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Abstract: We discuss how to perform consistent extractions of anomalous triple gauge

couplings (aTGC) from electroweak boson pair production at the LHC in the Standard

Model Effective Field Theory (SMEFT). After recasting recent ATLAS and CMS searches

in pp → WZ(WW ) → ℓ′νℓ+ℓ−(νℓ) channels, we find that: (a) working consistently at

order Λ−2 in the SMEFT expansion the existing aTGC bounds from Higgs and LEP-2

data are not improved, (b) the strong limits quoted by the experimental collaborations

are due to the partial Λ−4 corrections (dimension-6 squared contributions). Using helicity

selection rule arguments we are able to explain the suppression in some of the interference

terms, and discuss conditions on New Physics (NP) models that can benefit from such

LHC analyses. Furthermore, standard analyses assume implicitly a quite large NP scale,

an assumption that can be relaxed by imposing cuts on the underlying scale of the pro-

cess (
√
ŝ). In practice, we find almost no correlation between

√
ŝ and the experimentally

accessible quantities, which complicates the SMEFT interpretation. Nevertheless, we pro-

vide a method to set (conservative) aTGC bounds in this situation, and recast the present

searches accordingly. Finally, we introduce a simple NP model for aTGC to compare the

bounds obtained directly in the model with those from the SMEFT analysis.

Keywords: Beyond Standard Model, Effective field theories

ArXiv ePrint: 1609.06312

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2017)115

mailto:adam.falkowski@th.u-psud.fr
mailto:m.gonzalez@ipnl.in2p3.fr
mailto:admir@physik.uzh.ch
mailto:marzocca@physik.uzh.ch
mailto:minho.son@kaist.ac.kr
https://arxiv.org/abs/1609.06312
http://dx.doi.org/10.1007/JHEP02(2017)115


J
H
E
P
0
2
(
2
0
1
7
)
1
1
5

Contents

1 Introduction 1

2 Considerations about the EFT validity 5

2.1 Total cross section of WW and WZ processes 5

2.2 Limiting the physical scale of the process 6

2.3 On the interference between SM and BSM amplitudes 9

3 Facilitating the EFT interpretation of existing searches 11

3.1 W+W− → ℓνℓℓ
′νℓ′ 11

3.2 W±Z → ℓ±νℓℓ
+ℓ− 14

3.3 Combination 15

4 An explicit model testing the EFT approach 16

5 Conclusions 20

A Interference between SM and dim-6 BSM amplitudes 21

B Helicity amplitudes for V V production at the LHC 26

1 Introduction

Cubic and quartic self-interactions of the electroweak gauge bosons are present in the Stan-

dard Model (SM) due to the underlying non-abelian gauge symmetry, and are completely

fixed by the gauge couplings, namely, the electromagnetic coupling constant e and the

weak mixing angle sθ ≡ sin θW . This, however, is not the case in a general Beyond the

Standard Model (BSM) scenario. Therefore, processes that are sensitive to gauge boson

self-interactions are important tools used to search for nonstandard effects.

In this work we focus on general BSM contributions to the cubic electroweak gauge

bosons interactions, employing the linear Effective Field Theory (EFT) framework, also

known as the Standard Model Effective Field Theory (SMEFT). In this model-independent

approach, the SM (with the Higgs embedded in an SU(2)L doublet) is extended by non-

renormalizable gauge-invariant operators with canonical dimensions D > 4 which encode

the effects of some new physics with a mass scale Λ much larger than the electroweak scale.

The BSM effects are thus organized as an expansion in 1/Λ, and the leading lepton-number-

conserving terms are O(Λ−2) generated by D = 6 operators in the SMEFT Lagrangian:

Leff = LSM +
∑

i

c
(6)
i

Λ2
O(6)
i +

∑

j

c
(8)
j

Λ4
O(8)
j + . . . . (1.1)
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We are interested in diboson production at the LHC, which in general is sensitive to

many (linear combinations of) effective operators. They can affect the process through

their modifications of the couplings of gauge bosons to fermions, the gauge boson propa-

gators or the cubic interactions of the gauge bosons. However, once we take into account

LEP1 constraints [1, 2], CP-conserving observables in diboson production are effectively

controlled by 3 combinations of EFT parameters at O(Λ−2) in the SMEFT, which we can

choose to be the 3 anomalous Triple Gauge Couplings (aTGC), {δg1,z, δκγ , λz}, defined as

follows [3, 4]:

Ltgc = ie
(
W+
µνW

−
µ −W−

µνW
+
µ

)
Aν + ie

cθ
sθ

(1 + δg1,z)
(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν

+ie(1 + δκγ)AµνW
+
µ W

−
ν + ie

cθ
sθ

(1 + δκz)ZµνW
+
µ W

−
ν

+i
λze

m2
W

[

W+
µνW

−
νρAρµ +

cθ
sθ
W+
µνW

−
νρZρµ

]

, (1.2)

where cθ =
√

1− s2θ , δκz = δg1,z − s2
θ

c2
θ

δκγ . These aTGC can be computed in function of

Wilson coefficients of D = 6 operators in Eq. (1.1), and they are formally of order1

δg1,z, δκγ , λz ∼ c(6)
m2
W

Λ2
, (1.3)

so that in the SM limit all three aTGC vanish. Let us stress that in deriving this matching

one should be careful to redefine fields and input parameters in a way which satisfies the

property that after imposing LEP-1 bounds the aTGC are the only three unconstrained

parameters relevant to diboson production (see e.g. refs. [1, 7–11]). The dictionary between

the aTGCs and Wilson coefficients of D = 6 operators in various bases can be found in

appendix B (from ref. [7]).

Any experimental observable (such as differential cross section, number of signal events

in a bin, etc.) obtained from the effective Lagrangian in eq. (1.1) takes the following form

σ = σSM +
∑

i

(

c
(6)
i

Λ2
σ
(6×SM)
i + h.c.

)

+
∑

ij

c
(6)
i c

(6)∗
j

Λ4
σ
(6×6)
ij +

∑

j

(

c
(8)
j

Λ4
σ
(8×SM)
j + h.c.

)

+ . . . . (1.4)

It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter Λ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived fromW+W− production in LEP-2 [12],

see e.g. [1, 13] for EFT interpretations. Meanwhile, it has been pointed out that the LHC

Higgs data can also lead to meaningful indirect constraints on the aTGC in the context

of SMEFT [10, 14–18]. This becomes evident when the effective operators that generate

the aTGC defined in eq. (1.2) are written in an explicitly gauge-invariant form, since they

1See appendix B for the explicit dependence of the aTGC in eq. (1.2) on the gauge-invariant operators

in the Warsaw [5] and SILH [6] bases.
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involve not only gauge bosons but also the SU(2)L Higgs doublet (see eq. (B.3) and (B.6)).

Recently, ref. [19] reported a global fit in the SMEFT to LEP-2WW and LHC Higgs signal-

strength data, by working consistently at O(Λ−2). In particular, the analysis considered

only D = 6 operator interference with the SM, under the Minimal Flavor Violation (MFV)

assumption, in which case the full set of relevant linear combinations of D = 6 operator

affecting that analysis is limited to ten. The result of that fit projected to aTGC is






δg1,z
δκγ
λz




 =






0.043± 0.031

0.142± 0.085

−0.162± 0.073




 , ρ =






1 0.74 −0.85
0.74 1 −0.88
−0.85 −0.88 1




 . (1.5)

Interestingly enough, the combination of the two datasets lifts the flat direction present

in each of them taken separately [19]. As a result, the bounds do not change significantly

when the (formally subleading) dim-6 squared contributions are included in the analysis.

Thus, these results constitute robust and model-independent bounds on the aTGC. They

can be easily translated to any given BSM model (that can be matched to the SMEFT) to

set bounds on the corresponding masses and couplings without having to re-do the analysis

of the data.

It is well-known that W+W− and W±Z differential production cross sections at Teva-

tron and LHC are also very sensitive to aTGC [20–23]. In addition, recent progress on

NNLO QCD predictions in the SM [24, 25] facilitate the study of BSM effects. However,

these measurements were not included in the previous global analysis of ref. [19], because

their EFT interpretation is much more involved. One technical issue was that the combina-

tion with prior LHC bounds on aTGC was not possible because these were not performed

with all three anomalous couplings present simultaneously and/or the associated likelihood

was not provided (i.e. the correlation matrix if the distribution is gaussian).2 But the

main complication comes from the fact that hadron collisions probe a wide range of ener-

gies. This is in contrast with LEP-2 observables and on-shell Higgs decay measurements,

where the typical energy scale is bounded by the LEP center-of-mass energy and Higgs

mass, respectively. In the LHC case, the EFT expansion is more slowly convergent be-

cause ŝ/Λ2 can be large toward the tail of differential distributions. This enhances the

sensitivity to neglected dim-8 operators and complicates the extraction of robust aTGC

bounds. For this reason, the question of the validity regime of the EFT approach have to

be carefully addressed to properly interpret aTGC constraints extracted from W+W− and

W±Z measurements in hadron colliders.

Let us clarify here what we understand by the EFT validity regime. The relevant

question here is whether the constraints on the aTGCs can be translated into constraints

on masses and couplings of new particles in extensions of the SM. By construction, the

EFT provides a good approximation of the underlying UV theory at energy scales E ≪ Λ.

