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Abstract:

We describe methadd invedigation in orde to sudy the behavio of photont crystals Ou approab establishe a link between the
dispersim relgion d the Blodh modes far an infinite crystd (which describe tre intrinstc propertis d the photont crystdin the absene of
an inciden field) ard the diffraction problen o a gratig (finite photont crysta) illuminated by an inciden field. We poirt out the
relationshp betwee the transléion operato of the firg problem and tre transfe matrix of the secad. The eigenvalug d the transfer
matrix contan informaion abot the dispersio reldion. This gproat enabls s b answe questios sut as when does ultrarefraction
occur? Can the photont crystd simulat a homogeneaguard isotropt materiawith low effective indeX@ This gpproat alo enabls s to
detemine suitable parameterto obtan ultrardradive a negaive refration propertie ard to desig opticd devices sut & highly
dispersie microprisns am ultrardractive microlensesRigorows conputatiors adl a quantitive aspectard demonstrat the relevane of

our approach.

1. INTRODUCTION

Photonc crystas hae bea the sibjed of consideral# interesin

the lag decade They hawe mary potentid tedhnological

applicatiors sut as the developmenof efficient semicaductor
light emitters filters, substrate far microwawe ant@nas lossless
mirrors  Consequdty, photont crysta hae generated
intensive experimenthand theoréical research.

Experimenth studies d ultra rdradion, negaive refration,

highly dispersie propertis d structurs basd on photonic
crystab hae be@ reported recentl§2 To ou knowledge the

mod thoroudy stugy has been performel on corugated
waveguides. However, te electromagneti foundatiors for

explainig theg phenomena have idee clarified Our

contribtion clarifies thege foundations ard allows s to

demonstrat specifc propertis d photont crystals.

In this paper we are interestkin finite size photont crystals
illuminated by an inciden field. A priori, this problen is

differert from the stug of Bloch mode propaging in an

infinite crystal Bloch theoy only consides propagatie modes,
wherea in a finite crysta) thee are als evanescarmodes It is

well known in grating theogr tha evanescent modeplay an

importart role ad cannd be neglectd in a quantitiive analysis.

In setion 2 we recll some wellknown resuls fa Bloch waves
in infinite crystals.

Sedion 3 is concerné with an actulaproblem & diffraction by

finite size crystalsWith the hep o an elementar transfer
matrix, we poirt out the canedions betwea the inciden field,

the eigensoltions d this matrix ard the Blodh mode d the

associatd infinite structure.

In setion 4, we shov how thes tols can be use to uinderstand
and articipate the qualitéive behavio of limited crystals ard we

appl them to the stidy of anomalos refraction propertis of

photont crystals We give example d ultrardradion and
negaive refration.

Sedions 5 ard 6 ae devoted to device usig anomalous
refraction propertiesthe quditative rules given in the preceding
setion enabd 5 0 detemine the parametsrtha permit the
desiqy o ultrardradive microlenss ad highly dispersive
microprisms Rigorows conputatiors adl a quantitdve aspect,
and demonstrat the relevare d our approach.

There ae circumstance whee evanescénmodes govein the
behavio of the crystal The simples exampé is obtainé insice a
bandgapard we shav in sectim 7 how field decy is relaté to

the eigenvalug d the elementartransfe matrix.

Throughou the paper we u® a rectangufacoordinate
systen (O.,x,y,z). The unt vectos d the axes aee,, e, arde,.
We conside harmonc fields representt usirg a time
dependece exp(iw), with w=2mc/A=cky, ¢ beirg the

celeity of light in vawium and A the wavelengthAll the numeric
values d the linea measuremest given in the exampls ae in
arbitrary units.

For the sale d simplicity, we conside in this pape two-
dimensionh photont crystas ma@& with lossles materials
(dielectric or perfecty canduding). However the generalizton
to three-dimensionatructure is straightforwardThe reaso for
restrictig ourselve o 2D cass is tha vag conputational
means na currenty avalable, would be needd to rigorously
solve realisic 3D problems The 2D photont crystais invariant
by transléion alorg the z-axis We sippo® tha the total
electromagniéc field is z-independent Consequety, the
problem reduces o two independenscala problens tha we call
E/l (resp H//) when the electric {esp magnetiy field is parallel
to the z-axis. We denog by u(x,y) the relevah component bthe
totd field (E, or H, dependig on the polarizatio case).

