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ABSTRACT

We present intrusion detection algorithms to detect physical layer jamming attacks in wireless networks. We compare the

performance of local algorithms on the basis of the signal-to-interference-plus-noise ratio (SINR) executing independently

at several monitors, with a collaborative detection algorithm that fuses the outputs provided by these algorithms. The local

algorithms fall into two categories: simple threshold that raise an alarm if the output of the SINR-based metrics we consider

deviates from a predefined detection threshold and cumulative sum (cusum) algorithms that raise an alarm if the aggre-

gated output exceeds the predefined threshold. For collaborative detection, we use the Dempster–Shafer theory of evidence

algorithm. We collect SINR traces from a real IEEE 802:11 network, and with the use of a new evaluation method, we

evaluate both the local and the Dempster–Shafer algorithms in terms of the detection probability, false alarm rate, and their

robustness to different detection threshold values, under different attack intensities. The evaluation shows that the cusums

achieve higher performance than the simple threshold algorithms under all attack intensities. The Dempster–Shafer algo-

rithm when combined with the simple algorithms, it can increase their performance by more than 80%, but for the cusum

algorithms it does not substantially improve their already high performance. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The deployment of wireless networks has offered inexpen-

sive, convenient, and ubiquitous access to millions of users

through access points located at numerous public places

(e.g., airports and university campuses). However, their

broadcast nature makes them highly susceptible to attacks.

Attackers can exploit vulnerabilities in the medium access

control and physical layers and heavily disrupt the services

between the network nodes (e.g., see [1–6]). For these rea-

sons, intrusion detection is a primary concern within the

research community.

In general, intrusion detection algorithms fall into

two categories: misuse (or signature-based) detection and

†Vasilios A. Siris is also with the Department of Informatics, of the

Athens University of Economics and Business, Greece.

anomaly-based detection. The former is based on known

signature attacks, it has low false alarm rates, but it lacks

the ability to detect new types of attacks. The latter may

have higher false alarm rates, but it has the potential ability

to detect unknown types of attacks. In this work, we study

the detection of physical layer jamming attacks; therefore,

we believe that anomaly-based detection is better suited to

detect this type of attack as our associated metrics are based

on signal-to-interference-plus-noise ratio (SINR) that is

highly volatile.

We use a periodic attacker (referred as Jammer through-

out the paper) that emits energy on a neighboring channel

legitimates nodes use for communication. Following this

jamming model, the attacks become feasible through the

generation of interference, and their detection is per-

formed using SINR-based metrics. Other types of jamming

(e.g., on the same channel) and the associated detection

techniques are described in [7]. However, these attacks

Copyright © 2013 John Wiley & Sons, Ltd.
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are out of the scope of this work as we focus on the

physical layer.

Our intrusion detection algorithms are of two types:

local detection algorithms and a fusion algorithm. The

former execute independently in a number of monitors

seeking for changes in the statistical characteristics of the

SINR that include the average SINR, the minimum SINR,

and the maximum-minus-minimum SINR, in a short win-

dow. The latter fuses the outputs provided by the local

algorithms, thus forming a distributed collaborative intru-

sion detection system. The fusion algorithm we investi-

gate is the Dempster–Shafer theory of evidence (DS) [8].

Moreover, our contribution for combining measurements

is based on the outputs of the local detection algorithms

without the need to transmit SINR values in a per-packet

basis, opposed to other contributions (e.g., [9]). Also, we

use a new method for the evaluation of the proposed algo-

rithms based on score assignments and a new concept to

define and study robustness issues under different detection

threshold values.

Our main contributions are as follows:

� We consider two types of local detection algorithms:

simple threshold and cumulative sum (cusum).

� We consider different metrics for the local algo-

rithms based on the SINR: average, minimum, and

maximum-minus-minimum SINR.

� We consider collaborative detection to improve local

algorithms’ performance.

� We use the term robustness to describe the algo-

rithms’ performance stability under different detec-

tion threshold values.

� We investigate the performance of the local and the

fusion algorithms in terms of the detection probabil-

ity, false alarm rate, and their robustness to different

detection threshold values.

� We present the performance of the local and fusion

algorithms considering measurements from a real

network, under two attack intensities, collected from

locations at various distances from the Jammer

(we repeat the experiments placing the Jammer in a

different location).

The evaluation shows that the cusum algorithms achieve,

in general, higher performance than the simple ones.

Especially, the cusum algorithm that considers the

maximum-minus-minimum SINR metric has superior per-

formance in all scenarios. When the fusion algorithm is

used, the performance of the simple algorithms substan-

tially increases, whereas when combined with the cusums,

performance still remains high.

The remainder of this paper is organized as follows.

In Section 2, related work is presented. In Section 3, we

describe the experimental layout and the mechanism used

to collect the SINR measurements. Section 4 presents the

jamming model used to launch the attacks. The description

of the local detection algorithms is given in Section 5. The

definition of robustness is given in Section 6. The method

we use to set the parameters of the detection algorithms

is given in Section 7. In Section 8, we present the per-

formance evaluation of the local algorithms. Section 9

presents our collaborative intrusion detection system and

the use and evaluation of the DS. Finally, conclusions and

further work appear in Section 10.

2. RELATED WORK

There is extended research on the detection of attacks in

wireless networks with important contributions. In [10], a

distributed system for intrusion detection is described that

executes in every wireless node. Events are locally gener-

ated (e.g., packet transmission/reception and frame type)

by every node and then sent to a single fusion center (FC).

FC then, on the basis of majority voting, tries to detect

intrusions. The authors claim that the proposed work can

detect attacks at the physical and medium access (MAC)

layers. However, they do not provide any evaluation results

regarding the detection probability and the false alarm rate.

Furthermore, as every event is recorded and sent to FC, a

high volume of control traffic is generated that can nega-

tively affect network’s performance. Moreover, every node

has to take part in this scheme that is however not realis-

tic in real wireless implementations. On the contrary, our

work uses dedicated monitors for intrusion detection sup-

pressing control traffic overhead by communicating with

the FC only when an alarm is locally signaled.