However, from low energy measurements one can only extract the combination c/Λ2, where

c is the Wilson coefficient of the relevant operator. Therefore the discussion of the validity

for a given experimental energy E requires assumptions on the magnitude of c, and is thus

2That issue was properly addressed in more recent ref. [26].
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necessarily model dependent. At the end of the day, given the energy scale and precision

of the experiment, the validity discussion amounts to formulating a set of conditions under

which the EFT results can be used to constrain BSM models.

One test of validity is to compare the magnitude of linear and quadratic contributions

of D=6 operators to observables. The dimension-6 squared contributions are formally

O(Λ−4) in the EFT expansions, and thus they are expected to be of the same order as

the linear contributions of the neglected D=8 operators. If the linear D=6 contributions

dominate, which is the case for the analysis of ref. [19], then the EFT results are robust and

can be used to constrain any BSM model satisfying the minimal EFT assumptions, namely

a linear EWSB and Λ ≫ E. Last but not least, the small sensitivity to dim-6 squared

contributions ensures that the results are basis-independent, as different bases of D = 6

operators in the literature differ by O(Λ−4) terms. Conversely, if the squared contributions

were important, these results would not constitute valid bounds in the most general case,

and a consistent EFT interpretation of the data would require some more assumptions

about the UV models.

It turns out that the bounds on aTGCs obtained from the LHC diboson measurements

strong rely on the inclusion of O(Λ−4) dim-6 squared contributions [26]. The situation is

further worsened because the linear effects of dim-6 operators (coming from its interference

with the SM) happen to be suppressed in these observables (for a general discussion see

ref. [27] and for the particular observables used here see section 2.3). In this context

it is important to stress that the small sensitivity to quadratic terms is not a necessary

condition to ensure the EFT validity, i.e. its applicability to certain BSM scenarios. In fact,

as discussed in refs. [28, 29], in a wide class of BSM models with some strongly coupled

sector the contribution from dim-8 operators is subleading with respect to dim-6 squared

terms without invalidating the EFT expansion. This can be understood from a simple

matching of the Wilson coefficients to the UV parameters of the theory: c
(6)
i ∼ c

(8)
j ∼ g2∗,

where g∗ denotes the coupling strength of the SM currents to the BSM resonances.3

This implies that, if g∗ ≫ 1, the dim-6 squared terms dominate over the linear dim-8

by a factor g2∗/g
2
SM ≫ 1. Consequently, “standard” aTGC analysis of LHC data is justified

for these BSM scenarios. Even in such cases it is convenient to perform the EFT analysis

using different cuts on the appropriate kinematical variables [28, 29]. In this way, the

applicability of the EFT analysis is extended to a wider range of BSM models in which a

new state is not far from the scales being probed at the LHC. However, the relevant variable

that controls the validity range of EFT (partonic center-of-mass energy ŝ) turns out to be

hard to reconstruct experimentally. This is evident for the pp → WW → ℓℓνν process,

where the presence of two neutrinos in the final state impedes unambiguous determination

of ŝ, but even for pp → WZ → ℓ′νℓ+ℓ− where, while reconstructing ŝ is straightforward

in theory, experimental uncertainties severely limit the usefulness of such a procedure.

We will evaluate the possibility of using other measurable quantities instead in order to

consistently set bounds on aTGC in this situation.

3See section 4 for a particular example. More generally, given some broad assumptions about the

UV theory, one can deduce the dependence of the EFT Wilson coefficients on the couplings strength g∗
characterizing the strongly interacting sector [6, 30].

– 4 –
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It is the purpose of this work to discuss these issues in some detail, and study what

are their implications for the aTGC bounds obtained from LHC data. In particular, in

section 2 we discuss the importance of dim-6 squared terms in diboson production, how to

derive bounds consistently within the EFT when the center-of-mass energy of the process

is not directly observable, and provide an analysis of the interference between SM and BSM

amplitudes. In section 3 we use these methods to recast a selection of ATLAS and CMS

WW and WZ analysis, both with 8TeV and 13TeV data, in order to extract consistent

bounds on aTGC. In section 4 we provide an explicit example of a BSM model generating

aTGC, in order to compare the constraints on the model parameters obtained directly from

simulating events using the model with the indirect ones from the aTGC analysis. Finally,

we conclude in section 5. The two appendices A and B include a detailed discussion on the

helicity amplitudes relevant to diboson production.

2 Considerations about the EFT validity

2.1 Total cross section of WW and WZ processes

Before performing the complex numerical analysis of LHC data, it is convenient to have

an initial look at the relevant total cross sections and their naive sensitivity to aTGC. As

mentioned in the Introduction, these observables are also sensitive to other nonstandard

effects, such as those modifying the Z and W propagators, or their couplings to light

fermions. However, given the model-independent constraints from electroweak precision

data [2], the WW and WZ cross sections effectively constrain 3 linear combinations of

Wilson coefficients of dim-6 operators that correspond to the aTGC [1]. Thus, we have

σ = σSM
[
1 +Baκa + Cabκaκb

]
, (2.1)

where a and b run over the three aTGC κ ≡ {λz, δg1,z, δκγ}, and σ denotes σ(pp→W+W−)

or σ(pp→W±Z).

In figure 1 we plot the relative cross sections ofWW andWZ processes with respect to

the SM one at
√
s = 8TeV by varying one parameter at a time while keeping the other two

at zero. Although the plots are missing the effects from the cross terms between different

parameters, they illustrate some important features. First of all, figure 1 shows that both

WW and WZ processes are very sensitive to λz and δg1,z, but not so much to δκγ , which

will be rather weakly constrained. We also observe that the WZ channel seems to be more

sensitive than the WW one, at least concerning λz and δg1,z.

The solid lines, which represent the total cross sections without any cut, show clearly

that the quadratic terms in eq. (2.1) are not negligible at all. Taking into account that

the typical experimental precision in this observable is in the few per-cent ballpark, one

can see that the extracted aTGC bounds will be completely dominated by these quadratic

effects. As briefly discussed in the Introduction, this is somewhat expected given the high

energy scales probed by these processes. In the case of λz it is striking to notice that the

interference term is almost vanishing. This can be understood by studying the relevant

SM and BSM helicity amplitudes, as discussed in section 2.3.

– 5 –
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Figure 1. Dependence of the σ(pp → WW ) (left) and σ(pp → WZ) (middle) on the aTGC,

λz (black), δg1,z (blue), and δκγ (red). One parameter is varied at a time while the other two

are set to zero. In the left and center panels the solid (dashed) lines correspond to the cases with

mV V (≡
√
ŝ) <∞ (600GeV). In the right panel, instead, only high energy events (mV V > 600GeV)

are shown, using solid (dotted) lines for pp→WZ(WW ).

In order to analyze the effect of removing the events in the high energy tail, the dashed

lines in the left and center panels of figure 1 show the weakened sensitivity when the cross

sections are obtained using only the events with
√
ŝ < 600GeV. Although the effect of

the cut is clearly visible, the quadratic effects still remain very important. We have also

checked that this is still true for a cut as low as 300GeV. For completeness, in the right

panel we show with solid (dotted) lines the WZ (WW ) cross section for high-energy events

(
√
ŝ > 600GeV) only. It is clear that in this region the quadratic terms largely dominate

over the linear ones, as expected. The situation is further complicated by the fact that

imposing this type of cut on the real data is by no means easy, as we discuss in the

next section.

2.2 Limiting the physical scale of the process

As already mentioned, the relevant energy scale of diboson production processes is the V V

invariant mass,
√
ŝ (≡ mV V ). The differential cross section, dσ/dmV V , is therefore a very

sensitive probe to new physics effects, and has the potential to disentangle the different

aTGC parameters. A few challenges arise in consistently setting limits on BSM from data.

First, the EFT approach is only valid sufficiently below a cut-off scale corresponding to the

mass of new states. Since such scale is not known a priori, various choices of cut-off scales

need to be implemented while setting limits within the EFT framework. Ideally, if the full

invariant mass of the V V system (or equivalently
√
ŝ) could be reconstructed from data,

one would impose an appropriate cut on mV V on both data and simulated events, allowing

to build the likelihood using expected and observed cross sections with the cuts, i.e.

(σSM + σBSM)(mV V < mmax
V V ) , σobs(mV V < mmax

V V ) . (2.2)

In this way one would derive bounds consistently, with the EFT applicable to theories in

which new states are heavier than mmax
V V . Note that σBSM in eq. (2.2) denotes the full BSM

effect which generally includes also the interference between SM and BSM amplitudes and

is thus not necessarily positive.

– 6 –
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Figure 2. Left: event distribution in the plane of the invariant mass of dilepton system, mℓℓ (which

is reported by the experiment) versus mWW (which corresponds to
√
ŝ.). Right: similar plot for

mWZ
T vs mWZ . Both histograms are based on 5× 105 events.

mℓℓ (GeV)

< 200 < 400 < 600 < 800 < 1000 <∞
mWW > 400GeV 0.54 0.85 0.97 0.99 1.0 1.0

mWW > 600GeV 0.43 0.65 0.87 0.97 0.99 1.0

mWW > 800GeV 0.36 0.59 0.71 0.90 0.97 1.0

mWW > 1000GeV 0.32 0.53 0.64 0.78 0.92 1.0

Table 1. Ratio of the number of events with and without mℓℓ cut in the high mWW region,

N
mℓℓ<m

∗

ℓℓ

evs (mWW > m∗
WW )/Nevs(mWW > m∗

WW ), for the SM pp → W+W− → ℓνℓν process at

8TeV.

