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Propagation of light pulses through negative group velocity media is known to give rise to a
number of paradoxical situations that seem to violate causality. The solution of these paradoxes has
triggered the investigation of a number of interesting and unexpected features of light propagation.
Here we report a combined theoretical and experimental study of the ring-down oscillations in optical
cavities filled with a medium with such a strongly negative frequency dispersion to give a negative
round-trip group delay time. We theoretically anticipate that causality imposes the existence of
additional resonance peaks in the cavity transmission, resulting in a non-exponential decay of the
cavity field and in a breakdown of the cavity decay rate concept. Our predictions are validated by
simulations and by an experiment using a room-temperature gas of metastable helium atoms in the
detuned electromagnetically induced transparency regime as the cavity medium.

I. INTRODUCTION

Since the early works of Sommerfeld [1] and Brillouin
[2, 3] on light propagation through resonant dielectric
medium, slow and fast light have been the subject of con-
siderable research efforts. It is now well established that
the group velocity of light can change dramatically in a
dispersive medium: slow, fast, or even negative group ve-
locity light can be observed. Moreover, such effects can,
under some conditions, occur without any pulse distor-
tion [4]. This has led to much controversy about Ein-
stein’s causality and the propagation of a signal in such
situations, which has been solved by considering the in-
formation as carried by non-analyticity points [5–9].

The control of group velocities of light pulses is an ac-
tive subject of research as slow light schemes have been
proposed to enhance nonlinear interactions for applica-
tions in quantum information processing [10–12]. In re-
cent years, the use of electromagnetically induced trans-
parency (EIT) in high-finesse cavities has given promis-
ing results for coherent control of light and nonlinear
optics at low light levels [13–15]. The question of the
lifetime of the field in cavities filled with a dispersive
medium has consequences also on potential applications
such as the increase of the sensitivity of gyroscopes us-
ing fast light [16–18]. In this context, we have recently
confirmed experimentally that in the case of a slow-light
medium inserted inside an optical cavity, the field lifetime
is governed by the group velocity [19]. We investigate
here some paradoxes arising from the consideration of a
negative group velocity medium inserted inside a cavity,
and we show that in such a case one is forced to take
into account the additional resonance peaks of the cavity
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imposed by causality, making the concept of one single
cavity decay rate not relevant anymore [20].

Let us start by illustrating the paradox on the sim-
plest case of a short pulse of light propagating through
a dispersive medium of refractive index n(ω) and length
Lcell. If the dispersion dn/dω is positive (see Fig. 1), the
group velocity vg is positive and the pulse experiences a
positive group delay τg = Lcell/vg during its propagation
through the medium (see Fig. 1(1a)). On the contrary,
when the dispersion is negative enough, vg can become
negative, leading to the appearance of a negative group
delay τg through the medium. This can lead to the kind
of situation sketched in Fig. 1(2a), in which the peak of
the outgoing pulse leaves the medium before the incident
pulse enters it while another wave packet appears at the
back interface and propagates in the backward direction
inside the medium [21]. In these paradoxical situations,
causality has been shown to be ensured by the propaga-
tion of non-analyticity points at the speed c of light in
vacuum [7–9].

Let us now introduce such a dispersive medium inside
a resonant cavity. In the case of positive dispersion of
Fig. 1(1b), i.e., slow light, we have recently shown [19]
that the lifetime of the field in the cavity is given as
expected by τcav = τRTg /Π, where Π stands for the frac-

tional loss per cavity round trip, and τRTg = τg+Lvac/c is
the group delay for one round trip inside the cavity with
Lvac the length of the empty part of the cavity. In this
case, the reduced decay rate for the intracavity intensity
can be explained in terms of a simple picture of a pulse
propagating at the group velocity inside the cavity and
decaying at each round trip because of losses (see the
decaying pulses of Fig. 1(1c)).

