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◥

SOLID-STATE PHYSICS

Anomalously low electronic
thermal conductivity in metallic
vanadium dioxide
Sangwook Lee,1,2* Kedar Hippalgaonkar,3,4* Fan Yang,3,5* Jiawang Hong,6,7*
Changhyun Ko,1 Joonki Suh,1 Kai Liu,1,8 Kevin Wang,1 Jeffrey J. Urban,5

Xiang Zhang,3,8,9 Chris Dames,3,8 Sean A. Hartnoll,10

Olivier Delaire,7,11† Junqiao Wu1,8†

In electrically conductive solids, the Wiedemann-Franz law requires the electronic
contribution to thermal conductivity to be proportional to electrical conductivity.
Violations of the Wiedemann-Franz law are typically an indication of unconventional
quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion
of charge carriers, typically pronounced only at cryogenic temperatures. We report an
order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging
from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator
transition. Different from previously established mechanisms, the unusually low electronic
thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated
electron fluid where heat and charge diffuse independently.

I
n a Fermi liquid, the same quasiparticles that
transport charge also carry heat. Therefore,
in most normal metals the charge and heat
conductivities are related via theWiedemann-
Franz (WF) law: The ratio between the elec-

tronic thermal conductivity (ke) and the product
of electrical conductivity (s) and absolute tem-
perature (T) is a constant called the Lorenz num-
ber, L = ke/sT, typically not very different from
the Sommerfeld value L0 = (p2/3)(kB/e)

2 = 2.44 ×
10−8 W ohm K−2 (where kB is the Boltzmann con-
stant and e is the electron charge). Recently, vio-
lations of the WF law have been theoretically
predicted (1–4) or experimentally observed (5–13)
in some electronic systems. However, with one
exception observed in a one-dimensional con-
ductor at room temperature (13), these violations
typically occur at cryogenic temperatures and arise

from unconventional phases of matter, strong
inelastic scattering of quasiparticles, or semimetal
physics. Here we report a drastic breakdown of
the WF law at high temperatures, with L smaller
than L0 by almost an order of magnitude, in a
strongly correlatedmetal [vanadiumdioxide (VO2)].
The observed anomalously low electronic thermal
conductivity is accompanied by an unusually high
electronic thermoelectric figure of merit; tung-
sten (W) doping causes both properties to partial-
ly revert to normal values. The violation of theWF
law is attributed to the formation of a strongly
correlated, incoherent non-Fermi liquid, in which
charge and heat are independently transported
by distinct diffusivemodes at high temperatures
rather than carried by long-lived quasiparticles
(14, 15).
We observed the effect in the metallic phase

of VO2 in the vicinity of its metal-insulator tran-
sition (MIT). VO2 undergoes the MIT at 340 K,
accompanied by a first-order structural phase
transition from the monoclinic insulating (I)
phase to the tetragonal metallic (M) phase on
heating (16). In this work, ke is determined by
subtracting the phonon (lattice) thermal conduc-
tivity (kph), obtained by combining first-principles
calculations with x-ray scattering measurements,
from the measured total thermal conductivity
(ktot). Previously, ktot of VO2 has been measured
in bulk and thin films with conflicting conclu-
sions. In bulk VO2, for example, it was reported
that ktot stays constant (17) or decreases very
slightly (18) with increasing T across the MIT.
Unknown electronic scattering leading to a pos-
sible failure of the WF law in VO2 was alluded
to nearly half a century ago (17), but this has not

been experimentally or analytically investigated.
Recently, however, time-domain thermal reflec-
tance measurements on polycrystalline VO2 films
showed an increase in ktot, with a magnitude
seemingly consistent with the WF law (19). Un-
like in those measurements, we use single-crystal
VO2 nanobeams, where the single crystallinity
and freestanding configuration in our measure-
ments eliminate extrinsic domain and strain ef-
fects. Moreover, our sample geometry ensures
that both heat and charge flow in the same path
along the nanobeam length direction. This is a
crucial condition that, if not satisfied, could re-
sult in an erroneous determination of ke and
assessment of the WF law, especially for VO2,
which has an anisotropic crystal structure. The
single-crystal VO2 nanobeams were grown by
the previously reported vapor-transport method
(20–22) (see materials and methods, along with
figs. S1 and S2). Figure 1A shows a nanobeam
bonded to two microfabricated, suspended pads
for simultaneous measurements of ktot, s, and
the Seebeck coefficient (23, 24) (details in mate-
rials and methods, as well as figs. S3 and S4).
The thermal and electrical contact resistances
were determined to be negligible (materials and
methods; see also figs. S5 and S6).
The measured ktot of a representative VO2