However, in realistic analyses this approach is limited by the incapability of recon-

structing the full invariant mass of the diboson system when one or both gauge bosons

decay into neutrinos.4 In this case other observables, which we generically denote as Mvis,

are constructed from the available information in the final state. For example, these can be

the dilepton invariant mass mℓℓ in the case of WW [21], the transverse mass mWZ
T in the

case of WZ production [31, 32], or the transverse momentum of a gauge boson pT (V ) [33].

The problem with this approach is that all these observables exhibit a poor correlation

with the physically relevant scale mV V , as can be seen from figure 2 for mℓℓ (left) and

mWZ
T (right). A similar situation is present also for pT (V ). As a consequence, the cut on

mV V does not simply map onto a corresponding cut on Mvis:

∫ mmax

V V

0
dmV V

dσ

dmV V
6≈
∫ Mcut

vis

0
dMvis

dσ

dMvis
, (2.3)

for any values of M cut
vis .

4The ATLAS analysis at
√
s = 7TeV does consider the full reconstruction of mWZ [33] but the mWZ

resolution is low due to the low resolution on Emiss

T .

– 7 –
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Such a poor correlation implies that imposing a cut on Mvis does not remove all —

or at least a significant fraction of — the events from the region with mV V > mmax
V V ,

resulting in an inconsistent EFT interpretation. This can be directly observed in table 1

which shows the ratio of the number of events with and without the upper cut on mℓℓ

in the high mWW region for pp → W+W− → ℓνℓν in the SM at 8TeV. For example,

a cut of mℓℓ < 600GeV will still allow 87% (64%) of the original events with invariant

masses mWW > 600 (1000)GeV. Given figure 2, we expect the situation to be even worse

in the case of mWZ
T . A very similar problem is present in the case of LHC dark matter

searches within the EFT approach. Also in that case the invariant mass of the system is

not observable due to the missing energy, and the available observables are, in general,

poorly correlated with it [34].

In this situation one can still set conservative bounds on the EFT parameters, imposing

the EFT cut mmax
V V only on the simulated BSM events (not on the SM) and comparing with

the observed events. A simple way to understand this approach is to simplify the χ2

analysis by approximating that the 68%CL bound comes from comparing the measured

cross section in a given bin of the experimentally accessible distribution, σobs ±∆σ, with

the expected one, σSM + σBSM, and requiring the latter to be within the experimental

error, namely

σobs −∆σ < σSM + σBSM < σobs +∆σ . (2.4)

By applying the mV V cut on the BSM events, at the simulation level, we split σBSM =

σ
mV V <m

max

V V

BSM +σ
mV V >m

max

V V

BSM . If both these terms are positive (or both negative5) and as long

as no significant excess is observed, then from the inequalities in eq. (2.4) follows

σobs − σSM −∆σ < σ
mV V <m

max

V V

BSM < σobs − σSM +∆σ . (2.5)

Under the above-mentioned assumptions, the resulting constraint on σ
mV V <m

max

V V

BSM provides

a conservative bound on the EFT parameters, with the first inequality trivially satisfied.

Note that the positivity assumption is not necessarily realized in general. The BSM

contributions are schematically given by

σBSM ∝ (A∗
SMABSM + h.c.) + |ABSM|2 , (2.6)

and can be negative if the interference terms dominates and is negative. However, as

discussed in the previous section, in the parameter space where the BSM effects are large

enough to be observable, the quadratic terms typically dominate the low-energy part of

the cross section where the EFT approach is reliable. Assuming also dim-8 contribution

to be sub-leading implies σ
mV V <m

max

V V

BSM is positive. Furthermore, for large invariant masses

(where the EFT is no longer valid) one would naively expect that the interference effect in

this region is generally small due to a relatively small ASM, which may justify assuming a

positive σ
mV V >m

max

V V

BSM . This can be explicitly seen in the right panel of figure 1, which shows

how the quadratic terms dominate in the high invariant mass region.

5The inequality of eq. (2.5) in this case is switched and a similar discussion applies. The procedure

presented in section 3 to set conservative bounds works for either sign (both positive or both negative)

when no significant excess is observed.

– 8 –
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Helicity ASM ABSM σ/(g4SM/E
2)

Aψψ→00 ∼ O(g2SM) ∼ O(g2SME2/m2
W δ) ∼ 1 + (E2/m2

W )δ + (E4/m4
W )δ2

Aψψ→∓± ∼ O(g2SM) ∼ O(g2SM δ) ∼ 1 + δ + δ2

Aψψ→±0 ∼ O
(
g2SMmW /E

)
∼ O(g2SME/mW δ) ∼ m2

W /E
2 + δ + (E2/m2

W )δ2

Aψψ→±± ∼ O
(
g2SMm

2
W /E

2
)
∼ O(g2SME2/m2

W δ) ∼ m4
W /E

4 + δ + (E4/m4
W )δ2

Table 2. Individual helicity contributions to diboson production cross section ψψ →W+W−. δ is

a short-hand notation for an appropriate linear combination of the anomalous couplings.

In case an excess is observed, hinting a possible new resonance, the above strategy

fails to provide a reasonable bound. For instance, while the EFT cross section with the

cut, σ
mV V <m

max

V V

BSM , excludes the events beyond mmax
V V , the data, σobs, would include the entire

contribution including those from the resonance region, leading to an unphysical fit of the

EFT coefficients. This issue can be fixed choosing a larger confidence level interval so that

the the lower limit in eq. (2.5) is zero. The downside of this is that any information about

the excess would get lost. Nonetheless, in our analysis we will not worry about this point

anymore, since no significant excess has been observed in the available data.6

2.3 On the interference between SM and BSM amplitudes

We observed in our numerical study in section 2.1 the suppression of the interference be-

tween SM and dim-6 operators (relative to the dim-6 squared contributions). Recently,

ref. [27] showed that a rich theoretical structure behind this numerical observation can

be revealed in the explicit computation of the helicity amplitudes. We summarize in this

section the main results we have obtained applying such an analysis to diboson produc-

tion processes.

Table 2 shows our results for the helicity amplitudes (see appendix B for details).

Naively, one could expect all the SM helicity amplitudes to asymptote to a constant at

large energies, and in the presence of aTGCs to grow as E2/m2
W . This expectation is

however modified in most cases by additional mW /E factors suppressing either the SM or

the BSM part. Indeed, there is only one helicity choice of the W ’s where the interference is

enhanced by E2/m2
W (the one with two longitudinalW ’s), whereas there are various helicity

choices in which the quadratic terms are enhanced by E2/m2
W or E4/m4

W . This seems to

be one of the reasons for a diminished sensitivity of LHC observables to the linear term

in anomalous couplings observed in numerical simulations. As long as the experimental

precision does not allow one to probe small δ, high energy bins will be sensitive mostly to

the aTGC quadratic terms.

6Small fluctuations in a few bins are not expected to invalidate the analysis. If the tension becomes

significant, these fluctuation will generate TGC bounds incompatible with zero at 68%CL (generated by

a positive l.h.s. in eq. (2.5)). In that case one should simply choose a larger CL (e.g. 90%CL) where the

tension disappears, so that the TGC bounds obtained from eq. (2.5) are reliable.
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Oi σSM×dim6
/(g4SM/E

2) σdim2

6

/(g4SM/E
2) Energy range for σdim2

6

> σSM×dim6

F 3 c1
gSM

m2
W

Λ2

c21
g2SM

E4

Λ4
Λ

√
mW

Λ

(
gSM
c1

)1/4

< E < Λ

φ2F 2 c2
g2SM

m2
W

Λ2

c22
g4SM

m2
WE

2

Λ4
Λ

(
gSM√
c2

)

< E < Λ

(φDφ)2
c3
g2SM

m2
W

Λ2

c23
g4SM

m4
W

Λ4
−

ψ̄γψ φDφ
c4
g2SM

E2

Λ2

c24
g4SM

E4

Λ4
Λ

(
gSM√
c4

)

< E < Λ

Table 3. Individual operator contributions to diboson production cross section ψψ → V V at

linear (first column) and quadratic (second column) order. Third column shows the energy range

for which dim-6×dim-6 dominates over SM×dim-6 for a given operator.

It turns out that the underlying principle behind the structure in table 2 is due to the

helicity selection rule which forbids the interference between amplitudes with different total

helicities [27]. The detailed discussion and derivations are postponed to appendix A. Here,

we briefly summarise the most relevant results. We use the same notation and operator

basis as in [27, 35] (the Warsaw basis [5]), in which operators with derivatives are removed

in favour of those with more fields using the gauge bosons equations of motion.

We consider the following classes of D = 6 operators that are relevant to diboson

production (similarly for the anti-holomorphic operators),

c1 F
3 , c2 φ

2 F 2 , c3 (φDφ)
2 , c4 ψ̄γψ φDφ , (2.7)

which include QW , QφWB, QφD, and Qφψ, respectively (in the notation of ref. [5]). The

normalization of ci is given in eq. (1.1).

In the first (second) column of table 3 we show the estimated sizes of the individual

operator contributions to diboson production cross section ψψ → V V at linear (quadratic)

order. The third column gives the typical collision energy (E ∼
√
ŝ) for which dim-6×dim-

6 dominates over SM×dim-6 for a given operator. Clearly, the observed suppression in our

fits of the interference term for the F 3 operator (corresponding to the aTGC λz) can be

understood from the helicity selection rules. One important consequence is that the energy

scale above which the quadratic term dominates over the interference is suppressed by the

factor
√

mW /Λ. Thus, the energy range where the EFT is valid and the quadratic term

dominates is larger than in a generic situation, and may be non-trivial even when the UV

completion is weakly coupled.