This picture does no longer hold in the case where the
intracavity dispersion is negative and is strong enough
not only to make the group delay across the cell τg neg-
ative, but also the cavity group round-trip time τRTg
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FIG. 1: Propagation of a light pulse through (1a) a slow-light and (2a) negative-light medium (the white pulse in (1a)
would correspond to propagation in vacuum), and (1b),(2b) a cavity containing such a medium. Series of pulses exiting (1c)
the slow-light cavity when it is excited with an incident pulse, and (2c) the cavity in the case where the intracavity medium
has a strong negative dispersion leading to a negative round-trip group delay τ

RT
g < 0. Notice the non-causal behavior of the

exit pulses in (2c).

smaller than zero (Fig. 1(2b)). In this case, if we fol-
low the same picture as in the case of positive dispersion,
the pulse that has made one round trip inside the cavity
must exit the cavity before the initial pulse, and is even
preceded by the pulse that has undergone two round trips
inside the cavity, etc. This should lead to an increase of
the intensity with time, as shown in Fig. 1(2c), which is
of course absurd. In the present article, we consider a
slightly different configuration where a CW laser beam is
incident on the cavity and suddenly switched off: in spite
of the different time sequence, paradoxical situations ap-
pear in this case as well.

II. RESULTS

A. General theory

We consider a cavity like the one in Fig. 1. The input
and output mirrors are identical, with intensity reflection
and transmission coefficients given by R and T , respec-
tively. The two other mirrors are perfectly reflecting. We
call Lm the length between the input and output mirrors.
ωl is the frequency of the laser and ωp the considered
resonant frequency of the cavity. For a generic incident
excitation Ein(t), the field at the output of the cavity can
be evaluated using simple linear response theory. We first
consider the case of a cavity with a positive round-trip
group delay τRTg . We suppose that the input laser field is
monochromatic and is abruptly turned off at t = 0. The
positive-frequency part of the output field reads

E
(+)
out (t) =

∫ t

−∞
dt′E

(+)
in (t′) R(t− t′) , (1)

where E
(+)
in (t) is the positive-frequency part of the in-

put field, and R(τ) is the response function of the cavity
which is zero for τ < 0. We can stress the fact that R is
causal by writing it as R(t) = S(t)H(t), where H is the
Heavyside step function, and S is the Fourier transform

of the cavity transmission S̃(ω) for a monochromatic in-
cident field. Then Eq. (1) simply reads

E
(+)
out (t) = [E

(+)
in ∗ (SH)](t) . (2)

The cavity transmission for a monochromatic field of an-
gular frequency ω is then given by

S̃(ω) =
T exp

[
iω
c
Lm

]

1−R exp
[
iω
c
(Lvac + n(ω)Lcell)

] . (3)

If we suppose that ω is close to a resonance frequency ωp

of the cavity, for which exp [i
ωp

c
(Lvac + n(ωp)Lcell)] = 1,

then, at first order in (ω − ωp)/ωp, Eq. (3) becomes

S̃(ω) =
T exp

[
iω
c
Lm

]

1−R− iR(ω − ωp)τRTg

, (4)

leading to:

S̃(ω) =

(
T

RτRTg

)
exp

[
iω
c
Lm

]
γcav

2 − i(ω − ωp)
, (5)

where the cavity decay rate is given by

γcav = 2(1−R)/R τRTg ≃ Π/τRTg = 1/τcav . (6)

We have assumed that 1 − R ≪ 1. In order to predict
what a measurement of the field lifetime should give, we
consider the response of this cavity to a laser field at
frequency ωl which is turned off at t = 0:

E
(+)
in (t) = E0[1−H(t)]e−iωlt . (7)
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Eqs. (2), (5) and (7) then lead to the output fields

E
(+)
out (t) =

S0E0e
−iωl(t−

Lm

c
)

γcav

2 − i(ωl − ωp)
, if t ≤

Lm

c
, (8)

E
(+)
out (t) =

S0E0e
−iωp(t−

Lm

c
)

γcav

2 − i(ωl − ωp)
e−

γcav
2

(t−Lm

c
) ,

if t ≥
Lm

c
, (9)

with S0 = T/RτRTg , which is the standard solution for
a decaying cavity, in agreement with the observations of
Ref. [19]. On the contrary, in the case of a negative light
cavity for which τRTg < 0, we obtain