2. BLOCH SOLUTIONS IN AN INFINITE CRYSTAL

Soluions d the Maxwedl equatiors in an infinite periodic
structue have baeextensivet studied4-9. The pemittivity € of
the 2D problem is invarian unde two fundamentl and
independentranslatios d andA:

for allintegesp ard g, €(r+ pd+qA)=¢(r) . 1)

The theoretichbackgraind s basd on Bloch theoremevery
solutin is a linea combinatim o Bloch eigenmodes The
relevarn field componenof eat Bloch eigenmoel is sut that:

uy (r) = exp(ik o) v(r) , )
whetre v(r) isa periode function:
for allintegesp ard g, v(r+ pd+gQ)=v(r) . 3

In the usubsen® d the Bloch theoremthe Blodh wawe vecto k
is real sine ore is concerng with baindal soldions This
assumptio al® holds in the coninuation o this setion.

Ther ae severamethods i obtah the solutiors k(w) *°.
From the® solutionsthe dispersino reldionships can be derived.
In the classichpresenttion, the soldions ae presen# on a
bidimensionhdiagran wheee the abscissa represerite edg of
the firgt reduced Brillouin zone We give in figure 1 an example
of this diagran in the case ba photont crystd macde d circular
rods d radiss p =0.475 with opticd index v =3, lying in
vacuum The rods ae arrangd an a square lattie with period
d=127 Theg parameter ae thog d the previous
experimenthand theoretichworks depicte in ***2 Apat from
setion 7, all the photont crysta$ use in this pape keg these
parametersFigure 1 has keen conmputed usinga plare wave
expansdin methodf. It cleary shovs the presere d several
gaps Mary of the furthe example d this pape will concen the
uppe limit of the secad g (orderé in increasig values d w).
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Figure 1: Dispersion diagram for E// polarization in a 2D crystal
with square lattice. The abscissa represents the Bloch wave
vector on the edge of the first reduced Brillouin zone shown in
the small insert: I, X and M stand for the points with coordinates
(0,0), (11/d,0) and (11/d,11/d) in the (k,,k,) plane.

In orde to sudy the transpdrof energy inside the crystal,
let us recall a fundamenthresut linking the dispersio relation
and tre energ propag#ion**. Fao a given Bloch wave we
denoe by V, the averag veloity of the energ flow (the

averag is take upona latice cell):
_U ”(Poyntingvector)dr
= ce.

¢ _Uce”(energydensi;ty) dr

and by V, the graip velodty of the sane Blodr wave deduced
from the dispersio relationw(k) by:

4)

_ _ 0w ow
V, =grady (w) = oK. ey +£yey : (5)
The reslt is that
V.=V, . (6)

All these resuls ae valid for structurs tha fill the entire
space In the nex section we shav the reldionshp betveen the
externd incident field o a physic problem ard theg Bloch
waves.

3. T-MATRIX OF A PHOTONIC CRYSTAL SLICE

In this setion, we male u® d the T-matrk tha represers the
transldion operato between the tq@ ard the bdtom sides d a

grating (aphotont crystaslice). Its eigensolutios ae a valuable
tod in orde to understand # cryst behavior This poirt of

view has alreag been suggest in the conputatim o band

structures*'> We shov tha they alo give informatim on

transmissia propertis ard on the caipling betwea the incident
field end the Blodh waves.

3.1. The crystal as a grating problem; pseudo-periodicity of
the fields

The crystdis modeld as a stak of N grids (Fig 2). Eab grid is
equivalem to a graing. As wel known in grating theorythe T-
matrix tha relates the field aboe aml belav a grating sufers
from the exponentid growth o its elementsConsguently the
use d the T-matrk leads o numericd problems & leas when
the structue is composé o severd grids Mary other
propagaion algorithns ae moe suitabé fram this poirt of
view % As regards auobjectives we will make ug d the T-

matrix related to only ore grid in sucha way tha the numerical
problens i nd arise On the othe hand the T-matrk contains
all the informdion o the propagatin o the field throudn the
structure ard make a simpk conedion between graings
problens (V is a finite numbej and Bloch wavs in infinite
crystabk (V infinite).