nanobeam is shown in Fig. 1B. Consistent with a
previous study on bulk VO2 (17), our nanobeams
exhibit very little change in ktot across the MIT:
Dktot ~ 0.2 W/m⋅K. More than five VO2 nano-
beams with different sizes were measured, and
all show Dktot at this level or lower (materials
andmethods and fig. S8). From themeasured s
of the nanobeam across the MIT, the expected
electronic thermal conductivity ðk0e Þ for con-
ventional Fermi liquid transport can be calcu-
lated, assuming that both phases obey the WF
law (L = L0). With s rising from 4.6 × 103 S/m (I
phase) to 8.0 ×105 S/m (M phase) (where 1 S =
1 A/V), k0e exhibits an abrupt jump from nearly
zero to 6.9 W/m⋅K (Fig. 1B). The measured Dktot
is less than 3% of k0e in theM phase. Considering
that k0e alone in the M phase is already greater
than the measured ktot, application of the WF
law would imply an unphysical, negative kph in
the M phase.
To better understand this anomaly, we deter-

mined kph in both I andMphases (kIph and k
M
ph) by

combining first-principles calculations with mea-
surements (details inmaterials andmethods and
fig. S9). As a first step, the phonondispersionswere
calculated using density functional theory (DFT),
as shown in Fig. 2A for both I andM phases. From
these dispersions, both the phonon group velocity
and lattice specific heat were obtained for different
phononmodes andwave vectors. Next, on the basis
of anharmonic (umklapp) phonon scattering in a
pure bulk sample, a full first-principles calculation
(25) was performed for the phonon relaxation
time in the I phase. In this way, a calculated bulk
value of kI;bulkph ¼ 6:46 W=m⋅K was obtained at
T = 340 K along the rutile-phase c axis (the nano-
beam length direction). To evaluate the final
nanobeam phonon thermal conductivity ðkIphÞ,
Matthiessen’s rule was then applied to account for
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impurity and diffuse boundary scattering of pho-
nons. Using the known rectangular cross section,
this boundary scattering (26) reduces kIph from
6.46 W/m⋅K for the bulk to 6.15 W/m⋅K for the
nanobeam, very close to the experimentally mea-
sured value of 5.8W/m⋅K (Fig. 1B). The remaining
small difference is attributed to scattering from
impurities, most probably atomic vacancies as
native point defects (supplementary materials).
For the M phase, evaluating the thermal con-

ductivity solely using first-principles calculations
is challenging because VO2 is a strongly correlated
electron system that could exhibit both strong
electron-electron and electron-phonon interactions
(25). In addition, phonon scattering has not been
successfully calculated with current theoretical
techniques. However, previous ab initio molecular
dynamics simulations within the framework of
DFT were successful in predicting anharmonically
renormalized phonon dispersions in the M phase,
which were in good agreement with energy- and
momentum-resolved inelastic x-ray scattering (IXS)
experiments previously reported in (25). Using
these M-phase first-principles phonon dispersions
(Fig. 2A) benchmarked against experiments, to-
gether with the phonon scattering rates obtained
from the IXS measurements (details in materials
and methods and fig. S9), we determined kM;bulk

ph ¼
5:72 W=m⋅K (Fig. 2B), a reduction by 13% from
kI;bulkph . Note that this value includes umklapp,
electron-phonon scattering, and all other possible
scattering of phonons in bulk, defect-free VO2.
With this value of kM;bulk