E
(+)
out (t) =

S0E0(e
−iωl(t−

Lm

c
) − e−(iωp+

γcav
2

)(t−Lm

c
))

γcav

2 − i(ωl − ωp)
,

if t ≤
Lm

c
, (10)

E
(+)
out (t) = 0 , if t ≥

Lm

c
, (11)

which, once again, clearly violates causality.
In deriving Eqs. (10) and (11), the only hypothesis that

we have made is that the cavity transmission could be
reduced to a single Lorentzian peak (see Eqs. (3) and (4)).
This hypothesis is valid as long as the spectrum of the
incident field (given by Eq. (7)) is contained in a single
cavity transmission peak and all frequencies experience
the same group index.
In order to examine this condition, let us first consider,

as an example, a typical negative dispersion curve as
given by the continuous line in Fig. 2(a). Let us suppose,
without any loss of generality, that the inflection point of
the dispersion curve occurs at the empty cavity resonance
frequency ωp, meaning that

ωp

c
(Lvac+n(ωp)Lcell) = 2pπ,

where p is an integer. Let us try to determine whether
extra resonance peaks, due to negative dispersion, could
occur in the vicinity of the peak at ωp. If ωp + δ is the
angular frequency of such an extra peak, the resonance
condition reads

ωp + δ

c
(Lvac + n(ωp + δ)Lcell) = 2pπ . (12)

To first order in δ/ωp, this condition is equivalent to

n(ωp + δ)− n(ωp) = −
Lvac + n(ωp)Lcell

ωpLcell
δ . (13)

The left-hand side of Eq. (13) versus δ is the continuous
line in Fig. 2(a). The right-hand side is a straight line,
as shown by the dotted, dashed, and dot-dashed lines in
Fig. 2(a). One can see that the shape of the resonance,
namely, the existence of no other solution than δ = 0,
leading to a single peak as in Fig. 2(b), or the existence
of two other resonance frequencies for δ 6= 0, leading to
two extra resonance peaks as in Fig. 2(c), depends on the
relative values of the slopes of the dispersion curve and

FIG. 2: (a) Continuous black line: typical negative dispersion
curve. The intersections of this curve with the red dashed
(τRT

g = 0), blue dotted (τRT
g > 0), and green dot-dashed

(τRT
g < 0) curves determine whether the resonance is (b) sin-

gle peaked or (c) multi-peaked.

the line corresponding to the right-hand side of Eq. (13).
In particular, the condition for the existence of two extra
solutions reads, at first order in δ:

−
dn

dω

∣∣∣∣
ωp

>
Lvac + n(ωp)Lcell

ωpLcell
, (14)

which is equivalent to τRTg < 0. We thus reach the fol-
lowing conclusion: the fact that the group delay for one
round trip inside the cavity is negative leads to the ex-
istence of satellite peaks around the resonance consid-
ered. This negates the approximation used to obtain the
cavity transmission (see Eq. (4)) and explains why the
non-causal situation described above can actually never
be reached. Figure 2(c) illustrates how this condition re-
sults in the existence of two extra peaks for the cavity
resonance labeled by the integer p. Note that in the case
of slow light, the slope of the dispersion curve in Fig. 2(a)
would be reversed, allowing only one intersection with the
continuous line and thus forbidding the existence of extra
resonance peaks.
In reaching the conclusion above, we have assumed a

specific form for the negative dispersion curve, namely,
the one drawn in Fig. 2(a). We will now show that this
conclusion holds, as a consequence of causality, for any
arbitrary negative dispersion curve provided τRTg < 0 at
ωp. For this, it is convenient to introduce the following
function:

f(δ) = Lcell[(ωp + δ)n(ωp + δ)− ωpn(ωp)] + δLvac .