Figure 2: A crystal with finite extent with respect to the
y-direction, and made of N gratings (N = 3 on this example).
The structure is z-independent, and infinite along the x-direction.
The periodicity along x is d. The distance between two grids is
A . The x-shift between two grids is A . Thus, the two

elementary translations are d=d e, and A=A e, —A e,.

Each grating is characterized by x-periodic electromagnetic
parameters, which are not necessarily piecewise constant.

In a generbproblem this gratig is suroundel by an
electromagniec field with no particula properties (ro radiation
wawve cadition, no plare wawe expansion) Fa instance we can
think of a problen whee this gratirg is a slie d a thicker
photont crystal illuminated by a limited beam The relevant
field componehcen be written as a Fourie integral:

+00 ;
u(x,y) = [0, y) exp(iox) da . ©)
By splitting the integréion intervd ]—oo,+oo in subintervals
[n21,(n+1)21], a simpk chang d variabe leads © the other
expression:

2m/d
u(ry)= [ g () ot ®
where the integrand
()= Y (o +mE,y) expfi(o +m2P)x) (9)

is a x-pseudo-peddic fundion? with pseudo-periodicity
codficient a, i.e.:
ug (x +d,y) =exp(iad) uy (x,y) . (10)

Consequentlythe sudy of the generkfield u(x,y) reduces o the
study of its pseido-periode componers i, (x,y) for all a in the
first Brillouin zore [0, 21t/ d] of the x-periodic problem.

3.2. Definition of the T-matrix

Figure 3: A single grating extracted from figure 2.

Let us isolae a gratig from the complete stéc(Fig. 3). The
medium alove am belav this gratirng is honogeneos ard can be
arbitrarily chosenWithou loss d generaly, we assume thahis



medium is the vaeium As wel known in graing theory the
pseudo-periodi functia u, (x,y) is written as:

fory > 0:

ta(63)= 3[4 €XPEiB) + AT xp(riB,)] explic,a) (11

m=—oo

fory <-A:

la(i)= 3 [Br eXpEiBy (3+,))+ B exptri,(+A,)]

x exp(iam (x _Ax))
12)
where
am=0(+m2—n ) (13)
d

and f3,, is define by:

2
umZ + BmZ :(:)_2‘ with arg@m) o{o,mt/ 2} . (14)

Dending by A~, A*, B~ ard B* the infinite colurm vectors
with A, A, B, ard B, componentsthe T-matrk is the

m? m? m

operato which relats tre field belawv the gratirg to the field
above:

{B’}:T{A_:':{Tn le}{A_:'. (15)
B* AY| [T T AY

The T-matrk is obtaind usirg ary goad numerich technique
abe t sohe the problen o figure 3 illuminated by an
appropriat plare wave (whib is ssociatd to the requirel value
of a in [0, 21/ d]. In ou implementationwe u® anumerical
coce basd o a rigorows integrétheory?’. This coc is ore of
the bast tools in ou laboratoy for the stidy of gratings ard non-
dopel photonc crystals It is the lates development fothe
origind thess wokk of D. Maystre®® ard ha been thoroughly
checkel by classt tess ard comparisos with experimentiadata.
With the hep o this code we conpute firg the S-matnx defined
by

* S11 S -
A_ :{ 11 12} A+ . (16)

B S21 S22 B
From the conputed S-matrk (necesaily of finite size) we

derive a finite sze approximate fahe T-matrk by the classical
relatiors (which can be eay obtainel from (19 ard (16)):

T11= Sp1~ S22 S127" Su1
Tip=Sp 817"

Ty ==S127 81y

Ty =S5

Y]

The resilting finite size transfe matrix will be denotd by 7,,, M

being definal in su a way tha the summaions in (11) ard (12)
go from -M to +M.

3.3. Eigenvalues of the T-matrix

The T-matrk represertt the transléion operato between the top
and the bdtom sides d the grating Let us conside one
eigenvale p d the transfe matrk 7,,, ard let us cal A, the
associatd eigenvectarThe componerst d this eigenvectocan
be regardd & A, ,, ard AJ,,,, codficients d a field ug ,(x,y)

Wwm
defined by (11) in the uppe regia (y > 0):
A
A=l (18)

u

Note tha the field uq , (x,y) associate to the eigenvecto4,, is
defined everywhere ard in particula in the graing region
(A, <y<0). The codficients B, ,, and BJ,,,, of this field are
defined by (12) below the gratirg (y <-A,) and verify:

B, A A
="K |= U= = = H

u

From (11) ard (12) it emergs tha the values d the field «,,, at
the point with coordinate (+,0) ard (x+A,,y —A,) only differ
by amultiplicative codficient .

