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The typical values and fluctuations of time-integrated observables of nonequilibrium processes driven in

steady states are known to be characterized by large deviation functions, generalizing the entropy and free

energy to nonequilibrium systems. The definition of these functions involves a scaling limit, similar to the

thermodynamic limit, in which the integration time τ appears linearly, unless the process considered has

long-range correlations, in which case τ is generally replaced by τξ with ξ ≠ 1. Here, we show that such an

anomalous power-law scaling in time of large deviations can also arise without long-range correlations in

Markovian processes as simple as the Langevin equation. We describe the mechanism underlying this

scaling using path integrals and discuss its physical consequences for more general processes.

DOI: 10.1103/PhysRevLett.121.090602

The fluctuations of thermodynamic quantities, such as

work, heat, or entropy production, are known to play an

important role in the physics of molecular motors, comput-

ing devices, and other small systems that function at the

nano- to mesoscales in the presence of noise [1–4]. The

distribution of these quantities is described in many cases

by the theory of large deviations [5] in terms of large

deviation functions, which play the role of nonequilibrium

potentials similar to the free energy and entropy [6–8].

These functions are important as they characterize the

response of nonequilibrium processes to external pertur-

bations [9–11], general symmetries in their fluctuations

known as “fluctuation relations” (see Ref. [12] for a

review), as well as dynamical phase transitions [13–17].

The definition of large deviation functions involves a

limit similar to the thermodynamic limit in which the

logarithm of generating functions or probabilities are

divided by a scale parameter (e.g., volume, particle number,

noise power, or integration time τ), which is taken to

diverge [7]. This applies, for example, to interacting

particle systems, such as the exclusion and zero-range

processes, which have been actively studied as microscopic

models of energy and particle transport [18–21]. In this

case, large deviation functions are defined by taking a

large-volume or hydrodynamic limit [22], as well as a limit

involving τ when considering time-integrated or dynamical

observables such as the current or activity [19–21].

In this Letter, we show that the latter limit must sometimes

be replaced by τξ with ξ ≠ 1 to obtain well-defined large

deviation functions. Such an anomalous scaling of large

deviations arises in many stochastic processes, but it is

understood (and now widely assumed) to apply to processes

that are non-Markovian or involve constraints that lead to

long-range correlations. Examples include random collision

gases [23], disordered and history-dependent random walks

[24–27], the Wiener sausage [28], tracer dynamics [29–31],

the KPZ equation [32–34], and branching processes

[35–37]. Our contribution is to show that the same anoma-

lous scaling can arise without long-range correlations and

in processes that are Markovian, ergodic, and noncritical.

Moreover, we show that the rate function, one of two

important large deviation functions, can be nonconvex,

which challenges yet another assumption held in large

deviation theory and nonequilibrium statistical physics.

These results apply to a large class of processes, as will

be argued, but to illustrate them in the simplest way

possible, we consider the dynamics of a Brownian particle

described by the overdamped Langevin equation or

Ornstein-Uhlenbeck process,

_Xt ¼ −γXt þ σηt; ð1Þ

where Xt ∈ R is the position of the Brownian particle at

time t, γ > 0 is the damping, ηt is a delta-correlated,

Gaussian white noise with zero mean, and σ > 0 is the

noise intensity, proportional to the square root of the

temperature for a thermal environment. For this process,

we consider the dynamical observable to be

Aτ ¼
1

τ

Z

τ

0

Xα
t dt; ð2Þ

where α is an integer assumed to be positive and τ is again

the integration time.

Various versions of this model, determined by α, have

been considered in the context of nonequilibrium systems

and turbulence. The case α ¼ 1, for instance, is related to

Brownian particles pulled by laser tweezers, for which Aτ

represents the work (per unit time) done by the laser in the

harmonic regime [38]. Alternatively, Xt can be interpreted
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as the voltage in a circuit perturbed by Nyquist noise, with

Aτ then playing the role of dissipated power [39]. For

α ¼ 2, Aτ is a statistical estimator of the variance of Xt,

which can be used to measure the damping γ or the

diffusion constant of Brownian motion (γ ¼ 0) [40–43].

Finally, the value α ¼ 3 determines the third moment of Xt,

related in stochastic models of flow velocity fluctuations to

the energy rate transferred in the turbulent cascade, while

higher moments (α > 3) are important for probing small-

scale intermittency [44–47].

