

2
(c)], Fig. 19b. Because PZ(Y) is independent of PZ(X)’ and vice versa,

under the n.h. we expect the means of all the samples of P, to be 1/2.

2

Taken at face value, the interpretation of the data as presented in Fig.
19a and b leads to several qualitative conclusions. For mnemonic as well as
for physical reasons, we shall denote P <1/2 as “short" and P > 1/2 as
"normal". This notation alludes to the fact that "short" X or Y values
correspond to events enriched in anomaljons, whereas the "normal" X or Y values
are depleted in anomalons, hence should behave more like a beam of normal
nuclei,

First, let us consider areas (a) and (d), where we note that

i) if P

2(x) < 1/2 (short), the 'ﬁz(y) = 0.438 (122 stars)

and,
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ii) if PZ(Y)=< 1/2 (short), the‘EZ(X) = 0.435 (122 stars)

In these cases, the selection of events having a "short" X(Y) link results in
"short" Y(X) link, in that both the PZ(Y) and PZ(X) values are <1/2. Item

i) is a restatement of the result from Sec. V,B that a "short" PF parent gives
rise to a "short" PF progeny (memory). Second, consider areas (b) and (c),
where we see that

ii1) if P,(X) > 1/2 (normal), then P,(Y) = 0.509 (93 stars)
and,

iv) if PZ(Y) > 1/2 (normal), then‘ﬁz(X) = 0.502 (93 stars).

In other words, the selection of events with a "normal® X(Y) link leads to
"normal" PZ(Y) and PZ(X) = 1/2 values. We have therefore extracted a
subsample of the two-link chain data that exhibit "normal®" behavior. This
result speaks against isotopic and related conventional nuclear physics, for
if this were the root cause of the short-mfp effect one would expect that Eé
£ 0.5 in both instances. Too, even though the fit of beam mfps to a power-law
expression cannot be exact, the PF data do not categorically reject such a
fit, as one symptom of a rejection would be Eé £ 1/2.

A third observation is that for case iii), the fact that PZ(Y) = 0.509
does not differ significantly from 1/2 indicates that the seemingly "normal"
Pz(X) > 1/2 secondary population does not seem to produce anomalous
tertiaries as copiously as do normal primaries (where Ei(x) = 0.469, Fig.

12). If this is not simply a statistical fluctuation (see Table VI), one
possible explanation for this observation would be the existence of an energy

threshold for anomalon producton. A similar energy dependence is also

suggested by Judek's cosmic-ray observations,S
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Table I. Numbers of observed interactions. 0 data are
from NRC, 56Fe from LBL.

16O 56?@ Total

Primary beams 1460 946 2506
Projectile fragments, Z= 3
Generatién

2 609 590 1199

3 101 121 222

4 16 18 34

5 2 1 3

6 1 1

7 1 1
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Captions for Tables I]-IV

Table II: Overview of the different = statistical tests applied to our data

and of the motivation for their use. The table lists the quantities
necessary to test both the "normality" of the accelerator beams and the
“abnormality" of projectile fragments, using either interacting tracks

only (method B) or interacting as well as noninteracting tracks

‘(method A). The confidence levels express the probability that the

result could have occurred as a statistical fluctuation assuming the null

hypothesis ("normality") to be true.

Table 11I: Detailed experimental information used in the F-test for the

Iv.

comparison of estimated mean free paths at small and at Tlarge dﬁstances D
from the origin of the projectile fragments. For each primary beam and
for each fragment charge the table lists: the numbers of tracks incident
on the segment under consideration, the number of interactions occurring
in the segment, the estimated mean free path and the cumulative
probability for this value to occur as a fluctuation assuming the null

b to be valid.

hypothesis as well as the parameterization Ay = AZ™
The Tlast two columns give the value of the ratio F of the two estimates
as well as the cumulative probability for F to 1ie below the observed

value (without any assumption about the parameterization of AZ)Q

Detailed experimental information used in the F-test for the comparison
of estimated mean free paths in the second and in later generation of
projectile fragments . Except for the definition of F, the variables

displayed are the same as in Table III.