Fusion center fingerprinting is proposed in [11] for the

detection of MAC spoofing. This is a multisensor sys-

tem that, on the basis of the radio frequency (RF) fin-

gerprints created at a number of sensors, tries to detect

rogue devices that have spoofed their MAC addresses. This

system uses physical layer features to detect MAC layer

misbehavior, whereas we use SINR to detect jamming at

the physical layer. MAC misbehavior is also addressed

in [6], where the authors consider the sequential proba-

bility ratio test. Wood et al. [12] proposed DEEJAM, a

MAC layer protocol for defending against stealthy jam-

mers using IEEE 802.15.4-based hardware. Nevertheless,

as the authors noted, against a powerful and more sophis-

ticated Jammer, DEEJAM cannot effectively defend the

wireless network.

In [13], two types of algorithms are described for the

detection of SYN attacks. Their evaluation shows that the

simple detection algorithm has satisfactory performance

for the high-intensity attacks, but it deteriorates for the low-

intensity ones. On the other hand, the cusum algorithm has

robust performance for the different types of attacks. This

is consistent with the findings of our work, although we

perform measurements at the physical layer.

In [14], methods for anomaly detection and distributed

intrusion detection in mobile ad hoc networks are pro-

posed focusing on two routing protocols. The authors use

a two-layer hierarchical system where anomaly indexes

are combined using an averaging or median scheme. The

evaluation results show that the averaging scheme achieves

higher performance.

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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Peng et al. [15] proposed a cusum algorithm used to col-

lect statistics at local systems, whereas a learning algorithm

decides about when information has to be shared among

the nodes to minimize detection delay and reduce the com-

munication overhead. In this work, data are fused using the

sum rule.

In [16], the authors described a distributed change point

detection scheme for the detection of distributed denial-

of-service attacks over multiple network domains. At each

router, a cusum algorithm executes raising alerts that are

sent to a central server. Then, the server creates a subtree

displaying a spatiotemporal vision of the attack. In a sec-

ond hierarchy level, a global picture of the attack is created

by merging all subtrees together.

Collaborative intrusion detection has been considered in

several contributions such as in [17], where data provided

by heterogeneous intrusion detection monitors are fused.

The proposed scheme considers metrics for the detection of

UDP and ICMP flooding attacks, as well as SYN attacks.

The authors in [18] use DS to detect attacks by combin-

ing events generated by multiple layers. Each event based

on metrics such as the received-signal-strength-indicator

(RSSI) and time-to-live (TTL) is assigned with a belief, a

measure of confidence about a specific attack. The beliefs

are then fused by DS signaling a possible attack. Our work

has two major differences: (i) we use DS to combine beliefs

from multiple monitors and not from multiple layers of a

single node, and (ii) our scheme detects attacks at the phys-

ical layer and not higher-layer attacks as these discussed in

this related work (e.g., man-in-the-middle attack). DS has

also been considered in [19–22], however, for the detection

of higher-layer attacks.

The so-far described related contributions focus on local,

distributed, or collaborative schemes for the detection of

attacks at higher network layers (e.g., internet and trans-

port), whereas our work focuses on detecting attacks at the

physical layer of a wireless network using SINR measure-

ments. SINR is volatile and highly correlated to the loca-

tion of a monitor, thus making intrusion detection based

on SINR more challenging. Next, we describe several

contributions that consider physical layer attack detection.

In [23], the authors described several types of jammers

proposing two types of detection algorithms that con-

sider metrics such as the packet delivery ratio, the bad

packet ratio, and the energy consumption amount. The

basic algorithm tries to detect jamming by using multiple

if-else statements on the aforementioned metrics, whereas

the advanced algorithm uses a distribution scheme where

information is collected from neighboring nodes. The eval-

uation shows high detection rates, but trade-offs regarding

the false alarm rate versus the detection probability or the

robustness of the algorithms are not presented.

Techniques that detect anomalies at all layers of a wire-

less sensor network are proposed in [24]. The authors

showed how the detection probability increases when the

number of the nodes running the proposed procedure

increases, but they did not show the trade-off with the false

alarm rate.

In [9] is shown how the errors at the physical layer

propagate up the network stack, presenting a distributed

anomaly detection system based on simple thresholds.

A method for combining measurements using the

Pearson’s product moment correlation coefficient is also

presented. A disadvantage of this method is that raw RSSI

measurements by several sniffers are needed. This could

generate a high volume of traffic flowing from the snif-

fers to a main node where the algorithm executes. In con-

trast, our proposal is based on the outputs of several local

detection algorithms without the need of transmitting SINR

values in a per-packet basis, thus saving valuable resources.

Several adversarial models are presented in [25], all

focusing on RF jamming attacks. One of the proposed

algorithms applies high-order crossings, a spectral dis-

crimination mechanism that distinguishes normal scenar-

ios from two types of the defined jammers. The authors

introduced two detection algorithms based on thresholds

that use signal strength and location information as a

consistency check to avoid false alarms.

The authors in [26] presented a cross-layer approach

to detect jamming attacks. Jamming is performed at the

physical layer by using RF signals and at the MAC layer

by targeting the request-to-send/clear-to-send (RTS/CTS)

and network allocation vector (NAV) mechanisms of the

IEEE 802:11 protocol. Jamming detection is split into two

phases. In the first phase, simple threshold algorithms are

deployed using metrics such as the physical carrier sens-

ing time, the number of RTC/CTS frames, the duration of

channel idle period, and the average number of retrans-

missions. The second phase is triggered in the case of

threshold violations.

The authors in [27] described ARES, an antijamming

reinforcement system for 802:11 networks that tunes the

parameters of rate adaptation and power control to improve

the performance in the presence of jammers. However,

ARES has to be implemented in every wireless node to reg-

ulate rate and power, whereas our system consists of dedi-

cated monitors performing passive measurements; thus, no

modifications are needed for the wireless clients.

Although significant, none of these contributions inves-

tigates the robustness of the detection algorithms as we do

in this work.

3. EXPERIMENTAL LAYOUT
COLLECTION OF SIGNAL-TO-
INTERFERENCE-PLUS-NOISE
RATIO MEASUREMENTS

The algorithms investigated in this work are based on

SINR traces collected from a real IEEE 802:11a experi-

mental network configured in an ad hoc mode (Figure 1).