We are interested here to study the full probability

distribution of Aτ denoted by PτðaÞ. In the “normal” regime

of large deviations, this distribution scales as

PτðaÞ ∼ e−τIðaÞ ð3Þ

for large integration times, τ ≫ 1, so that the limit

IðaÞ ¼ lim
τ→∞

−
1

τ
lnPτðaÞ ð4Þ

exists and defines a nontrivial function called the rate

function [5]. This function is positive and such that

Iða�Þ ¼ 0 for the expected value

a� ¼

Z

∞

−∞

ρsðxÞx
αdx; ð5Þ

obtained from the stationary distribution ρsðxÞ of Xt. This

implies that fluctuations away from a� are exponentially

unlikely, so that Aτ → a� with probability 1 as τ → ∞, in

accordance with the ergodic theorem. In this limit, IðaÞ
thus characterizes the likelihood of fluctuations of Aτ

around a�, in the same way that the entropy characterizes

the fluctuations of equilibrium systems around their equi-

librium state in the thermodynamic limit (see Ref. [7] for

more details on this analogy).

Normal large deviations are found when α ¼ 1 or α ¼ 2,

and in both cases the rate function is obtained from the

dominant eigenvalue of the Feynman-Kac equation for

the generating function of Aτ. This spectral result is well

known [48–50]: it is detailed in Ref. [51] and is briefly

summarized in the Supplemental Material for completeness

[52]. The end result is that IðaÞ is given by a Legendre

transform of what is essentially the ground state energy of

the quantum harmonic oscillator. From this mapping,

one finds a parabolic rate function associated with

Gaussian fluctuations of Aτ for α ¼ 1, and a more com-

plicated rate function describing non-Gaussian fluctuations

for α ¼ 2 [56].

A problem arises, however, when α > 2. Then the

mapping yields a quantum potential which is not confining

and, therefore, has no ground state energy for some

parameter values. For α ¼ 3, for example, one finds that

the quantum potential is

VkðxÞ ¼
γ2x2

2σ2
−
γ

2
− kx3; ð6Þ

where k is the real parameter entering in the generating

function of Aτ, which is related to the rate function by

Legendre transform (see the Supplemental Material [52]).

This potential has no finite ground state energy for any

k ∈ R because of the x3 term, which means that the rate

function is not related to a ground state energy or dominant

eigenvalue. The same applies for any odd integers α > 3,

suggesting that PτðaÞ either does not scale exponentially

with τ or that the scaling is exponential but becomes

anomalous, in the sense that

PτðaÞ ∼ e−τ
ξIðaÞ; ð7Þ

with ξ ≠ 1, and so that τ must be replaced by τξ in the limit

of Eq. (4) to obtain the correct rate function.

There is no method, as far as we know, that can give the

rate function of Aτ in this new scaling regime for arbitrary

noise amplitude [57]. However, we can explore the form of

PτðaÞ in the low-noise limit using the well-known saddle-

point, instanton, or optimal path approximation method,

widely used to study noise-activated transition phenomena in

equilibrium and nonequilibrium systems [58–63], including

the KPZ equation [64–66] and interacting particle systems

described in the hydrodynamic limit by stochastic transport

equations [19–21]. This approximation is summarized in the

Supplemental Material [52] and leads here to

PτðaÞ ∼ e−Sτ½x̄� ð8Þ

as σ → 0, where x̄ðtÞ is the optimal path or instanton that

minimizes the action

Sτ½x� ¼
1

2σ2

Z

τ

0

½_xðtÞ þ γxðtÞ�2dt ð9Þ

of the Ornstein-Uhlenbeck process subject to the constraint

Aτ ¼ a in Eq. (2). In our case, x̄ðtÞ is given by the following
Euler-Lagrange equation:

ẍðtÞ ¼ γ2xðtÞ − βσ2αxðtÞα−1 ð10Þ

with free boundary conditions, where β is a Lagrange

parameter that fixes the constraint Aτ ¼ a. Equivalently,

we can obtain x̄ðtÞ by solving Hamilton’s equations asso-

ciated with the Hamiltonian,

Hðx; pÞ ¼
σ2p2

2
− γxpþ βxα: ð11Þ

We cannot solve these equations exactly for finite τ and

α > 2. However, we find numerically that, as τ →∞,

x̄ð0Þ and x̄ðτÞ approach 0, implying that the associated

momentum p ¼ ð_xþ γxÞ=σ2 and “energy” H also vanish.

The infinite-time instanton thus evolves in phase space on
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the H ¼ 0 manifold, as shown in Fig. 1: it escapes the

unstable origin, performs a loop on the positive part of the

zero-energy manifold in finite time, before returning to

(0,0). As a result, we can express the action as

Sτ½x̄� ¼

I

H¼0

pdxþ βτa: ð12Þ

The line integral can be calculated exactly and so can the

Lagrange parameter as a function of the constraint Aτ ¼ a
(see the Supplemental Material [52]). Combining these, we

find that Sτ½x̄� is proportional to τ2=α, so that PτðaÞ has the
form of Eq. (7) with ξ ¼ 2=α, and

