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Abstract.

Many experimentally relevant quantum spin chains are approximately integrable,

and support long-lived quasiparticle excitations. A canonical example of integrable

model of quantum magnetism is the XXZ spin chain, for which energy spreads

ballistically, but, surprisingly, high-temperature spin transport can be diffusive or

superdiffusive. We review the transport properties of this model using an intuitive

quasiparticle picture that relies on the recently introduced framework of generalized

hydrodynamics. We discuss how anomalous linear response properties emerge from

hierarchies of quasiparticles both in integrable and near-integrable limits, with an

emphasis on the role of hydrodynamic fluctuations. We also comment on recent

developments including non-linear response, full-counting statistics and far-from-

equilibrium transport. We provide an overview of recent numerical and experimental

results on transport in XXZ spin chains.
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1. Introduction

A natural way to study a complex system, such as the fluid of electrons in a metal, is to

perturb it and see how it responds. Of the tools an experimentalist has to perturb the

electron fluid, the simplest is to apply an electric field; the corresponding response is the

(electrical) conductivity. Since the conductivity is so simple to measure, it is the most-

studied dynamical signature of condensed-matter systems. Historically, these studies

focused on the low-temperature regime, for at least three reasons. First, the conductivity

in this limit can be treated in terms of a dilute gas of elementary excitations, allowing for

controlled theoretical calculations. Second, heating a metal to its Fermi temperature

causes it to interact strongly with lattice vibrations and other extraneous degrees of

freedom; at low temperatures these freeze out, and we can probe the intrinsic behavior



Anomalous transport from quasiparticles 3

� = 0 � = 1

ballistic spin transport        diffusionsuperdiffusion
z = 1

<latexit sha1_base64="mH5DZ5Mv+uEVAInKU53GQennR8g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKRC9C0IvHiOYByRJmJ51kyOzsMjMrxCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwupn6zUdUmkfywYxj9EM6kLzPGTVWun+68rrFklt2ZyDLxMtICTLUusWvTi9iSYjSMEG1bntubPyUKsOZwEmhk2iMKRvRAbYtlTRE7aezUyfkxCo90o+ULWnITP09kdJQ63EY2M6QmqFe9Kbif147Mf1LP+UyTgxKNl/UTwQxEZn+TXpcITNibAllittbCRtSRZmx6RRsCN7iy8ukcVb2KuXzu0qpep3FkYcjOIZT8OACqnALNagDgwE8wyu8OcJ5cd6dj3lrzslmDuEPnM8f3ZuNiA==</latexit>

z = 3/2

<latexit sha1_base64="umgnUKUG1QHTJe4/LTWuLdyzmOQ=">AAAB7HicbVBNS8NAEJ3Ur1q/oh69LBbBU01qRS9C0YvHCqYttKFstpt26WYTdjdCDf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXpBwprTjfFuFldW19Y3iZmlre2d3z94/aKo4lYR6JOaxbAdYUc4E9TTTnLYTSXEUcNoKRrdTv/VIpWKxeNDjhPoRHggWMoK1kbyn6/Ozas8uOxVnBrRM3JyUIUejZ391+zFJIyo04Vipjusk2s+w1IxwOil1U0UTTEZ4QDuGChxR5WezYyfoxCh9FMbSlNBopv6eyHCk1DgKTGeE9VAtelPxP6+T6vDKz5hIUk0FmS8KU450jKafoz6TlGg+NgQTycytiAyxxESbfEomBHfx5WXSrFbcWuXivlau3+RxFOEIjuEUXLiEOtxBAzwgwOAZXuHNEtaL9W59zFsLVj5zCH9gff4Av4uN/w==</latexit>

z = 2

<latexit sha1_base64="1/+bXmU6v6ZU5lORScQurxcE2YM=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CRBshaGMZ0cRAcoS9zVyyZG/v2N0TYshPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0gE18Z1v53cyura+kZ+s7C1vbO7V9w/aOo4VQwbLBaxagVUo+ASG4Ybga1EIY0CgQ/B8HrqPzyi0jyW92aUoB/RvuQhZ9RY6e7pstItltyyOwNZJl5GSpCh3i1+dXoxSyOUhgmqddtzE+OPqTKcCZwUOqnGhLIh7WPbUkkj1P54duqEnFilR8JY2ZKGzNTfE2MaaT2KAtsZUTPQi95U/M9rpya88MdcJqlByeaLwlQQE5Pp36THFTIjRpZQpri9lbABVZQZm07BhuAtvrxMmpWyVy2f3VZLtassjjwcwTGcggfnUIMbqEMDGPThGV7hzRHOi/PufMxbc042cwh/4Hz+AN8fjYk=</latexit>

Perturbation breaking 
integrability

�(!) ⇠ p
!

<latexit sha1_base64="3SO+GXOn9rBkja5wq2S6ZsUO0Qg=">AAACCnicdVC7TsMwFHXKq5RXgJHFUCGVpUqqUtqtgoWxSPQhNVHluE5q1U6C7SBVUWcWfoWFAYRY+QI2/ganLRIgOJKt43Pu1fU9XsyoVJb1YeSWlldW1/LrhY3Nre0dc3evI6NEYNLGEYtEz0OSMBqStqKKkV4sCOIeI11vfJH53VsiJI3CazWJictREFKfYqS0NDAPHUkDjkpOxEmATqB+cn3dCJXOpenALFplS6NWgxmx65atSaNRr1Qa0J5ZllUEC7QG5rszjHDCSagwQ1L2bStWboqEopiRacFJJIkRHqOA9DUNESfSTWerTOGxVobQj4Q+oYIz9XtHiriUE+7pSo7USP72MvEvr58ov+6mNIwTRUI8H+QnDKoIZrnAIRUEKzbRBGFB9V8hHiGBsNLpFXQIX5vC/0mnUrar5dOrarF5vogjDw7AESgBG5yBJrgELdAGGNyBB/AEno1749F4MV7npTlj0bMPfsB4+wRrgJrF</latexit>

       subdiffusion
Diffusion

h

<latexit sha1_base64="o0Em+1LrPCqDYpYwPOqewD9gKuI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1aqXzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f0JGM9A==</latexit>

�

<latexit sha1_base64="daJ3KyfdKBV6jG2FlLJfAYt+/tM=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WNRDx4r2A9oQ9lsJ+3aTTbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVHBpcSaXbATMgRQwNFCihnWhgUSChFYxupn7rCbQRKn7AcQJ+xAaxCAVnaKVm9xYksl654lbdGegy8XJSITnqvfJXt694GkGMXDJjOp6boJ8xjYJLmJS6qYGE8REbQMfSmEVg/Gx27YSeWKVPQ6VtxUhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uwys/E3GSIsR8vihMJUVFp6/TvtDAUY4tYVwLeyvlQ6YZRxtQyYbgLb68TJpnVe+8enF/Xqld53EUyRE5JqfEI5ekRu5InTQIJ4/kmbySN0c5L8678zFvLTj5zCH5A+fzB2MkjwQ=</latexit>

C(0, t) ⇠ t�1

<latexit sha1_base64="txcFMQ6wmdRQ0qMOkms8p0g7Ogs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQQUsiFV0Wu3FZwT6gjWUynbRDZ5IwcyOWkF9x40IRt/6IO//G6WOh1QMXDufcy733+LHgGhzny8qtrK6tb+Q3C1vbO7t79n6xpaNEUdakkYhUxyeaCR6yJnAQrBMrRqQvWNsf16d++4EpzaPwDiYx8yQZhjzglICR+naxXnZO4QT3NJcY7tMzN+vbJafizID/EndBSmiBRt/+7A0imkgWAhVE667rxOClRAGngmWFXqJZTOiYDFnX0JBIpr10dnuGj40ywEGkTIWAZ+rPiZRIrSfSN52SwEgve1PxP6+bQHDlpTyME2AhnS8KEoEhwtMg8IArRkFMDCFUcXMrpiOiCAUTV8GE4C6//Je0zitutXJxWy3Vrhdx5NEhOkJl5KJLVEM3qIGaiKJH9IRe0KuVWc/Wm/U+b81Zi5kD9AvWxzeI2ZLY</latexit>

C(0, t) ⇠ t�↵(h,�)

<latexit sha1_base64="BQEaYP68Xwig5d/uTl7shN8MLmQ=">AAACCnicbVDLSgNBEJyNrxhfUY9eRoOQQAy7EtFjMB48RjCJkI2hdzIxQ2YfzPQKYcnZi7/ixYMiXv0Cb/6Nk8dBowUNRVU33V1eJIVG2/6yUguLS8sr6dXM2vrG5lZ2e6ehw1gxXmehDNWNB5pLEfA6CpT8JlIcfE/ypjeojv3mPVdahME1DiPe9uEuED3BAI3Uye5X83YRC9TVwqd4mxy5IKM+5PtF94JLhMKok83ZJXsC+pc4M5IjM9Q62U+3G7LY5wEyCVq3HDvCdgIKBZN8lHFjzSNgA7jjLUMD8LluJ5NXRvTQKF3aC5WpAOlE/TmRgK/10PdMpw/Y1/PeWPzPa8XYO2snIohi5AGbLurFkmJIx7nQrlCcoRwaAkwJcytlfVDA0KSXMSE48y//JY3jklMunVyVc5XzWRxpskcOSJ445JRUyCWpkTph5IE8kRfyaj1az9ab9T5tTVmzmV3yC9bHN07dmMo=</latexit>

In
te
gr
ab

le

�(!) & log!

<latexit sha1_base64="ZWKsMgo/fa66U1sdQ+alBq9AhKE=">AAACC3icdVDLSgMxFM3UV62vqks3oUWomyFTW213RTcuK9gHdErJpOk0NJkMSUYopXs3/oobF4q49Qfc+TemD0FFDwQO55zLzT1BzJk2CH04qZXVtfWN9GZma3tndy+7f9DUMlGENojkUrUDrClnEW0YZjhtx4piEXDaCkaXM791S5VmMrox45h2BQ4jNmAEGyv1sjlfs1Dggi8FDfEJ9ENjwwL6XIZwIfayeeRWq6jkVSFyywgVK2eWoNNipVyGnovmyIMl6r3su9+XJBE0MoRjrTseik13gpVhhNNpxk80jTEZ4ZB2LI2woLo7md8yhcdW6cOBVPZFBs7V7xMTLLQei8AmBTZD/dubiX95ncQMKt0Ji+LE0IgsFg0SDo2Es2JgnylKDB9bgoli9q+QDLHCxNj6MraEr0vh/6RZdL2SW74u5WsXyzrS4AjkQAF44BzUwBWogwYg4A48gCfw7Nw7j86L87qIppzlzCH4AeftE5XZmss=</latexit>

Ballistic

Figure 1. Summary phase diagram of spin transport in the XXZ spin chain.

In the integrable limit and at half-filling (zero net magnetization, magnetic field h = 0),

spin transport is ballistic in the easy-plane (∆ < 1) phase, diffusive in the easy-plane

phase (∆ > 1) with anomalous full counting statistics, and superdiffusive with z = 3/2

at the isotropic point ∆ = 1. Away from half-filling h > 0, spin transport is ballistic

for all ∆ but the local relaxation of the dynamical structure factor is anomalous

with continuously exponents. Away from integrability, for weak perturbations and

at half-filling, transport is likely diffusive everywhere at long times. However, at

large anistropy, spin transport is subdiffusive with z = 4 for a parametrically large

regime. For ∆ = 1, perturbations preserving the SU(2) symmetry perturbatively lead

to superdiffusive transport due to long-lived quasiparticles.

of the electron liquid. Third, and most importantly, low temperatures are where one

sees qualitatively striking dynamical phenomena like superconductivity—by contrast,

high-temperature states are expected to be normal metals with short mean free paths.

Equivalently (by the Einstein relation) we expect high-temperature transport to be

diffusive.

Hydrodynamics supports this empirical conclusion. Imagine initializing a system

in a non-equilibrium initial state. By locality, at short times one can divide the system

up into local mesoscale “cells.” Generic many-body dynamics is chaotic, so after a short

evolution time the local state in each cell approaches a random state subject to the

relevant conservation laws (which apply locally). Since all other information about the

initial state has been lost, the subsequent evolution just involves the equilibration of

these few remaining slow variables across the system. In the limit of long-wavelength

fluctuations, one can write down the most general equations for these relaxation

processes within a gradient expansion. Whether this remaining dynamics is rich or

simple depends on the nature of these residual conserved quantities. When momentum

is conserved, the resulting fluid dynamics is rich; when it is not—as in electronic systems

embedded in a crystal lattice or an amorphous medium—hydrodynamics predicts that
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all transport should be governed by the diffusion equation. At low temperatures,

in two or more dimensions, a system might acquire additional slow modes, such as

long-wavelength order-parameter fluctuations in a phase with spontaneous symmetry

breaking [1]. But at high temperatures, diffusion is the inevitable consequence of

standard hydrodynamics, and in one dimension all nonzero temperatures are high

enough to prevent ordering.

A series of experimental advances around the year 2000, most notably in ultracold

atomic gases, allowed one to experimentally access the regime of hot but isolated

quantum matter [2]. These studies led to a realization that is obvious in retrospect but

has consequences that had not been fully appreciated: the assumption of rapid chaotic

local thermalization is false in many one-dimensional systems, invalidating the logic we

sketched in the previous paragraph. Rather, on experimentally relevant timescales, one-

dimensional and quasi-one-dimensional quantum gases are approximately integrable.