ph , using the Matthiessen’s
rule similar to that used in the I phase, the nano-
beam kMph for the M phase was obtained. With
both boundary and impurity scatterings considered,
kIph and kMph for nanobeams become even closer
to each other (Fig. 2B). The electronic thermal
conductivity in the M phase ðkMe Þ can then be ob-
tained by subtracting the nanobeam value of kMe
from the measured kMtot. In this way, we obtained
kMe ¼ 0:72 W=m⋅K and, hence, an effective Lorenz
number Leff ¼ ðkMe =k0e Þ⋅L0 ¼ 0:11L0, correspond-
ing to a suppression of L by nearly an order of
magnitude. Although the uncertainty of kMe is
high compared with kMe itself (~80%), Leff/L0 is
still low, with an upper bound of less than 0.2.
We now show that this effect can be tuned in

W-doped VO2 (WxV1–xO2) nanobeams. Tungsten
was chosen as the dopant because it is known to
lower the MIT temperature (TMIT) by detwisting
the V-V bonds in themonoclinic I phase (16). The
effects of W doping on thermal and electrical
transport over a wide T range are summarized in
Fig. 3, A and B. As can be seen from the electrical
conductivity curves, TMIT decreases monotoni-
cally with the W-doping fraction x at a rate of
~21 K per atomic % (fig. S1), consistent with
previous reports (21, 27). The WxV1–xO2 nano-
beams show a clear jump in ktot across theirMIT,
accompanying the abrupt jump in s, in marked
contrast to the behavior of undoped VO2. To
determine Leff in the M phase of WxV1–xO2, we
obtained kMph in a similar way as for the undoped
VO2 nanobeams by considering both boundary
scattering and the (now substantial) impurity
scattering in the I and M phases of WxV1−xO2.

It canbe seen fromFig. 3C thatLeff increases toward
L0 as a function of x (summarized in table S2).
In the WxV1–xO2 samples, the average W-W

distance is estimated to be ~1 nm, larger than
our estimated quasiparticle mean free path of
electrons in the M phase (~0.5 nm) (materials
and methods section S10). With these levels of

W doping, the added elastic scattering from the
dopants may partially contribute to the rise in
Leff for WxV1–xO2. To elucidate the mechanism
behind the vast suppression in Leff and its par-
tial recovery to the normal value withWdoping,
the Seebeck coefficient (S) of these nanobeams
was alsomeasured. Themeasured S can be used
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Fig. 1. Thermal conductivity of VO2 across the metal-insulator transition. (A) False-color scanning
electron microscopy (SEM) image of a microdevice consisting of two suspended pads bridged by a VO2

nanobeam.Thermal conductivity is measured by transporting heat from the Joule-heated pad (red) to the
sensing pad (blue) through the nanobeam (green). (Inset) SEM image showing the rectangular cross
section of a nanobeam. Scale bars: 10 mm (main panel); 500 nm (inset). (B) Tdependence of measured

total thermal conductivity (ktot) and expected electronic thermal conductivity ðk0e ¼ L0sTÞ of a VO2 nano-
beam. Filled (or open) symbols connected with solid (or dotted) lines are for data collected during heating
(or cooling). ktot has ameasurement uncertainty of < 5%, and T has an uncertainty of <0.7%. (Inset) Four-

probe electrical conductivity (s) versus T for the VO2 nanobeam, used to calculate k0e .Thermal and elec-
trical contact resistances were found to be negligible.
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Fig. 2. Separating phonon thermal conductivity from electronic thermal conductivity. (A) I- and
M-phase phonon dispersions from DFTcalculations.To directly compare the phonon energy for the I and
M phases, we plotted both dispersions together and used the rutile notation, with the zone boundary R
point in the rutile M phase corresponding to the zone center G point in the monoclinic I phase. Z (0,0,0.5),
R (0,0.5,0.5), A (0.5,0.5,0.5),M (0.5,0.5,0), X (0.5,0,0). (B) Nanobeam kph (solid lines) in both I and M phases
was calculated by combining kbulkph (dotted lines) with boundary and impurity scattering effects. The dif-
ference between the measured ktot and the nanobeam kph gives kMe . In the I phase, the DFT framework
was used to calculate kbulkph according to the DFT-predicted phonon lifetimes; in the M phase, a similar
framework was employed to calculate kbulkph using the phonon linewidths measured from IXS (25) on a
bulk sample (open square). In the calculations, the IXS phonon linewidths for the M phase were con-
sidered independent of temperature, on the basis of the results reported in (25).
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to distinguish different scenarios that all lead
to a very small Leff. The dimensionless elec-
tronic figure of merit, S2/L = S2sT/ke, is ~10