IðaÞ ¼
Sτ½x̄�

τξ
¼ c

γ½ðαþ2Þ=α�

σ2
að2=αÞ; ð13Þ

where

c ¼ π½ðα−2Þ=ð2αÞ�
�

2

αþ 2

Γð 2

α−2
Þ

Γð αþ2

2α−4
Þ
þ

1

α − 2

Γð α
α−2

Þ

Γð3α−2
2α−4

Þ

�

×

�

α − 2

2

Γð3α−2
2α−4

Þ

Γð α
α−2

Þ

�ð2=αÞ

ð14Þ

is a constant prefactor. In particular,

IðaÞ ¼

�

9

10

�

ð1=3Þ γð5=3Þ

σ2
að2=3Þ

IðaÞ ¼

�

4

3

�

ð1=2Þ γð3=2Þ

σ2
að1=2Þ ð15Þ

for α ¼ 3 and α ¼ 4, respectively. Note that, for simplicity,

we only give the result for a ≥ 0, since Aτ ≥ 0 when α is

even, whereas Ið−aÞ ¼ IðaÞ when α is odd due to the

symmetry of the process.

This exact expression for the rate function is our main

result. Although it is valid in the limit σ → 0, we show in

Fig. 2 that it gives a good approximation of the “true” rate

function obtained byMonte Carlo simulations for σ > 0, up

to around σ ¼ 0.5. To obtain this plot, we simulated 109

paths of the Ornstein-Uhlenbeck process using the Euler-

Maruyama scheme and transformed the histogram of Aτ for

different τ according to the large deviation limit of Eq. (4)

with τ replaced by τξ, so as to get an estimate of IðaÞ (see

the Supplemental Material [52]). We also plot ĨðaÞ ¼
σ2IðaÞ rather than IðaÞ, since the low-noise prediction

of Eq. (13) is independent of σ under this rescaling.

The results are found to converge for τ ≳ 20 or τ ≳ 30,

depending on the noise amplitude considered, and confirm

that PτðaÞ scales anomalously according to Eq. (7) with

the predicted ξ ¼ α=2. There are very few data points for

σ ¼ 0.25, since we are dealing with rare fluctuations that

are suppressed exponentially in T and 1=σ2, but those

obtained confirm the function obtained in Eq. (13), which

is, interestingly, nonconvex and homogenous (or scale

free). The τ scaling with ξ ¼ 2=α is consistent with the

fact that there is no mapping to the quantum problem, since

it implies that the generating function of Aτ diverges for all

k ≠ 0. This can also be seen by noting that, since ξ < 1 for

α > 2, we get IðaÞ ¼ 0 if we use the “wrong” limit shown

in Eq. (4). The Legendre transform of that zero rate

function diverges for all nonzero values of the conjugate

parameter k, which is what the quantum problem predicts

in the absence of bound states (see the Supplemental

Material [52]).

This applies to any odd α > 2, for which the mean a�, as
given by Eq. (5), vanishes since ρsðxÞ is even in x. For even

FIG. 1. Stream vector field of Hamilton’s equations describing

the instanton in phase space for α ¼ 3, γ ¼ 1, σ ¼ 1, and β ¼ 0.1.

Black line: Hðx; pÞ ¼ 0 manifold. Black point: unstable fixed

point at the origin. Blue point: stable fixed point ðx�; p�Þ. Red
point: turning point (x̂; pðx̂Þ).

FIG. 2. Scaled rate function ĨðaÞ¼σ2IðaÞ for γ ¼ 1 and α ¼ 3,

plotted for a ≥ 0. Black curve: low-noise result of Eq. (13), which

is independent of σ after rescaling. Data points: Monte Carlo

results for different noise amplitudes. Error bars are shown on all

points but are in most cases too small to be seen (see text and the

Supplemental Material [52]).
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values of α > 2, the situation is slightly more involved.

Then AT ≥ 0 and, for 0 ≤ a < a�, AT has normal large

deviations with ξ ¼ 1 [67,68], since the quantum problem

has a bound state, from which we can obtain the exact rate

function, as described in the Supplemental Material [52].

For a > a�, however, we have anomalous large deviations

with ξ ¼ 2=α and a rate function given, in the low-noise

limit, by our general result of Eq. (13), which predicts that

the mean is 0, consistently with the fact that a� → 0

as σ → 0.

To illustrate the physical meaning of the instanton, we

show in Fig. 3 typical paths of the process with γ ¼ 1 and

σ ¼ 0.5 leading to a given fluctuation Aτ ¼ a after τ ¼ 30,

the observed convergence time. For these parameters, we

found 28 out of 109 simulated paths reaching the value

Aτ ¼ 0.45� 0.02, which lies on the green curve in Fig. 2.

Since fluctuations can happen in simulations anywhere in

the whole time interval ½0; τ�, we compare these paths by

translating their maximum at the time τ=2 where the

instanton has its own maximum. This also allows us to

compute an average fluctuation path which can be com-

pared with the predicted instanton [63].