On the other hand, both linear and quadratic terms are suppressed in φ2F 2 and (φDφ)2

whereas no suppression is present in ψ̄γψ φDφ. Estimating c2,4 ∼ g2∗, the energy range

where the quadratic terms dominates is non-trivial only for strongly coupled UV comple-

tions where g∗ ≫ gSM. The estimated sizes of the individual operator contributions in

table 3 match the explicit computations summarized in appendix A.

An important remaining issue is the size of the interference between SM and dim-8

operators, which is formally of the same order in the EFT expansion as dim-6×dim-6.

In what follows, we restrict ourselves to the models in which dim-6×dim-6 contribution

dominates over SM×dim-8. We leave a detailed study of SM×dim-8 for future work.
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3 Facilitating the EFT interpretation of existing searches

In order to show the impact of the EFT validity cuts discussed above on the aTGC extrac-

tion from real data, we recast two 8 TeV analysis: CMS W+W− [21] with L = 19.4 fb−1

and ATLAS W±Z [31] using L = 20.3 fb−1; as well as the recent 13 TeV analysis of W±Z

production by ATLAS [32], using L = 3.2 fb−1.

In all cases leptonic decays of the W and Z are considered, leading to dilepton

and trilepton signals. Since these are the most sensitive channels, neglecting the other

(hadronic) ones should not qualitatively impact the combined results. The extraction of

aTGC bounds in the EFT approach will be carried out with the prescription described in

section 2.

In addition to the analyses mentioned above, ATLAS [20] (CMS [36]) also measured

W+W− (W±Z) process in the fully leptonic channel at
√
s = 8TeV, using the full data

set. The analysis by ATLAS uses the transverse momentum of the leading lepton (pleadT )

to set limits on aTGC whereas the CMS result has not been interpreted as the limit on

aTGC. We opt not to recast these searches here. Once again, adding them to our analysis

should not change our result significantly, and it is not crucial for our purpose of discussing

how to set bounds on aTGC consistently within the EFT approach. For similar reasons,

we also do not recast the analyses using the data at
√
s = 7TeV.

We implement aTGC using FeynRules [37] in a UFO model [38], which is then

imported in MadGraph5 [39] to simulate our signal events. The signal events are further

parton-showered and hadronizied by Pythia8 [40].

3.1 W
+
W

−
→ ℓνℓℓ

′
νℓ′

The CMS analysis of theW+W− → l+νl−ν̄ process at
√
s = 8TeV provides the differential

cross section in terms of the invariant mass of the dilepton system (mℓℓ) [21]. The analysis

includes four event categories, defined in terms of the number of jets and lepton flavor.

Following the experimental selection, we keep only events with two oppositely charged

isolated leptons with different flavor. The selected leptons are required to have pT (l) >

20GeV and |η(l)| < 2.5(2.4) for electrons (muons). A lepton is declared to be isolated if

the pT -sum of all particles within the isolation cone size Riso = 0.3, excluding the lepton

itself, is less than 10% of the pT (l). The dilepton system is further restricted to satisfy

pT (ℓℓ) > 30GeV and mℓℓ > 12GeV. The remaining particles in an event are clustered

into anti-kT jets with Rjet = 0.5 using the FastJet package [41]. The reconstructed jets

are required to have pT (j) > 30GeV and |η(j)| < 4.5. The events with more than one

reconstructed jet are vetoed. The missing transverse momentum, ~Emiss
T , is defined as the

negative vector sum of pT of all reconstructed particles in the event. The projected Emiss
T is

defined as the component of ~Emiss
T transverse to the nearest lepton if ∆φ(l, ~Emiss

T ) < π/2,

otherwise the projected Emiss
T is simply defined as | ~Emiss

T |. We demand that projected Emiss
T

is bigger than 20GeV.

Our procedure successfully reproduces the number of events of qq̄ → W+W− for

different lepton flavors in both zero and one-jet category (see table 4 of ref. [21]) within

– 11 –
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Figure 3. 68% CL region from 8TeV CMS pp→W+W− searches for different mWW cuts.

few % discrepancy, validating our analysis.7 Since the gg → W+W− process represents

only a ∼ 3% contribution to the total cross section, the aTGC contribution arising from

it is certainly sub-leading. Therefore, for simpicity, in our analysis we simulate only qq̄ →
W+W− and simply rescale it to match the total contribution from both processes.

In order to recast the analysis as a limit on aTGC, we extract from figure 4 of ref. [21]

the observed number of events, the expected SM contribution to W+W−, and the to-

tal SM background in the mℓℓ distribution. As was discussed in section 2, the upper

cut mmax
WW is imposed only on the BSM part at the simulation level, ∆σ

(i)
BSM,mmax

WW
≡

∆σ
(i)
BSM

(√
ŝ < mmax

WW

)

, to get a conservative bound. The resulting cross section ∆σ(i),

where i runs over eight mℓℓ bins, is given by

∆σ(i) = ∆σ
(i)
SMMC



1 +
∆σ

(i)
BSM,mmax

WW

∆σ
(i)
SM



 , (3.1)

where the cross section is rescaled such that our SM prediction matches the Monte Carlo

results of figure 4 of ref. [21]. Note that ∆σ
(i)
BSM in eq. (3.1) includes the interference between

SM and BSM amplitudes (linear terms in aTGC), as well as quadratic terms in aTGC:

∆σ
(i)
BSM,mmax

WW

∆σ
(i)
SM

= B(i)
a κa + C

(i)
ab κaκb , (3.2)

where a and b run over the three aTGC κ ≡ {λz, δg1,z, δκγ}. In order to solve for B(i) and

C(i), one needs to run the simulation for at least ten points in the aTGC parameter space.

We perform a profile likelihood fit to the binned mℓℓ distribution.
8

The resulting sensitivity on the aTGC are illustrated in figure 3, where in each plot we

show the 68% CL limit on two aTGC profiling the likelihood over the third one, for values of

mmax
WW <∞ (red), 1.4 (orange), 1.2 (green), 1.0 (cyan), 0.8 (blue) and 0.6TeV (purple). As

7The two same-flavor categories are rather difficult to validate as the analysis uses DY MVA as one of

the cuts.
8The numerical approach adopted here is explained in more details in ref. [42] in the context of elec-

troweak Higgs production analyses.
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Figure 4. Recast of the CMS analysis ofW+W− → lνlν process at
√
s = 8TeV and 19.4 fb−1 [21].

Bounds on the anomalous triple gauge couplings obtained expressing the signal strengths in each

bin up to quadratic (red-filled) and linear (red-dashed) order in aTGC, respectively. No cuts on

truth mWW are applied.

was expected, the sensitivities are weakened as the cut is lowered. However, the dependence

of the limits on the EFT cut is small up to mmax
WW ≃ 1 TeV and becomes important only for

lower cutoffs. This implies that the bounds on aTGC obtained from the 8 TeVWW searches

without any cutoff offer approximately valid constraints for new physics scenarios with

mass scales above ∼ 1 TeV, as long as dim-8 contributions can be neglected. Interestingly

enough, even for a relatively small mmax
WW , the obtained limits are rather competitive with

respect to those from the combined fit to Higgs and LEP2 data [19]. Finally, it is worth

mentioning that the aTGC bounds that we obtain without any mWW cut are in a good

agreement with the limits quoted by the experimental collaboration [21] and by ref. [26].

In figure 4 we compare the sensitivities obtained from recasting the CMS 8 TeV WW

analysis by including (red-filled) or excluding (red-dashed) quadratic terms in dim-6 opera-

tors. We observe that the limits are much weakened when only linear terms are included, in

agreement with the discussion of section 2.1. Therefore, in BSM scenarios where quadratic

dim-6 and linear dim-8 terms are of the same size (following the general EFT counting),

the latter are expected to generate similar changes in the aTGC bounds. This implies

that the aTGC bounds derived by including quadratic dim-6 terms largely overestimate

the constraints for such BSM scenarios. Let us also note that non-included QCD NLO

corrections might change qualitatively the interference terms, since the LO terms happen

to be suppressed. This is in fact confirmed by preliminary results shown in ref. [43, 44].

Therefore, the result of the linear fit in figure 4 should be taken with caution, but the main

message (large sensitivity to quadratic corrections) is not affected by this caveat.

This is unlike the limits from Higgs+LEP2 combined dataset [19] where the linearized

fit (shown in blue) leads to similar results as the one including quadratic corrections. In fact,

the observables of this analysis (Higgs signal strengths and e+e− → W+W− differential

cross section) receive large SM contribution and the dominant new physics effect occurs at

order Λ−2 due to the interference of dim-6 operators with the SM.

– 13 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
5

Nonetheless, as mentioned before, in a large class of models, dim-6 squared terms

dominate over linear dim-8 in the low-energy EFT. In these situations stronger bounds

from the quadratic fit can be applied. This class of models includes, but is not necessarily

limited to,9 strongly coupled models.

3.2 W
±
Z → ℓ

±
νℓℓ

+
ℓ
−

In the ATLAS W±Z analyses (both 8 and 13TeV) [31, 32], limits on aTGC are derived

from the transverse mass spectrum of the WZ system (mWZ
T ) imposing no upper cut on

the momentum transfers in the process.