Integrable systems can be regarded as having extensively many conserved charges, or

equivalently as hosting stable, ballistically propagating quasiparticles. This structure

suggests that the appropriate framework for describing them is not hydrodynamics

but a collisionless Boltzmann equation. Such a description was recently developed

using the framework of generalized hydrodynamics (GHD) [3, 4]. GHD offers

a quantitative description of transport from nonequilibrium initial states [3–33],

entanglement dynamics [34–36] and correlation spreading [37, 38], as well as analytical

expressions for linear response quantities such as Drude weights [11, 39–42] and diffusion

constants [43–48]. As we will discuss in detail in this review, the GHD framework

also revealed the existence of anomalous transport regimes in strongly interacting spin

chains [46, 49–61], which motivated recent experiments [62–65].

Concurrently with these advances, it also became possible to perform efficient

numerical simulations of the dynamics of lattice models using matrix-product

methods [66]. These simulations at first focused on the XXZ spin chain, governed

by the Hamiltonian

ĤXXZ = J
∑

i

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1 + ∆Ŝzi Ŝ

z
i+1

)
, (1)

where Ŝα = σ̂α/2 are spin-1/2 operators, and we shall set J = 1 in what follows. The

total magnetization along the z axis,
∑

i Ŝ
z
i , is conserved under ĤXXZ. We will be

interested in how magnetization is transported. Note that ĤXXZ maps onto a model of

interacting fermions via a Jordan-Wigner transformation [67]. In the fermion language,

the total magnetization maps onto the total particle number.

The XXZ model has a ground-state phase transition at |∆| = 1. For |∆| < 1,

spins in the ground state point along the equator of the Bloch sphere, while for |∆| > 1

they point toward the poles. The nature of the elementary excitations is also distinct:

in the former case they are long-wavelength, linearly dispersing spin waves and the

spectrum is gapless, and in the latter they are domain walls and the spectrum is gapped.

One might expect these ground-state distinctions to be irrelevant for high-temperature

transport: regardless of ∆, the model is integrable and has ballistic quasiparticles.
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Naively this suggests that transport should always be ballistic. Well before the advent

of GHD, however, it had been appreciated that ballistic quasiparticles can give rise

to diffusive transport of some charges [68–70]. What numerics revealed is that both

forms of transport occur in the XXZ model, depending on the value of ∆: at |∆| = 1,

transport undergoes an infinite-temperature phase transition from ballistic to diffusive

(Fig. 1). The critical point ∆ = 1 exhibits superdiffusion [49, 50] with an anomalous

transport exponent x ∼ t2/3 (which is analytically understood); based on numerical

evidence from scaling functions [57], it is also believed that transport is governed by

the Kardar-Parisi-Zhang equation [71] (though this has not yet been microscopically

derived). The recognition that such high-temperature dynamical phase transitions can

occur even in one dimension is one of the central new discoveries in quantum dynamics.

(A slightly earlier instance is the many-body localization transition in disordered spin

chains [72].)

The aim of this review is to describe our current understanding of why distinct

dynamical phases can occur in integrable spin chains. The explanation involves two

crucial ingredients: the existence of stable quasiparticles at high density. Because

the quasiparticles are stable at all temperatures, a change in their character has

consequences for dynamics at all temperatures. (A related manifestation of this

fact is the existence of “strong zero modes” [73].) At high densities, collisions

among quasiparticles renormalize the properties of each individual quasiparticle; these

renormalization effects are key to the possibility of non-ballistic transport in integrable

systems. When the nature of the quasiparticles changes, it is natural for these

renormalization effects also to change.

1.1. Scope and organization of this review

This review aims to be a self-contained treatment of anomalous dynamics in integrable

and near-integrable systems. We do not assume any knowledge of background

topics such as generalized hydrodynamics or integrability-breaking; nor do we offer

a comprehensive introduction to these topics. Instead, we introduce and physically

motivate key results from these areas when they are relevant to our discussion. For

recent pedagogical introductions to generalized hydrodynamics see [74–76]; for diffusive

corrections to GHD, see [77]; for an introduction to integrability-breaking perturbations

within GHD see [78]. The review article [79] has an extensive discussion of numerical

and exact results on transport.

Our work has some overlap with a recent review on superdiffusion in integrable

systems [80]. Our emphasis is different, however: Ref. [80] focused on superdiffusion at

the Heisenberg point; our work focuses more generally on the nontrivial consequences of

long-lived quasiparticles for transport and dynamics. This new emphasis is motivated

by recent developments (mostly since the publication of Ref. [80]) showing that

superdiffusion is only one of a range of surprising transport phenomena that stem from

the existence of long-lived quasiparticles. In addition, transport in XXZ spin chains has
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become a topic of great experimental relevance since the publication of Refs. [79, 80].

Accordingly, this work offers a more detailed survey of the current experimental status

of the field.

The rest of this review is organized as follows. In Sec. 2 we give a brief self-contained

introduction to the concepts that are needed to understand GHD and transport in

integrable (and nearly integrable) systems. In Sec. 3 we provide a detailed discussion—

both in the linear-response regime and away from it—of the dynamics of one of the

simplest examples with anomalous behavior, the “folded” limit of the XXZ spin chain.

In Sec. 4 we extend our results away from the folded limit to the easy-axis regime of the

XXZ spin chain. In Sec. 5 we extend them further to the isotropic Heisenberg point,

at which we find very different results. In Sec. 6 we briefly review the easy-plane limit

of the XXZ spin chain. In Sec. 7 we discuss numerical and experimental studies of

transport in spin chains. We conclude in Sec. 8 with a discussion of open questions.

2. Background

2.1. Thermal states of integrable systems

The defining property of integrable systems is that they possess extensively many local

conserved charges. A strictly local conserved charge is an operator Q̂ that can be

written as a translation-invariant sum of local operators, Q̂ =
∑

i q̂i where the operator

q̂i has support (i.e., acts nontrivially) only on finitely many sites in the thermodynamic

limit. (One can also define quasilocal charges [81] analogously, by allowing q̂i to have

exponential tails. For our purposes the distinction between these two concepts will not

be important.) The stationary states of an integrable system are generalized Gibbs

states, which are the highest-entropy states subject to a set of conservation laws. If Q̂n

are conserved charges that commute with one another, one can represent a generalized

Gibbs state as the density matrix ρ̂ ∝ exp
(
−∑n βnQ̂n

)
.

An equivalent but more physically transparent way of characterizing equilibrium

states of integrable systems is in terms of quasiparticles. One imagines (in the spirit

of the coordinate Bethe ansatz) constructing a general eigenstate on a ring of size L

as follows. Begin with a trivial vacuum state (e.g., the |↓↓ . . . ↓↓〉 state in the case of

the XXZ spin chain) and start adding particles. In general, once many particles are

present, they can exchange energy and momentum through collisions. However, in an

integrable system the kinematics of collisions are highly restricted, so that essentially all

collisions just involve forward scattering. Thus, each quasiparticle moves ballistically,

but in a medium with a refractive index that is determined by the occupation pattern

of the other quasiparticles. The eigenstates on a ring are labeled by the quasimomenta

(or “rapidities”) of each quasiparticle, {λi}Ni=1 for an N -particle state. In the free-

fermion limit these rapidities would just be the occupation numbers of the single-particle

eigenstates. In an interacting integrable system, however, the quantization condition for

each quasiparticle depends on the state of the rest of the system, so one computes the
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set of rapidities {λi} in an eigenstate by solving the coupled Bethe equations.

Note that the integrable lattice models of interest here host not only elementary

quasiparticles, but also bound states of quasiparticles; these bound states are referred to

as Bethe strings, and have been experimentally observed [82]. Because of integrability,

strings are strictly stable at arbitrary energy density. Therefore, we can treat each string

type as a separate species of quasiparticle, indexed by the label s.

We will be interested in characterizing states in the thermodynamic limit, where

the allowed quasiparticle labels form a continuum. To this end we define the density

of quasiparticles of species s in a narrow rapidity window around λ as ρs(λ). One can

analogously define a density of states ρtot
s (λ): as discussed above, each quasiparticle

affects the quantization condition for all the others, so the density of states must

generally be determined self-consistently. It is useful to define an “occupation factor”

ns(λ) ≡ ρs(λ)/ρtot
s (λ); again, in a free system in equilibrium this reduces to the Fermi

function, but in general it has to be evaluated by solving a set of coupled equations.

The thermodynamic Bethe ansatz (TBA) formalism [83] provides a straightforward

procedure for computing these quantities.

Thus there are two ways of characterizing stationary states of integrable systems:

either in terms of conserved charges or in terms of quasiparticle distribution functions.

These descriptions are related through a mapping called “string-charge duality” [84]; for

our purposes, the key point is that the two descriptions contain the same information.

In what follows we will primarily characterize equilibrium states using the quasiparticle

distribution function, as the GHD equations have a more intuitive formulation in this

picture.

2.2. Generalized hydrodynamics

2.2.1. Kubo formula The simplest dynamical properties of a many-body system to

calculate are linear-response transport coefficients like the optical conductivity σ(ω),

i.e., the current J generated in response to a sufficiently small external electric field.

For any charge Q̂, the current Ĵ =
∑

x ĵ(x) is defined by the continuity equation

∂tq̂(x) + ∂xĵ(x) = 0. Here, the derivative is to be interpreted as a discrete derivative

in the usual sense. The linear-response conductivity about an equilibrium state can

be expressed in terms of a Kubo formula. Here we will be concerned with the high-

temperature limit, where the Kubo formula takes the following simple form:

Tσ(ω) =
1

L

∫ ∞

0

dt〈Ĵ(t)Ĵ(0)〉eiωt. (2)

Note that although σ(ω) → 0 in the high-temperature limit (as the system is already

in the maximum entropy state and cannot respond to any perturbations) the quantity

Tσ(ω) has a finite limit. The quantity Tσ(ω) is related to the density-density correlator

C(x, t) = 〈q̂(x, t)q̂(0, 0)〉 via the continuity equation. This leads to a generalized Einstein

relation between the variance of the structure factor, and the Kubo current-current
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correlator (see e.g. Refs [45, 85]):

1

2

d2

dt2

∫
dxx2C(x, t) =

1

L
〈Ĵ(t)Ĵ(0)〉. (3)

For a diffusive system, the variance of the dynamical structure factor goes as 2χDt with

D the diffusion constant and χ = T−1
∫
dxC(x, t) the susceptibility, and we recover the

usual Einstein relation σd.c. = χD with the d.c. conductivity σd.c. = 1
L

∫∞
0
dt〈Ĵ(t)Ĵ(0)〉.

The dynamical scaling exponent z can be defined by the relation
∫
dxx2C(x, t) ∼ t2/z. (4)

Using this and the relationship between C(x, t) and σ(ω) we see that σ(ω) ∼ ω1−2/z.

In the limit z → 1+ the conductivity becomes increasingly peaked around ω = 0.

When ballistic transport is present, σ(ω) = πDDrudeδ(ω) + . . ., where the coefficient of

the δ-function is called the Drude weight. This result is intuitive: ballistic transport

means injected currents do not entirely decay, and the Drude weight is precisely the

non-decaying fraction.

Computing σ(ω) reduces to computing dynamical correlation functions of the form

〈Ĵ(t)Ĵ(0)〉. Since the Bethe ansatz gives us (in principle) access to all the eigenstates

of the many-body system, one might try to evaluate this expectation value by writing

it in the Lehmann form
∫ ∞

−∞
dteiωt〈Ĵ(t)Ĵ(0)〉 =

∑

mn

|〈m|Ĵ |n〉|2δ(ω − (Em − En)), (5)

where |m,n〉 are many-body eigenstates with energies Em, En. Unfortunately, the task of

writing down matrix elements of Ĵ (also known as “form factors”) between pairs of highly

excited many-body eigenstates in a way that allows one to take the thermodynamic limit

has proved extremely challenging.

2.2.2. Mazur bounds Although directly evaluating the Kubo formula is challenging,

we are most interested in its t → ∞ limit, as this is where the response is potentially

singular. In this limit, one can use the following strategy to lower-bound Tr(Ĵ(t)Ĵ(0)).

We note that this quantity has the form of an inner product in the operator Hilbert

space. Suppose we are able to construct some family {Q̂i}mi=1 of conserved charges.

Assume without loss of generality that the Q̂i are orthonormal. Then we can expand

Ĵ =
∑m

i=1 Tr(ĴQ̂i)Q̂i+ Ĵ⊥, where Ĵ⊥ consists of (potentially) non-conserved components

of the current. Now Ĵ(t) = Tr(ĴQ̂i)Q̂i+ Ĵ⊥(t). Without making any assumptions about

Ĵ⊥ this reasoning gives us the lower bound [86]

lim
t→∞

{
Tr(Ĵ(t)Ĵ(0))

}
≥

m∑

i=1

|Tr(ĴQ̂i)|2, (6)

sometimes called a Mazur bound. This lower bound is saturated in cases where we

have identified all the conserved quantities, but it is a rigorous lower bound even for
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a partial set of conserved quantities. Indeed, finding a single conserved charge that

has a nontrivial overlap with the current is sufficient for establishing ballistic transport.