All nodes are equipped with Mini-ITX boards carrying

512 MB of RAM and a 80 GB hard disk. Moreover,

the boards are equipped with Atheros 802:11a/b/g CM9-

GP mini-PCI cards, controlled by Ath5k, an open source

IEEE 802:11 driver [28], on Gentoo Linux. UDP traffic is

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm
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Sender
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Monitor-1
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Jammer (Exp2)
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Figure 1. Network layout for the collection of signal-to-interference-plus-noise ratio measurements. NTP, network time protocol.

transmitted from Sender to Receiver (Figure 1) at a con-

stant rate of 18 Mbps. We chose UDP as the transport

protocol to focus on the jamming consequences, avoid-

ing TCP’s congestion control. We use a wired backbone

network (denoted by the dotted lines in Figure 1) to con-

trol the experiments from a single machine, and time syn-

chronization is achieved using a network time protocol

server [29]. All nodes, except Jammer, operate on the same

channel. Furthermore, we use two monitors with their

interface cards set to monitor mode; hence, they receive

all packets transmitted in the channel. Note that Jammer

is placed at different locations for each experiment, as

we conduct two experiments changing its position at each

experiment. The Reference Monitor (RM) is used to assist

in the definitions of the two attack intensities (high and

low) used in the experiments.

Receiver, Monitor-1, and Monitor-2 collect SINR

measurements (in a per-packet basis) by using a modi-

fied version of the Ath5k driver. The software layout for

the collection of the SINR values is shown in Figure 2.

These are collected along with their corresponding times-

tamps. The timestamps are produced, as soon as a packet

is received, using the time module of the Linux operating

system, as they are necessary to time align measurements at

all nodes participating in the experiment, making feasible

the performance evaluation of the algorithms afterwards.

The modification of the Ath5k driver not only enabled the

collection of the SINR traces at all nodes but also made

feasible the collection of additional information at a per-

packet basis such as the long and short retry counters for

the packet retransmissions, the retry counters regarding the

clear channel assessment (CCA) mechanism, the retry field

of the MAC header, port numbers and IP addresses, and

the timestamps of the outgoing or the incoming packets.

Our software collection module (Figure 2) consists of sev-

eral parts laying on both the kernel and user spaces of the

Linux operating system. Data are collected through Ath5k

in the kernel space and then asynchronously transmitted to

the user space through the netlink socket interface. In the

user space, the reception thread receives the data from the

kernel space and stores them in a first-in–first-out (FIFO)

queue. The storage thread pulls out the data from the

queue and stores them in the hard disk. The reason for the

user space functionality to be split into the aforementioned

threads, connected through the queue, is to increase per-

formance because the copy of the data from memory to

the hard disk should not block the reception of the new

data coming from the kernel space. The storage and recep-

tion threads execute independently in the multithreaded

environment of Linux.

4. JAMMING MODEL

Generally, regarding jamming implementations, there is

always the trade-off between jamming intelligence and

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm
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Figure 2. Measurement module based on the Ath5k driver.

cost. An intelligent Jammer can cause severe denial-of-

service attacks with a low-energy consumption, but its

cost can be significantly high (e.g., [30]). On the other

hand, a less sophisticated Jammer, based on off-the-shelf

hardware, can cause significant performance degradation,

although consuming more energy, but it costs less and can

also be used by individuals with any specialized knowledge

on network protocols. The Jammer we use in this work

is an off-the-shelf periodic Jammer that emits RF energy,

alternating between sleeping and jamming. Jamming is

performed at the physical layer by using a single node

(Figure 1). This node operates on a neighboring channel

to the one that the legitimate nodes communicate; thus,

we perform jamming by generating interference. Jammer

transmits UDP broadcast data at a constant bit rate of

6 Mbps. It transmits data for 30 s, after which it remains

inactive for 30 s. It is placed in a location such that it

is close to Receiver and hidden from Sender. Jammer

was successfully hidden by the Sender by changing its

(antenna) orientation (but without moving the jammer into

a different location). Furthermore, several obstacles (e.g.,

furniture) helped on this, as the experiments were con-

ducted in a working environment. Using this topology,

Sender continuously transmits packets as it is unaware of

Jammer’s presence; consequently, its CCA mechanism is

not activated. Furthermore, Jammer’s driver after its mod-

ification, according to Figure 2, has extra operation char-

acteristics so as its CCA and backoff mechanisms are

disabled. This became feasible by modifying the values

of several hardware registers that are part of the CM9-GP

Atheros card. The advantage gained with the elimination

of the CCA and backoff mechanisms is that Jammer is not

affected by the transmissions of the legitimate nodes; thus,

it can freely perform jamming.

We use two attack intensities (high and low) and two

different series of experiments, referred as Exp1 and Exp2.

Both experiments ran in the same building, and the only

difference between them is Jammer’s position (Figure 1)

and the time they were conducted. Exp1 executed late in the

evening when most people had left work, whereas Exp2 ran

early in the noon during busy working hours. We executed

the experiments to evaluate our intrusion detection algo-

rithms by placing Jammer in different positions, as well as

to study their performance in a busy working environment

where the movements of people could possibly affect the

SINR values measured by the monitors.

Furthermore, we define two types of attack intensi-

ties based on measurements of the packet loss and the

throughput degradation at the Receiver and the noise power

(interference) reported by the RM (Figure 1) that runs

the Airmagnet WiFi Analyzer software [31]. The attack

intensities are defined as follows:

� High-intensity attack, where the packet loss is over

50%, the throughput degradation over 80%, and the

interference reported by RM is over �55 dbm.

� Low-intensity attack, where the packet loss is less

than 15%, the throughput degradation less than

30%, and the interference reported by RM is below

�75 dbm.

5. LOCAL DETECTION
ALGORITHMS

The local detection algorithms execute independently at

both monitors and the Receiver (Figure 1), falling into two

categories: (i) simple threshold algorithms and (ii) cusum

change point detection algorithms. Both types are applied

to different metrics that are based on the SINR: average

SINR, minimum SINR, and maximum-minus-minimum

SINR. The values of the metrics are measured over a small

time window and then, are compared with another metric

over a large time window.

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm
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5.1. Simple threshold algorithms

The simple threshold algorithms trigger an alarm when the

metric that the algorithm considers deviates from its nor-

mal (expected) value by some amount. The normal value

is given by the value of the metric, estimated in some long

time interval, whereas the degree of deviation to signal an

alarm is determined by the detection threshold.