All the paths are in good agreement, as can be seen,

which shows that the low-noise theory correctly predicts

how fluctuations are created dynamically by escaping to a

position x̂, which scales like ðaτÞ1=α, over a finite time

proportional to 1=γ. It can be verified (see the Supplemental

Material [52]) that approximating this escape path from

x ¼ 0 by two exponentials with rate γ reproduces the

correct τ scaling of the action, though not the exact, low-

noise expression of the rate function. Similar results are

obtained for other values of Aτ and α > 2, provided that τ is

large enough and σ is small enough.

The instanton that we find is similar to those arising

in the Kramers escape problem [58], underlying many

noise-induced transition phenomena [69]. The essential

difference is that we consider a “global” constraint Aτ ¼ a
rather than a “local” constraint for the escape that a process

reach a given point or set in time. The instanton is also

related to condensation phase transitions in interacting

particle systems, such as the zero-range process, in which

an extensive number of particles accumulate on a spatial

site [70–72]. Here, we find “temporal condensates” in the

form of trajectories for the fluctuations of Aτ that are

localized in time compared to τ and whose height scales

with τ. A related condensation was reported recently in the

context of sums of random variables, which can be

dominated in some cases by a single, extensive or “giant”

value [73–78].

The results that we have presented show that temporal

condensation phenomena can arise in simple continuous-

time processes and are not necessarily associated with

power-law distributions, as found in Refs. [75–77]. They

also show, more remarkably, that anomalous large deviations

can arise without long-range correlations, non-Markovian

dynamics or disorder, and can be linked generally to a

breakdown of the quantum formalism used to calculate rate

functions. As such, they are expected to arise in other

reversible systems for which this formalism can be applied

whenever the quantum potential related to the process and

observable [51] does not have a finite ground state.

The problem remains to find the exact rate function of Aτ

in the anomalous regime for arbitrary noise amplitudes.

Most analytical methods rely on the normal scaling of large

deviations and, as a result, cannot be applied. This includes

the quantum mapping, as mentioned, but also the so-called

contraction principle [5]. There is a possibility that one can

obtain IðaÞ by finding the exact generating function of Aτ

via, for example, a time-dependent Feynman-Kac equation

[42] in which k is scaled with time. However, if IðaÞ is

nonconvex, then even this method will not work, since the

Legendre connection between generating functions and rate

functions is lost [7].

The same limitations apply to numerical methods devel-

oped recently to compute rate functions efficiently. Except

for the direct Monte Carlo method used here, all methods,

including cloning [79–81] and importance sampling

[82–84], work by reweighting trajectories exponentially

with time in a normal way. In this sense, the model

proposed here should serve as an ideal toy model to

develop new analytical and numerical methods that are

applicable to physical systems with anomalous large

deviations, including the many non-Markovian and disor-

dered processes mentioned in the introduction.

We are grateful to S. Sanbhapandit, S. Majumdar, R.

Chetrite, J. Meibohm, and A. Krajenbrink for useful

discussions, and also thank M. Kastner for computer

access. Support was received from NITheP (postdoctoral

fellowship) and the National Research Foundation of South

Africa (Grant No. 96199). Additional computations were

performed using Stellenbosch University’s HPC1.

FIG. 3. Typical paths of the process (in gray) satisfying the

constraint AT ¼ a found by direct Monte Carlo simulations,

compared with the instanton (in red) computed numerically.

Parameters: γ ¼ 1, σ ¼ 0.5, τ ¼ 30, and a ¼ 0.45� 0.02. The

maximum of each instanton is translated to t ¼ 15. Black curve:

average instanton.

PHYSICAL REVIEW LETTERS 121, 090602 (2018)

090602-4



*
danielnickelsen@sun.ac.za

†
htouchet@alum.mit.edu, htouchette@sun.ac.za

[1] F. Ritort, Nonequilibrium Fluctuations in Small Systems:

From Physics to Biology, Advances in Chemical Physics

Vol. 137 (John Wiley, New York, 2008), pp. 31–123.

[2] K. Sekimoto, Stochastic Energetics, Lecture Notes in

Physics, Vol. 799 (Springer, New York, 2010).

[3] C. Jarzynski, Equalities and inequalities: Irreversibility and

the second law of thermodynamics at the nanoscale, Annu.

Rev. Condens. Matter Phys. 2, 329 (2011).

[4] U. Seifert, Stochastic thermodynamics, fluctuation theorems

and molecular machines, Rep. Prog. Phys. 75, 126001

(2012).

[5] A. Dembo and O. Zeitouni, Large Deviations Techniques

and Applications, 2nd ed. (Springer, New York, 1998).