Conversely, the absence of ballistic transport means the current has no overlap with any

conserved charges—a feature that would be unnatural unless there were a symmetry-

based reason for it.

2.2.3. GHD and transport without form factors We remarked in Sec. 2.1 that it is

mathematically equivalent, but often more fruitful, to think of the states of integrable

systems in terms of the quasiparticle distribution functions rather than conserved

charges. As we now discuss, this perspective allows us to formulate the question of

transport in integrable systems without directly tackling form factors.

As usual with hydrodynamics, the first step is to break the system up into mesoscale

cells. Each cell is assumed to be locally in a GGE, which can be specified either in terms

of the charges in that cell or its quasiparticle distribution function. We have two tasks:

(i) time-evolving a general quasiparticle distribution, and (ii) relating the quasiparticle

distribution to charge transport. We discuss both of these at a skeletal level, since

the details are amply discussed elsewhere and are not relevant to our main themes [74].

Conceptually, (i) is straightforward: each species of quasiparticle propagates ballistically

with an effective velocity set by its environment. This gives rise to a collisionless but

nonlinear Boltzmann equation of the form

∂tρs(λ)(x, t) + ∂x(v
eff
s (λ)[~ρ(x, t)]ρs(λ)(x, t)) = 0. (7)

The square brackets here indicate that the effective velocity is a functional of the full

distribution function in that cell. Thus, in an inhomogeneous state, Eq. (7) is strongly

nonlinear. One might worry that a nonlinear equation of this type might develop shocks,

but it turns out that the particular structure of this infinite set of equations prevents

shocks from occurring [8, 87] – note that in any case, shocks would be melted by diffusive

corrections to this Euler-scale equation [43–45].

This setup can directly be used to compute charge transport. We start with all the

cells in the same equilibrium state but disconnected from one another. Next, we create

a slight excess of charge in one cell (which changes its quasiparticle distribution), and

connect the cells. We evolve the quasiparticle distribution as above, and then use the

final quasiparticle distribution in each cell to read off the value of all conserved charges

in that cell. This procedure allows us to compute the full dynamic structure factor

without direct reference to any matrix elements.

2.2.4. Dressed properties of quasiparticles Implementing the GHD prescription for

Cab(x, t) above a spatially homogeneous reference state yields the intuitively appealing

expression:

Cab(x, t) =
∑

s

∫
dλρs(λ)(1− ns(λ))(mdr

a )(s, λ)(mdr
b )(s, λ)δ(x− veff

s (λ)t). (8)
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Thus each quasiparticle carries some net charge ballistically with its effective velocity.

Computing the correlation function thus reduces to computing the dressed properties

of a single quasiparticle above a nontrivial background state.

It remains to describe how the dressed quantities mdr, veff are computed. We outline

the basic logic here and refer to Ref. [74] for details – we will also compute these

quantities in a simple model in the next section. The dressed charge of a quasiparticle

is computed as follows. Suppose we want to compute mdr
a (s, λ). We perturb the

equilibrium state with a field ha that couples to Qa. This leads to a change in the

occupation ns(λ). Since the quasiparticles are fermionic, one can write the occupation

number as ns(λ) = 1/(1 + eE0+hmdr
), from which one can read off the dressed charge.

Intuitively the dressed charge is the extent to which the quasiparticle occupation is

susceptible to the corresponding field.

The effective velocity is simplest to understand in the “flea-gas” picture of GHD [16].

The propagation of a quasiparticle consists of two parts: free propagation between

collisions, and time delays (or jumps) during collisions. Each collision between

quasiparticles of type (sλ), (s′λ′) imparts a shift d(v, w). To find veff
s (λ) one adds up the

shifts due to collisions involving that quasiparticle in time t, due to other quasiparticles

moving with effective velocities veff
s′ (λ′). This gives rise to an integral equation

veff
s (λ) = v0

s(λ) +
∑

s′

∫
dλ′ρs′(λ

′)d(s, λ; s′, λ′)[veff
s (λ)− veff

s′ (λ′)]. (9)

The scattering shifts are specific to the model and can be related to the Bethe ansatz

data as detailed in Ref. [16].

2.3. Orders of limits; the GHD regime in finite systems

We close this section with a brief discussion of the regime of validity of GHD. This

discussion will be particularly important when we turn to interpreting numerical results

below. GHD is strictly valid in the limit of late times and large systems; however, the

thermodynamic limit is always assumed to be taken before the late-time limit. Let us

take the system size to be L, the time to be t, and the Lieb-Robinson velocity [88] to

be vLR. Then GHD governs the behavior of correlation functions in the limit

lim
t→∞

(
lim
L→∞
〈Ô(x, t)Ô(0, 0)〉L

)
, x/(vLRt)→ 0. (10)

The thermodynamic limit and late-time limit do not generally commute. This can

be seen in the quasiparticle picture: in the GHD regime, a quasiparticle moves

parametrically farther than it spreads. This is not true at very late times in a finite

system, since it cannot move farther than L but can delocalize over the entire system.

Numerical and experimental studies are, of course, limited to finite times and system

sizes. To remain in the regime where GHD can reasonably be applied, we must work

at times t ≤ L/vLR, i.e., times at which quasiparticles have not yet wrapped around
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the system. This restriction must be kept in mind especially when interpreting finite-

size numerics on observables like the conductivity: GHD has nothing to say about

this quantity at frequencies ω < vLR/L. There is numerical evidence for transport

anomalies in this regime [89, 90] (especially when integrability is weakly broken in a

finite system [91]); explaining these observations remains an interesting open question.

2.4. The space of relevant models

Our discussion will focus on the spin-1/2 XXZ spin chain, which is a canonical model

of quantum magnetism. In conventional (“analog”) experiments this is the most

natural model to realize. However, in digital quantum simulators that implement

quantum circuits, or in classical tensor-network simulations, it is often helpful to consider

“Trotterized” models with discrete time evolution. In addition, since much of the

long-wavelength physics we will discuss is common to quantum and classical integrable

systems, scalable numerical tests of some of the phenomena we discuss are easiest to

perform for classical dynamics. The most obvious discrete-time or classical versions

of the XXZ model are not integrable; however, integrable Trotterizations and classical

limits have been constructed, and we will briefly introduce them in the rest of this

section.

2.4.1. Integrable Trotterization Many numerical approaches (such as the TEBD

algorithm [92, 93]) as well as experiments on noisy quantum computers rely on

discretizing quantum evolution. The standard method for doing this is the Trotter

decomposition [93], which consists of breaking up the time evolution exp(−iĤt) ≈
exp(−iĤevent) exp(−iĤoddt) where Ĥeven/odd consist of terms on even (odd) bonds. Since

Ĥeven is a sum of mutually commuting terms, one can write exp(−iĤevent) as a product

of two-site unitary operations on even bonds, which can be implemented simultaneously

(and likewise with Ĥodd). Thus the Trotter decomposition expresses Ĥ as a brickwork

unitary circuit. However, it introduces an error at O(t2), and breaks integrability at

the same scale. To preserve integrability, one is forced to use a short timestep (and

thus implement many layers of gates, which is potentially demanding for numerical

algorithms and especially for small-scale quantum computers).

Ref. [94] provided an ingenious solution to this issue by writing down a discrete-

time family of brickwork unitary circuits that are integrable for arbitrary time step and

that reduce to the XXZ spin chain in the limit of small time step. Both numerical

and analytical results suggest that the Trotterized XXZ spin chain has qualitatively the

same transport properties as the Hamiltonian XXZ spin chain [95]. To explore these

shared transport properties, it therefore suffices to simulate the integrable Trotterization

of the XXZ spin chain at finite time step. For a fixed number of gates, the Trotterized

evolution allows one to get to later times, relative to the system’s dynamical timescales.
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2.4.2. Classical integrable spin chains The naive classical limit of the XXZ spin chain

consists of taking the spin s from 1/2 to ∞. The resulting model is not integrable.

However, the closely related Ishimori model

H = − ln
(

1 +
∑

i
Si·Si+1

)
, (11)

is integrable [96]. As we will see below, there is a precise sense in which the

long-wavelength dynamics of the quantum Heisenberg and classical Ishimori models

coincide [61]. Therefore, for extracting long-wavelength transport properties, classical

simulation of the Ishimori model has been a valuable guide.

The standard way of implementing time-evolution under classical Hamiltonians is

to discretize them using a symplectic scheme (which is guaranteed to conserve energy).

Generic symplectic integrators maintain integrability only up to an error that scales

polynomially in the integration time-step. However, one can define an exact discrete-

time integrable classical dynamics, consisting of symplectic two-spin maps arranged

in a brickwork lattice [97]. Symplectic maps corresponding to both the isotropic

Heisenberg spin chain and its anisotropic deformations have been defined and studied

in Refs. [98, 99].

2.4.3. Folded XXZ automaton In the large-∆ limit, the quantum dynamics of the XXZ

model reduces to a constrained hopping problem, in which up-spins can hop provided

that the hop does not change the number of domain walls. This constrained hopping

problem can also be realized as a kinetically constrained classical cellular automaton,

as detailed in Refs. [100, 101]. An appealing feature of cellular automata is that, unlike

classical Hamiltonian systems, they act on the same Hilbert space as the fully quantum

problem: they can be regarded as a special class of unitary transformations that map

each product state in the z basis to another product state in that basis. Thus, for

example, questions about eigenstate and operator entanglement, or the dynamics of

nontrivial initial quantum states, can be posed in these models [44, 102–106].

3. A simple limit: the folded XXZ spin chain

3.1. Folded XXZ model

The usual nature of spin transport in the XXZ spin chain is best understood in the limit

of large anisotropy, as ∆→∞, the dynamics become constrained to conserve
∑

i Ŝ
z
i Ŝ

z
i+1

which counts the number of domain walls in the system. (Here, a domain wall exists

between the spins at sites j and j + 1 if they are anti-aligned.) Using standard strong

coupling (Schrieffer-Wolff) expansions, the leading effective Hamiltonian in the limit of

large anisotropy is simply an XX flip-flop interaction constrained to act on a subspace

with fixed domain wall number:

Ĥfolded = J
∑

i

1 + 4Ŝzi−1Ŝ
z
i+2

2

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
. (12)
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This model is known as the “folded” XXZ spin chain [107, 108], and the prefactor
1+Ŝzi−1Ŝ

z
i+2

2
is a projector that ensures that a flip-flop exchange between sites i and

i + 1 can only occurs the spins on sites i − 1 and i + 1 are aligned. Without this

constraint, this Hamiltonian would simply mapped to free fermions using a Jordan-

Wigner transformation. However, we will see that the constraint leads to very non-

trivial transport properties that are generic to the XXZ spin chain in the easy-axis ∆ > 1

regime, including diffusive spin transport co-existing with ballistic energy transport.

3.2. Absence of ballistic spin transport

In addition to spin and domain wall number conservation, the allowed moves constrain

the motion of the domain walls themselves, so that isolated domain walls are frozen, but

adjacent pairs of domain walls (corresponding to isolated magnons in some background)

can hop. This means that there exist an exponential number of completely frozen states

that have no adjacent domain walls. Configurations in which spins up or down always

appear in strings of length two or more are completely frozen, and thus the these sectors

are dynamically trivial.

For example, the state

|↓↓↓↓↓↓↑↑↑↑↑↓↓↓↑↑↑↑〉 ,
is completely frozen, that it to say it is an exact eigenstate of eq. (12) with zero

eigenvalue. On the other hand, the state

|↓↓ ↑ ↓↓↓↑↑↑↑↑↓↓↓↑↑↑↑〉

has a single spin flip (magnon) excitation highlighted in red in the leftmost domain.

Upon acting on this state with the Hamiltonian, the magnon, initially a spin up in a

majority of spins down, can move around and become a spin down in a majority of spins

up. To see this, note that this magnon can hop to the left or right until it collides with

a frozen string of up spins. For example, after two hops of the magnon to the right, the

resulting configuration is

|↓↓↓↓ ↑ ↓↑↑↑↑↑↓↓↓↑↑↑↑〉 .
At this point, the up spin can no longer hop to the right, but the down spin on the site

immediately to its right can hop, resulting in

|↓↓↓↓↑↑ ↓ ↑↑↑↑↓↓↓↑↑↑↑〉 .

Now, this down spin is the only degree of freedom that can move: the magnon (i.e.,

mobile excitation) has changed its charge from +1 to −1. The magnon can still move to

the right until it hits the right boundary of the domain, at which point the configuration

again resembles a free particle-like spin up to the right of a frozen up spins domain,

|↓↓↓↓↑↑↑↑↑↓ ↑ ↓↓↓↑↑↑↑〉 .
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Figure 2. Magnon propagation in the folded XXZ model. Example of magnon

propagation: initially a spin up in a majority of spins down, can move around and

become a spin down in a majority of spins up. Note the displacement (or Wigner time

delay) of the quasiparticles after collision.

This entire sequence of moves can be viewed as a single, unimpeded, magnon-like

excitation travelling as a spin up through strings of down spins, and as a spin down

through strings of up spins. Each configuration in such single-magnon sectors is

connected to exactly two other states by the Hamiltonian, in which the magnon has

hopped to the left/right of its current position. The magnon interacts with the

otherwise-frozen background domains: As the magnon first hops through a domain from

left to right, the position of the domain itself shifts two sites to the left. As a result, the

single magnon sector contains ∼ L2 states for a system of size L, since the magnon has to

go around the system ∼ L/2 times to go back to its original configuration. Despite this

unusual feature, the magnon moves like a free object with dispersion relation ε = − cos k

and velocity vk = ∂kεk = sin k, with the smallest non-zero “momentum” k ∼ L−2 which

corresponds to the translations of the magnon [109, 110].