We use MadGraph5 to generate parton-level events for a set of points in aTGC

parameter space. The fiducial phase space region is defined with the following set of cuts

(see also table 1 of ref. [31]). Three isolated charged leptons with η(ℓ) < 2.5 are required,

two of which must form a pair with opposite charge and same flavor to reconstruct the

Z boson (with |mℓℓ − mZ | < 10GeV), while the third is associated with the W decay.

While the leptons from the Z decay need to pass the cut pT (ℓ
±
Z ) > 15GeV, the lepton

from the W decay is required to have pT (ℓW ) > 20GeV. The separation between leptons

is required to be ∆R(ℓ+Zℓ
−
Z ) > 0.2 and ∆R(ℓ±ZℓW ) > 0.3, respectively. Finally, the W

transverse mass needs to satisfy mW
T > 30GeV. The same set of cuts has also been applied

in the 13TeV analysis.

We perform an analysis equivalent to the WW case to set aTGC limits for different

mWZ cuts. In the 8TeV search, we focus on the measured mWZ
T differential cross section

in the fiducial phase space, reported in figure 5 of ref. [31].10 We first reproduce the SM

predictions for the cross sections in each bin after applying the overall NLO QCD K-factor

from ref. [25], which serves as a check of our simulation procedure. We then compute

for each bin the linear and quadratic dependence of the cross section on the aTGC as

in eq. (3.2) with same upper cuts on mWZ on the BSM events as discussed for WW .

We use ∆σfid (i)/∆σ
fid (i)
SM measurements to construct the χ2 as function of the three aTGC.

Theoretical errors due to the limited SM predictions shown with an orange band in figure 5

of ref. [31] are added in quadrature to the experimental errors. In the case of the 13TeV

analysis, we use the number of observed and expected events in mWZ
T bins shown in figure 1

of ref. [32].

The 68% CL region resulting from the fit of the 8TeV (13TeV) data are presented in

figure 5 (figure 6) in two-dimensional aTGC planes after profiling over the third parameter.

Same mV V cuts are imposed as in the WW case, with the same color-code. The situation

is very similar to that discussed for WW. Our limits from the 8TeV analysis without any

mWZ cut are in a good agreement with the limits quoted by the experimental collaboration

and by ref. [26]. As expected, the limits on aTGC soften with a tighter cut, albeit only to a

small degree up to mmax
WZ ∼ 1 TeV. We have checked that also in this channel the (strong)

9In principle one should be able to engineer a (non strongly coupled) model where the various free

parameters are fine-tuned so that the relevant dim-8 Wilson Coefficients are suppressed.
10Equivalently, one could also recast the reconstructed event distribution in mWZ

T in figure 12 of [31].

We, however, encourage experimental collaboration to continue publishing unfolded differential distribution

measurements which can be more accurately included in our analyses (using theorist level tools).
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Figure 5. 68% CL region from 8TeV ATLAS pp→W±Z searches for different mWZ cuts.

Figure 6. 68% CL region from 13TeV ATLAS pp→W±Z searches for different mWZ cuts.

Figure 7. Combined 68% CL region from CMSWW (8TeV) and ATLASWZ (8+13TeV) searches

for different mV V cuts.

aTGC limits are mainly due to large quadratic terms (C
(bin)
ab ) in eq. (3.2), and thus assume

implicitly negligible contributions from linear dim-8 terms.

3.3 Combination

In figure 7 we combine the limits from the three analysis described above, CMS WW

at 8TeV [21], ATLAS WZ at 8TeV [31] and ATLAS WZ at 13TeV [32], showing the

combined 68% CL region in the three aTGC as a function of the EFT cut on mV V , where
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mmax
V V ∞ 1400 1200 1000 800 600

(GeV)

δg1,z(%) [−1.2, 2.0] [−1.2, 2.2] [−1.3, 2.4] [−1.4, 2.5] [−1.7, 3.2] [−2.1, 5.4]
δκγ (%) [−7.8, 9.9] [−8.3, 10] [−8.4, 11] [−9.0, 11] [−10, 15] [−15, 21]
λz (%) [−1.3, 1.3] [−1.5, 1.7] [−1.8, 1.8] [−2.1, 2.1] [−2.9, 3.0] [−4.2, 4.8]

Table 4. Profiled 95% CL bounds on the each aTGC from CMS WW (8TeV) and ATLAS WZ

(8+13TeV) searches for different mV V cuts.

V = W,Z. The 95% CL bounds on each single aTGC after profiling over the other two,

for different mV V cuts, are shown in table 4.

Since the present sensitivity on the aTGC is driven by the quadratic terms, the final

likelihood is not expected to be a Gaussian. For this reason we encourage the experi-

mental collaborations to present separately the 68% and 95% CL contours in the three

2-dimensional aTGC planes shown above.

4 An explicit model testing the EFT approach

The goal of this section is to evaluate the validity of the EFT description of VV production

for a specific example of a UV model that replaces the EFT for E ≥ Λ. Given a concrete

model with new particles, we can constrain it via two different procedures. One is to

directly calculate the model’s predictions for VV production and to confront them with

the experimental data so as to constrain the parameter space (the masses and couplings) of

the BSM model. Alternatively, one could first integrate out the new particles and calculate

the Wilson coefficients of the low-energy EFT as a function of the masses and couplings of

the model. Then constraints on the model’s parameter space can be obtained by recasting

the constraints on the EFT parameters derived in section 3.3. We expect that the two

procedures should give the same results when the new particles are heavy enough (and if

dim-8 terms are negligible), and different results when they are so light as to be produced

on-shell at the LHC. The energy scale below which the two procedures diverge sets the

validity range of the SMEFT for that particular new physics scenario.

We are interested in a model where the aTGC δg1,z is generated at tree-level in the

low-energy EFT without large contributions to other electroweak precision observables.

The latter requirement is non-trivial. Indeed, δg1,z can be generated by integrating out

new heavy vector bosons mixing with W and Z bosons. However, the mixing generically

also shifts the Z and W boson couplings to fermions, as well as the W boson mass, which

were accurately measured in LEP and other precision experiments. In the model below,

the absence of large corrections to the electroweak precision observables will be achieved

by a fine-tuned cancellation between contributions from different heavy vectors.

We consider the SM extended by the following degrees of freedom:

• a vector triplet V i
µ, i = 1 . . . 3 transforming as an adjoint under the SM SU(2)L;

• a vector field V 0
µ which is a singlet under the SM gauge group.
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For simplicity, we are assuming the triplet and the singlet have the same mass mV . The

interactions between the new vectors and the SM are given by

L ⊃ i

2
gLκHV

0
µH

†←→DµH + gLV
0
µ

∑

f∈ℓ,q

κfYf f̄ σ̄µf + gLV
0
µ

∑

f∈e,u,d

κfYf̄cf
cσµf̄

c

+
i

2
gLκ

′
HV

i
µH

†σi
←→
DµH +

gL
2
V i
µ

∑

f∈ℓ,q

κ′f f̄σ
iσ̄µf,

(4.1)

whereH†←→DµH = H†DµH−DµH
†H. This is not a UV complete model, as it introduces new

vector fields without an associated gauge symmetry. However, it can be easily embedded

in a UV complete framework. For example, the masses could arise in a perturbative

framework of deconstruction [45] where the SM electroweak symmetry is replicated, and

the larger group is broken to the SM via a VEV of a bi-fundamental (“link” ) scalar fields.

Alternatively, the vectors could be composite excitations of a strongly interacting sector

with a global SU(2)×U(1) symmetry weakly gauged by the SM electroweak bosons, as in

composite Higgs models [46]. The following discussion does not depend on how the model

is UV completed.

To derive the low-energy EFT of this model at tree-level, one integrates out the heavy

vectors by solving their equation of motion and plugging the solution back to the La-

grangian. With this procedure one obtains the following D=6 operators in the effective

Lagrangian:

Leff = LSM −
g2L
8m2

V

(

iκ′HH
†σi
←→
DµH +

∑

f∈ℓ,q

κ′f f̄σ
iσ̄µf

)2

− g2L
8m2

V

(

iκHH
†←→DµH −

∑

f∈ℓ,q

κfYf f̄σ
iσ̄µf −

∑

f∈e,u,d

κfYf̄cf
cσµf̄

c

)2

+O(m−4
V ) .

(4.2)

With a bit of algebra, one can massage these operators to a form that fits one of the D=6

bases in the literature. For example, in the Warsaw basis the Wilson coefficients are found

to be:11

c̄H✷ = −
(
3

2
κ′2H +

1

2
κ2H

)
m2
W

m2
V

, c̄HD = − 2κ2H
m2
W

m2
V

,

c̄H = − 4λκ′2H
m2
W

m2
V

, (4.3)

[c̄Hf ]IJ = −
√
2κ′2H

mf

v

m2
W

m2
V

δIJ , [c̄
(3)
Hf ]IJ = − κ′Hκ′f

m2
W

m2
V

δIJ ,

[c̄
(1)
Hf ]IJ = 2κHκfYf

m2
W

m2
V

δIJ ,

plus a set of four-fermion operators.