Let us sippo® tha |u|= 1. Then the multiplicative codficient is
a pue phas shift It mears thd the restrition o u, , in the dice

(-4, <y<0) can alo be consideré & tre restriction in the

sarre region o the infinite 2D periodic problen o section 2 In
othe words this eigenvecto represerst in the slice aBloch
solutin u (r). The fields uy , and uy respectivef verify Egs.

(10) ard (2):

U (r +d) = exp(iad) ug , (r) (20)

u (r+d) = exp(ik,d) u(r) , (21)
which gives the x-componenof the Blodh vector:

k.=a . (22)
Applying the secad elementartransiatio A:

g (r+4) =exp(iargl)) ug , (r) , (23)

e (r+A) =exp(ik, A, —ikA)uy(r) , (24)
give the y-componenaf the Bloct vector:

fy = hela ool (25)

y

Equaions (22 ard (29 poirt out tre link between th grating
problen ard the Bloch solutios d the infinite structure.
Moreover, equation (25 paves tte way for obtainirg the
dispersio curves d the Bloch problen from the eigenvalug of
the T-matrix.

Let us sippoe tha |u|#1 The restrition to the dice
(—Ay <y<0) of Ug associaté to the eigenvectocan nd be a

Bloch solution wih rea vecta k.

Let us naw conside the spectrm o the transfe matrix 7,,. We
can distingui$ the two following stuations.

First, if there is ro eigenvale with malulus equéto 1, it could
appea evident tha we are n a "gap situation if the crysté of
figure 2 is illuminated by an inciden plare wave (vith a wave
vecta projedion an the x-axis equéto a), the transnitted field
throudh the N grating tend exponentihy towards zeo & N
increases This exponentia deca is directy relatel to the
modulws d the eigenvalue whose molus is the closesto 1 An
exampé will be given in setion 7. In orde to prowe this
assumption ore shoull conside the transléon operato T
(infinite matrix) Indeed the tuncated matrk 7;, has los some

fundamenthproperties d T (sud as tho® linked to the energy
conservéion), ard therefoe it is difficult to quantif the

pertinene d (TM)N when N tends © infinity. This problem

involves subté mathemics arl the interestd reade will find
mathematichbackgraind in a recenpaper®.

Second if there is & leas one eigenvalue ith malulus equéto
1, thee is o g in the sens d the 2D crystd tha fill s the entire
space In othe words thee is a leas one Blodh solution thaican
propagag in the structurelf the crysté of figure 2 is illuminated
by a plare wave the inciden field can excie the Blodh solution.



But the caipling betwee the inciden field and the Bloch
solutin alo dep&ds an numeros parametersard in particular

on the respetive synmetries d thes two fields* 2%

In ary case the field in the gratig can nevebe reducd to a
combinatiom o Bloch waves The method tha rely upm this
assumptim can probaby give acurae resuls in some
circumstancesbu ther resuls shoudl be carefuly checkel with

the hep o rigorois methods The sane apgies © conclusions
diredly obtainel from dispersia diagrans d Bloch waves.
However as will be shom in the nex setions d the paper,
thes dispersio diagrams ae vey helpfu in the predition and
the understandip o the comple phenomea tha occur in

photont crysta studies.

4. USEFULNESS OF THESE TOOLS

4.1. Three-dimensional dispersion diagram

From nowv on, we uppo® tha the photont crysté has a juare
lattice Therefore the elementar transléions ae sut that
A, =0 ard A, =d. All the example ae given in the E//

polarizaion case.

Even though masof the informdion aboti propagating
waves (i.e |u|= 1) can be deluced from bidimensionhdispersion
diagrans & tha shown in figure 1 we found tha a 3D
representidon o the sane diagran wes moe conveniehfor our
purpose Figure 4 shovs the sane dispersio diagran s figure 1,
but the Bloch wawe vecto covers the whole Brilloun zore (in
fadt the squae regim whee k, ard k, belorg to [077d] )

insteal o the edg@ d the first reduced Brillouin zone In this
figure, eat band is representkby a sheetThis diagran reweals
the complexiy of the dispersin reldgion d the photonc band
structure ard especithy how the three highe shees d this figure
overlg & the uppe limit of the secad gap.
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Figure 4: Three-dimensional dispersion diagram. The horizontal
plane gives the Bloch wave vector k. The vertical axis gives the
normalized frequency wd | (21c) =d | N. The bottom sides of the
sheets are represented in darker gray. The triangle
corresponding to the first reduced Brillouin zone has been drawn
inthe (ky, k) plane. The parameters are the same as in figure 1.