Since the mobile magnons have a free dispersion, and move ballistically, energy

transport is ballistic. The corresponding delta peak in the thermal conductivity is

characterized by the thermal Drude weight DE
Drude =

∫
dk
2π
nk(1 − nk)v2

kε
2
k, where nk is

the occupation number (Fermi factor) of the magnons. At infinite temperature, we have

nk = 1
4

since magnons correspond to local configurations ↓↑↓ or ↑↓↑, so two out of

eight 3-spin configurations. Correspondingly, the energy-energy dynamical correlation

function is given, at the Euler scale (that is, at the scale x ∼ t and ignoring e.g. diffusive

corrections) by

〈ε̂(x, t)ε̂(0, 0)〉 =

∫
dk

2π
nk(1− nk)v2

kε
2
kδ(x− vkt). (13)

Naively, as the magnons move ballistically and carry spin one, one would similarly expect

ballistic spin transport. However, as we discussed above, as it moves through domains

of up and down spins, its magnetization oscillates between ±1 (Fig. 2). As a result,
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its magnetization is “dressed” to be zero on average mdr
k = 0. The spin Drude weight

vanishes [39]

DDrude =

∫
dk

2π
nk(1− nk)v2

k(m
dr
k )2 = 0, (14)

indicating sub-ballistic spin transport.

3.3. Origin of diffusive spin transport

3.3.1. Depolarizing quasiparticle perspective. In order to uncover the nature of spin

transport in the folded XXZ model, we need to reintroduce dynamics and time in the

“depolarizing” process of the magnon leading to mdr
k = 0, following Ref. [46]. By central

limiting arguments, the region through which the magnon propagates ballistically on

a timescale t has O(
√
|vkt|) more ↑ domains than ↓ domains. As a result, we expect

that the “dynamical” dressed magnetization to go as mdr
k ∼ 1√

|vkt|
. Magnons thus

move ballistically but with vanishing magnetization t−1/2, so that over a timescale t

magnetization spread over a distance
√
t [46], corresponding to diffusing scaling. Note

that the origin of diffusion here is very different from that of the usual diffusive behavior

expected in chaotic system, which comes from integrating out fast degrees of freedom.

This will have important consequences for quantities such as full counting statistics that

we will explore below.

In order to make this argument for diffusion more precise, we focus on the spin

dynamical structure factor

C(x, t) = 〈Ŝz(x, t)Ŝz(0, 0)〉, (15)

at infinite temperature. If transport were ballistic, the spatial variance of the structure

factor would scale as t2, with a weight given by the spin Drude weight

∫
dxx2C(x, t) = DDrudet

2 + · · · = t2n(1− n)

∫
dk

2π
v2
k(m

dr
k )2 + . . . (16)

Here we have used nk = n = 1
4

independent of momentum for the magnon at infinite

temperature. The dressed magnetization is understood as a dynamical quantity, with

mdr
k ∼ 1/

√
t as explained above, so that the variance of the structure factor scales

linearly with time, corresponding to diffusion. The prefactors are harder to obtain

purely intuitively, but using thermodynamic Bethe ansatz (TBA) results, one finds that

the variance of the dressed magnetization over an interval of size ` = |vkt|

〈(mdr
k )2〉 =

16

9

1

`
. (17)

Using this formula with n = 1/4, we find

∫
dxx2C(x, t) =

t

3

∫ π

−π

dk

2π
|vk|+ · · · =

2t

3π
+ . . . (18)
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This corresponds to a diffusive variance 2χDt of the structure factor, with susceptibility∫
dxC(x, t) = 1/4 and diffusion constant [45, 46, 110]

D =
4

3π
. (19)

Despite the unusual nature of this diffusion process, the dynamical structure factor has

a diffusive form

C(x, t) =
1

8
√
πDt

e−
x2

4Dt . (20)

3.3.2. Moving domain-wall perspective. There is a “dual” way to understand diffusion,

which focuses on the motion of the frozen domains instead of the depolarizing

magnons [43, 45, 46]. In the absence of magnons, the domain walls are all frozen:

vDW = 0, and the background pattern remains immobile xDW = vDWt = 0. However,

the position and velocity of the domain walls fluctuate because of the magnons colliding

with it. Using the chain rule, the variance of the position of the background can be

expressed as [44]

δx2
DW = t2

∫
dk

2π

∫
dq

2π

δvDW

δnk

δvDW

δnq
〈δnkδnq〉, (21)

where the equilibrium fluctuations of the Fermi factors of the magnons over an interval

of length ` are given by 〈δnkδnq〉 = 2πδ(k− q)nk(1−nk)
`

. Here we choose ` = |vk|t, which

is the distance over which magnons with pseudo-momentum k can move over time t and

collide the domain wall which on average has zero velocity. The functional derivative of

the velocity of the domain wall (background) with respect to the Fermi factors of the

magnons is given by generalized hydrodynamics [44]

δvDW

δnk
= |vk|∆xDW, (22)

where ∆xDW = 8
3

is the “dressed” displacement of the background after a collisions with

a magnon – which is different from the bare displacement ∆xDW = 2. The derivation of

those formulas is more technical and relies on TBA and GHD techniques, and we refer

the interested readers to Refs. [43–45] for technical details. Using those results, we find

DDW =
1

2
n(1− n)(∆xDW)2

∫
dk

2π
|vk| =

4

3π
, (23)

in agreement with eq. (19). Therefore, the spin diffusion constant can either be

interpreted as ballistic magnons that progressively get depolarized, or as the “jiggling”

motion of the frozen background domains as magnons collide with domain walls. This

dual interpretation implies a relation between the dressed magnetization of the magnons

and the dressed displacement of the domain walls:

1

2
(∆xDW)2 = lim

h→0
∂2
hm

2
k, (24)

which was dubbed “magic formula” in Ref. [111].
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Figure 3. Full counting statistics setup. Illustrative trajectories in which a

magnon goes through the domain wall starting either from the left or the right. Here

spins up are represented as full circles, while empty circles correspond to down spins.

The magnon trajectory is indicated in red; the domain wall dividing the left and right

half-chains is shown as a gray dashed line. The passage of the magnon shifts the

domain wall by two steps. Whichever way the domain wall shifts, provided it moves

away from the cut, one unit of magnetization (i.e., one net black circle) moves from the

left half-chain to the right half-chain. If we run this process in reverse, the domain wall

moves toward the cut and magnetization is transferred to the left. Figure reproduced

from Ref. [129].

3.4. A new class of diffusion: anomalous full counting statistics

As discussed above, at the level of linear response, spin transport in the folded XXZ

model is diffusive. However, the physical mechanism is highly unusual, with interesting

consequences going beyond hydrodynamic expectation values. Experiments in platforms

such as ultracold atoms or superconducting qubit arrays are not limited to measuring

expectation values: quantum measurements lead to simultaneous snapshots of all the

particles in a system [112–117]. A quantity that compactly encapsulates the statistics

of snapshots is the “full counting statistics” (FCS) of conserved charges [118–126], in

our case, spins. We consider the following setup: initialize the folded XXZ spin chain

with both the left and right half-systems in definite magnetization 〈Ŝz〉 = ±m/2. Then,

after evolving for a time t, measure the magnetization transfer Q̂(t) to the left half-

system. The probabilistic classical outcome is denoted Q(t). Repeating this experiment

many times yields a quantum distribution of measurement outcomes P (Q(t)). The

first cumulant 〈Q̂(t)〉 ∼
√
t of the FCS is related to hydrodynamic transport which in

our case is diffusive, while the higher cumulants go beyond it. For a typical many-

body diffusive system, classical or quantum, we expect the fluctuations of Q̂(t) to be

controlled by the variance scaling as 〈Q̂2(t)〉 ∼
√
t, corresponding to a central limit

behavior

√
〈Q̂2(t)〉/〈Q̂(t)〉 ∼ 1√

t
. However, in the folded XXZ spin chain, since diffusion

is due to the motion of a single particle, namely the domain wall at the origin, its FCS

is anomalous. This was first observed numerically in Ref. [127], and through an exact

solution of a cellular automaton in Ref. [128]. Here we follow [129], and use the physical

picture outlined above.

As magnons collide with the domain wall (DW), initially at the origin in this setup,

it undergoes diffusive motion as explained above. In order to relate the the motion of the
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domain wall to the magnetization transfer Q(t), we make the following key observation

in the limit m→ 1 (fully polarized DW): whenever the DW moves away from the origin,

Q(t) goes up; whenever the DW moves toward the origin, Q(t) goes down (Fig. 3). Thus

the distribution P (Q(t)) in this limit is simply the distribution of the distance of the

DW from the origin, i.e., the absolute value of a random walk. Away from this limit, by

inspection one finds that the magnetization transfer Q(t) = |xDW(t)|m[0,xDW(t)], where

xDW is the position of the DW, and m[0,xDW(t)] is the magnetization density in the interval

[0, xDW(t)]. The position of the DW is simply a Brownian motion normally distributed

with variance 2Dt and zero mean (with D the diffusion constant of the DW, which

coincides with the spin diffusion constant as m → 0), while using standard statistical

mechanics results m[0,x] is a normally distributed variable with mean m and variance

(1 − m2)/|x|. Combining those results, we find the distribution of the magnetization

transfer [129]:

P (Q) =

∫ ∞

0

dx

exp

(
− x2

4Dt
− x(Qx −m)

2

2(1−m2)

)

√
2π2(1−m2)

√
Dtx

. (25)

This distribution is non-Gaussian even in the equilibrium case m = 0, where it

characterizes magnetization transfer at the scale Q ∼ t1/4. In the presence of a bias

m > 0, at long times the distribution approach a half-Gaussian for the rescaled variable

Q/
√
t. As a result, the standard deviation of charge transfer is of the same order as the

mean, in sharp contrast with the central limit theorem expectation. The breakdown of

the central limit theorem is physically very transparent: magnetization transfer is due

to the random walk of a single particle, namely the DW (frozen background).

3.5. Away from integrability: XNOR model

The folded XXZ model is clearly integrable, as the number of each string (frozen

domains) is conserved by the time evolution. Since spin transport is diffusive already

in the integrable limit, one could naively expect that it would remain diffusive upon

breaking integrability. However, because of emergent conservation of domain wall

number from the limit ∆ → 1, the dynamics remains constrained even in the non-

integrable limit. As a result of the constraint, only single magnons are mobile even

after breaking integrability, while bigger domains remain immobile. Upon breaking

integrability, the motion of the magnons is now diffusive: over a timescale t, they move

over a distance
√
t, their dressed magnetization is ∼ t−1/4, so the net magnetization

transfer is ∼ t1/4 [109, 130]. Accordingly, the frozen domain now jiggles because it gets

hit by diffusive magnons, so its motion is also ∼ t1/4.

This corresponds to subdiffusion, with dynamical exponent z = 4. This is a first

example of how proximity to integrability can lead to unexpected anomalous transport

properties, distinct from those of the integrable limit. In general, chaotic dynamics with

such an “XNOR” constraint, namely spin flips between sites i and i+ 1 allowed only if

neighboring spins on sites i−1 and i+2 are aligned is indeed subdiffusive with z = 4: this
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was shown analytically using constrained quantum circuits with a U(1) charge [131, 132]

in Ref. [109]. Note that this universality class of subdiffusive transport with z = 4 is

different from the z = 4 dynamics obtained from fracton-like constraints [133–136] – in

particular, scaling functions are different.

4. Easy-axis XXZ model

We now turn to transport in the easy-axis regime ∆ > 1 of the XXZ spin chain. Most

of the physics is essentially identical to that of the folded XXZ model detailed above.

However, generalizing explicit formulas away from the ∆ → ∞ limit requires some

nontrivial steps: the magnons are at high density, and magnon strings of all lengths are

mobile, and must be accounted for. However, these issues can be addressed at the level

of GHD [3, 4]: we assume that quasiparticles are in local equilibrium in an appropriate

generalized Gibbs ensemble, and evaluate the dressed quasiparticle dispersion as well as

the quasiparticle distribution function using data from the thermodynamic Bethe ansatz

solution.

4.1. Quasiparticle content

To proceed, we will need the following standard thermodynamic Bethe ansatz (TBA)

concepts, already summarized in Sec. 2: an equilibrium state is uniquely characterized by

a density ρs(λ) of quasiparticles with quantum numbers (s, λ). Here s = 1, 2, . . . labels

“strings”, where s = 1 corresponds to magnons, while s > 1 are magnon bound states,

corresponding to the frozen domains of s-spins in the folded XXZ limit. The dispersion of

those quasiparticles is parameterized by the rapidity λ. We also introduce the available

density of states ρtot
s (λ) and the associated Fermi filling fractions ns(λ) ≡ ρs(λ)/ρtot

s (λ).

Finally, like in the folded XXZ limit, interactions “dress” the group velocity and

magnetization (along with other local charges) carried by quasiparticles; we denote

these veff
s (λ) and mdr

s (λ) respectively, as in Sec. 2.