5.1.1. The simple min algorithm

The metric used by this algorithm is the minimum value

of the SINR in a small window K. An alarm is raised

if the minimum value of the SINR in the small window

deviates from the average value of the SINR measured

over a long window M . Let SINRn be the SINR value for

frame (sample) n. If N is the number of samples, then for

n 2 ŒM C 1; N �, the minimum SINR in the short window

K is

SINRmin.n/ D min
n�KC1<i�n

SINRi

whereas the average SINR measured in window M is

SINR.n/ D

Pn
iDn�MC1 SINRi

M

An alarm is raised at the arrival of frame n if

SINR.n/

SINRmin.n/
� h (1)

where h is the detection threshold.

5.1.2. The simple max–min algorithm

Rather than considering the minimum value of the SINR

measured in a small window, this algorithm considers

the maximum-minus-minimum values of the SINR mea-

sured in that window. If D denotes the maximum-minus-

minimum value of the SINR, then

D.n/ D max
n�KC1<i�n

SINRi � min
n�KC1<i�n

SINRi

whereas the average value of D in the long window is

ND.n/ D

Pn
iDn�MC1 D.i/

M

An alarm is raised at the arrival of frame n if

D.n/ � ND.n/ � h (2)

5.1.3. The simple average algorithm

This algorithm compares the average value of the SINR

in a short window, with the average value in a long window.

If SINRshort.n/ D

Pn
iDn�KC1 SINRi

K
is the average value of

the SINR in a short window K, then an alarm is raised if

SINR.n/ � SINRshort.n/

SINR.n/
� h (3)

where SINR is the average SINR in the long window.

5.2. Cumulative sum algorithms

The second category of the local algorithms we investigate,

is the cusum algorithm. This type of algorithm has been

widely used in the literature [6,16,32–34]. In general, there

are two main categories of cusum algorithms: (i) para-

metric and (ii) nonparametric. For the parametric cusum,

a parametric model for fxg, where x is an independent

and identically distributed random variable, is required,

which is not easy to obtain in the area of the communi-

cation networks, and especially for the SINR because of

its volatile nature. For this reason, we use nonparametric

cusum algorithms where a model of fxg (i.e., SINR) is not

required. The cusum algorithms considered in this work are

the cusum average (Cavg), cusum min (Cmin), and cusum

max–min (Cmm).

5.2.1. The cusum min algorithm

The regression formula for the cusum min algorithm is

given by

yn D

�

yn�1 C Zn � a if yn � 0

0 ifyn < 0
(4)

where a > 0 is a tuning parameter and Zn D
SINR.n/

SINRmin.n/
.

Note that yn in (4) increases as Zn D
SINR.n/

SINRmin.n/
> a,

that is, as the minimum SINR value is smaller than the

average SINR value by some amount that is determined

by the value of a. In the experimental evaluation, we select

a D 0:7 (in Section 7, we show how the optimal value of a

is selected). An alarm is signaled when

yn � h (5)

where h is the detection threshold.

5.2.2. The cusum max–min algorithm

This algorithm has the same regression formula as the

cusum min algorithm given by (4); however, Zn is now

given by

Zn D D.n/ � ND.n/

where D.n/ and ND are the maximum-minus-minimum

SINR in the short time window and the average maximum-

minus-minimum SINR estimated in the long time window,

respectively. For the experimental evaluation, we select

a D 8. The alarm rule for the cusum max–min algorithm

is identical to the rule for the cusum min algorithm given

by (5).

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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5.2.3. The cusum average algorithm

As earlier, this algorithm has the same regression for-

mula as the cusum min algorithm given by (4); however,

Zn is now given by

Zn D
SINR.n/ � SINRshort.n/

SINR.n/

For the experiments, we select a D 0:8. The alarm rule for

the cusum max–min algorithm is identical to the rule for

cusum min algorithm (5).

6. ROBUSTNESS AND
THE PERFORMANCE
EVALUATION METHOD

In this section, we describe the method we follow for eval-

uating the detection algorithms. Evaluation is performed

in terms of the detection probability (DP), false alarm rate

(FAR), and their robustness to different detection thresh-

old values. Detection probability is defined as the ratio of

the detected attacks over the total number of the attacks.

The false alarm rate is the ratio of the number of false

alarms over the total duration of the experiment (expressed

in false alarms/minute). A false alarm occurs when there is

no attack but an alarm is raised.

In most related works, performance evaluation is pre-

sented by showing the trade-off points between FAR and

DP (e.g., [13,16,35–37]). As an example, Figure 3 shows

the trade-off points for the local algorithms when the SINR

traces collected at Monitor-1 during Exp1 are consid-

ered. With this method, algorithms’ performance increases

when their associated trade-off points are closer to the

left top corner of each graph (higher detection probability

with a lower false alarm rate). Each trade-off point corre-

sponds to a different detection threshold value. Although

this is a significant method for performance evaluation, it

is not complete as it provides no information regarding

the robustness of the algorithms. By robustness, we mean

how the performance in terms of the detection probability

and false alarm rate varies, when the detection threshold

changes. Moreover, this simplistic approach is not appro-

priate when the number of the algorithms under evaluation

or the experimental data increase, as it is predicated on

subjective criteria.

In this paper, we investigate algorithms’ robustness

along with the (traditional) DP–FAR evaluation. We vary

the detection threshold from zero to a maximum value

that an algorithm gives no alarms. Furthermore, we define

as score S 2 RC a number assigned to an algorithm

based on its DP–FAR trade-off points. Score is given by

S D b � .c � d/, where d D

q

FAR2 C .1 � DP/2 is

the distance of a trade-off point (for a specific threshold

h) from the optimum point (DP D 1 and FAR D 0) and

b; c 2 R
C. For each DP–FAR pair, a different value of S

is assigned (in [7], we analytically describe how S is

computed). From all the available trade-off points, we

Figure 3. Trade-off points of the local algorithms at Monitor-1 during Exp1.
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select the point that gives the maximum score; that is,

the maximum score characterizes the performance of

the algorithm. The higher S is, the better the performance

of the algorithm. We have also defined that a DP–FAR

trade-off point is (relatively) robust if its detection thresh-

old needs to change by more than 20%, to change its score

S by more than 20%. For the evaluation, described in the

next section, we consider only the robust trade-off points.