[6] Y. Oono, Large deviation and statistical physics, Prog.

Theor. Phys. Suppl. 99, 165 (1989).

[7] H. Touchette, The large deviation approach to statistical

mechanics, Phys. Rep. 478, 1 (2009).

[8] R. J. Harris and H. Touchette, Large deviation approach to

nonequilibrium systems, in Nonequilibrium Statistical

Physics of Small Systems: Fluctuation Relations and

Beyond, Reviews of Nonlinear Dynamics and Complexity,

Vol. 6, edited by R. Klages, W. Just, and C. Jarzynski

(Wiley-VCH, Weinheim, 2013), pp. 335–360.

[9] M. Baiesi, C. Maes, and B. Wynants, Fluctuations and

Response of Nonequilibrium States, Phys. Rev. Lett. 103,

010602 (2009).

[10] M. Baiesi, C. Maes, and B. Wynants, Nonequilibrium linear

response for Markov dynamics I: Jump processes and

overdamped diffusions, J. Stat. Phys. 137, 1094 (2009).

[11] C. Maes, K. Netočný, and B. Wynants, Monotonic Return

to Steady Nonequilibrium, Phys. Rev. Lett. 107, 010601

(2011).

[12] R. J. Harris and G. M. Schütz, Fluctuation theorems for

stochastic dynamics, J. Stat. Mech. (2007) P07020.

[13] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van

Duijvendijk, and F. van Wijland, Dynamical First-Order

Phase Transition in Kinetically Constrained Models of

Glasses, Phys. Rev. Lett. 98, 195702 (2007).

[14] D. Chandler and J. P. Garrahan, Dynamics on the way to

forming glass: Bubbles in space-time, Annu. Rev. Phys.

Chem. 61, 191 (2010).

[15] P. I. Hurtado and P. L. Garrido, Spontaneous Symmetry

Breaking at the Fluctuating Level, Phys. Rev. Lett. 107,

180601 (2011).

[16] Y. Baek and Y. Kafri, Singularities in large deviation

functions, J. Stat. Mech. (2015) P08026.

[17] Y. Baek, Y. Kafri, and V. Lecomte, Dynamical Symmetry

Breaking and Phase Transitions in Driven Diffusive

Systems, Phys. Rev. Lett. 118, 030604 (2017).

[18] H. Spohn, Large Scale Dynamics of Interacting Particles

(Springer Verlag, Berlin, 1991).

[19] B. Derrida, Non-equilibrium steady states: Fluctuations and

large deviations of the density and of the current, J. Stat.

Mech. (2007) P07023.

[20] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and

C. Landim, Stochastic interacting particle systems out of

equilibrium, J. Stat. Mech. (2007) P07014.

[21] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.

Landim, Macroscopic fluctuation theory, Rev. Mod. Phys.

87, 593 (2015).

[22] The hydrodynamic limit is equivalent, via the macroscopic

fluctuation theory [21], to a low-noise limit.

[23] G. Gradenigo, A. Sarracino, A. Puglisi, and H. Touchette,

Fluctuation relations without uniform large deviations,

J. Phys. A 46, 335002 (2013).

[24] A. Dembo, Y. Peres, and O. Zeitouni, Tail estimates for

one-dimensional random walk in random environment,

Commun. Math. Phys. 181, 667 (1996).

[25] N. Gantert and O. Zeitouni, Quenched sub-exponential tail

estimates for one-dimensional random walk in random

environment, Commun. Math. Phys. 194, 177 (1998).

[26] O. Zeitouni, Random walks in random environments,

J. Phys. A 39, R433 (2006).

[27] R. J. Harris and H. Touchette, Current fluctuations in

stochastic systems with long-range memory, J. Phys. A

42, 342001 (2009).

[28] M. van den Berg, E. Bolthausen, and F. den Hollander,

Moderate deviations for the volume of the Wiener sausage,

Ann. Math. 153, 355 (2001).

[29] P. L. Krapivsky, K. Mallick, and T. Sadhu, Large Deviations

in Single-File Diffusion, Phys. Rev. Lett. 113, 078101

(2014).

[30] T. Sadhu and B. Derrida, Large deviation function of a

tracer position in single file diffusion, J. Stat. Mech. (2015)

P09008.

[31] T. Imamura, K. Mallick, and T. Sasamoto, Large Deviations

of a Tracer in the Symmetric Exclusion Process, Phys. Rev.

Lett. 118, 160601 (2017).

[32] P. Le Doussal, S. N. Majumdar, and G. Schehr, Large

deviations for the height in 1D Kardar-Parisi-Zhang growth

at late times, Europhys. Lett. 113, 60004 (2016).

[33] P. Sasorov, B. Meerson, and S. Prolhac, Large deviations

of surface height in the 1þ 1-dimensional Kardar-Parisi-

Zhang equation: Exact long-time results for λH < 0, J. Stat.