The diagram has been computed using the plane wave expansion
method.

Sinee severhinterestirg propertis d the photonic crystals
are obtaind & the limit of the gap let us pld (Fig. 5) an enlarged
view of this region.
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Figure 5: Enlarged view of the 3D-dispersion diagram near the
upper edge of the second gap. The intersection between the
sheets and the horizontal plane corresponding to the wavelength
A = 2.545 is the curve that limits the two differently colored
regions of the sheets. Due to the slow convergence of the plane
wave expansion method, the levels of the sheets are not perfectly
accurate, and this diagram only gives qualitative information.

The problens we ae concerné with ae harmonic ones.
Hene we are interestein the intersetion d the sheet am the
horizontd plare asociatd to the actuh value d w. This
intersectio is pointel out (for an arbitray chos@ w) by the limit
betweea the two differertly colored regiors d the sheetsThe
resultirg curves ae reportd an Fig 6. Note thd the wavelength
A =254 in Figs.5 aand 6 & chosa in orde to math the
previous wok of refererce 2
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Figure 6: Constant-frequency dispersion diagram and energy
[flow direction for some particular values of k. The dotted
curves are the intersection of the sheets (Fig. 5) and the
horizontal plane corresponding to A=2.545 There is no
propagating solution for 0.6 <k, <12. This quantitative
diagram is obtained using the T-matrix.



4.2. Constant-frequency dispersion diagram

It is worh nding tha the plare wawe expansin metha is well
suited to obtah the Bloch solutiors for a given valie d the Bloch
wawe vecto k, ard is adaptd to the pld of dispersiols diagrams
sud & thd presentd in figure 1 Bu it sufers fran a poor
convergene rae verss the numbe of plare waves In our
problem ard sine we are athe edg d the gap a vey small
error in the dispergin diagran can drasticay chang the
conclusions.

On the othe hand the ue d the T-matrk directly gives the
solutiors k, asa function o k. (Egs (22 ard (25) for a given

value d the wavelendt A. Moreover, this methd gives a very
god eccuragy and can delawith ary graing structureincluding
dispersie ard metallc materials.

Tha is the reaso why figure 6 has bea conputed by the
seart d the eigenvalug (with |u| =1) of the 7,, matrix In this
case M =7 is sifficient to ensue agoad accuracy. The grah
shows thd in this paticular case for eat fixed valle d &, in [-

Td,1d], thee ae zero a two gpposte valus d &, in [-17d,10d].
Remak tha due to the symmely of this crystal if k, is solution,
~k, is al® a soldion.

Let us naw focus m the propagatio d the energ for a
given Bloch wave Equatiors (5 ard (6) tel us thd the averaged
velocity of the energ flow is immediatey given by the norméato
the constanfrequeny dispersbn diagran (Fig 6). Moreover,
the combind use d (5) ard figure 5 allows s 0 determie the
orientation o this vector which poins toward the increasing
values d w on tre sheedf Fig. 5.

4.3. Application to a finite crystal

Let us nav conside a finite crysth with N grating layers,
illuminated by an inciden field. We suppo® in a firg ste that
this inciden field is a plare wave wih wavevecto of modulus k'
and incidene 6 with respetto the y-axis Fram gratirg theory it
is wdl known tha the pseido-perodidty codficient a (Eg (10))
is given by:

o =k'sind . (26)

In orde to male a prediton abou the field behavio in the
iluminated crysta)] we only conside the propagating
eigenvectaos (with |u|= 1) of the 7,, matrix which, from section
3.3 ar associatd with Blodh soluions d the infinite crystal.
One shoutl be awae d the empirich aspet of this hypothesis
which neglecs the evanescénsolutions (|u|#1). Ore knows
tha similar assumptios in gratirg theoy can lead to eroneous
results Neverthelesswe will see tha in this way we obtan an
interesging descripion d the energ travd in the crystal which
proves © be in goal ageemen with ou rigorows numerical
checks Fran equatio (22) we know tha the pseido-periodicity
codficient a is nothirg more than the x-componen of the Bloch
wawe vector which gives tre link betwea the inciden plane
wave ard the Blodh solutions.