7. PARAMETER SETTINGS FOR THE
LOCAL DETECTION ALGORITHMS

As the equations in Section 5 show, the simple detec-

tion algorithms have a single parameter for setting: the

detection threshold h. The cusum algorithms also require

h, as well as an extra parameter a that controls the drift

of expectation Zn (4). We name a as the drift coefficient.
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Figure 4. Expectation for the different signal-to-interference-plus-noise ratio-based metrics.
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Figure 5. Maximum score versus the drift coefficient for the Cmm algorithm.
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Note that Zn is different for each type of algorithm. As an

example, Figure 4 shows how the expectation changes dur-

ing the jamming attacks (shown with the orthogonal boxes)

for the different metrics considered.

To find the optimum value of a, we ran a number of

experiments (varying the density of the attack), executing

our evaluation method jointly considering robustness.

Figure 5 shows the maximum scores achieved (we con-

sider only the maximum score that the robust DP–FAR

points give) for the Cmm algorithm and for different values

of a. Using this graph, we choose a D 8 for this algo-

rithm. For the rest of the cusum algorithms, we produce

similar graphs that guide us to select the optimum values

of the drift coefficient, allowing us to continue with the

performance evaluation in the next sections.

8. PERFORMANCE EVALUATION OF
THE LOCAL DETECTION
ALGORITHMS

We begin by discussing the performance of the local detec-

tion algorithms using the SINR measurements collected at

the Receiver (RCV), Monitor-1 (MON1), and Monitor-2

(MON2).

In general, and depending on the score, a system oper-

ator can characterize the performance of an algorithm as

low, medium, and so on. For the algorithms evaluated

in this work, we characterize the performance as (i) low

when the score is less than 15, (ii) medium when the

score is larger than 15 but smaller than 17, (iii) high

when the score is larger than 17 but smaller than 20, and

(iv) maximum when the score equals 20. Nevertheless, our

technique allows a system operator to define its desired

score scale (we use values from 0 to 20) and its own per-

formance characteristics based on the scores (low, medium,

high, and so on).

We note here that the long and short windows of the

algorithms have been set to 1000 and 10, respectively.

Figure 6(a) shows the scores assigned to the algorithms

using the SINR traces collected during Exp1 and Exp2,

and for the high-intensity attack. Recall that Jammer is

located at different positions in Exp1 and Exp2 (Figure 1).

For Exp1, the evaluation shows that all algorithms at RCV ,

except Cavg, achieve maximum performance; thus, they

detect all attacks with zero false alarms. At MON1, all

cusums achieve maximum performance, whereas Savg has

high performance and Smin with Smm has low perfor-

mance. At MON2, Cmin and Cmm achieve maximum per-

formance, whereas Cavg has high performance. Regarding

the simple algorithms, Smin achieves high performance,

whereas Savg and Smm low.

For Exp2, and for the high-intensity attack, the per-

formance of all algorithms deteriorates. As mentioned in

Section 4, all experiments ran in a public place where peo-

ple freely walked but with the difference that Exp1 was

conducted late in the evening when most people had left

work, whereas Exp2 early in the noon during busy working

hours. SINR is highly affected by many factors such as

obstacles and movements of people. We observed that there

are SINR drops during Exp2 at periods when Jammer

was inactive. Figure 7 shows the variations of SINR in

all monitors during the high-intensity attack of Exp2 (the

jamming attacks are depicted as orthogonal boxes). The

gray arrows, on the right side of this figure, show that

all monitors recorded SINR variations during times when

there were no jamming attacks; possibly, this was the result

of people movements. As we verified during the evalu-

ation process, these SINR drops generated a number of

false alarms, resulting in performance deterioration that is

finally depicted on the right part of Figure 6(a). However,

despite these large SINR variations, Cmm still achieves

high performance at all monitors. Regarding the evalua-

tion at RCV , Savg and Smm have low performance, Cavg

achieves medium performance, whereas the rest of the

algorithms achieve high. At MON1, Smin and Cmin achieve

high performance, whereas Savg, Cavg, and Smm have low.

At MON2, we observe similar performance as at MON1.

Figure 6(b) shows the scores assigned to the algorithms

using the SINR traces during Exp1 and Exp2, and for the

low-intensity attack. Regarding Exp1 and at RCV , Cmm

achieves maximum performance, thus detecting all attacks

with no false alarms. The performance of the rest of the

algorithms is high. At MON1, all cusums achieve high per-

formance. Regarding the simple algorithms, only Savg has

high performance, whereas the rest have low. At MON2,

we observe similar performance as at MON1.

For Exp2 and for the low-intensity attack, the cusums

achieve high performance at all monitors. All simple algo-

rithms at all monitors have low performance, except Savg

that has medium performance at RCV and low at the rest

of the monitors.

9. COLLABORATIVE INTRUSION
DETECTION

In the previous sections, we described the local detection

algorithms that execute at each monitor, independently.

The evaluation shows that performance is substantially

affected by the distance between each monitor and the Jam-

mer, as well as by the type of the algorithm used. Overall,

cusum algorithms have higher scores than the simple ones.

Here, we present the evaluation of a collaborative

scheme by using the DS, which combines the outputs of

the local algorithms. DS executes in a main fusion node

(MFN), an entity with the role to collect and fuse the infor-

mation provided by the monitors, taking the final decision

regarding a possible attack.

Averaging and fusion is applied at three levels as

Figure 8 shows:

� Level 1, where data are averaged in each monitor at

fixed time intervals of duration Tm, prior to trans-

mission to MFN. SINR measurements are recorded

in a per-packet basis; therefore, the output of the

local detection algorithms is proportional to the input

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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(a) High intensity attack

(b) Low intensity attack

Figure 6. Performance evaluation of the local detection algorithms at all monitors for Exp1 and Exp2.
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Figure 7. Signal-to-interference-plus-noise ratio (SINR) variations during the high-intensity attack of Exp2.
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MFN

DS fusion

Figure 8. Levels at where data averaging and fusion are applied. MFN, main fusion node; DS, Dempster–Shafer theory of evidence.

packet rate. Averaging at this level saves valuable

resources in case of a high-input packet rate. Fur-

ther work can include the use of a dynamic averaging

mechanism that adapts Tm depending on the input

packet rate.

� Level 2, where the data sent by each monitor are aver-

aged by MFN at fixed time intervals of duration Tc.

Averaging is applied on the data of each monitor inde-

pendently from the data of the rest of the monitors.

� Level 3, the final level where the data of the differ-

ent monitors are fused together, to produce the final

output. This is the level where DS is used.