Mech. (2017) 063203.

[34] I. Corwin, P. Ghosal, A. Krajenbrink, P. Le Doussal, and

L.-C. Tsai, Coulomb-Gas Electrostatics Controls Large

Fluctuations of the KPZ Equation, Phys. Rev. Lett. 121,

060201 (2018).

[35] J. T. Cox and D. Griffeath, Occupation times for critical

branching Brownian motions, Ann. Probab. 13, 1108 (1985).

[36] O. Louidor and W. Perkins, Large deviations for the

empirical distribution in the branching random walk,

Electron. J. Probab. 20, 18 (2015).

[37] B. Derrida and Z. Shi, Slower deviations of the branching

Brownian motion and of branching random walks, J. Phys.

A 50, 344001 (2017).

[38] R. van Zon and E. G. D. Cohen, Stationary and transient

work-fluctuation theorems for a dragged Brownian particle,

Phys. Rev. E 67, 046102 (2003).

[39] R. van Zon, S. Ciliberto, and E. G. D. Cohen, Power and

Heat Fluctuation Theorems for Electric Circuits, Phys. Rev.

Lett. 92, 130601 (2004).

[40] D. Florens-Landais and H. Pham, Large deviations in

estimation of an Ornstein-Uhlenbeck model, J. Appl.

Probab. 36, 60 (1999).

PHYSICAL REVIEW LETTERS 121, 090602 (2018)

090602-5

https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1143/PTPS.99.165
https://doi.org/10.1143/PTPS.99.165
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.1007/s10955-009-9852-8
https://doi.org/10.1103/PhysRevLett.107.010601
https://doi.org/10.1103/PhysRevLett.107.010601
https://doi.org/10.1088/1742-5468/2007/07/P07020
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1146/annurev.physchem.040808.090405
https://doi.org/10.1146/annurev.physchem.040808.090405
https://doi.org/10.1103/PhysRevLett.107.180601
https://doi.org/10.1103/PhysRevLett.107.180601
https://doi.org/10.1088/1742-5468/2015/08/P08026
https://doi.org/10.1103/PhysRevLett.118.030604
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1088/1742-5468/2007/07/P07014
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1088/1751-8113/46/33/335002
https://doi.org/10.1007/BF02101292
https://doi.org/10.1007/s002200050354
https://doi.org/10.1088/0305-4470/39/40/R01
https://doi.org/10.1088/1751-8113/42/34/342001
https://doi.org/10.1088/1751-8113/42/34/342001
https://doi.org/10.2307/2661345
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1088/1742-5468/2015/09/P09008
https://doi.org/10.1088/1742-5468/2015/09/P09008
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1209/0295-5075/113/60004
https://doi.org/10.1088/1742-5468/aa73f8
https://doi.org/10.1088/1742-5468/aa73f8
https://doi.org/10.1103/PhysRevLett.121.060201
https://doi.org/10.1103/PhysRevLett.121.060201
https://doi.org/10.1214/aop/1176992799
https://doi.org/10.1214/EJP.v20-2147
https://doi.org/10.1088/1751-8121/aa7f98
https://doi.org/10.1088/1751-8121/aa7f98
https://doi.org/10.1103/PhysRevE.67.046102
https://doi.org/10.1103/PhysRevLett.92.130601
https://doi.org/10.1103/PhysRevLett.92.130601
https://doi.org/10.1239/jap/1032374229
https://doi.org/10.1239/jap/1032374229


[41] B. Bercu and A. Rouault, Sharp large deviations for the

Ornstein-Uhlenbeck process, Theory Probab. Appl. 46, 1

(2002).

[42] D. Boyer and D. S. Dean, On the distribution of estimators

of diffusion constants for Brownian motion, J. Phys. A 44,

335003 (2011).

[43] D. Boyer, D. S. Dean, C.Mejía-Monasterio, and G. Oshanin,

Optimal estimates of the diffusion coefficient of a single

Brownian trajectory, Phys. Rev. E 85, 031136 (2012).

[44] G. Pedrizzetti and E. A. Novikov, On Markov modelling of

turbulence, J. Fluid Mech. 280, 69 (1994).

[45] K. R. Sreenivasan and R. A. Antonia, The phenomenology

of small-scale turbulence, Annu. Rev. Fluid Mech. 29, 435

(1997).

[46] T. Matsumoto and M. Takaoka, Large-scale lognormality in

turbulence modeled by the Ornstein-Uhlenbeck process,

Phys. Rev. E 87, 013008 (2013).

[47] D. Nickelsen, Master equation for She-Leveque scaling and

its classification in terms of other Markov models of

developed turbulence, J. Stat. Mech. (2017) 073209.