It can then be shown, by a straightforward calculation,
that Eq. (12) is equivalent to f(δ) = 0. The resonance
peak at ωp corresponds to f(0) = 0, while the satellite
peaks would correspond to non-zero solutions of f(δ) = 0.
The initial hypothesis τRTg < 0 at ωp is equivalent to
∂f/∂δ < 0 for δ = 0. Moreover, for δ → +∞, causality
imposes that n(ω) → 1 [22], which results in f ∼ (Lvac+
Lcell)δ. To summarize, we have f(δ) = 0 and ∂f/∂δ < 0
for δ = 0. So f(δ) has to go to negative values for small
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FIG. 3: (a) Theoretical cavity transmission versus detuning
in the presence of (continuous green line) and without (blue
dashed line) an intracavity gain doublet creating negative
light. (b) Corresponding decay of the intracavity intensity
when the incident field is turned off at t = 0. With the pa-
rameters used, the group delay for one round trip inside the
cavity is τRT

g = −3.3 ns.

(strictly positive) values of δ. Also, since f(δ) → +∞
for δ → +∞, it has to go at least once through zero,
according to the intermediate value theorem. Let δ1 be
the smallest value for which this happens. Then ωp + δ1
corresponds to an additional resonance peak of the cavity.
Similarly, it is possible to prove the existence of δ2 <
0 such that f(δ2) = 0, which corresponds to another
additional resonance peak. This leads to the conclusion
that at least two satellite peaks exist around ωp for any
arbitrary dispersion curve as soon as τRTg < 0 at ωp.

B. Example of a gain doublet

Let us be more specific about the situation in which
a medium can exhibit a strong negative dispersion. A
very popular example of negative dispersion is provided
by a gain doublet [6, 7, 23–26]. Figure 3(a) shows the

transmission |S̃(ω)|2 of the cavity versus detuning in that
case. The dashed curve corresponds to the empty cavity,
which is 2.45 m long with 29% losses per round trip. We
now suppose that a gain-doublet medium is inserted in-
side the cavity. The two gain peaks are separated by 1.5
MHz. We suppose that they are located symmetrically
with respect to the cavity resonance. The gain maxima
correspond to 28% per round trip and the full width at
half maximum of each peak is 800 kHz. In these condi-
tions, the group delay for one round trip inside the cavity
is τRTg = −3.3 ns. The corresponding intensity transmis-
sion spectrum of the cavity is reproduced as a continuous
line in Fig. 3(a). One can clearly see the two transmission
peaks corresponding to the conjugated effects of the two
additional resonance peaks and of the two gain maxima.
The main difference with respect to Fig. 2(c), which was
computed using only the real part of the dispersion and
by artificially setting the imaginary part to zero (no gain
or absorption) is that there is no central transmission
peak. This is consistent with the fact that there is no

gain peak at zero detuning. One can also notice in this
spectrum that the two lateral peaks are slightly shifted
towards the line center with respect to the positions of
the atomic resonances, which is consistent with the fact
that these gain peaks are located in a positive dispersion
spectral region.
We calculate (using Eqs. (2), (3) and (7)) the tempo-

ral evolution of the intensity |E
(+)
out (t)|

2 at the output of
the cavity when the incident field is suddenly turned off
at t = 0. Such a decay is represented in Fig. 3(b) on a
logarithmic scale. It is clearly non-exponential. It con-
sists of a fast decay by two orders of magnitude, followed
by oscillations which correspond to beatnotes between
the two peaks of the transmission spectra. It is an illus-
tration of the general principle of Fig. 2: any intracavity
negative dispersion effect which is strong enough to make
the round-trip group delay negative will cause secondary
transmission peaks to emerge that will make the cavity
decay non-exponential, forbidding one to define a field
lifetime for this cavity.

FIG. 4: Experimental set-up. PBS: polarization beam split-
ter. PZT: piezoelectric transducer. PD: photodetector. The
cell is protected from spurious magnetic fields by a mu-metal
shield.

C. Experiments with detuned EIT

In order to give an experimental illustration, we use an-
other system in which a large negative group delay can be
achieved: detuned EIT in a hot vapor of metastable 4He
atoms [27]. We use a 6-cm long cell filled with 1 Torr of
helium at room temperature. Some of these atoms are ex-
cited to the 3S1 metastable state using an RF discharge at
27MHz. Metastable helium is well known for exhibiting
a pure three-level Λ system when excited at the 1.083µm
transition between the 23S1 and 23P1 energy levels using
circularly polarized light. Light at 1.083µm is provided
by a single-frequency diode laser. The frequencies and
Rabi frequencies of the coupling and probe beams used
in our experiment are driven by two AOMs. A telescope
expands the coupling beam diameter up to 0.5 cm, which
is larger than the probe beam diameter. The cell is in-
serted inside a 2.4-m long triangular ring cavity made of
two plane mirrors with 2% transmission and a high re-
flectivity concave mirror with a 5-m radius of curvature.
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The cavity is resonant only for the probe field as two po-
larization beam-splitters drive the coupling beam inside
and outside the cavity [19] (see Fig. 4).