4.2. Diffusion constant

We follow the approach of Sec. 3 generalized to arbitrary ∆ and finite temperature, see

Refs. [46, 61] for the original references. In the presence of a small magnetic field h, the

variance of the spin-structure factor is scaling ballistically with the Drude weight [41, 42]

σ2 ≡
∫
dx x2〈Ŝz(x, t)Ŝz(0, 0)〉 = t2

∞∑

s=1

∫
dλρs(λ)(1− ns(λ))(veff

s (λ)mdr
s (λ))2. (26)

As h → 0 (or half-filling, in the equivalent fermionic language), the dressed

magnetization vanishes, giving rise to normal spin diffusion. To see this, we follow

the logic of section 3 on the folded XXZ chain, and write down the effective dressed
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D

�

Figure 4. Spin diffusion constant D in the easy-axis phase ∆ > 1 as a

function of ∆. The diffusion constant diverges in the anisotropic limit, leading to

superdiffusion. Inset: Propagation of a magnon in the large |∆|, low temperature,

ferromagnetic limit. Reproduced from Fig. [46].

magnetization felt by a (s, λ)-quasiparticle propagating with an effective velocity veff
s (λ),

(mdr
s (λ))2 =

1

2
∂2
h(m

dr
s )2
∣∣
h=0

h2 + . . . , (27)

where h2 can be though of as the effective field originating from thermal fluctuations:

h2 =
1

(4χ)2
m2 =

1

4χ|veff
s (λ)t| . (28)

Here we have taken the fluctuations of the magnetization

m2 =
4χ

`
, (29)

over a distance ` = |veff
s (λ)t|, and the factor of 4 in front of χ is to match Bethe Ansatz

conventions. This yields

σ2 = t

∞∑

s=1

∫
dλρs(λ)(1− ns(λ))

∣∣veff
s (λ)

∣∣ 1

8χ
∂2
h(m

dr
s )2
∣∣
h=0

. (30)

To identity the diffusion constant, we note that the variance of the spin structure factor

should scale as σ2 = χ2Dt. We thus get

D =
∞∑

s=1

∫
dλρs(λ)(1− ns(λ))

∣∣veff
s (λ)

∣∣ 1

16χ2
∂2
h(m

dr
s )2
∣∣
h=0

. (31)

This simple argument predicts a diffusion constant in agreement with other

approaches [45, 52]. This expression for the diffusion constant is valid for ∆ ≥ 1,

and diverges in the isotropic limit ∆ → 1 (Fig. 4). Plugging in explicit TBA solutions

at infinite temperature, we find [46]

D =
2 sinh η

9π

∞∑

s=1

(1 + s)

[
s+ 2

sinh ηs
− s

sinh η(s+ 2)

]
, (32)
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with the anisotropy ∆ = cosh η > 1.

4.3. Structure factor

The hydrodynamic expression for the dynamical structure factor takes the form [41, 42]:

C(x, t) =
∞∑

s=1

∫
dλ ρtot

s (λ)ns(1− ns)(mdr
s )2ϕt[x− veff

s (λ)t]. (33)

Here, the function ϕt(ζ) is the propagator of a string with quantum numbers (s, λ)

from (0, 0) to (x, t). At the Euler level this propagator would simply be a Dirac delta

function, while we take it to be a broadened Gaussian with variance 2Ds(η, λ)t at the

diffusive level. The diagonal quasiparticle diffusion constant Ds(η, λ) was computed in

Refs. [43, 44]. As discussed above, exactly at half-filling h → 0, all strings but the

heaviest ones s → ∞ become effectively neutral as mdr
s goes to 0 for s � h−1, so the

structure factor becomes diffusive

C(x, t) =
1

8
√
πD(η)t

e−
x2

4D(η)t , (34)

where the diffusion constant D(η) is given by eq. (32).

Away from half-filling (corresponding to a finite field h > 0), spin transport becomes

ballistic as strings with s� h−1 become magnetized. However, the structure factor still

has some interesting local relaxation structure [53]. This arises because the velocity

of “heavy” (large s) strings is strongly suppressed: this can be seen perturbatively at

large ∆, as veff
s ∼ ∆1−s, since moving a domain of s-spins require going to sth order

in perturbation theory. In general, we have veff
s ∼ e−ηs with ∆ = cosh η. Therefore,

from this ballistic motion strings remain near the origin with amplitude ∼ 1
veff
s t
∼ eηs/t.

Meanwhile, the density of such heavy strings goes as e−sh, so there are two cases for the

structure factor depending on the sign of η − h. If h > η, then the contribution from

heavy strings is exponentially suppressed in the structure factor, and near the origin, we

have C(x = 0, t) ∼ t−1 from light strings, as expected from ballistic scaling. However,

if h < η, then heavy strings dominate the local relaxation of the structure factor. For s

very large, the motion of the heavy strings is first diffusive (since their velocity is very

small), with a diffusion constant D that is essentially independent of s and rapidity λ.

However, after a time scale defined by
√
Dt ∼ veff

s t ∼ e−ηst their motion is ultimately

ballistic. Alternatively this equation can be used to defined a crossover string index

s∗(t) ∼ 1
2η

log t at a given time t. The structure factor near the origin is dominated by

strings s < s∗(t) which move diffusively and contribute a factor 1√
Dt

. In this regime

h < η, we find [53]

C(x = 0, t) ∼
∑

s>s∗(t)∼ 1
2η

log t

e−hs√
t
∼ t−1/2− h

2η . (35)
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Figure 5. Anomalous low-frequency spin conductivity in the noisy XXZ

chain (in log-log scale). In the frequency regime γ
∆2 � ω � γ, spin transport is

subdiffusive with σ(ω) ∼
√
ω/γ, corresponding to dynamical exponent z = 4. At very

low frequency, the conductivity eventually saturates to a finite d.c. value proportional

to ∆−1. The cartoon on top illustrates the dominant spin dynamical processes at

different time-scales: single, mobile, magnons are pictured in red and strings, frozen,

in blue. Figure reproduced from Ref. [130].

This shows that even if spin transport is ballistic, the structure factor can be highly

anomalous, in this case exhibiting continuously varying exponents. A similar mechanism

was found in integrable random spin chains in Ref. [137].

4.4. Away from integrability: discontinuity of the diffusion constant

As discussed in Sec. 3.5, spin transport at large anisotropy ∆� 1 becomes subdiffusive

with dynamical exponent z = 4 upon breaking integrability because of the emergent

XNOR constrained dynamics. At long times and finite ∆, we expect to recover diffusion.

For concreteness, we focus on uncorrelated noise, and take Ĥ = ĤXXZ +
√
γ
∑

i ηi(t)Ŝ
z
i ,

where the noise η satisfies 〈ηi〉 = 0 and 〈ηi(t)ηj(0)〉 = δ(t)δij. The noise backscatters

magnons at a rate ∼ γ: this sets the crossover between the integrable diffusive behavior

and z = 4 subdiffusion. This implies that the conductivity scales as σ(ω) ∼
√
ω/γ for

ω � γ.

Noise can also create magnons out of strings, by the following process: one end of a

larger string virtually hops away from the rest of the string by one site, with amplitude

1/∆, and is put on shell by the noise, giving a transition rate γ/∆2. This breaks the

constraint, and we expect this process to restore diffusion. This means that subdiffusion

σ(ω) ∼
√
ω/γ occurs in the broad frequency regime γ � ω � γ/∆2 (Fig. 5). Matching
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up with the behavior at very low frequencies, we recover diffusion with a conductivity

σdc ∼ 1
∆

[130]. Remarkably, the conductivity and the diffusion constant are independent

from the noise strength! Moreover, it also means that the diffusion constant in near

integrable systems is non-perturbative, and a discontinuous function of the strength of

the integrability-breaking couplings.

5. Heisenberg model

5.1. Nature of single quasiparticles

From the point of view of the Bethe ansatz solution, the isotropic point ∆ = 1 is similar

to the easy-axis phase ∆ > 1 except for one crucial detail: the effective (as well as bare)

velocities of the strings. In the easy-axis phase, these velocities fall off exponentially

with string size, while at the Heisenberg point they fall off algebraically. This change in

the scaling of velocities is linked to a qualitative change in the character of elementary

excitations about the symmetry-broken ground state. In the easy-axis phase, these are

domains, but at the isotropic point they are Goldstone modes associated with the broken

SU(2) symmetry.

The distinctive transport signatures of the Heisenberg model stem from the bare

properties of its quasiparticles, which are best understood as “Goldstone solitons,” or

wavepackets of Goldstone modes that are stabilized by the nonlinearity of the dynamics.

Because the Bethe-ansatz solution begins with the ferromagnetic ground state and

constructs a general state by piling on quasiparticles, the relevant Goldstone modes are

the quadratically dispersing excitations above an SU(2) ferromagnet [67]. Consider a

spatially gradual (but large-amplitude) vacuum rotation above a ferromagnetic ground

state: suppose the orientation rotates from the reference ground state by some O(1)

amount and then back over a distance `. The momentum uncertainty of this wavepacket

is at least 1/`, so its characteristic group velocity (from the quadratic dispersion) also

scales as v(`) ∼ 1/`. Again, from the quadratic dispersion, the energy density scales as

1/`2, and the total energy of the wavepacket scales as 1/`. Finally, since the wavepacket

is an O(1) rotation of the vacuum orientation spread out over ` sites, it carries a total

magnetization ∼ ` relative to the ground state.

We briefly comment on the crossover between the easy-axis and isotropic regimes

as ∆ → 1+. In the easy-axis regime, the (bare) strings are domains of the minority

species. The spins at the edges of the domain are energetically confined to a region of

size η−1 = 1/(cosh−1(∆)) when the domain is of size � η−1. Quasiparticles smaller

than this size cannot resolve the easy-axis anisotropy and behave as they would at

the isotropic point. At the isotropic point, the only length-scale associated with a

quasiparticle is its own size.
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5.2. Elementary argument for superdiffusion

The dressing of the quasiparticle magnetization at the isotropic point is identical to

that in the easy-axis phase, for the same physical reason: the smaller quasiparticle

encounters the larger one as a local vacuum rotation, and to keep propagating in the

rotated vacuum it needs to reorient itself. Therefore, the dressed charge of an s-string

is zero at half filling for any finite s.

We now discuss how these observations immediately lead to superdiffusive scaling,

following Ref. [138]. The only ingredient we will need that was not already motivated

in elementary terms is the density of quasiparticles of size s in an infinite-temperature

state, ρs ∼ 1/s3. As we will see below, that scaling can also be understood from an

elementary consistency argument; however, for the present let us assume this result.

Then one can write the Kubo formula as a sum over strings, of the form

〈Ĵ(t)Ĵ(0)〉 ∝
∑

s
ρs|vsms|2 exp(−t/τs). (36)

In this expression, vs ∼ 1/s is the velocity of the s-string, ms ∼ s is its bare

magnetization, and τs is the time for which the string retains its initial magnetization

(i.e., how long it takes to encounter a bigger string). Note that since the string is

demagnetized after some finite time, its time-averaged magnetization is zero, consistent

with our remark that mdr
s = 0 for any finite s. It remains to estimate τs. Strings

of size s demagnetize when they hit yet bigger strings; the spatial density of these

is 1/s2. Since the s-string moves at velocity 1/s, the time it takes to hit a larger

string is therefore τs ∼ s3. Evaluating the Kubo formula with this data, we see that

〈Ĵ(t)Ĵ(0)〉 ∼ t−2/3, giving the conductivity scaling σ(ω) ∼ ω−1/3 that corresponds to

the dynamical exponent z = 3/2.

5.2.1. Quasiparticle density at infinite temperature The argument above used ρs ∼
1/s3 as an input. While this result can be directly computed from the thermodynamic

Bethe ansatz [111], its scaling follows from elementary constraints on the high-

temperature static susceptibility at small finite magnetization h, namely 〈Ŝzi Ŝzi 〉 =

1/4 [59]. If we try to compute this as a sum over strings, it takes the form
∑

s ρs(m
dr
s )2.

In the presence of a field h, the density of Goldstone modes of size s � 1/h is

suppressed as exp(−hs). Since these solitons are rare, processes where they collide

with even larger solitons are exponentially suppressed and can be neglected. Therefore

their dressed magnetization mdr
s = s. By contrast, the populations of Goldstone

modes of size s ≤ 1/h are not suppressed by the net magnetization, and their dressed

magnetization should vanish at half filling. We have already seen that near half filling

the dressed magnetization scales as h. By continuity with the large-s limit, the dressed

magnetization for s � 1/h must scale as mdr
s ∼ hs2. Let us assume that ρs ∼ 1/sα

for s � 1/h. Then the susceptibility scales as h2s5−α|s∼1/h. To make this approach a

constant, we require α = 3. This result is consistent with TBA calculations.

Many calculations on the Heisenberg spin chain apply the strategy used above,

which is to calculate physical quantities at very small nonzero h and take the h → 0
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limit at the end. Sums over strings of size s ≤ 1/h are ubiquitous in these calculations.

In the limit h → 0, we can define a rescaled variable η ≡ sh in terms of which these

sums become Riemann sums, that can then be expressed as integrals over η [61]. In this

scaling limit, the TBA equations for the quantum spin chain and the classical Ishimori

spin chain [96] coincide. The main difference between the two sets of equations is that in

the classical problem s is not quantized: thus, the classical and quantum models differ

in their small quasiparticles but not in their large, long-wavelength fluctuations (as one

would expect on general grounds).