Figure 8 shows the different averaging and fusion levels

for a collaborative intrusion detection system (CIDS) of

two monitors. X and Y symbolize the outputs of Monitor-1

and Monitor-2, respectively. This scheme can be extended

for any number of monitors. In this figure, observe that at

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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Level 3, there is only a single output per monitor during

a time interval of duration Tc. The fusion rule applied at

Level 3 fuses the outputs of the different monitors together,

whereas at Levels 1 and 2, averaging is applied on the out-

puts of each monitor separately. We note here that fusion

and averaging are performed offline in Matlab code that

uses the real traces collected using the testbed of Figure 1.

Both Tm and Tc are operator controlled. A very small

value of Tm will increase the amount of data sent to

MFN, and hence, it will waste a large amount of wireless

resources. On the other hand, a very large value of Tm may

lead to a large number of undetected attacks. Also, a very

large value of Tc will require less computational resources

in MFN, but it may lead to a large number of undetected

attacks.

9.1. Dempster–Shafer theory of evidence

The basic DS was first introduced in [8] as a mathemat-

ical framework for the representation of uncertainty. The

main advantage of this algorithm is that no a priori knowl-

edge of the system is required, thus making it suitable for

anomaly detection of previously unseen information [20].

We exploit this advantage as our anomaly detection algo-

rithms are based on the SINR. As it is well known, SINR

is volatile; thus, no models exist to describe its fluctuations

under different network conditions. Another advantage of

DS is its usefulness in combining data sent by different

observers (monitors) [22].

Essential terminologies related to DS and used by this

work are as follows:

� Frame of discernment .‚/. This is the set of all pos-

sible mutually exclusive and complete states of a

system ‚ D f�i j1 6 i 6 N g [22]. For an intru-

sion detection system, two mutually exclusive and

complete states that can be defined are �1:attack and

�2:normal, so the frame of discernment is ‚ D

f�1; �2g or equivalently, ‚ D fattack; normalg.

� Probability assignment function (or mass function).

This function is a primitive of theory of evidence. It

is usually symbolized by m. As defined in [8], if ‚ is

a frame of discernment, then function m W 2� ! Œ0; 1�

is called a basic probability assignment whenever

m.�/ D 0

and

X

A�‚

m.A/ D 1:

The mass value of A .m.A// is also called A’s

basic probability number, and it is understood to be

the measure of the belief that is committed exactly to

A. A is a subset of ‚, and its mass function supports a

belief on the basis of some evidence. In our intrusion

detection system, this evidence is based on the SINR

values.

� Belief function. This function measures the belief of

a proposition A, and it computes the sum of all the

nonempty subsets of A. It is given by the following

formula:

Bel.A/ D
X

B�A

m.B/ (6)

For a cross-layer intrusion detection system, proposi-

tion A could be the hypothesis of attack, and the sub-

sets B of A could be defined as B1:jamming attack,

B2:ICMP flooding attack, B3:SYN flooding attack,

and so on; therefore, the belief function of A requires

evidence for all of its subsets.

� Focal elements. The focal elements of a frame of dis-

cernment ‚ consists of all hypotheses; observers (i.e.,

monitors) can provide evidence (or express beliefs).

If for example ‚ D fattack; normalg, then the focal

elements of this frame of discernment are [attack, nor-

mal, (attack or normal)]; therefore, the monitors of

a collaborative intrusion detection system can send

beliefs to MFN regarding these three focal elements.

This is the type of focal elements we use in this work.

DS has the ability to combine evidence from differ-

ent information sources. Let us assume that there are

two information sources, in our case two monitors,

and then supposing Monitor-1 believes that hypothe-

sis A is true with confidence m1.A/ and Monitor-2

believes that hypothesis A is true with confidence

m2.A/, DS combines these two separate beliefs into

a single belief:

m12.A/ D

P

B\C DA m1.B/m2.C /

1 � K
(7)

where

K D
X

B\C D¿

m1.B/m2.C / (8)

The fusion rule in (7) is characterized by iter-

ation [22]; thus, it can be treated as a single

source that can be further combined with evi-

dence provided by the third source. If we symbol-

ize the fusion on the basis of DS as
L

, then (7)

can be written as m12.A/ D m1.B/
L

m2.C /.

If there are three sources, the combined evidence

is m123.A/ D m1.B/
L

m2.C /
L

m3.D/ or

m123.A/ D m12.B/
L

m3.D/ or equivalently,

m123.A/ D m1.B/
L

m23.C /, denoting the asso-

ciative characteristic of DS.

K in (7) represents a basic probability mass related

to conflict. Conflict can appear when, for example,

Monitor-1 express a strong belief about hypothesis

�1:attack and Monitor-2 a strong belief about hypoth-

esis �2:no attack. The denominator of (7) normalizes

the combined belief m12.A/; thus, it attributes any

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
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Table I. Belief computation for the Dempster–Shafer algorithm.

Belief/yn yn < h.1 � r/ yn � h.1 C r/ h.1 � r/ � yn � h.1 C r/

ba
1�bn

2
c C

yn�h

h
0:333

bn c C
h�yn

h
1�ba

2
0.333

bna
1�bn

2

1�ba

2
0.333

mass function associated with conflict to the null mass

[38]. An alarm is raised if m123.A/ > q, where q > 0

is operator controlled.

DS combines the beliefs expressed by the three moni-

tors (RCV , MON1, and MON2) producing a single com-

bined belief that is finally compared with q D 0:5. If the

combined belief is greater than q, an alarm is raised. The

monitors (based on the local detection algorithms) produce

a single belief for each focal element: (i) ba the belief that

there is an attack, (ii) bn the belief that there is not an attack

(normal), and (iii) bna the belief expressing an ambiguity:

attack or no attack. If the output of a local detection algo-

rithm is close to h, where h is the detection threshold, bna

increases to express a higher belief on the uncertainty of an

attack or normal operation.

The region R where uncertainty increases is operator

controlled and is defined between the borders of h�.1�r/

and h � .1 C r/, as h � .1 � r/ � R � h � .1 C r/ and

r > 0. The width of the uncertainty area is controlled by

r . By using this definition, beliefs are computed according

to Table I, depending on the output yn of the local detec-

tion algorithms. Beliefs are computed so as their sum is

equal to one (ba C bn C bna D 1). An alarm is raised if

bc > q, where bc is the combined belief given by (7) and q

the predefined threshold used for fusion. As we focus only

on detecting a single type of attack (jamming at the phys-

ical layer), the belief and mass functions are equivalent.