FIG. 5: (a) Experimental (thick blue:) transmission of the cell
without optical cavity versus Raman detuning δR with an op-
tical detuning ∆c around 1.4 GHz and fit (thin orange) using
the theoretical expressions of Ref. [27]. (b) Calculated cavity
transmission profile as a function of the probe frequency. The
frequency reference is taken at δR = 0. Inset: zoom around
the narrow resonance.

Let us first consider the transmission of our degen-
erate three-level Λ system taken outside the cavity. A
large one-photon detuning transforms the transparency
peak typical of EIT into an asymmetric absorption peak
[28]. Consequently, in the vicinity of the transmission
minimum, the system exhibits strong negative disper-
sion, which leads to a negative group delay. Indeed, if we
introduce such an optical detuning ∆c between the cou-
pling field and the maximum of the Doppler profile of the
transition, the evolution of the cell transmission versus
Raman detuning δR between the two fields exhibits the
asymmetric Fano-like profile shown in Fig. 5(a), which
is fitted using the expressions of the susceptibility de-
rived in Ref. [27] for a three-level system in detuned
EIT. With a coupling power of 5 mW equivalent to a
coupling Rabi frequency around 10 MHz, and an opti-
cal detuning ∆c around 1.4 GHz, we measure a negative
group delay τg ≈ −4µs around the absorption maximum
(δR = 5 kHz) for our 6-cm long cell when the cavity is
not present. The measurement is made by modulating
the probe signal amplitude at a 1 kHz frequency, so that
the spectrum of the field is fully contained in the absorp-

FIG. 6: Thick blue: Experimental decay of the intracavity
intensity when the incident probe field is turned off at t = 0.
Thin green: Corresponding theoretical cavity decay. Orange
dashed: Corresponding theoretical cavity decay when the 200
ns response time of the AOM is taken into account in the
model. Inset: Same plot on a logarithmic scale. Below: Zoom
on the first part of the evolution of the experimental decay
of the intracavity intensity when the incident probe field is
turned off at t = 0.

tion dip of a few kHz width.

Once this cell is inserted inside the cavity, we apply
the same coupling field to the atoms. The probe field,
which is then slightly detuned from the coupling field
(δR = 5 kHz) in order to take advantage of the large
negative group delay of -4 µs, is incident on the cavity
input mirror. We slowly scan the length of the cavity
using a piezoelectric actuator that carries one of the mir-
rors. When the cavity is at resonance with the probe, i.e.,
when the cavity transmission reaches a given threshold,
we abruptly turn off the probe field using an AOM. We
then observe the evolution of the intensity at the output
of the cavity.

The thick blue curve in Fig. 6 is the experimentally
recorded evolution of the intensity at the output of the
cavity when we abruptly turn off the probe field. In this
figure, region labeled I shows the signal before switch-
ing off the cavity input field. The fluctuations are due
to cavity length instabilities. The interesting part of the
signal lies on region labeled II, that shows that the in-
tensity starts increasing, on a time scale shorter than
1 µs, before decreasing. This evolution is clearly non-
exponential, showing once more that a negative cavity
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round-trip group delay leads to a non-exponential decay
of the intracavity field. Notice here that the cavity length
being equal to 2.4 m, the cavity round-trip group delay
τRTg is also of the order of −4µs.
These experimental results are consistent with the the-