5.3. Relation to KPZ scaling

We now present an alternative argument for z = 3/2 scaling, which is slightly less

direct but illuminates the relationship between superdiffusion in the Heisenberg model

and Kardar-Parisi-Zhang (KPZ) scaling [53]. Even when the magnetization is zero

on average, its instantaneous local value fluctuates with a variance given by the

susceptibility, which is O(1). Therefore we can think of the system, coarse-grained

to any scale, as a patchwork of locally slightly magnetized regions. In each region, the

magnetization is carried by the largest available string, which is of size s ∼ 1/h and

has characteristic velocity vs ∼ h. If we are interested in magnetization transport over

a distance `, then the characteristic value of h ∼ 1/
√
`, so v(`) ∼ 1/

√
`. Thus the

timescale for spin transport over distance ` is t(`) ∼ `/(1/
√
`) ∼ `3/2.

The observation that the local velocity associated with spin transport scales as h

is highly suggestive of the Burgers equation, ∂tm + λ∂xm
2 + D∂2

xm = ∂xξ, where ξ is

white noise. (In our case the white noise would come from local thermal fluctuations

of the smaller quasiparticles, which impart random scattering shifts [44].) The Burgers

equation, in turn, is equivalent to the KPZ equation under a change of variables [71].

Numerical studies of the dynamical spin structure factor, in both quantum [57] and

classical [97, 139] systems, support the KPZ form C(x, t) = t−2/3fKPZ(x/t2/3), where

fKPZ is a universal scaling function computed in Ref. [140]. A detailed analytic argument

supporting this conclusion was put forward in Ref. [55]. However, this argument relies

on assumptions that are not yet firmly established, and a complete analytic derivation

of KPZ scaling in this model remains an open question.

5.4. Away from integrability: Goldstone mode physics

The fact that the large solitons that dominate high-temperature spin transport are

Goldstone-mode wavepackets has important consequences for dynamics slightly away

from integrability. Suppose one adds an integrability-breaking perturbation such as weak

spatio-temporal fluctuations in the Heisenberg coupling. Since the noise acts locally, it

couples weakly to very large strings, since these locally look like vacuum rotations. Since

the energy of an s-string scales as 1/s, noise that couples to the energy can have at best

a matrix element ∼ 1/s, giving that string a decay rate ∼ 1/s2. (Another way to say

this is that noise couples to Goldstone modes with a gradient.) Plugging in this decay
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rate τs ∼ s2 into the Kubo formula (36), we find that the a.c. conductivity diverges at

low frequencies, as σ(ω) ∼ | logω|. This prediction—and more generally the idea that

there is a distinction between noise that preserves SU(2) and noise that does not—are

borne out by numerical studies [138, 141–143].

This observation about the robustness of Goldstone modes against noise raises an

intriguing question: while anomalous transport persists at lowest order in perturbation

theory, is it present at arbitrary noise strength? The answer to this appears to

be negative: both perturbation theory in the strong-noise limit [144] and general

hydrodynamic arguments [145] suggest that transport should be simply diffusive when

the system is noisy enough to be far from integrability. Since it seems unlikely that there

is a transition as a function of noise strength, the most plausible way of reconciling the

weak-noise and strong-noise results is to posit higher-order or nonperturbative effects

that restore diffusion. What these effects (and the associated timescales) might be

remains an open question.

While the case of time-independent, Hamiltonian integrability-breaking perturba-

tions (such as a next-nearest neighbor coupling) is much harder to study numerically,

there has been interesting analytic progress on this problem [146]. The essential obser-

vation is that one can perform a unitary rotation Û on Ĥ to extract H̃ = Û(λ)ĤÛ †(λ)

such that, to leading order in λ, H̃ = Ĥ + λV̂ where V̂ is the integrability-breaking

perturbation. While such a Û ≡ eiλŜ can always be found, in general Ŝ has an exponen-

tially large norm and the expansion is invalid [147]. However, for few-body Hamiltonian

perturbations of the Heisenberg model, it turns out that many natural perturbations are

generated by bounded, quasi-local operators Ŝ [146, 148]. Whenever this is the case to

linear order in λ, the decay rate of conserved quantities is at best λ4 (which is well out of

reach of numerics) and possibly even slower ‡. In any case, large-scale numerical studies

on classical models yield dynamics that is superdiffusive out to the longest accessible

timescales [142, 143].

5.5. Away from linear response

Although theory is simplest in the linear-response limit, experiments involve finite-

strength perturbations. Often, these perturbations are relatively strong, in order to

enhance the signal-to-noise ratio. Since the Heisenberg model is a sort of “dynamical

critical point” between the ballistic and diffusive phases, one would generically expect

its nonlinear response to be singular in the low-frequency limit. Since the dynamics

has no intrinsic scale, the conductivity must be cut off either by ω or by the scale set

by the perturbation strength, whichever is larger. In the latter case, we expect that

the response to a perturbation is nonanalytic in the perturbation strength. There are

many different protocols for probing nonlinear response; below, we review three specific

settings that have been discussed in the literature. It will become apparent that even

for these settings there are many open questions.

‡ I. L. Aleiner, private communication.
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5.5.1. Large domain walls The first instance of nonlinear transport we consider involves

initializing two separate semi-infinite reservoirs at opposite chemical potentials ±µ at

time t = 0. In the previous section we discussed this setup for the easy-axis XXZ

model and presented a closed-form expression for the full counting statistics of charge

transport. At the Heisenberg point this approach breaks down, but one can nevertheless

draw some conclusions about the mean transport properties.

Let us sketch the analysis of this setup using GHD. One can characterize each

half-chain by its quasiparticle distribution. At finite µ, we have that ρs is exponentially

suppressed for s > 1/µ. Since the two half-chains have different quasiparticle vacua,

when we combine the two systems we must also describe the spatial variation of the

vacuum orientation—either by positing some dynamics for the vacuum orientation [55]

or by modeling the vacuum as a giant quasiparticle, as we did while discussing full

counting statistics in the easy-axis phase. For now let us take the latter perspective.

Then, as in the easy-axis phase, we get a diffusive contribution to transport whenever

a quasiparticle is transmitted across the domain wall. A straightforward calculation

shows that this is

D(µ) ∼
∑

s

∫
dλρs(λ)(mdr

s )2|vs(λ)| ∼ 1/µ. (37)

Thus, for any finite density step, superdiffusion eventually gives way to diffusion, on a

timescale that can be estimated (by equating t2/3 and
√
t/µ) to be t∗ ∼ 1/µ3. Numerical

studies of classical spin chains [127] support the scenario of an eventual crossover to

diffusion at finite µ, but the predicted scaling with µ has not yet been established

numerically.

Although the conclusion of the argument above (that superdiffusion is cut off on

a timescale set by µ) is plausible, the analysis is incomplete. To see why, let us go

to the limit of a fully polarized domain wall, where the two half-chains are initially

in opposite-spin vacua. The logic above would imply that this initial state remains

frozen for all times. While this implication holds in the easy-axis phase, it fails at the

isotropic point. An explicit solution [149] for this class of initial states is available using

inverse-scattering methods, and shows that a domain wall smears out over a distance

x ∼ √t log t. In terms of the quasiparticle picture, this can be understood by noting

that quasiparticles in the Heisenberg model are smooth vacuum rotations rather than

sharp domains; thus, our description of the initial condition (two identical quasiparticle

distributions plus a giant quasiparticle on the left) is missing some of the quasiparticle

content.

At present, it remains an open question how one would incorporate these effects

into GHD. A related open question is how to compute the full counting statistics of

transferred charge. As discussed below, experiments [65] have measured the first three

moments of the magnetization-transfer distribution for fairly large µ. The skewness of

this distribution is large and essentially nondecreasing with time; its numerical value is

close to the prediction for the KPZ universality class. In addition, both experiments
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and numerical simulations show good agreement with superdiffusive scaling out to

moderately long times t ≈ 50, even for large µ where the GHD argument above would

predict that the system becomes diffusive at short times. At present these observations

remain unexplained.

5.5.2. Response to a strong applied field Instead of setting up an initial condition with

a finite bias, one could imagine applying a strong field (i.e., a magnetic field gradient

H = E∑n nS
z
n) to the system for a finite time interval ∆t and measuring the induced

current. This calculation is straightforward to do away from half filling at field h (though

the full answer in the half filling limit is not known). We briefly summarize the findings

and refer to Ref. [150] for details. Each quasiparticle receives an impulse of size E∆tmdr
s ;

this modifies the quasiparticle distribution function by creating an imbalance between

left and right movers, leading to a net current. The current can be written as a sum

over strings s ≤ 1/h as follows (we have defined ϕ ≡ E∆t):

J(h, ϕ) = h

1/h∑

s=1

s−4f(hϕs3). (38)

Here, f is a bounded periodic function of its argument, and for small argument f(x) ≈ x.

There are two regimes of response. First, when ϕ→ 0 at finite h, the argument of f(x)

remains small and the function can be expanded in a Taylor series in ϕ, giving a hierarchy

of well-defined nonlinear response coefficients. While the linear-response coefficient (i.e.,

the term linear in ϕ) is regular as h → 0, all higher-order coefficients are singular as

h→ 0. To understand where these singularities come from, it helps to consider the limit

h→ 0 at small but finite ϕ. Effectively, in this limit, the sum over strings is cut off at

hϕs3 ≈ 1. As a consequence, J(h, ϕ) ∼ h2ϕ| log(hϕ)|—the response becomes singular

in the impulse in the superdiffusive limit. Physically, the mechanism for this effect is

that large strings respond so strongly to the impulse that they effectively undergo Bloch

oscillations, and thus do not contribute to response. The impulse ϕ sets the boundary

between strings that do and do not contribute to response.

At present, nonlinear response has only been calculated using Euler-scale methods

away from half filling. One expects an even more strongly nonanalytic response precisely

at half filling, due to effects that are beyond the Euler-scale analysis. Performing this

calculation would require a framework for computing nonlinear response beyond Euler

scale, which remains an open problem.

5.5.3. Spin helices In ultracold atomic gases, it is often more convenient to prepare a

pure state than a mixed one. Spin helices [62, 151]—in which the spin orientation varies

in a spatially periodic manner, with wavelength 2π/k—form a particularly natural class

of initial states (see Sec. 7.2). Spin helices are, in general, quite far from being locally

thermal states, so the applicability of GHD to them can be questioned. However, one

might expect that after some initial evolution, dephasing leads to local reduced density
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matrices that are well described by GGEs [152]. This intuition can be verified for free

fermions. On the other hand, at present it is not entirely clear how to construct the

appropriate GGEs for strongly interacting systems like the Heisenberg spin chain.

One can define a length-time scaling form for the spiral initial state by measuring

the wavenumber-dependence of the decay rate Γ(k): a uniform state does not decay, so

we expect Γ ∼ kz. Since the spiral is very far from equilibrium, there is no guarantee

that this dynamical exponent will coincide with the linear-response one. Evidence from

experiments, short-time numerical simulations, and the short-time expansion suggests

that in the easy-plane regime, helices relax ballistically (z = 1). The situation in the

easy-axis phase is much less clear, but in the large-∆ limit the spiral rapidly dephases

under the Ising interaction, so on theoretical grounds we expect z = 2. Interestingly, at

the isotropic point helices seem to relax with a diffusive dynamical exponent (z = 2),

not the KPZ exponent. This case is delicate since (owing to the SU(2) symmetry) the

energy density of the initial state is itself proportional to k2; thus, by changing k, one

is tuning both the “temperature” and the length-scale. Another subtlety is that at long

wavelengths the Heisenberg model can be regarded as coarse-graining into the Landau-

Lifshitz model, for which the spiral is an exact eigenstate. It remains to be seen whether

these features can be incorporated into GHD.

6. Easy-plane XXZ

Finally, we discuss the easy-plane regime ∆ < 1, where the XXZ spin chain is gapless

at low energy, and is described by a Luttinger liquid. We will argue that spin transport

is ballistic in this regime, albeit with a highly nontrivial “fractal”, discontinuous Drude

weight as a function of the anisotropy. This remarkable behavior of the Drude weight

has interesting physical consequences for the low-frequency behavior of the conductivity,

as the spectral weight must somehow rearrange itself as the anisotropy is changed. We

also briefly discuss weak-integrability breaking in that phase.

6.1. Quasiparticle content and fractal Drude weight

The quasiparticle spectrum in the regime ∆ < 1 is much less intuitive than the other

cases discussed above. In particular, the number of quasiparticle species depends on the

value of the anisotropy ∆ in a non-trivial, “fractal” fashion. More precisely, we write the

anisotropy as ∆ ≡ cos πλ. The quasiparticle (Bethe “strings”) spectrum that follows

from the Bethe ansatz solution is determined by the continued fraction expansion of

1/λ = ν1 + 1
ν2+ 1

ν3+...

. The total number of strings is given by n =
∑
νi. For an irrational

value of 1/λ, the number of strings is infinite, while approximating it by a rational

number leads to a finite number of strings [83].