[48] G. L. Eyink, Action principle in nonequilibrium statistical

dynamics, Phys. Rev. E 54, 3419 (1996).

[49] S. N. Majumdar and A. J. Bray, Large-deviation functions

for nonlinear functionals of a Gaussian stationary Markov

process, Phys. Rev. E 65, 051112 (2002).

[50] H. Fujisaka and T. Yamada, Level dynamics approach to the

large deviation statistical characteristic function, Phys. Rev.

E 75, 031116 (2007).

[51] H. Touchette, Introduction to dynamical large deviations

of Markov processes, Physica (Amsterdam) 504A, 5

(2018).

[52] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.090602 for the ef-

fect of boundary terms in normal large deviations, including

Refs. [53–55].

[53] R. van Zon and E. G. D. Cohen, Extension of the

Fluctuation Theorem, Phys. Rev. Lett. 91, 110601 (2003).

[54] S. Sabhapandit, Work fluctuations for a harmonic oscillator

driven by an external random force, Europhys. Lett. 96,

20005 (2011).

[55] S. Sabhapandit, Heat and work fluctuations for a harmonic

oscillator, Phys. Rev. E 85, 021108 (2012).

[56] W. Bryc and A. Dembo, Large deviations for quadratic

functionals of Gaussian processes, J. Theor. Probab. 10, 307

(1997).

[57] In many of the applications mentioned in the introduction,

including the KPZ equation, the large deviation function is

obtained in the anomalous scaling via exact representations or

mappings based, for example, on Coulomb gases and random

matrices. We know of no such mappings for our problem.

[58] L. Onsager and S. Machlup, Fluctuations and irreversible

processes, Phys. Rev. 91, 1505 (1953).

[59] M. I. Freidlin and A. D. Wentzell, Random Perturbations of

Dynamical Systems, Vol. 260 Grundlehren der Mathemati-

schen Wissenschaften (Springer, New York, 1984).

[60] R. Graham, Macroscopic potentials, bifurcations and noise

in dissipative systems, in Noise in Nonlinear Dynamical

Systems, edited by F. Moss and P. V. E. McClintock,

Vol. 1 (Cambridge University Press, Cambridge, 1989),

pp. 225–278.

[61] D. G. Luchinsky, P. V. E. McClintock, and M. I. Dykman,

Analogue studies of nonlinear systems, Rep. Prog. Phys. 61,

889 (1998).

[62] D. Nickelsen and A. Engel, Asymptotics of work distribu-

tions: The pre-exponential factor, Eur. Phys. J. B 82, 207

(2011).

[63] T. Grafke, R. Grauer, and T. Schäfer, The instanton method

and its numerical implementation in fluid mechanics,

J. Phys. A 48, 333001 (2015).

[64] I. V. Kolokolov and S. E. Korshunov, Universal and non-

universal tails of distribution functions in the directed

polymer and Kardar-Parisi-Zhang problems, Phys. Rev. B

78, 024206 (2008).

[65] H. C. Fogedby and W. Ren, Minimum action method for the

Kardar-Parisi-Zhang equation, Phys. Rev. E 80, 041116

(2009).

[66] B. Meerson, E. Katzav, and A. Vilenkin, Large Deviations

of Surface Height in the Kardar-Parisi-Zhang Equation,

Phys. Rev. Lett. 116, 070601 (2016).

[67] V. Fatalov, Exact asymptotics of large deviations of sta-

tionary Ornstein-Uhlenbeck processes for Lp-functionals,

p > 0, Probl. Inf. Transm. 42, 46 (2006).

[68] V. Fatalov, Occupation time and exact asymptotics of

distributions of Lp-functionals of the Ornstein-Uhlenbeck

processes, p > 0, Theory Probab. Appl. 53, 13 (2009).

[69] C. W. Gardiner, Handbook of Stochastic Methods for

Physics, Chemistry and the Natural Sciences, 2nd ed.,

Springer Series in Synergetics Vol. 13 (Springer, New York,

1985).

[70] S. Grosskinsky, G. M. Schütz, and H. Spohn, Condensation

in the zero range process: Stationary and dynamical proper-

ties, J. Stat. Phys. 113, 389 (2003).

[71] R. J. Harris, V. Popkov, and G. M. Schütz, Dynamics of

instantaneous condensation in the ZRP conditioned on an

atypical current, Entropy 15, 5065 (2013).

[72] P. Chleboun and S. Grosskinsky, Condensation in stochastic

particle systems with stationary product measures, J. Stat.

Phys. 154, 432 (2014).

[73] J. Szavits-Nossan, M. R. Evans, and S. N. Majumdar,

Constraint-Driven Condensation in Large Fluctuations of

Linear Statistics, Phys. Rev. Lett. 112, 020602 (2014).