11We use the original operator normalization of ref. [5], we however absorb the EFT scale Λ into the

Wilson coefficients, ci/Λ
2 → c̄i/v

2 (v ≈ 246GeV).
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The parameters κH , κ
′
H , κf , and κ′f characterize the coupling strength of the new

vectors to the SM and are a-priori free parameters. In the following, the couplings to

fermions are assumed to be flavor universal and diagonal. Moreover, we assume that they

are related to the couplings to the Higgs field as

κ′f = − g2L
2g2Y

κ2H
κ′H

, κf = −κH
2
. (4.4)

One can show that this tuning ensures that the couplings of the light gauge boson eigen-

states (identified with the SM gauge bosons) to the fermions are not shifted at tree level

from their SM value.12

With these conditions imposed, the parameters space is 3-dimensional and can be

characterized by the couplings κH , κ
′
H and the mass mV . The latter is approximately the

mass of the two neutral and one charged heavy vector eigenstates, up to small corrections

of order v4/m4
V . In the low-energy EFT below the scale mV one finds aTGCs of the SM

gauge bosons described by13

δg1,z = −κ2H
m2
W

2s2θm
2
V

+O(m−4
V ), (4.5)

while δκγ = λz = 0 at tree level. Note that δg1,z is sensitive to the UV physics only via the

combination κH/mV . Thus, for large mV , diboson production at the LHC is sensitive only

to this particular combination, while the dependence on κ′H cancels out after imposing the

tuning conditions in Eq. (4.4). On the other hand, for mV in the kinematic range of the

LHC all the 3 parameters can be probed via diboson production.

We are ready to discuss the validity range of the EFT for the model described above.

We will illustrate the quantitative determination of the validity range using as example the

limits set by the CMS analysis of W+W− production at
√
s = 8TeV [21]. The results are

summarized in Figure 8. We plot the direct limits on the parameter κH as a function of mV

for three different choices of the ratio κ′H/κH . Since the aTGC in the leading-order SMEFT

is independent of κ′H we expect that, for large enough mV , the limits are independent of

that ratio. This is indeed the case for mV & 3TeV. On the other hand, for mV . 3TeV,

when the new vectors enter the kinematic range of the
√
s = 8TeV LHC, the limits on κH

may easily vary by a factor of 2 depending on κ′H .

In Figure 8 we also show the parameter space excluded by recasting EFT limits on

aTGCs using Eq. (4.5) and the bounds obtained without any upper cut on mWW . In this

case, the limits, by construction, are independent of κ′H . As expected, the EFT and the

direct approach yield consistent limits for mV & 3TeV. Therefore, the scale of 3TeV is an

12There remains a correction to GF which, indirectly, also affects the measured value of the gauge

couplings to fermions. To get rid of it, one needs to invoke another fine-tuned UV contribution to the

4-fermion operator (ℓ̄1σ̄µℓ2)(ℓ̄2σ̄µℓ1) responsible for the muon beta decay from which GF is extracted. For

this reason we do not consider its contribution to δg1,z, even though according to the matching of eq. (B.3)

it should be there.
13In this EFT there are also corrections to the Higgs couplings (which depend also on the combination

κ′

H/mV ), but they are not important for the following discussion.
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Figure 8. Limits on the κH coupling as a function of vector boson mass in the model discussed

in this section. Different lines correspond to κ′H = 3κH (red), κ′H = κH (brown), and κ′H = −3κH
(orange). The solid lines turn into dashed ones at the scale when the UV model becomes non-

perturbative, which we estimate as the scale where the total width of at least one of the heavy

vectors exceeds mV /2. The blue region is the parameter space excluded by recasting the EFT

limits on δg1,z as limits on κH/mV using the matching in Eq. (4.5).

approximate lower limit on the EFT cut-off Λ such that, for this particular UV completion,

the SMEFT provides a valid description of diboson production at the
√
s = 8TeV LHC.

Note that, for this example, the true (direct) limits are always stronger than the ones

derived indirectly by recasting the limits on the aTGC. Thus, the EFT approach provides

a conservative limit on the parameters, even without restricting the kinematic range of

experimental data used in the analysis.

This example suggests that diboson measurements at the
√
s = 8TeV LHC can be

adequately described using the SMEFT provided the EFT cut-off (or the scale of the BSM

particles) is at least 3TeV. For
√
s = 13TeV LHC the necessary cut-off is expected to

be even larger. For a lower cut-off, the limits on BSM models derived by recasting limits

on the aTGC may have an order 1 error. Since the parameters of the low-energy EFT at

the leading order depend on the cut-off as 1/Λ2, they carry a large suppression factor for

Λ & 3TeV. Given that the diboson measurements are currently sensitive to the aTGC of

order 0.01, only rather strongly coupled UV theories can be efficiently constrained by the

LHC using the EFT approach. This can be seen in Figure 8, where only κH & 3 can be

probed in the EFT validity regime of the LHC. Even larger couplings are needed if the

aTGC are induced at the 1-loop level. Obviously, when the couplings are too large the

UV model becomes non-perturbative, and then this particular description is no longer a

useful UV completion. In this example the onset of a non-perturbative behavior occurs

for κH between 2 and 5, depending on κ′H . Thus, the parameter window where the EFT

description is useful is rather limited, at least for this particular UV completion.
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5 Conclusions

On the one hand, it is well known that the EFT interpretation of (relatively) high-pT
processes at the LHC— such as diboson production, associated and VBF Higgs production,

or even dark matter searches — presents some challenges. On the other hand, the large

amount of data gathered by the LHC on these processes, also considering the ever-increasing

experimental and theoretical precision, has the potential to offer important insights on

possible BSM scenarios, complementing the information obtained from LEP and precision

low-energy experiments. In particular, this paper discusses in detail some of the most

relevant challenges encountered while interpreting WW and WZ production at the LHC

as measurements of anomalous triple gauge coupling in the context of the SMEFT.

In principle, the leading BSM contribution to the relevant differential distributions

should arise at O(Λ−2), due to the interference between SM and dim-6 operators. Next-

to-leading corrections, of O(Λ−4), are instead due to dim-6 squared terms and interference

of SM and dim-8 operators. A consistent EFT analysis limited to dim-6 operators should

therefore consider only interference terms as done in the Higgs+LEP-2 combined fit of

ref. [19]. In that case, including dim-6 squared terms does not qualitatively modify the

results of ref. [19], which suggests a quick convergence of the EFT series and that O(Λ−4)

terms can be neglected. However, employing the same approach to diboson production at

the LHC, we find very loose bounds in the linearized fit, and much stronger bounds when

including quadratic terms (see figure 4). For the latter, we agree with the conclusions of

previous EFT fits to diboson production at the LHC (for example in [26]), as well as with

the results quoted by experimental collaborations [20, 21]. In particular, including both

interference and dim-6 squared terms we confirm that aTGC bounds from the LHC are

stronger than the LEP ones.

These results signify that the strong LHC bounds are dominantly due to the quadratic

terms. In consequence, the LHC limits on aTGCs cannot be trivially combined with

other datasets, since the likelihood is not approximately Gaussian. For this reason, we

encourage experiments to publish the full likelihood function for the aTGCs (rather than

just central values and errors), which would allow theorists to easily perform a combination

with other datasets and derive correct limits on BSM models. The smallness of some of

the interference terms at the LHC can be understood by an analysis of the relevant SM

and BSM helicity amplitudes [27], and is due to ∼ mW /E suppression factors appearing

in the SM or BSM part of the amplitude (see section 2.3). In this situation, LHC limits

dominated by dim-6 squared terms can still be consistently interpreted in certain class

of theories in which the dominant new physics contribution is indeed due to these terms,

and in which dim-8 interference with the SM is also suppressed. For such theories, usually

characterized by a several TeV mass gap from the SM and strong coupling, the LHC bounds

as derived by experimental collaborations are applicable and indeed more stringent than

the Higgs+LEP-2 ones, as recently pointed out in ref. [26].

Another handle on the validity of the EFT in LHC searches is to impose a cut on

high-pT events, mmax
V V < Λ, where Λ is the assumed mass scale of the new physics, and

perform the analysis for different values of mmax
V V (i.e. different assumptions on Λ). In this
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way, the EFT interpretation of the bounds for theories with a lower cut-off could also

be possible. However, a complication arises due to the fact that the kinematical variable

mV V can not be reconstructed experimentally if the final state includes neutrinos, in which

case other kinematical variables such as mℓℓ or mWZ
T are used to build differential cross

sections. We find that these observables are very badly correlated with mV V (see figure 2),

implying that a cut on them does not remove the unwanted high-pT events with a good

enough efficiency. In this case, by imposing the desired mmax
V V cut at the simulation level on

the BSM events only, consistent and conservative EFT bounds can still be obtained if no

significant excess from the SM is observed. By recasting several CMS and ATLAS searches

with this technique, for different values of mmax
V V , we show that bounds with lower invariant

mass cuts are in general less stringent (see figure 7 and table 4). In order to facilitate the

interpretation of the measurement, we recommend presentation of the experimental results

as a function of the EFT validity cut, mmax
V V .

In order to explicitly check some of the conclusions from the EFT validity discussion, we

introduce a simple BSM model generating aTGC at tree level, and compare the indirect

bounds obtained from the EFT analysis (with no high-pT cut) with those obtained by

directly analyzing the full model. We find that the EFT and direct bounds agree for

resonance masses above ∼ 3 TeV. However, in this particular model, the EFT bounds are

always more conservative than the direct ones, even down to masses of ∼ 1 TeV.