In a secad step let us sippoe tha the inciden field is a
limited beam expressé as a plare wave packet:

+00
W (x,y) = [A(@) exgliox ~iB(a)y) da, 27
with a =k'sin@, B2 =k’ - a2, ard with agaussia amgitude:
w (o —ag)? w2
A(a) = exp - . 28
=5 ;{ ; (28)
The mea inciderce 8, of the bean is sut that:
0y =k'sing, . (29)

It can be ndiced tha the paramete W appearig in (28 is
diredly linked to the inciden beam width.

Ther is 0 majo difference with the case ban inciden plane
wave ard eadr componeh A(a) explia x —iB(a)y) of the plane

wawe packe has an averag energ flow direction given by the
remak of sedion 4.2 i.e the norméto the constanfrequency
dispersim diagran & the poins given by k, =a..

4.4. Anomalous beam shift and ultrarefractive behavior

Coming bak to figure § we can profit from the quasi-square
shag d the centrbcurve we illuminate the crysté by a limited
bean with ag =0.275. This valte carespmds in vawum to a

mean incidene 65=6.4° for A =2.545 which ae the
parametes alreagt usel in Ref.’2 Fa a valueW =10 of the
beam width, the amplitide A(a) take significan values (namely
A(a) > A(ag)/5) only for 0.02<a <0.53. All the diredions

normd to the constanfrequeny dispersbn diagran ae clo to
the +45° directions dependig whethe the energ flows
upwards a downwards.

Thes parametarae thog usel for the conputdion o figure 7.
This totd field map ha be@ computed wth the hep o a modal
methal basedon scattering matriceshe fields beirg expressed
as Fourie Besse series”?’. This methd rigorousy solves the
problem o a finite sé of parallé rods Fram this poirt of view,
the structue is nd a gratirg & considere in previos sections
(infinite exten alorg the x-axis) Anyway, in ou ca® where the
incidert field is a limited beam thele is o ndiceabk difference
betwee the fields diffracted by the finite s¢ of rods am by the
grating & leas when (as can be see@ an Fig 7) the field vanishes
at both end d the crystal A compariso betveen the x-truncated
crysta ard the gratiry is given in Ref.*2. This modé mettod has
been chose becaus it enable 5 o ded also with structures
which can nd be modeld by gratings microlense (sectio 5 or
microprisns (sectio 6).

Figure 7 shove tha our expecttions concernig the average
enery flow inside the crystd are confirma& by the rigorous
computation Roughly the problem looks like alight ray going
throudh a slie d materid with opticd index les tha 1.
Fdlowing the Sndl-Descartes law, the transnitted beam is
abnormal shifted with respetto the axs d the incidemn beam.
Both upwad ard downwad directiors can ke interpretd by the
reflection o the beam This exampt ha alreagl been studied in
Ref.'2 Bu the gproat is hee completat different and
probaby more intutive.

It is worh nding tha in this particula case ard sine the central
curve d figure 6 is nd an ellipse (ard a fortiori not a circle we
can nd conside the photont crystd as a honogeneos material
with low effective pemittivity tense (and a fortioi with low
effective ogical index). Nevertheless this exampt clearly
exhibits a ultrareracive behavior.
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Figure 7: Map of the total field modulus for a crystal made of
69% 7 rods lying in vacuum and illuminated by an E// polarized
gaussian beam with 8y = 6.4°. The crystal parameters are the
same as in Fig. 1. Above the crystal the beam reflected by the
crystal interferes with the incident beam and generates a system
of stationary waves. Straight lines show the locus of the
maximum incident (black), transmitted and reflected (white)

fields.