−4

for a conventional metal such as copper. Our
measurements (Fig. 3C) instead show that S2/
Leff = 0.11 for the M phase of VO2 (summarized
in table S2). Such a large value of S2/Leff for a
metal is indicative of nonquasiparticle physics,
because the factor kBT/EF (where EF is the Fermi
energy) that usually suppresses S is the same
factor that suppresses interparticle interactions
in a Fermi liquid. This is also supported by con-
sideration of quasiparticle lifetimes (details in
the supplementary materials). The quasipartic-
les, if present, would have a lifetime estimated
to be on the order of ħ/kBT (where ħ is Planck’s
constant h divided by 2p), described as the dif-
fusive “Planckian” limit (28), characteristic of
strongly interacting metals with T-linear resis-
tivity (15). Independently and consistently, the
M-phase VO2 also exhibits a broad Drude peak
with a width >∼kBT in the optical conductivity
(29, 30). Such a short lifetime cannot define mean-
ingfully long-lived quasiparticles (14). Another
closely related indication of the absence of quasi-
particles in VO2 is that its resistivity is above the
Mott-Ioffe-Regel bound; hence, it is a “bad metal”

(31). A high value of S2/Leff approaching unity in
strongly correlated, nonquasiparticle transport
was also revealed in numerical studies using dy-
namical mean field theory (32, 33).
Without long-lived quasiparticles, transport

of charge and heat must proceed through collec-
tive and independent diffusion (14). Hence, the
Lorenz ratio of their conductivities has no rea-
son to take the value L0. Instead, the Lorenz ratio
is proportional to the electronic specific heat
over charge compressibility. For such systems
in the high temperature limit (above the renor-
malized bandwidth), the temperature dependence
of these thermodynamic quantities is relatively
insensitive to interactions. Estimates then show
that, in general, Leff becomes very small, as the
specific heat vanishes more rapidly than the
charge compressibility with temperature (14)
(see supplementary materials). Although Leff nu-
merically recovers toward L0 with W doping, the
linear temperature dependencies of the resistivity
(Fig. 3B) and S (Fig. 3D) in the M phase are qual-
itatively unchanged. The collapse of S with differ-
ent W doping levels onto the same temperature
dependence, as well as the increase of resistivity
with doping in the M phase, indicates that the
material remains a “bad metal” with W doping,

suggesting the continued absence of long-lived
quasiparticles. As TMIT is lowered with doping,
temperatures close to TMIT (where Leff is mea-
sured) are moving away from the asymptotic
high-T regime. Therefore, at lower temperatures,
although charge and heat diffusions remain in-
dependent, one no longer expects Leff << L0; in-
stead, Leff is expected to increase (14). A strong
electron-phonon interaction may potentially couple
kph with ke, resulting in incomplete separability
of kph and ke in the M phase. However, the elec-
tron contribution to the observed ktot would still
remain anomalously low, rendering VO2 a model
system to probe unusual charge behavior in “bad
metals.” As the decoupled, collective transport of
charge and heat occurs universally in incoherent
electron fluids, these effects are expected to exist
generally in a wide variety of strongly correlated
electron materials and can be explored with our
experimental methodology. The Lorenz number
thus provides a window into the unconventional
electronic dynamics of these materials.
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terms of independent propagation of charge and heat in a strongly correlated system.
smaller than what would be expected from the Wiedemann-Franz law. The results can be explained in 
 nanobeams. In the metallic phase, the electronic contribution to thermal conductivity was much2

VOfound a large violation of this so-called Wiedemann-Franz law near the insulator-metal transition in 
et al.electronic contribution to the thermal conductivity are typically proportional to each other. Lee 

In metals, electrons carry both charge and heat. As a consequence, electrical conductivity and the
Decoupling charge and heat transport
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