In conclusion, the bounds from the Higgs+LEP-2 global fit presented in ref. [19] are

applicable in the most general case in which SMEFT is well describing the underlying

UV dynamics. Instead, for a subset of theories (discussed in this work) that can also be

matched to the SMEFT, WW and WZ searches at LHC provide the most stringent limits

on aTGC.
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A Interference between SM and dim-6 BSM amplitudes

In this appendix we present a discussion on the helicity structure of the SM and BSM

amplitudes relevant to diboson production at the LHC, the results of which are reported

in section 2.3.
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ψ±

ψ∓

V − V +

V +

V +

Figure 9. The four-point amplitude involving F 3. The F 3 operator (shown as a dot) contributes to

the three-point amplitude with the total helicity of 3 (right part of the diagram). The superscripts,

+, −, denote the helicity of ψ or V .

For completeness, we summarize some theoretical results about helicity amplitudes,

following closely the discussion in ref. [27]. First, the little group scaling and Naive Di-

mensional Analysis uniquely relate the helicity of the three-point amplitude to the dimen-

sionality of the coupling g as |h(A3)| = 1 − [g] (see [47] for a review). In the SM, in the

limit of unbroken electroweak symmetry, h(ASM
3 ) = ±1. Dimension-6 operators, such as

the F 3 ones for example, can instead have |h(ABSM
3 )| = 3 since [g] = −2. It can also be

shown [27] that all four-point SM amplitudes have vanishing total helicity, h(ASM
4 ) = 0,

in the massless limit except for an amplitude with four fermions involving both up- and

down-quark Yukawa couplings. In refs. [48, 49] it has been shown that interesting results

on the renormalization-group flow of dimension-6 operators can be obtained by considering

their holomorphic properties. The same properties also help understanding the interference

pattern with the SM. In this context one defines the holomorphic and anti-holomorphic

weights of an amplitude A with n(A) legs as w(A) = n(A)−h(A) and w̄(A) = n(A)+h(A).

Then the total helicity of an n-point amplitude with an insertion of a higher-dimensional

operator O is bounded as [27]

w̄(O)− n ≤ h(AO
n ) ≤ n− w(O) , (A.1)

where w(O) = minA{w(A)}, w̄(O) = minA{w̄(A)} are minimum weights over all the

amplitudes induced by an operator O. The helicity h(AO
n ) in eq. (A.1) is even (odd) for

even (odd) n. Lastly, two on-shell sub-amplitudes, Am, Am′ , can combine to form an n-

point amplitude, An, with n = m+m′− 2. The total helicity of the resulting amplitude is

simply the sum of the helicities of the sub-amplitudes, namely, h(An) = h(Am) + h(Am′).

We now apply this formalism to understand the leading energy behavior of diboson

(WW or WZ) production cross sections in the presence of dimension-6 operators beyond

the SM. We use the same notations and operator basis as in [27, 35], namely, the Warsaw

basis [5]. The relevant dimension-6 operators are listed in eq. (2.7).

We start our survey with the F 3 operator, which has the weight (w, w̄) = (0, 6) and

contributes to the three-point amplitude V V V with the helicity of 3. In the Warsaw basis

there is one such operator, denoted as O3W , contributing to the diboson production. It

connects to SM three-point amplitude with a gauge boson and fermion pair, ψ±ψ∓V −, to

form the four-point amplitude with the total helicity of 2, h(ABSM
4 ) = 2, as is illustrated in

figure 9. The SM four-point amplitude, instead, has a vanishing total helicity, h(ASM
4 ) = 0.
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〈φ〉

ψ±

ψ∓

V − V +

V ±

V +

〈φ〉

〈φ〉

ψ±

ψ∓

V − V +

V +

φ

Figure 10. The four-point amplitudes involving φ2F 2. The φ2F 2 operator (shown as dots) can

contribute to the five-point amplitude with the helicity of 1 or 3 (right part of the left diagram).

Similarly for the three-point amplitude with total helicity of 2 (right part of the right diagram).

Therefore, in the massless limit (unbroken EW symmetry), the helicity selection rule forbids

the interference between the SM and the BSM amplitude due to the F 3 operator. A non-

vanishing interference thus requires two helicity flips. For instance, the SM amplitude

ψ±ψ∓φφ with h = 0 can flip two helicities by connecting with two SM three-point vertices

V +φφ (one φ gets a non-zero vacuum expectation value -VEV-) in order to interfere with the

BSM amplitude ψ±ψ∓V +V + with h = 2. The two helicity flips imply a total suppression

factor of (mW /E)2. The quadratic dim-6 term, on the other hand, does not require any

helicity flip. The power counting of the cross section is given by

σψψ→TT (++) ∼
g4SM
E2

[
m4
W

E4
+

c1
gSM

m2
W

Λ2
︸ ︷︷ ︸

SM×F3

+
c21
g2SM

E4

Λ4

︸ ︷︷ ︸

F 3×F 3

+ · · ·
]

,
(A.2)

where c1/Λ
2 multiplies the F 3 operator in the Lagrangian, the subscript T refers to the

transverse mode of gauge bosons, and the subscript ++ specifies the helicities of the two

gauge bosons (the same result holds for the −− helicities). In the Warsaw basis, all other

operators lead to a softer energy dependence of this helicity cross section. Clearly, the

quadratic term grows rapidly with energy, while the interference term does not. For the

energy range

Λ

√
mW

Λ

(
gSM
c1

)1/4

< E < Λ , (A.3)

the EFT is valid and the dim-6×dim-6 contribution dominates over the interference term.

As discussed in [28, 29], c1 ≫ gSM (which may occur when the UV completion contains large

couplings) increases the range where the quadratic term dominates over the interference

one within the EFT validity regime. For these particular diboson helicities, the relative

suppression of the interference term has the effect of widening that range by the factor of

(mW /Λ)
1/2. As a result, the quadratic term may dominate that helicity cross section even

for c1 . gSM, as long as mW ≪ Λ.

Let us now consider the φ2F 2 operator with (w, w̄) = (2, 6). In the Warsaw basis,

one such operator, denoted as OHWB, contributes to diboson production. According to

eq. (A.1), φ2F 2 can contribute to the four-point amplitude V +V +φφ with the helicity of

2 or to the five-point amplitudes V ±V +V +φφ with the helicity of 1, 3. The five-point

amplitudes can induce the three-point amplitudes with h = 1, 3 by replacing all two φ’s
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with their VEVs, 〈φ〉 = v, as is seen in the right part of the left diagram in figure 10. The

resulting four-point amplitudes, made by connecting them to SM three-point amplitude,

have h(ABSM
4 ) = 0, 2. The contribution of the case with h(ABSM

4 ) = 2 to the cross section

σψψ→TT (++) is sub-leading, compared to eq. (A.2), whereas the case with h(ABSM
4 ) = 0

has a different energy dependence, compared to eq. (A.2) (note different helicities though,

+− vs. ++),

σψψ→TT (+−) ∼
g4SM
E2

[

1 +
c2
g2SM

m2
W

Λ2

︸ ︷︷ ︸

SM×φ2F2

+
c22
g4SM

m4
W

Λ4

︸ ︷︷ ︸

φ2F 2×φ2F 2

+ · · ·
]

, (A.4)

where we used mW ∼ gSMv. One can also show that no other dimension-6 operator

contributes terms growing with energy to this helicity cross section, therefore, sensitivity

of this final state to the EFT parameters is limited. On the other hand, the four-point

amplitude V +V +φφ (right sub-diagram in figure 10) can contribute to the triple gauge

vertex by replacing one of φ with its VEV. The resulting four-point amplitude, shown in

figure 10, has the total helicity of 1 (therefore it requires one helicity flip). It contributes

to the cross section σψψ→TL whose parametric behavior is given by

σψψ→TL ∼
g4SM
E2

[
m2
W

E2
+

c2
g2SM

m2
W

Λ2

︸ ︷︷ ︸

SM×φ2F2

+
c22
g4SM

m2
W E2

Λ4

︸ ︷︷ ︸

φ2F 2×φ2F 2

+ · · ·
]

,
(A.5)

where the subscript L refers to the longitudinal mode of the gauge bosons. Eq. (A.5)

implies that the interference term between the SM amplitude and the BSM one with one

insertion of the φ2F 2 operator is not suppressed compared to the quadratic term. The

energy window where the dim-6×dim-6 dominates over the interference is not different

from the case without a suppression, that is,

Λ

(
gSM√
c2

)

< E < Λ . (A.6)

This is the standard situation, where the domination of the quadratic term within the EFT

validity range arises only for c2 ≫ gSM, that is for a strongly coupled UV completion. In

the Warsaw basis, also the operators O3W and OHψ contribute with terms growing with

the energy to the TL helicity cross section, and one can show that they lead to the same

energy dependence as in eq. (A.5).

Next, we discuss the (φDφ)2 operator with (w, w̄) = (4, 4). In the Warsaw basis, one

such operator, denoted OHD, contributes to diboson production. It can contribute to the

triple gauge vertex via the six-point amplitude with helicity of 0 or ±2 by replacing three

φ’s with their VEVs (left diagram in figure 11). The resulting four-point amplitude will

have h(ABSM
4 ) = ±1, which requires one helicity flip to interfere with the SM amplitude.