For the performance evaluation, we have selected r D 0:05

and c D 0:5. c is a constant that controls how fast ba or bn

increase (Table I). In Table I, yn D Zn for the simple algo-

rithms, and yn D max.0; yn�1 C Zn � a/ for the cusum

ones (as described in Section 5).

DS has been criticized that it performs poorly when

there is significant conflict among the different infor-

mation sources fused. However, as the evaluation shows

(Section 9.2), DS significantly increases the performance

of the local algorithms even if there are possible conflicts

among the different monitors. Moreover, a major objec-

tive of this work is to investigate if fusion can increase

the performance of the local intrusion detection algorithms.

Further work can include the study of other fusion algo-

rithms with conflict solving.

9.2. Performance evaluation of the

Dempster–Shafer algorithm

In this section we evaluate DS in terms of the DP

and FAR. By evaluating the local detection algorithms

(Section 8), we collected sets of detection threshold val-

ues for each monitor and for each local algorithm, sepa-

rately. These threshold sets correspond to robust DP–FAR

points achieving the highest possible score. We denote as

thri D fthri1; : : : ; thriN g the set of the detection thresh-

olds of monitor i for which a local detection algorithm

is robust while achieving its highest possible score. As in

this work, three monitors are used; there exist three sets of

threshold values, one for each monitor: (thr1, thr2, thr3).

We next combine these sets to take triplets of all possible

combinations.

We evaluate DS not by assigning the same detection

threshold to all monitors but choosing the threshold val-

ues that emerged from the aforementioned combinations

(some preliminary tests have shown that DS does not per-

form well if the same threshold is set to all monitors). For

example, instead of assigning threshold thr1 to all moni-

tors and then use DS to fuse their outputs, we can assign

thr11 to RCV , thr21 to MON1, and thr31 to MON2, as

[thr11, thr21, thr31] is one possible combination. There

are hundreds of thousands of possible combinations, and it

is computationally infeasible to evaluate DS by using all of

these values. For this reason, we use only a subset of all the

possible combinations. For each algorithm, we uniformly

select triplets from the sets [thr1j , thr2k , thr3l ], where j ,

k, l is the number of the robust thresholds that give the

highest score at RCV , MON1, and MON2, respectively.

DS evaluation using the subset of threshold triplets

gives several different scores, but finally, the highest score

among all of these values is assigned. Figure 9 shows

the scores assigned to DS, when combined with the

local detection algorithms, and for both attack intensi-

ties. Observe in this figure that DS with Savg, for Exp1

and for both attack intensities, has medium performance.

When combined with the rest of the local algorithms, its

performance is high for both experiments and for both

attack intensities.

To quantify the performance improvement when using

DS, compared with the performance of the local algorithms

evaluated exclusively at the single locations (monitors), we

define two metrics:

� The performance improvement metric P , which

quantifies the performance improvement when using

DS combined with a local detection algorithm, com-

pared with the performance of this algorithm at a

single location (9).

P i ;j D 100 �
S

j
DS � S

j
i

S
j
i

(9)
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(a) High intensity attack, Exp 1

(b) High intensity attack, Exp 2

(c) Low intensity attack, Exp 1

(d) Low intensity attack, Exp 2

Figure 9. Scores assigned to Dempster–Shafer theory of

evidence for the high-intensity and low-intensity attacks.

where S
j
DS is the score assigned to DS when com-

bined with the local detection algorithm j and S
j
i is

the score assigned to the local detection algorithm j

when considering the SINR traces at monitor i exclu-

sively (i 2 [RCV , MON1, MON2] and j 2 [Savg,

Smin, Smm, Cavg, Cmin, Cmm]).

� The average performance improvement metric P _avg

that is the average value of the performance improve-

ment when using DS, given by (10).

P _avgj D 100 �

PN
iD1

S
j
DS�S

j

i

S
j

i

N
(10)

where N is the number of monitors, S
j
DS the score

assigned to DS when combined with the local algo-

rithm j , and S
j
i is the score assigned to this local

algorithm when evaluated exclusively at monitor i .

These two performance metrics quantify the compar-

ison between Figure 6(a) and (b) that shows the per-

formance of the local algorithms evaluated at the single

locations, with Figure 9 that shows the scores assigned

to DS. These metrics eventually assist to investigate the

possible performance improvement gained when using DS.

Figures 10 and 11 show the performance improvement

(P ) and the average performance improvement (P _avg)

when using DS. For simplicity and for each graph on

these figures,

� The first three bars show the metric P i , where i is the

monitor on which the algorithm, shown as the title of

the graph, has been exclusively evaluated.

� The fourth bar shows the metric P _avg that is the

average value denoted by the first three bars.

In Figure 10(a), observe that P _avg is greater than zero

for the simple algorithms and Cavg, meaning that their per-

formance increases if the outputs of the monitors where

they execute are fused using DS. In Figure 6(a), we observe

that Smin and Smm in MON1 and MON2, and Cavg in

RCV have low performance, but when DS is used, their

performance increases, achieving high performance. The

average performance improvement for Smin is 18%, for

Smm is 55%, whereas for Cavg, the performance improves

by 13%. For Cmin and Cmm, there is no performance

improvement as both reach maximum performance when

evaluated at the single locations. With DS, they still have

high performance, although fusion decreases their scores

by 1:5%.

Figure 10(b) shows the performance improvement for

Exp2 and for the high-intensity attack. Recall from

Figure 6(a) that for Exp2, all simple algorithms except Smin

that achieves medium performance have low scores. When

DS is used, their performance substantially increases as

DS improves the average performance by 37% for Savg

(achieving medium performance now) and by 59% for

Smm (achieving high performance now). Also for Exp2,

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



A. G. Fragkiadakis et al. Anomaly-based intrusion detection of jamming attacks

−50

−10

30

70

110
Savg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)
−50

−10

30

70

110
Cavg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avgP
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

−50

−10

30

70

110
Savg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cavg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avgP
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

(a) Exp
1

(b) Exp
2

Figure 10. Performance improvement when using Dempster–Shafer theory of evidence for the high-intensity attack.