Table 11

Statistic
and/or its Parameters | Conf. )
Particle | Method | Quantity measured expected or Level | What does it show?
distribut ion constraints %
25/ Validity of method A'. a* does
2v* at different D 11 not depend on localization of seg-
X2 ment. Uniform scanning efficiency
A
* &
Arm: Fhps , *
B #* * Di ""Di+l 69 Correct fluctuations of a
eam *pi VS *pi+t F est imates
Distribution of N
B interaction distances |Exponential A 22 Compatibility of methods A and B
N Assuming parameterization pzP
A for D < 2.5 cm = Gaussian bb am 0.04 mfp‘'s near origin are shorter than
€ those of beam nuclei
* bbeam Away from origin mfp's are
A for D > 2.5 cm = Gaussian 34.5 compatible with beam values
A * fixed mfp is shorter near origin
» at D2 2.5 cm F 7 0.03 | irrespective of parameterization
and of calibration on beams
T and
r» for secondary laborator 0.07 Later generations exhibit
PF's vs later generations F y shorter mfp's than secondaries
Distribution of Sum of Min imum Excess of stars near origin
interact ion distances |exponentials T 0.03 for a subset with controlled
as well as minimum potential length
Lengths of Pl<x) iy Too short interaction lengths
B 1-link chans uniform A 0.002 | irrespective of potential Tlength
eam
Lengths of 1st and Scatter plot "short" secondaries give rise
2nd link in Pl<y) vs P{<X) bb s 0.1 preferentially to "short"
2-link chains uniform eam tertiaries (memory)

mbgg



Laboratory
and
Beam

NRC
16p
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LBL

Table III
PF D25 cm D>2.5cm
Charge :
* 2 * 2

Z |racks Stars Ay (<x“) | Tracks Stars Ay Pl<x“ )l F P(<F)
3 148 27 12.6 0.040 119 79 13.2 0.004 {0.960 0.443
4 93 23 8.7 0.004 69 46 13.9 0.172 0.623 0.039
5 157 28 12.6 0.236 127 78 14.8 0.535 {0.853 0.250
6 278 50 12.6 0.320 227 144 15.3 0.936 |{0.823 0.127
7 193 40 10.7 0.162 150 110 10.9 0.072 {0.978 0.463
8 133 29 9.9 0.185 103 71 11.6 0.401 [0.860 0.261
3 116 18 14.5 0.132 89 20 22.7 0.783 {0.637 0.087
4 123 21 13.1 0.131 95 32 13.8 0.130 ||0.946 0.429
5 128 18 15.8 0.556 105 32 15.0 0.433 |j1.056 0.584
6 139 20 15.8 0.689 111 31 16.5 0.801 {0.955 0.445
7 119 20 13.1 0.485 90 24 16.5 0.864 0.796 0.230
8 109 18 13.4 0.620 83 27 15.0 0.829 {i0.893 0.364
9 72 26 5.5 0.0002 45 17 14.0 0.764 }j0.388 0.001
10 76 13 12.9 0.689 59 14 18.7 0.980 [j0.687 0.170
11 64 15 9.5 0.312 47 12 18.3 0.977 |j0.520 0.045
12 69 21 6.7 0.029 45 18 9.9 0.409 (j0.678 0.113
13 64 11 12.9 0.812 50 19 9.0 0.312 }j1.435 0.839
14 55 17 6.3 0.049 35 14 10.6 0.632 |[0.594 0.074
15 42 8 11.5 0.737 32 17 7.6 0.196 [l1.512 0.848
16 58 17 7.2 0.164 40 21 8.5 0.345 }{0.848 0.313
17 44 10 9.6 0.596 33 15 9.0 0.513 }|1.059 0.566
18 38 11 7.2 0.280 .26 14 7.0 0.210 §1.037 0.542
19 25 6 8.6 0.534 19 12 5.6 0.090 §1.532 0.820
20 27 9 6.4 0.236 18 5 20.4 0.992 {|0.313 0.016
21 30 9 6.4 0.261 20 9 10.3 0.779 [|0.623 0.162
22 30 8 8.4 0.582 21 8 11.9 0.893 {|0.709 0.250
23 20 8 5.1 0.140 12 8 5.6 0.199 }j0.910 0.426
24 26 12 3.9 0.017 13 11 5.3 0.124 }j0.734 0.229
25 20 11 3.4 0.010 9 8 3.2 0.021 |{1.042 0.525
26 20 10 3.2 0.011 10 6 7.5 0.546 ||0.423 0.043
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Table IV e
Laboratory Third and g
and PF Secondaries later generations
Beam Charge
* 2 * 2