This peculiar dependence of the quasiparticle content on the anisotropy has direct

consequences on physical observables. The most striking example is the spin Drude

weight. The quasiparticles have linear dispersion (z = 1) and a velocity that remains
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Figure 6. Fractal Drude weight. Lower-bound on the Drude weight (red,

from [86]), and optimized bound in black (from [153]), coinciding with GHD

predictions. Reproduced from Ref. [153].

finite even for the largest ones, contrary to the ∆ ≥ 1 case where infinitely large

strings had vanishing velocity. As those large quasiparticles carry some dressed

magnetization, spin transport is ballistic with a delta-function contribution in the

conductivity characterized by a Drude weight Dλ. Remarkably, this Drude weight

appears to be discontinuous and fractal as a function of λ. We will focus on the

infinite temperature limit for concreteness. When λ = p/q is rational, several distinct

methods [39, 42, 153–157] predict that

Dλ =
1

12
(1−∆2)f

(
π

q

)
, f(x) =

3

2

[
1− sin(2x)

2x

sin2 x

]
. (39)

Eq. (39) is a rigorous lower bound on D, which GHD [11, 39, 40, 42] predicts is saturated.

Very surprisingly, Eq. (39) implies that the Drude weight jumps by O(1) as ∆ changes

infinitesimally (Fig 6): limx→0 f(x) = 1 for any irrational number λ, but is higher by

an O(1) amount at an arbitrarily close small-denominator rational. This is a direct

consequence of the fractal quasiparticle content as a function of λ.

6.2. Corrections to ballistic transport

These discontinuous jumps in the zero-frequency spectral weight suggest that the finite-

frequency behavior must also be nontrivial [56]. By locality, correlators at finite t

must be continuous functions of the anisotropy ∆ (or λ), since they only probe system

sizes of order ∼ t. This means that if we take two anisotropies that differ by a small

value ε, we must go to long times or low frequencies < ε to distinguish them. This

simple observation strongly constraints the low-energy scaling of the conductivity. Let

us consider an irrational value λ∞, that we approximate by a sequence of rationals

{λq = p/q} with increasing denominators q. Above a crossover frequency scale ω?q ,

the conductivity for the rational approximant and the irrational value are identical.

The rearrangement of the spectral weight due to the change in the Drude weight (39)
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Figure 7. Anomalous corrections to ballistic transport for ∆ < 1.

Conservation of spectral weight in the low-energy conductivity: the extra Drude weight

at the rational point (purple) must precisely match the missing part of the regular

spectral weight [56]. As a result, the conductivity diverges for irrational values of λ,

see eq. (40).

δDq ≡ Dλq −Dλ∞ ∼ 1/q2 must occur at low frequencies ω < ω?q . GHD predicts that for

rational λ (finite q), the regular part of the conductivity (excluding the Drude weight)

approaches a finite d.c. value at low energy: σd.c.
λq
∼ q2. This blows up for irrational

values of λ, and we assume an algebraic divergence with frequency σλ∞(ω) ∼ ω−α.

Conservation of spectral weight then implies that
∫ ω?q

0
dω[σλ∞(ω)− σd.c.

λq
] ' δDq ∼ 1/q2:

the extra Drude weight at the rational point must precisely match the missing part of

the regular spectral weight [56] (Fig. 7). This means that
∫ ω?q

0
dωσλ∞(ω) ∼ (ω?q )

1−α and∫ ω?q
0
dωσd.c.

λq
∼ ω?qq

2 must both be of order q−2 to compensate each other. This yields

ω?q ∼ q−4, and α = 1/2, so that [56]

σλ∞(ω) ∼ 1√
ω
. (40)

We see that conservation of spectral weight combined with the fractal nature of the

Drude weight implies that the corrections to ballistic transport are superdiffusive, with

dynamical exponent z = 4/3 – recall that in general, σ(ω) ∼ ω1−2/z.

The crossover scale ω∗q ∼ q−4 ∼ |λ∞−λq|2 resembles a Golden Rule rate, suggesting

the following natural interpretation: if one starts in an eigenstate of Ĥλ∞ and turns on

the perturbation δĤ ≡ Ĥλq − Ĥλ∞ , the quasiparticle structure changes considerably.

The quasiparticles at Ĥλ∞ are no longer stable, and it is natural to suppose that their

decay rates scale as |λq − λ∞|2, yielding ω∗q ∼ q−4.

6.3. Away from integrability

Moving away from integrability is somewhat more conventional in this phase.

Quasiparticles acquire a mean-free path and time, over which they decay and/or
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backscatter. The Drude weights is broadened into a generalized Lorentzian whose width

is given by the inverse mean free time [158, 159], as in the familiar case of weakly

interacting fermions. However, this can lead to non-analytic behavior of the resulting

diffusion constant as a function of the integrability breaking perturbation [158, 160].

Starting from σ(ω) = πDδ(ω) + Cω−1/2 in the integrable case, we expect a finite

d.c. conductivity σ = πDτ + Cτ 1/2 away from integrability.

7. Numerics and experiments

We now turn to numerical and experimental tests of the GHD-based theory of anomalous

transport outlined above. In principle, GHD is a theory of late-time behavior in an

infinite system, while both numerics and experiment are limited to finite times and/or

finite system sizes (which restrict the GHD regime to finite times, see Sec. 2.3). However,

in practice the GHD regime in XXZ spin chains sets in at times of order unity. Therefore,

exact numerical simulations in particular have been a valuable consistency check on GHD

predictions, and in particular on the validity of extensions of GHD to treat anomalous

transport in spin chains. In addition, exact results from GHD can be used a stringent

test of the validity of approximate classical simulations, or of quantum simulations using

noisy quantum computers.

7.1. Numerical approaches

7.1.1. Tensor-network operator evolution The most direct approach to linear-response

transport is to explicitly evaluate the Kubo formula. This involves computing time-

evolved operators in the Heisenberg representation. At short times such operators

can be represented as matrix-product operators (MPOs), and the time-evolution of

the MPOs can be computed using time-evolving block decimation (TEBD) [92]. By

the Lieb-Robinson theorem, the time-evolved operator lives inside the light-cone, so

these calculations effectively take place in the thermodynamic limit if the system size

is larger than the light cone at the latest accessible time. In practice TEBD is exact

only up to modest times (t ≤ 25) before the MPO required to accurately represent the

time evolved operator becomes too complex to work with (this quantity is called the

“bond dimension” of the MPO). At present, it is unclear whether the bond dimension

asymptotically grows polynomially or exponentially with system size. For existing

computational resources, TEBD is limited to similar time windows as the other available

methods.

7.1.2. Density matrix evolution from weak steps Instead of working in the Heisenberg

picture, one could instead have started in the Schrödinger picture, with an initial density

matrix of the form ρ̂ =
∏

i(1 + µsgn(i)σ̂zi ). This represents an initial state with a step

profile of the density. One lets this initial state evolve for time t and then measures

Z(x, t) ≡ Tr(σ̂zxρ̂(t)). In the limit µ → 0 a straightforward calculation [50, 57] shows
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that the structure factor C(x, t) = ∂xZ(x, t). Like the previous approach, the step profile

approach has the appealing feature that the density matrix does not evolve outside a

light cone emanating from the domain wall (since away from the domain wall the initial

state is a stationary state of the dynamics). Once again, one represents the initial density

matrix as an MPO and evolves it using TEBD. A major difference between this and

the previous approach is that the step initial profile need not be in the linear-response

regime: this is an advantage if one wants to go beyond linear response, but can also

have drawbacks if one wants to establish the linear-response answer, since this requires

one to compute Z(t) as a function of µ and extrapolate to the µ→ 0 limit.

For reasons that are not fully understood, fixing a bond dimension, truncating the

time-evolved density matrix to an MPO of that bond dimension, and evaluating Z(t)

gives physically sensible answers at surprisingly late times [50]. Whether the truncation

causes quantitative errors remains unclear.

7.1.3. Boundary Lindblad In a typical solid-state conductivity experiment, one does

not directly time evolve the state, but instead connects it to leads at different chemical

potentials and measures the current passing through it in its steady state. This steady-

state setup can be directly simulated as follows [49]. One considers the system coupled

to Markovian leads at both boundaries. At the left boundary, particles are injected at

some rate µL+ and absorbed at some rate µ−L , and similarly at the right boundary. If

more particles are injected at the left and absorbed at the right, then in the steady

state there is (i) a net current flowing through the bulk of the chain, and (ii) a density

gradient across the chain. The dependence of the steady-state current on the length

of the chain allows one to extract the transport exponent, as follows. Define V as the

chemical potential difference across a system of size L. The current is related to this by

j = (V/L)σ(L), where σ(L) is the conductivity for a system of size L. For this finite

system, we can use the Einstein relation σ(L) ∼ D(L). Assuming a length-time scaling

t ∼ Lz, and using the fact that L ∼
√
D(L)t, one can derive the relation j ∼ L1−z.

Under the (numerically borne-out) assumption that the steady-state density matrix can

be represented as a low-bond-dimension MPO, one can find the steady state for large

systems by variationally minimizing the norm ‖L(ρ̂)‖ across MPOs.

The boundary Lindblad method is a powerful approach that has led to many new

results on the dynamics of integrable systems, including the first identification of z = 3/2

scaling [49]. However, interpreting these results in terms of GHD requires caution: GHD

addresses the regime of times much less than system size, while the boundary Lindblad

technique finds the slowest mode in a finite-size system. In general these limits do not

commute (Sec. 2.3). An example where one sees a discrepancy is at large ∆: direct time

evolution is consistent with the GHD result that the diffusion constant saturates to a

nonzero value as ∆→∞, whereas the boundary Lindblad approach shows a vanishing

diffusion constant [49]. A possible (but still speculative) explanation is that this is a

consequence of breaking integrability at the boundary and going to very late times at

finite system size.
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7.1.4. Time evolution of pure states A more direct method, which avoids truncation

at the expense of introducing finite-size effects, is to replace the infinite-temperature

state with a random vector (by canonical typicality) and time-evolve using sparse

matrix-vector multiplication. Typicality methods were used to compute the optical

conductivity of charge and energy [161–163] and subsequently to explore full counting

statistics [129]. The gain from working with pure states is that this approach avoids

matrix multiplication, and instead only requires the sequential application of sparse

matrices to the random initial state. Typicality approaches are ultimately limited by

system size, since it is infeasible to store even a pure state on more than L ≈ 32 qubits

(though slightly bigger sizes are achievable using TPUs [164]).

For weak domain walls and linear-response calculations, the direct approach

performs slightly worse than the MPO approaches discussed above. Its relative

advantage is in dealing with general far-from-equilibrium pure states. For such states,

TEBD can fail at much earlier times than direct evolution: state-of-the-art bond

dimensions are limited to ∼ 2000, which is two orders of magnitude lower than the

bond dimension needed to describe a maximally entangled state on 36 qubits.

7.1.5. Approximate methods The past five years have seen the development of

multiple numerical methods based on physically motivated truncations of MPS’s and

MPO’s. Examples of these methods include the time-dependent variational principle

(TDVP) [165], density-matrix truncation (DMT) [166], and dissipation-assisted operator

evolution (DAOE) [167]. These methods aim to truncate the growth of entanglement in

ways that do not affect the dynamics of simple observables, such as spin or energy. In

practice, all of these truncation schemes break integrability, so it is unclear a priori that

they should be able to faithfully describe transport in integrable systems. Nevertheless,

promising results on the Heisenberg spin chain have been achieved with DMT as well as

DAOE [167, 168]. One can regard our exact results on integrable systems as providing

a benchmark to test the performance of these methods against.

7.1.6. Away from integrability: noisy evolution Unitary evolution of operators in the

Heisenberg picture is limited to early times for both integrable and nonintegrable spin

chains. For nonintegrable systems, operator entanglement grows somewhat faster, and

the accessible simulation times are correspondingly shorter (t ≤ 20). This makes the

numerical study of nearly integrable unitary dynamics challenging, since one generically

expects integrability-breaking effects to become visible on timescales that scale as the

square of the integrability-breaking parameter. For this estimated Golden Rule decay

rate to be visible in the numerically accessible window, one has to break integrability

rather strongly, to a point where perturbation theory is potentially no longer valid.

A more feasible way to study these effects is to sacrifice the conservation of energy,

and instead consider perturbations that act randomly in time, i.e., as noise. In this

case, one can represent the dynamics averaged over the noise as a quantum channel

or Lindblad master equation [138]. Operator entanglement growth under quantum
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channels is slow, by the following logic. Instead of thinking of the channel as a

noise-average, one can equivalently think of it as the dynamics of an open system.

Under open-system dynamics, operators that begin entirely inside the system spread

into the environment. Larger operators have more sites where they can leak into the

environment. Tracing over the environment annihilates these parts of the time-evolved

operator, which therefore loses operator norm over time but remains weakly entangled

at all times. Therefore, it is practical to simulate noisy evolution for much longer times

(t ≥ 100) than strictly unitary evolution.

One might worry that noise is too crude a way to break integrability; however, as

we discussed above, many of the interesting consequences of breaking integrability occur

regardless of whether the perturbation is Hamiltonian.

7.2. Experimental studies

7.2.1. Magnetic materials probed by neutron scattering As we noted in the

introduction, the study of high-temperature transport was revived by experiments in

ultracold atomic gases and other forms of synthetic matter. Even in solid-state systems,

the characteristic energy scales associated with magnetic excitations can be quite low,

however, allowing one to study high-temperature spin dynamics at absolute temperature

scales that are quite low (i.e., substantially below room temperature). Many of the initial

experiments addressing this question were concerned with establishing the presence of

ballistic energy transport (which suggests integrability); accordingly, they focused on

the large (apparently) magnetic contribution to the heat conductivity [79].