4.5. Negative refraction
Figure 6 shovs thd for large posiive valus d k,, the average

enery propagate towards th negatie valus d x. This
phenomeno can be checkd by increasig the mea inciderce to
a vale 6y =40°. The carespmding field ma is show in
Fig. 8. A ray interpretatio for this particula incidene will lead
to a negatie refraction Note thd in orde to conside the
materid as a honogeneos ore with negéive ogicd index the
constardfrequeng dispersia diagran shoutl lodk like acircle
centere on the I poirt (k, =k, =0) on a sheethat eachs its

maximum & . A similar situdgion in a 3 crystd has keen
recenty reportel by Kosala & al. 2.
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Figure 8: Negative refraction. Same parameters as Fig. 7, except

60:40)

5. APPLICATION TO ULTRAREFRACTIVE
MICROLENSES

Ultrarefractive propertis d photont crystas hae been
swggestel previously’>. We shov here tha the formalism
expose in the previos sectios is wel suited to determie the
parametes tha enabé t enginee devices basd on this
phenomenonThe am is o desig an atificial material whose
effective index is les than 1, ard if possibe clog o zero It

mears tha the constanfrequeny dispersio diagran should
follow a circle

2
k2Hk2 =ko? gy | (30)

i.e. a smdl circle centerd on the origin in the (k,,k,) plane In

ordeg to obtain th$ property let us decreas the frequency
associatd to the horizonthintersectim plare d Fig. 5. Figue 9
shows the constanfrequeny dispersio diagran for two
wavelength clo®  the k, =k, =0 limit of the sheeof Fig. 5.

The cune far A; =256 is vel close b a circle and tre dfective
index given by (30) is n; = 0.086.

Note tha even if the crystd behave & a homogeneous
materia] the physica situation is vey differert from that

generdly studial in homogeniztion works whee ore considers
quasi-stat limits 3%

Figure 9: Same as Fig. 6 for two different wavelengths. Only the
central region is presented.

Sinee the ind& contras with othe materia$ is ver large new

optical elemens can be imagined Fa instance let us desig a

microlers composé o 295 rod d the sane photonic crystal.
The width d this lers is equd to 64 i.e. 29\, and tre radis of

curvatue d the concave facesik = 50 When illuminated ly a

gawssiam bean o width W=40 in norm& incidence the

transmittel field focuse a a poirt situatel & f=53 from the

concae fae (Fig 10). Noe tha the same les buit in classical
materid (optical index greate than 1) is divergentOn the sides
of Fig. 1Q the field is principally due  the diffraction by the

edge d the lens.

A straiglt application o optical geometre resuls gives the focal

length:

f:

R=547 , (31)
1_i’ll

which agree with the actudvalue f =53 ard proves thke very
goad similarity betwea the crysth and an isotropic
homogeneas material.

Onre shoull be awae d the fad¢ tha if the constanfrequency
dispersio diagran does nd lodk like acircle thee is ro clear
focusirg d the light.
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Figure 10: The microlens is illuminated in normal incidence from
the top by a gaussian beam in E// polarization.

6. APPLICATION TO HIGHLY DISPERSIVE
MICROPRISMS

Photonc crystd prisms hae be@ experimentidy studiel and
proposé as highly dispersie components

As a firg step let us wok in the rang@ d wavelengtls whee the
crystd behave & a quasi-homogenesumnaterial We chog the
wavelengh A, =2.56 for which the centrcurve d the constant-
frequeng dispersio diagran looks like a circké (Fig 9). The
effective ogical index obtaine from (30 is n; =0.086. We
conside a microprian mact d 465 rods disposd in an isosceles
right-anglel triangle The sice d this triangk is equd to 37, i.e.
15\ It is illuminatel by a gaussia bean o width W= 10 in
normd incidence Figure 11 shovs tha the keam is going
throudh the hypot@use with quasi-normbdirection In orde to
preci® this diretion, we pld (Fig. 12 the scattere intengty at
infinity versis the diffraction angk 6 (convetiond polar angle
with horizontdaxis & origin) A straight application of the Snel-
Descarts lav leads o the fdlowing angk 6, at the wavelength

A

ny SiN45° = sin@5-0,) 0 6, = 415° . (32)

This valie is in perfet ageemenwith Fig 12.

We can remak tha the hich index contrasimplies thd the
reflectin is importah a eat interface It could probaby be
attenuatd by the ug d sorre antireflectia structure.

In a secad step let us evaluat the dispersianChangiry the
wavelengh to A, =255 shifts the maximun diffraction angle

(Fig. 12 by abou 3°. By the way sine this wavelendt is farther
from the gap the transnitted intensiy is greaterFigure 9 shows
tha for this wavelength the constanfrequeng dispersion
diagran is nd a circle bu it has m importane on the
phenomenon Indeed ard sine ths problen only involves
"plare baindarie$ betwee the crysthand the externbvaaium,
the crystddoes nd necessanl need to behae & a homogeneous
material.