oretical calculations (based on Eqs. (2), (3) and (7)) using
the expression for inhomogeneously broadened detuned
EIT as in Ref. [27]. The values of the parameters have
been obtained by fitting the experimental transmission
curve as we can see on Fig. 6. With a coupling Rabi
frequency of 11 MHz, an optical detuning ∆c = 1.3 GHz
and a Raman coherence decay rate of 12 kHz, we obtain
the thin green curve of Fig. 6, which is similar to the
experimental result (thick blue): when the incident in-
tensity is turned off, the intensity at the output of the
cavity starts increasing before decreasing. This typical
non-exponential decay constitutes one more illustration
of the behavior described in Fig. 2.
The small difference between experimental and theo-

retical results can be explained by four immediate rea-
sons: i) The photodiode used to detect the signal has a
time response of the order of 200 ns, which does not allow
us to detect the fast variations of the signal; ii) the time
taken to turn off the probe field is not zero but driven
by the fall time of the acousto-optic modulator (AOM),
which is smaller than the photodiode response time; iii)
the extra losses of the polarization optics have been set
to 1 % in the theoretical model and can be slightly differ-
ent in the experiment; iv) before the probe signal is shut
off the signal is a bit noisy due to the fluctuations of the
laser frequency and of the cavity length, but this does not
play any role in the further evolution of the cavity decay
as soon as the incident signal is cut off. In order to check
the influence of the fall time of the AOM, we introduce its
response in our model by replacing the Heavyside func-
tion for the incident field by an exponential decay with
a 200 ns decay time. This leads to the orange dashed
curve of Fig. 6, which is in very good agreement with our
experimental results.
Because the temporal response we obtain is directly

linked to the spectral response of the cavity, it is possi-
ble to qualitatively understand the origin of the different
time scales involved. Figure 5(b) reproduces the calcu-
lated cavity transmission spectrum, taking into account
the negative group velocity medium of our experiment.
Of course, narrow spectral features will drive slow tem-
poral behaviors, while on the contrary broad spectral fea-
tures will be related to fast temporal behaviors. In the
particular experimental situation we present in this pa-
per, the spectral response of the cavity exhibits a single
narrow resonance. So we can expect, as observed exper-
imentally and confirmed by theoretical results, an expo-
nential decay driven by a large time constant at the end
of the temporal behavior. This can be seen in the re-
gion labeled III and the inset of Fig. 6. The inset of Fig.
5(b) shows a zoom on this narrow resonance. Its width

is approximately equal to 40 kHz, which corresponds to
the 4 µs time constant of the exponential decay shown in
region III of Fig. 6. In the experiment, we fill the cavity
with a light frequency for which the transmission is very
weak (δR = 5 kHz). By turning off the incident laser
very fast, we excite some frequencies for which the cavity
is much more resonant. So when the cavity empties, it
starts by reaching a light intensity level larger than the
one previously reached in the steady-state regime during
its excitation by a monochromatic CW beam. We can
then expect an initial fast increase of the signal as shown
in the zoomed part of Fig. 6. Moreover, the small oscil-
lations with a time period of a few tens of ns that can be
seen in the theoretical curve correspond to the beatnote
between the narrow resonance and the wide resonance of
the cavity transmission profile, which are separated by
roughly 9 MHz. In the experimental profile, the oscil-
lations are smoothed out because of the finite response
time of the acousto-optic switch, as reproduced by the
orange dashed line in Fig. 6.

III. DISCUSSION

In conclusion, we have theoretically demonstrated the
fact that it is impossible to obtain a negative group delay
for one round trip inside a resonant cavity while keeping
an exponential decay of the intracavity intensity. We
have shown that this result is a consequence of causality
in negative group-delay cavities. We have illustrated this
both numerically and experimentally, by using negative
velocity light induced by a gain doublet and detuned EIT
in a metastable vapor, respectively. Our result is consis-
tent with the fact that slow light is usually associated
with a transparency peak, which reduces the bandwidth
to be considered. On the contrary, fast and negative
group velocity light appears in the case of an absorption
peak, leading to the possibility of many frequencies play-
ing a role, and thus the cavity decay rate in such a cavity
can no longer be simply defined. This should have inter-
esting consequences on the spontaneous emission rate of
atoms placed in such a cavity [29], with application to
the spontaneous emission noise of lasers based on such
negative light cavities.
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