While measuring d.c. spin transport can be challenging, one can extract the

dynamical spin structure factor S(q, ω) from neutron scattering. The first experimental

evidence for superdiffusion in Heisenberg spin chains came from a neutron scattering

experiment on the quasi-one-dimensional magnet KCuF3 [169]. In this experiment,

S(q, ω) was studied at fixed, very low ω as a function of q. Over a wide range of

temperatures (from 70 K to 200 K), it was found that S(q, ω) ∼ q−z with values of z

ranging from 1.3 to 1.6, depending on the temperature and the fitting window. While

these results do not conclusively show z = 3/2, they are at least consistent with it, and

inconsistent with either ballistic or diffusive scaling.

While KCuF3 realizes the isotropic Heisenberg model, a variety of other quasi-one-

dimensional magnets exist that realize anisotropic XXZ spin chains [170]. Exploring

high-temperature spin transport in the anisotropic regime is an interesting task for

future work.

7.2.2. Nuclear magnetic resonance The dynamics of XXZ spin chains can also

be probed using nuclear magnetic resonance (NMR) experiments. There are two

conceptually distinct contexts for using NMR; we will discuss these separately.

First, NMR can be used as a probe of electron spin dynamics. In an NMR

experiment, nuclei are placed in a static polarizing magnetic field and then excited using
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microwaves of frequency ω0. The microwave frequency selects which nuclei (if any) are

excited. Assuming that nuclear spins decay by coupling to magnetic fluctuations, the

rate at which nuclear spins depolarize (i.e., the T1 time) is related as follows to the local

autocorrelation function of the nearby electron spins [171, 172]:

T−1
1 ∝ Re

∫ ω−1
0

0

dt 〈Ŝ0(t)·Ŝ0(0)〉. (41)

Thus the dependence of the T1 time on ω0 is a diagnostic of the transport exponent

governing the local autocorrelation function. In particular, if the low-frequency

conductivity diverges with some power law α, then we expect 1/T1 ∼ ω−α0 . A divergence

of this kind was in fact seen decades ago in NMR studies of the Heisenberg magnet

Sr2CuO3 [173], but NMR response in the high-temperature regime merits further

exploration in light of the results on anomalous transport reviewed here.

In addition to using NMR techniques as a probe of electronic spins, one can also

use these techniques to engineer and study systems of interacting nuclear spins, as in

recent work on fluorapatite [174]. The active degrees of freedom in these experiments

are spins-1/2 of fluorine nuclei. Because of the anisotropy of the material, interchain

couplings are suppressed by a factor of 1/40 relative to intrachain nuclear couplings,

so the system is effectively one-dimensional on the experimental timescales of ≤ 50 (in

units of J). NMR experiments naturally take place at high temperatures relative to

the nuclear interaction scales (10 kHz ∼ 10−7 K). However, measuring transport in this

setting has been challenging, because of the lack of local addressability.

One traditional procedure for studying spin diffusion [175] has been to create

an initial state with an imprinted periodically modulated magnetization profile (by

applying a linear magnetization gradient, discussed further below in Sec. 7.2.3), and

track how the contrast of this imprinted spin spiral decays. A different (and in some

ways more versatile) approach to studying spin transport was very recently explored in

Ref. [176]. The idea is as follows. The “intrinsic” Hamiltonian for fluorine nuclear spins

in fluorapatite takes the form

Ĥ = ĤFF + Ĥdis.

ĤFF =
∑

j<k

1

|j − k|3 (2Ŝzj Ŝ
z
k − Ŝxj Ŝxk − Ŝyj Ŝyk).

Ĥdis =
∑

j

hjŜ
z
j . (42)

This Hamiltonian consists of two parts: the interactions among the fluorine nuclear

spins, and the interactions of each spin with its random local environment (consisting

mainly of phosphorus spins), which acts as a static random field. We will think of

ĤFF as effectively local—justified given the short experimental timescales. Dynamical

decoupling techniques exist that can temporarily remove either ĤFF or Ĥdis to any

desired precision [177]. In addition, established Floquet engineering techniques let

one construct arbitrary XXZ Hamiltonians from ĤFF by applying particular pulse

sequences [178].
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The scheme of Ref. [176] uses these features as follows (we have simplified the

treatment a little to focus on the main ideas). First, one applies a strong uniform

field along the z direction, creating the state ρ̂ ∝ (In + εŜzn)⊗n. Second, one evolves

under Ĥdis (while decoupling ĤFF) in order to reach a state where each spin has a

random polarization along the z axis: ρ̂ ∝ (In + αnŜ
z
n)⊗n, where εn is an effectively

random number. Third, one time evolves under the desired Floquet-engineered XXZ

Hamiltonian (while decoupling Ĥdis). Fourth, one again decouples ĤFF and implements

the second step in reverse, and finally measures the total polarization along the z axis.

This entire process extracts the observable

C(t) ≡ Tr
[∑

ij
αiαj〈Ŝzi (t)Ŝzj 〉

]
, (43)

where αi is a random, statistically translation-invariant, variable with zero average

(sampled over many runs of the experiment). NMR experiments can therefore extract

the sample-averaged local autocorrelator C(t) ∝ 〈Ŝzi (t)Ŝzi (0)〉. The results [176]

provide convincing evidence that interacting integrable systems can have ballistic energy

transport coexisting with diffusive spin transport, unlike either nonintegrable systems

or free systems.

From the perspective of exploring high-temperature dynamics, one valuable aspect

of both NMR techniques discussed above is that they give access to the spatially local

autocorrelation function. For ∆ > 1, as we discussed above (Sec. 4.3), this correlation

function decays with an anomalous, continuously varying power law even in systems

where transport is ballistic [53].

7.2.3. Ultracold atomic gases The revival of interest in integrability owes much

to experiments on one-dimensional ultracold gases in the continuum [179]. These

experiments demonstrated, in a striking way, that integrability has physically relevant

consequences—it causes far-from-equilibrium initial states to remain out of equilibrium

for extremely long times.

Although these continuum experiments have made remarkable progress in testing

GHD [76, 180–182], they generally realize the Lieb-Liniger model, in which transport

is ballistic rather than anomalous. Integrable spin chains are most naturally realized

on the lattice. One first realizes a Fermi- or Bose-Hubbard model on a one-dimensional

lattice by confining an ultracold atomic gas in a strongly anisotropic three-dimensional

optical lattice, such that the lattice along two directions is so deep as to be essentially

infinite. Along the third direction, the lattice is deep enough to be in the single-

band tight-binding regime, but otherwise tunneling is allowed. In the experiments of

Refs. [62, 65] the Hamiltonian governing the system is the Bose-Hubbard Hamiltonian

Ĥ = −
∑

i,σ

(b̂†i,σ b̂i+1,σ + h.c.) + Uστ n̂iσn̂iτ . (44)

Here, Greek indices denote the internal state (“spin”) of the atom. One could write a

similar Hamiltonian for fermions, except that by the exclusion principle U only affects
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pairs of atoms with opposite spin. The Fermi-Hubbard model is itself integrable in

one dimension. The Bose-Hubbard model is not integrable, but in the limit Uστ � 1,

the system enters a Mott insulating phase in which charge fluctuations are suppressed

and the only remaining dynamics is the spin dynamics due to superexchange. This is

governed by the Hamiltonian [62]

ĤXXZ =
∑

i

− 4

U↑↓
(Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1) +

(
4

U↑↓
− 4

U↑↑
− 4

U↓↓

)
Ŝzi Ŝ

z
i+1, (45)

up to an overall field that does not affect the dynamics. Absent fine-tuning, all the Uστ
tend to be similar in magnitude, so ∆ ≈ 1. However, by tuning the strength of one of the

on-site interactions using a Feshbach resonance, one can realize strongly anisotropic XXZ

models [62]. Whether such Feshbach resonances are available depends on the atomic

species: rubidium has few usable resonances in the experimentally relevant parameter

range, whereas lithium and cesium have many.

In general, there will also be defects in the filling of the lattice, and these will

give rise to residual charge dynamics that breaks integrability. On the relatively short

timescales that have been experimentally studied, these effects do not seem to break

integrability, but do seem to renormalize the dynamical timescales [65].

Two main strategies have been adopted to initialize the effective XXZ spin chain

and study its dynamics. The conceptually simpler approach requires a quantum gas

microscope with single-site resolution. Here, one can “dial in” a variety of initial states.

In the experiments of Ref. [65], the initial state was a random product state with net

magnetization density ±η/2 on the left (right) half of the chain. This setup closely

parallels the numerical setup discussed above in Sec. 7.1.2. After letting the system

evolve, one can take a simultaneous snapshot of all the spins in the system; both average

transport and fluctuations can be read off from the statistics of these snapshots. These

experiments used rubidium atoms and were therefore restricted to the isotropic limit.

The average transport exponent was consistent with z = 3/2; the fluctuations were

anomalous, as discussed in Sec. 5.

In the experiments of Ref. [62], which did not use a quantum gas microscope, the

system was instead initialized in a spin spiral of period 2π/q, rotating in the XZ plane,

using a magnetic field gradient. After some evolution time the spiral was unwound

and its residual contrast was read out. This method is restricted to a specific class

of initial states; however, in principle, one can read out the full correlation function

C(x, t) = 〈Ŝzx(t)Ŝz0(t)〉 as a function of time after the quench (i.e., one can wind the spiral

up at pitch q and unwind it at pitch q′, thus getting the full instantaneous structure

factor of the time evolved state).

Since the initial state is far from equilibrium, its dynamical properties are very

different from linear response transport (Sec. 5.5.3), and many questions still remain.

7.2.4. Superconducting circuits In the past decade, arrays of superconducting qubits

have emerged as a platform for the digital simulation of many-body systems [183]. These
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arrays can implement a variety of one- and two-qubit gates, including those needed for

simulating the integrable Trotterization of the XXZ spin chain. The geometry is tunable,

allowing for controlled studies of dimensional crossover in quasi-1D systems. Some

basic features of the Trotterized XXZ spin chain, including the presence of stable string

states in the spectrum [184] and of nearly conserved quantities [185], have recently been

established in these systems. These works exploited some of the distinctive capabilities

of superconducting circuits: in particular, the ability to measure arbitrary Pauli strings.

However, transport from initial finite-entropy states has not yet been explored in this

setting.

At present, the lifetimes of superconducting circuit experiments are somewhat

lower than those of experiments with ultracold atoms. Experiments in superconducting

circuits are limited by finite single-qubit decay (T1) and decoherence (T2) times, as well

as errors due to finite gate fidelity. All of these errors except for the T1 process are

integrability-breaking perturbations that preserve the U(1) symmetry; therefore, one

can study the properties of transport in nearly integrable systems without mitigating

or correcting these errors. Qubit decay breaks the U(1) symmetry; however, since all

decay events increase the number of ↓ spins relative to the initial state, one can remove

the effects of decay at the expense of post-selecting samples with the right number of

↑ spins. Asymptotically, however, samples with no decay events become exponentially

rare in both system size and evolution time, so that the need to post-select limits the

scalability of such experiments. In state-of-the-art work, the stability of strings in the

∆ > 1 regime has been demonstrated for timescales that are on the order of ≈ 30

layers of gates, on a system of 24 qubits. A subsequent experiment [185] demonstrated

that one could use this platform to perform direct measurements of conserved charges

and how they evolve under noisy approximately integrable dynamics. Superconducting

circuits are particularly well suited for such experiments since they allow for single-site

measurements in arbitrary bases: therefore, one can measure arbitrary Pauli strings, as

opposed to just strings in the computational basis.

8. Conclusion

Integrable systems at finite temperature have unusual dynamical properties because

they have stable ballistic quasiparticles whose properties are nontrivially renormalized

by the interactions between them. In particular, interactions can strip quasiparticles

of their charge, leading to sub-ballistic transport of the types we have discussed here.

The picture of transport through thermal fluctuations that we have presented here

was fleshed out in the past four years, and continues to see rapid development; as it

stands, it is a relatively complete theory of the low-frequency limit of the q → 0 linear-

response conductivity. Beyond linear response, there are more questions than answers,

but progress in extending the theory to this regime has been rapid.

An area where progress has been significantly more limited is the study of nearly

integrable spin chains. The specific case where integrability is broken by noisy couplings
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seems both numerically and theoretically tractable: quasiparticles scatter and decay

at a rate set by the Golden Rule, and the main theoretical challenge is to compute

the matrix elements that enter the Golden Rule. These can be calculated, or at

least estimated, in many specific cases, including some with nontrivial physics like

subdiffusion. For Hamiltonian perturbations that break integrability, much less is

understood. In both classical and quantum systems in the thermodynamic limit, all

initial conditions eventually lead to chaos, but the rate at which chaos sets in can

be much slower than the naive Golden Rule estimate: this can happen, e.g., because

some parts of the perturbation can be absorbed into the unperturbed Hamiltonian

through a unitary rotation [146] §.. The prospects for studying these phenomena

in near-term simulations or experiments involving quantum spin chains are not very

favorable, because of the rapid growth of entanglement and the late times required. A

more promising near-term avenue might be to perform large-scale simulations on nearly

integrable classical Hamiltonians and develop a quantitative understanding of the effects

of integrability breaking there.
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