It iseay to verify tha the dispersin do/dA is mudr greate with
this microprign than with ary othe classich dispersie device
(grating silica prism) Sud microprisns coull find interesting
applicatiors in the doman o fiber opticd commnunicaions and
in particula in wavelength mitiplexing/demutiplexing.

40 -30 -20 -10 0 10 20 30 40

Figure 11: The microprism is illuminated from the left by a
gaussian beam with A = 2.56.
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Figure 12: Scattered intensity at infinity for Ay = 2.56 and
Ay, =255

7. NON PROPAGATIVE SOLUTIONS AND T-MATRIX
FORMALISM

In the previos examplesou interpretatio was basd on Bloch
solutions ard the evanescérsolutiors wee neglectedWe have
shown tha this poirt of view leads © mary interesting
predidions in the transparencbands When thee is o Bloch
solutin (gap) ore can extrat from the eigenvalug d the T-
matrix sorre pertinehinformation.

The glob& behavia of the field insice the crysthis governd by
the eigenvectar d the T-matrix We conside a semi-infinite
crystal i.e N tends o infinity in Fig.2, ard the crystafill s the
spae fa y less than an arbitray value.

Inside the gap thee is ro eigenvale with madulus equd to 1.
All the eigenvect@ ae evanescdnor anti-evanescenwith
respet to y. Sine the field shoull stgy baunded when y tends
towards -o, only the eigenvecte associatt with the
eigenvalus with maulus les than 1 ae sutable Fran al of
them the one whos eigenvale y, is the closesto 1 ha the

slowes decay Fram this remark for a sdficient numbe N of
layers we can expet tha the energ transnissi;m behave as

|u1|2N (the energ is linked to the squae d the eigenvector).

We illustrak ths propery in the case ba photont crystd made
of N layeis d perfedly canduding rods The radis d the rods is
equéato 0.01 The gjuae cel of the crystdhas a spacigd =1,
and tre crystais illuminatel in normé incidene by a plane
wawe in E/ polarzaion, & a wavelendt A = 10.2 The® dah are
thos d a previos papef®. Fran the T-matrk of a single layer,




we obtah |pu|=0288. Figue 13 compare the decimal

logaithm o the transmissio (obtaine with a rigorows grating
code throudh a stak of N graing layes am the decimal

logaithm of |u1|2N. The slops ae ideriical; thus the exponential

decy is cleary governa by this eigenvalue This spectacular
agreemen is die o the fad tha in this cag themodui of the
othe eigenvalus ae consideralyl smalle than |u1|. Otherwise,

one shoutl probaly conside a greatenumbe of layess in order
to see the predominared ;.
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Figure 13: Exponential decay of the transmission for a photonic
crystal made of N layers of perfectly conducting rods.

Conclusion

We hae developd an dficient gpproat in orde to predict
some d the propertis specifc to photonc crystals The

theoreicd bass has bee exposed Dispersim diagrams d Bloch

modes ae usefliin this context However the Bloth theoy does
nat take into accaunt the fad tha the crystdis d limited extent,
illuminated by an incider field, ard it neglect evanescérwaves
tha exist n physicd situations Tha is why ou final step

includes a carefl chedk with the hep o rigorows numerical
codes It alo gives informatiomn on thke caipling betveen the

incidert field ard the structure which strongy depend o the

symmetries Moreover, it is the ony way © obtain tle energy
transportd by the differert beams.

From a practich point of view, the way to find the right

parametes giving rise b anomalos refractio situdions has
been pointed out In sone circumstance depictd in sectim 5,

the photont crystd can simulae a honogeneos ard isotropic
materid with low effective index Note tha a goad understanding
of photont crysta$ propertiess necessarin orde to find these
right parametersard we mus confess tha our first attemps to

desiqn a microlers withou the hep o the preseh paper
consideratios hae be@ unswecessful.

We hae pointel ou sorme phenomea which ae nd only

spectacularbu al hawe potentid practicd developmentsDue

to receh tednologicd advances goplicatiors involving

componerg sut a highly dispersie microprisns and
ultrardractive microlenss shoutl appeasoon.
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