Z Tracks Stars 2 P(<x") |Tracks Stars A7 Pl<x“M F P(<F)
3 117 87 13.3 0.003] 31 19 11.7 0.04210.880 0.329

NRC 4 64 51 12.4 0.042} 29 18 11.4 0.093}0.916 0.392
5 104 73 15.2 0.645} 53 33 11.8 0.12940.775 0.122

16¢ 6 228 158 15.3 0.949} 50 36 11.3 0.165)0.740 0.062
7 178 140 11.0 0.0627 15 10 8.4 0.133}40.758 0.237
8 128 9 11.2 0.284 5 4 7.6 0.24910.673 0.285
3 82 27 20.7 0.647| 34 11 14.3 0.1920.692 0.172
4 87 41 14,1 0.124] 36 12 11.5 0.113§0.811 0.287
5 95 40 15.4 0.482 33 10 15.0 0.492}0.975 0.500
6 98 41 15.4 0.689] 41 10 19.6 0.8711.272 0.778

LBL 7 79 34 14,8 0.731) 40 10 15.6 0.7161}1.051 0.580
8 74 33 15.0 0.8451 35 12 12.7 0.54210.852 0.340
9 57 36 9.1 0.057( 15 7 7.7 0.164}0.849 0.385
10 49 18  16.3 0.950] 27 9 15.0 0.827{0.921 0.440 -
11 44 17 16.7 0.972} 20 10 7.7 0.167{0.461 0.035
12 51 30 8.4 0.1157 18 9 7.5 0.1904 0.895 0.414

56Fe 13 51 25 10.2 0.512| 13 5 11.6 0.664 ) 1.136 0.645
14 a1 24 8.4 0.221| 14 7 8.0 0.332)0.956 0.490
15 35 22 9.1 0.425 7 3 7.0 0.371}0.768 0.401
16 53 36 8.0 0.182 5 2 6.5 0.405} 0.820 0.484
17 34 21 8.9 0.480¢ 10 4 11.0 0.705) 1.232 0.695
18 31 20 7.8 0.295 7 5 4.3 0.097)0.555 0.160
19 22 16 6.8 0.193 3 2 4.7 0.289)0.683 0.391
20 23 10 15.2 0.983 4 4 1.8 0.011}0.120 0.002
21 27 18 7.7 0.456 3 0 - - - -
22 23 13 10.0 0.797 7 3 11.0 0.767}1.103 0.613
23 17 14 5.2 0.073 3 2 6.7 0.494)1.293 0.703
24 25 22 4.5 0.010 1 1 5.3 0.492}1.191 0.686
25 19 18 3.4 0.001 1 1 2.1 0.240) 0.629 0.461
26 19 15 5.1 0.085 1 1 0.8 0.097)0.153 0.141
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Table V. Estimates for the charge averaged mean free path A and for the
parameter A at different distances D from the origins of PFs for grouped
charges. Expected values assuming Eq. 3 are given in the last column.

TD < 2.5 cm) T(D > 2.5 cm) o>

Z (cm) (cm) (cm)

3-8 12.4 + 0.7 14.0 = 0.5 14.6

9-16 8.3 % 0.7 11.6 = 1.0 10.6

17-26 6.0 = 0.6 8.0 £ 0.8 8.4
* *

A (D <2.5 cm) A (D> 2.5 cm) <p>

(cm) {cm) (cm)

3-26 25.0 £ 1.1 30.0 = 1.0 30.4
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Table VI. Two-by-two table of the PZ(Y) Vs PZ(X) scatter plot for

two-1link chains

1

L(Y) > % 47 16

. :
P2(Y) <§ 75 47
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Table VII. Observations on the number of interactions N and estimated value
A on the first scan (indicated by 1 in the column headed SCAN)

and after the rescan (indicated by 2) for each laboratory in the

*
two distance intervals. ¢ 1is the estimated scanning efficiency.

LLAB SCAN D<?2.5cm D>2.5cm
A* N g* A'k N 6*
LBL 1 28.66 286 36.08 364
pa 25.58 364 32.67 397
0.893 0.905
NRC 1 23.92 183 29.04 485
2 23.87 197 28.00 528

0.998 0.964
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Figure Captions

The mean free path A(Z) versus Z. The large circles with error bars
are the LBL observations on primary beams: the large triangles with
error bars are the NRC primary observations. The small circles are
theoretical predictions normalized to primary beam data: the
appearance of multiple circles for the 'same Z represents isotopes of
different A. The straight line is 30.4 Z70°* cm, which

represents the "average" fit to both data sets combined.