Cavg has medium or low performance when evaluated at

the monitors, but when fusion is used, its average perfor-

mance improves by 26%, achieving high performance. For

the rest of the algorithms (Smin, Cmin, and Cmm), DS does

not highly affect their performance as they already achieve

high performance at all monitors they were exclusively

evaluated.

The performance improvement for Exp1 and the low-

intensity attack is shown in Figure 11(a). DS substantially

increases the average performance of Smin and Smm by

43% and 35%, respectively. These algorithms have low

performance at MON1 and MON2 (Figure 6(b)), whereas

with DS, both achieve high performance. The rest of the

algorithms have high performance at the monitors, and DS

does not highly affect their performance (less than ˙10%

of performance variation).

Finally, the average performance improvement for Exp2

and for the low-intensity attack is shown in Figure 11(b).

DS enhances the performance of the simple algorithms

by 56% for Savg, 46% for Smin, and 83% for Smm. With

fusion, the performance of the simple local algorithms

increases from low (Figure 6(b)) to high. The performance

of the cusum algorithms is not highly affected by fusion

(less than 5%), and it still remains high.

Wirel. Commun. Mob. Comput. (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



Anomaly-based intrusion detection of jamming attacks A. G. Fragkiadakis et al.

−50

−10

30

70

110
Savg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)
−50

−10

30

70

110
Cavg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg

−50

−10

30

70

110
Savg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cavg

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Cmm

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

−50

−10

30

70

110
Smin

P
e
rf

o
rm

a
n

c
e

Im
p

ro
v
e
m

e
n

t
(%

)

P
RCV

   P
MON1

  P
MON2

Pgva_P  
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avg P
RCV

   P
MON1

  P
MON2

  P_avg

P
RCV

   P
MON1

  P
MON2

  P_avgP
RCV

   P
MON1

  P
MON2

  P_avg

(a) Exp
1

(b) Exp
2

Figure 11. Performance improvement when using Dempster–Shafer theory of evidence for the low-intensity attack.

10. CONCLUSIONS AND
FURTHER WORK

In this work, we described and evaluated anomaly-based

intrusion detection algorithms for the detection of jam-

ming attacks at the physical layer of a wireless network.

The algorithms execute locally at each monitor seeking

for changes in the statistical characteristics of SINR, and

they are of two types: simple threshold and cusum-type

algorithms. We collected SINR traces from three locations

(RCV , MON1, MON2) of a real IEEE 802:11 experimen-

tal network and evaluated the algorithms in terms of the

detection probability (DP), false alarm rate (FAR), and

their robustness to different detection threshold values,

under two attack intensities. We conducted two experi-

ments: Exp1 that ran late in the evening when most people

had left work and Exp2 that ran during busy working times

when people could freely walked.

For the evaluation of the algorithms, we used a method

that, on the basis of the produced outputs of each mon-

itor, filters the robust thresholds, and it then assigns a

score for these thresholds on the basis of DP and FAR.

Opposed to other similar contributions, we also consid-

ered the robustness of the algorithms for different detec-

tion thresholds, hence providing a more comprehensive

performance evaluation.
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For Exp1, and when the measurements at RCV are used,

for both attack intensities, all algorithms (except Cavg)

achieve maximum performance (all attacks detected with

zero false alarms) for detection threshold values they are

robust (RCV is located very close to Jammer). When the

measurements at MON1 and MON2, which are located

in a larger distance from Jammer, are considered, and for

both attack intensities, cusums achieve maximum or high

performance. Simple algorithms’ performance varies from

low to high depending on the monitor considered.

For Exp2, and for the high-intensity attack, the perfor-

mance of most algorithms deteriorates. This is because

of the SINR variations during Jammer inactivity. These

variations were recorded by all monitors and were

probably caused by peoples’ movements, as Exp2 was con-

ducted during busy working hours. Nevertheless, Cmm still

achieves high performance. The performance of the rest of

the algorithms varies from low to high, depending on the

monitor considered.

For the low-intensity attack of Exp2, all cusum algo-

rithms achieve high performance. Again, the performance

of the simple algorithms varies depending on the monitor

considered.

The evaluation of the local detection algorithms shows

that, in general, cusum algorithms achieve high perfor-

mance for both experiments and for both attack intensities.

The performance of the simple algorithms can vary from

low to high, depending on the algorithm and the monitor

used. Among all algorithms, Cmm achieves high or maxi-

mum performance, regardless the attack intensity and the

Jammer location.

Next, we presented the DS. Its main advantage is that no

a priori knowledge of the system is required, thus making it

suitable for anomaly detection of previously unseen infor-

mation. DS is used to fuse the outputs provided by the local

detection algorithms that executed at the monitors. We used

a subset of the robust detection thresholds that were derived

through the evaluation of the local algorithms, and then, we

evaluated DS in terms of DP and FAR.

The evaluation shows that when DS is combined with

all the local detection algorithms (except Savg), it has high

performance. The performance of the simple algorithms

substantially increases with an average performance

improvement (in some cases) more than 80% when their

outputs are fused by DS. Regarding Savg, it achieves

medium performance for the high-intensity attack of

both experiments with an average performance improve-

ment of 40%. The average performance improvement

for the cusum algorithms is not high, as they already

achieve high scores even when they are evaluated at the

monitors exclusively.

Further work can include the launching and detection of

more sophisticated jamming attacks. Such an attack could

be performed by a Jammer through the use of a direc-

tional antenna that targets an access point. The use of a

directional antenna makes more difficult the detection of

jamming because the noise radiated is concentrated in a

sector possibly located outside the detection range of the

monitors. In this situation, measurements from the MAC

layer such as the retry counter or the CCA counter could

be used for detection.

Other types of attacks can be studied targeting higher-

layer protocols (i.e., IP and transport), as wireless networks

are also susceptible to attacks targeting traditional wired

network infrastructures. A cross-layer intrusion detection

system composed of algorithms and mechanisms monitor-

ing activities in different layers is under consideration. A

single combined output (or verdict) can be produced by

fusing the output of each distinct layer-level mechanism.

One of the algorithms for data fusion of heterogenous

information sources is DS and several of its variations for

conflict solving.

Furthermore, we aim to investigate appropriate training

schemes so as to select the most optimal values for the tun-

ing parameter a, making the cusum algorithms more robust

when deployed in unfamiliar networks.
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