The contribution to the cross section σψψ→TL is sub-leading, compared to eq. (A.5). The

other possible contribution is via the five-point amplitude with helicity of ±1 (right diagram
of figure 11). The resulting four-point amplitude has zero helicity, thus it interferes with

the SM one. Similarly, contributions to the cross section σψψ→LL do not contain any terms
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〈φ〉

ψ±

ψ∓

V − V +

V ±

φ

〈φ〉

〈φ〉

ψ±

ψ∓

V − V +

φ

φ

〈φ〉

〈φ〉

Figure 11. The four-point amplitude involving (φDφ)2. The (φDφ)2 operator (shown as a dot)

contributes to the six-point amplitude with the helicity of 0 or ±2 (left). Similarly for five-point

amplitude with the helicity of ±1 (right). We show only diagrams with non-negative helicities.

ψ±

ψ∓

φ

φ

Figure 12. The four-point amplitude induced by the contact operator, ψ̄γψφDφ with

h(Aψ̄γψφDφ4 ) = 0.

growing with energy. We conclude that the contributions of (φDφ)2 become sub-dominant

at high energies compared to those of the other operators.

Finally, we consider the operator ψ̄γψ φDφ with (w, w̄) = (4, 4). The BSM amplitude

with the insertion of this operator has the total helicity of zero, and it can interfere with

the SM amplitude without any suppression. The contribution to the cross section σψψ→LL

is thus estimated as

σψψ→LL =
g4SM
E2

[

1 +
c4
g2SM

E2

Λ2

︸ ︷︷ ︸

SM×ψ̄γψφDφ

+
c24
g4SM

E4

Λ4

︸ ︷︷ ︸

ψ̄γψφDφ×ψ̄γψφDφ

+ · · ·
]

. (A.7)

In spite of the different energy dependence compared to the LT cross section in Eq. (A.5),

the energy range where the quadratic term dominates over the interference one is analogous

as in Eq. (A.6):

Λ

(
gSM√
c4

)

< E < Λ . (A.8)

In this case, again, the domination of the quadratic term within the EFT validity range

can arise only for c4 ≫ gSM. In the Warsaw basis the contributions of other operators

than ψ̄γψ φDφ leads to a softer energy dependence. The coefficients of these operators are,

typically, stringently constrained by electroweak precision measurements [2]. However, two

linear combinations of these operators with OHD and OHWB do not affect the the Z and

– 25 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
5

u

ū
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u
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W
+
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−

ν

Figure 13. The s-channel and t-channel diagrams of uū → W+W−. Similar diagrams for down-

type initial state quarks.

W couplings to fermions, but they do contribute to the aTGCs δg1,z and δκγ [10].14 At

the LHC, these combinations are probed via diboson production and Higgs physics.

The remaining contact operators involving two fermions, which could potentially con-

tribute to diboson production, are the Yukawa-like operators, ψ̄ψφ3, and the dipole oper-

ators, Fψ̄ψφ. However, they both have a L-R (or R-L) chiral structure, which means that

they do not interfere with the SM in the limit of massless light quarks. Furthermore, their

coefficients are expected to be proportional to light quark Yukawas, providing a further

suppression also for the quadratic terms. For these reasons we do not discuss them further.

B Helicity amplitudes for V V production at the LHC

We consider the process uū→W−W+ in the limit of massless quarks (very similar results

hold for dd̄ → W−W+, ud̄ → W+Z, and ūd → W−Z). Ref. [27] pointed out that it is

illuminating to expand the helicity amplitudes for this process in m2
W /s, where

√
s is the

center-of-mass energy of the partonic collision. In the SM, the amplitudes at the lowest

order in m2
W /s take the particularly simple form:

A(−+→ 00) =
3g2L + g2Y

12
sin θ +O(m2

W /s), A(+− → 00) = −g
2
Y

3
sin θ +O(m2

W /s),

A(−+→ ±∓) = −∓1 + cos θ

1 + cos θ

g2L
2

sin θ, A(+− → ±∓) = 0,

A(−+→ ±0) = O(mW /
√
s), A(+− → ±0) = O(mW /

√
s),

A(−+→ ±±) = O(m2
W /s), A(+− → ±±) = O(m2

W /s).

(B.1)

where gL, gY are the SM SU(2)×U(1) couplings, and θ is the scattering angle of W−. The

amplitudes with ++ and −− fermion helicities vanish in the limit where the fermions are

massless.

14In the SILH basis these two linear combinations are traded for a combination of purely bosonic operators

OW , OB , OHW and OHB .
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In the presence of aTGCs, the leading correction in m2
W /s to the helicity amplitudes

are as follows:

δA(−+→ 00) =
s

m2
W

g2L
12

sin θ
[

6δgWq
L − 6δgZuL − 3δκz − 4s2θ(δκγ − δκz)

]

+O(s0),

δA(+− → 00) =
s

m2
W

g2L
6

sin θ
[
3δgZuR + 2s2θ(δκγ − δκz)

]
+O(s0),

δA(−+→ ±∓) = O(s0), δA(+− → ±∓) = 0,

δA(−+→ ±0) =
√
s

mW

gL

12
√
2
(±1− cos θ)

[

3δg1.z + 3δκz + 3λz

+ 12δgZuL − 12δgWq
L − 4s2θ(δg1,z − δκγ + δκz)

]

+O(s−1/2),

δA(+− → ±0) =
√
s

mW

gL

3
√
2
(±1 + cos θ)

[

3δgZuR − s2θ(δg1,z − δκγ + δκz)
]

+O(s−1/2),

δA(−+→ ±±) = s

m2
W

g2L
4

sin θλz +O(s0), δA(+− → ±±) = O(s0).

(B.2)

Recall that δκz = δg1,z − s2θδκγ . For completeness, we also display the dependence on

the anomalous couplings of W and Z to quarks δgV q (we use the conventions of ref. [7]),

which also may lead to the growth of the amplitudes with the energy. Now, we can see

that O(s/m2
W ) pieces in the BSM part coincide with the O(s0) piece in the SM part only

for the helicity amplitude with two longitudinal gauge bosons [27]. As a result, only the

production cross section of two longitudinal gauge boson will scale with energy in the

expected way, that is with E−2, E0, and E2 behavior of the SM2, interference, and BSM2

terms, respectively. For the remaining helicity amplitudes, either the SM or the BSM

part carries mW /s suppression factors, which results in suppressing the interference term

compared to naive expectations.

Using the maps between anomalous couplings and D = 6 operators in ref. [7], one

can express these results in terms of Wilson coefficients in any of the popular basis. For

example, the aTGCs are related to the coefficients in the Warsaw basis by

δg1,z = −
v2

Λ2

g2L + g2Y
4(g2L − g2Y )

(

4
gY
gL
wφWB + wφD − [wℓℓ]1221 + 2[w

(3)
φℓ ]11 + 2[w

(3)
φℓ ]22

)

,

δκγ =
v2

Λ2

gL
gY
wφWB , λz = −

v2

Λ2

3

2
gLwW ,

(B.3)

where we use the original operator normalization of ref. [5] (and [7, 8]). See also ref. [7]

for the relation between the vertex correction δgV q and the Wilson coefficients. Plugging

in these formulas in the helicity amplitudes above, the helicity cross sections schematically
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take the form,

σuū→00 ∼
g4SM
s

(

1 +
s

m2
W

∑

i

αi c
i
LL +

s2

m4
W

∑

ij

αij c
i
LLc

j
LL

)

,

σuū→±0 ∼
g4SM
s

(
m2
W

s
+
∑

i

βi c
i
LT +

s

m2
W

∑

ij

βij c
i
LT c

j
LT

)

,

σuū→±∓ ∼
g4SM
s

(

1 +
∑

i

γi c
i
TT +

∑

ij

γij c
i
TT c

j
TT

)

,

σuū→±± ∼
g4SM
s

(
m4
W

s2
+ κgSM c̄3W + κ′

s2

m4
W

g2SM c̄23W

)

,

(B.4)

where α, β, γ, κ’s are numerical O(1) coefficients (in general depending on sθ) whose ex-

act values are not relevant for this discussion, and the vectors of Wilson coefficients are

defined as

cLL =
v2

Λ2
(w

(3)
φq , w

(1)
φq ) ,

cLT =
v2

Λ2
(w

(3)
φq , w

(1)
φq , wφWB, wW ) ,

cTT =
v2

Λ2
(w

(3)
φq , w

(1)
φq , wφWB, w

(3)
φℓ , wφD, [wℓℓ]1221) .

(B.5)

In a similar way we can find how the SILH basis [6] operators affect which helicity ampli-

tude by using the map [7, 8]

δg1z = −
g2L + g2Y
g2L − g2Y

[
g2L − g2Y
g2L

c̄HW + c̄W + c̄2W +
g2Y
g2L
c̄B +

g2Y
g2L
c̄2B −

1

2
c̄T+

1

2
[c̄′Hℓ]22

]

,

δκγ = −c̄HW − c̄HB , λz = −6g2Lc̄3W ,

(B.6)

where we use the notation and normalizations of ref. [50]. In the SILH basis the helicity

cross sections take the same form as in Eq. (B.4) with c3W → gSMc3W and

cLL = (c̄′Hq, c̄Hq, c̄2B, c̄2W , c̄W , c̄B, c̄HB, c̄HW ) ,

cLT = (c̄′Hq, c̄Hq, c̄2B, c̄2W , c̄W , c̄B, c̄HB, c̄HW , c̄3W ) ,

cTT = (c̄′Hq, c̄Hq, c̄2B, c̄2W , c̄W , c̄B, c̄T ) .

(B.7)
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