Microprojection drawing of an interaction of a 1.88 AGeV 56

Fe
nucleus in emulsion. This primary star produced a two-link chain of
PF interactions. The Z = 9 secondary PF travels a distance X = 2.6
cm before interacting, giving rise to a Z = 8 tertiary PF that
inte%acts after traveling a distance Y = 0.02 cm, as well aé al=1
PF (not followed). The total length of the chain is S, and the
potential path length T is the distance available for the complete

chain to deve?ope The Tongest chain in the data (from 16

0)
included seventh generation PFs. The variables X, Y, S, and T are
defined here for use in Secs. IVB and VC.

Histograms of §-ray density with an added charge scale (NRC) and of
charge reproducibility (LBL).

The calculated distributions of kinetic energies per nucleon in the

laboratory frame of PFs for the interactions of 16

56

0 (NRC) and

Fe (LBL) for the second and for the later generations.

Histogram of the distribution of probabilities P(F) for Monte Carlo
generated events grouped according to charge, laboratory and

subjected to the same D S 2.5 cm cut as the data.
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The normalized likelihood curve for the parameter A, Eq. 3, based on
repeated independent Monte Carlo simulated two-link chains. The
error bars represent the observed deviations about the mean
likelihood curve.

Measurements of the primary 2.1 AGeV 16

0 mfp as a function of the
distance from the scan line.

Estimates A* for the mfp ®arameter A at different distance D from
the origins of the PFs: full circles, experiment; dashed line,
prediction from Abeam; solid line, prediction assuming a 6% beam
admixture of PFs with Ay = 2.5 cm.

Distributions of interaction distances x for events with potential
paths T s;Tl; dashed and solid lines have the same meaning as in
Fig. 8.

Normalized likelihood contours for the parameters Ay and «, Eq.
(32), from all 1460 one-link chains. The cross indicates the
position of the maximum likelihood.

Experimental frequency distribution of P(F): a) Fps comparison by
distance from the emission point; b) Fgen’ comparison by
generation. The dashed line is the expected U(0,1) distribution.
The points with error bars are the experimental means P, to be
compared to their expectation <P> = 1/2. The shaded area refers to
the results from NRC. Compare with Monte Carlo result from the n.h.
shown in Fig. 5.

The experimental frequency distribution of Pl(x)a Eg. (21). The
histogram is the data. The solid vertical line is the expected

value for the mean <P> = 1/2, while the solid circle is the observed

value of P: the error bars on P are the size of the solid circle.
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The dashed line is the expected U(0,1) distribution. Note that the

ordinate starts at 120 and that the U(0,1) distribution is

normalized not to the data but to the n.h.

The normalized likelihood curve for the parameter A based on the

same data as in Fig. 12. The maximum Tikelihood value is A = 22.8

*
cm: the method A estimate is A = 28.2 cm.

The normalized likelihood curve for the parameter » from the NRC

primary

160 data treated as
*

one-1ink chains. The value of the

method A estimator, Ay F 11.9 cm, is shown and is equal to the

position of the maximum value of the likelihood curve.

The normalized likelihood curves for the parameter A from the

experimental X, Y, and S of two-link chains. The dashed line is the

result from the X distribution, the dotted line is the result from

the Y distribution, and the solid line is the S distribution

[compare to Fig. 6, where the (S distribution) Monte Carlo

simulation likelihood curve is displayed]. The curves have been

slightly displaced vertically at the peak for clarity.

Experimental integral distribution of the distance of confusion.

The straight line corresponds to an exponential distribution with a

mean distance of confusion of 100 um.

Microprojection drawing of an

S6Fe interaction (schematically

shown) that gives rise to secondary and tertiary PF interactions,

both of which are of the N

h

= 0 type.

Shape and characteristic values of a typical F-distribution expected

for the case of Z = 11 PF's in the LBL (56Fe) sample.

Asymmetry plots on the PZ(X) Vs PZ(Y) unit plane

a) PZ(Y) selected by PZ(X)°

b)

P

o

X) selected by PZ(Y)°
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