[74] J. Szavits-Nossan, M. R. Evans, and S. N. Majumdar,

Condensation transition in joint large deviations of linear

statistics, J. Phys. A 47, 455004 (2014).

[75] M. Zannetti, F. Corberi, and G. Gonnella, Condensation of

fluctuations in and out of equilibrium, Phys. Rev. E 90,

012143 (2014).

[76] F. Corberi, Large deviations, condensation and giant

response in a statistical system, J. Phys. A 48, 465003

(2015).

[77] F. Corberi, Development and regression of a large fluc-

tuation, Phys. Rev. E 95, 032136 (2017).

[78] J. Szavits-Nossan and M. R. Evans, Inequivalence of non-

equilibrium path ensembles: The example of stochastic

bridges, J. Stat. Mech. (2015) P12008.

[79] C. Giardina, J. Kurchan, and L. Peliti, Direct Evaluation of

Large-Deviation Functions, Phys. Rev. Lett. 96, 120603

(2006).

[80] V. Lecomte and J. Tailleur, A numerical approach to large

deviations in continuous time, J. Stat. Mech. (2007) P03004.

PHYSICAL REVIEW LETTERS 121, 090602 (2018)

090602-6

https://doi.org/10.1137/S0040585X97978737
https://doi.org/10.1137/S0040585X97978737
https://doi.org/10.1088/1751-8113/44/33/335003
https://doi.org/10.1088/1751-8113/44/33/335003
https://doi.org/10.1103/PhysRevE.85.031136
https://doi.org/10.1017/S0022112094002855
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1146/annurev.fluid.29.1.435
https://doi.org/10.1103/PhysRevE.87.013008
https://doi.org/10.1088/1742-5468/aa786a
https://doi.org/10.1103/PhysRevE.54.3419
https://doi.org/10.1103/PhysRevE.65.051112
https://doi.org/10.1103/PhysRevE.75.031116
https://doi.org/10.1103/PhysRevE.75.031116
https://doi.org/10.1016/j.physa.2017.10.046
https://doi.org/10.1016/j.physa.2017.10.046
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.090602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.090602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.090602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.090602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.090602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.090602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.090602
https://doi.org/10.1103/PhysRevLett.91.110601
https://doi.org/10.1209/0295-5075/96/20005
https://doi.org/10.1209/0295-5075/96/20005
https://doi.org/10.1103/PhysRevE.85.021108
https://doi.org/10.1023/A:1022656331883
https://doi.org/10.1023/A:1022656331883
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1088/0034-4885/61/8/001
https://doi.org/10.1088/0034-4885/61/8/001
https://doi.org/10.1140/epjb/e2011-20133-y
https://doi.org/10.1140/epjb/e2011-20133-y
https://doi.org/10.1088/1751-8113/48/33/333001
https://doi.org/10.1103/PhysRevB.78.024206
https://doi.org/10.1103/PhysRevB.78.024206
https://doi.org/10.1103/PhysRevE.80.041116
https://doi.org/10.1103/PhysRevE.80.041116
https://doi.org/10.1103/PhysRevLett.116.070601
https://doi.org/10.1134/S0032946006010054
https://doi.org/10.1137/S0040585X97983407
https://doi.org/10.1023/A:1026008532442
https://doi.org/10.3390/e15115065
https://doi.org/10.1007/s10955-013-0844-3
https://doi.org/10.1007/s10955-013-0844-3
https://doi.org/10.1103/PhysRevLett.112.020602
https://doi.org/10.1088/1751-8113/47/45/455004
https://doi.org/10.1103/PhysRevE.90.012143
https://doi.org/10.1103/PhysRevE.90.012143
https://doi.org/10.1088/1751-8113/48/46/465003
https://doi.org/10.1088/1751-8113/48/46/465003
https://doi.org/10.1103/PhysRevE.95.032136
https://doi.org/10.1088/1742-5468/2015/12/P12008
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1088/1742-5468/2007/03/P03004


[81] C. Giardina, J. Kurchan, V. Lecomte, and J. Tailleur,

Simulating rare events in dynamical processes, J. Stat.

Phys. 145, 787 (2011).

[82] J. A. Bucklew, Introduction to Rare Event Simulation

(Springer, New York, 2004).

[83] H. Touchette, A basic introduction to large deviations: Theory,

applications, simulations, in Modern Computational Science

11: Lecture Notes from the 3rd International Oldenburg

Summer School, edited by R. Leidl and A. K. Hartmann

(BIS-Verlag der Carl von Ossietzky Universität Oldenburg,

Oldenburg, 2011).

[84] R. Chetrite and H. Touchette, Variational and optimal

control representations of conditioned and driven processes,

J. Stat. Mech. (2015) P12001.

PHYSICAL REVIEW LETTERS 121, 090602 (2018)

090602-7

https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1088/1742-5468/2015/12/P12001



