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Abstract 

Intrusion detection systems (IDS) play an important role in defending network systems 

from insider misuse as well as external attackers. Compared with misuse-based 

techniques, anomaly-based intrusion detection techniques perform well in detecting new 

attacks. Firstly, this paper proposes a feature selection algorithm based on SVM (termed 

FS-SVM) to reduce the dimensionality of sample data. Moreover, this paper presents an 

anomaly-based intrusion detection algorithm, i.e., multiclass support vector machine 

(MSVM) with parameters optimized by particle swarm optimization (PSO) (termed 

MSVM-PSO), to detect anomalous connections. To verify the effectiveness of these two 

proposed algorithms (FS-SVM and MSVM-PSO) and the detection precision of MSVM-

PSO, this paper conducts experiments on the famous KDD Cup dataset. This paper 

compares MSVM-PSO with three commonly adopted algorithms, namely, Bayesian, K-

Means, and multiclass SVM with parameters optimized grid method (MSVM-grid). The 

experimental results show that MSVM-PSO outperforms these three algorithms in 

detection accuracy, FP rate, and FN rate. 

 

Keywords: Intrusion detection; Anomaly; Feature selection; Multiclass SVM; 

Parameter optimization; PSO 

 

1. Introduction 

Along with the development of IT (information technology), people increasingly rely 

on computer networks to provide them with news, email and online shopping, etc. To 

ensure the integrity and availability of network systems, these systems must be defended 

from insider misuse as well as external attackers, thus promoting the development of 

intrusion detection systems (IDS). 

Intrusion detection techniques can be classified into two categories: misuse-based and 

anomaly-based techniques. The misuse-based intrusion detection techniques are based 

on defining what malicious behaviors (i.e., attacks) are and then monitoring for 

them. These techniques work well in detecting known attacks but will miss new 

attacks unless these new attacks are just minor variations on old ones. 

In contrast to misuse detection, anomaly detection techniques construct a model to 

represent normal system usage and then monitor for any behavior that does not fit 

this model. These techniques work well in detecting new attacks which misuse-based 

techniques would miss. 

Along with the evolution of network attacks, the detection precision of existing 

anomaly-based techniques (e.g., Bayesian, K-Means) can not meet the requirements of 

increasingly complex network environment. While support vector machines (SVMs) 

exhibit many unique advantages in nonlinear and high dimensional classification 

problems with small-scale sample data. Therefore, this paper proposes SVM-based 

techniques to solve anomaly intrusion detection. 
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Firstly, to reduce the dimensionality of sample data, this paper proposes a feature 

selection algorithm based on SVM (termed FS-SVM). Moreover, this paper presents 

an anomaly-based intrusion detection algorithm by using multiclass SVM with 

parameters optimized by particle swarm optimization (PSO) (termed MSVM-PSO). 

To verify the effectiveness of these two proposed algorithms (FS-SVM and MSVM-

PSO) and the detection precision of MSVM-PSO, this paper conducts experiments 

on KDD Cup datasets, which is a benchmark dataset in the researches on network 

intrusion detection. Meanwhile, it compares MSVM-PSO with Bayesian 0, [1], K-

Means [2] and multiclass SVM with parameters optimized grid method (MSVM-

grid). The experimental results show that MSVM-PSO outperforms these three 

algorithms in detection accuracy, FP rate, and FN rate. 

The remainder of this paper is organized as follows. Section 2 introduces related 

work. Section 3 illustrates the preliminaries of SVM. Section 4 proposes a feature 

selection algorithm (FS-SVM) based on SVM. Section 5 presents the proposed 

detection algorithm (MSVM-PSO) in detail. Section 6 conducts experiments and 

presents analyses. Finally, Section 7 gives conclusions and looks into future work. 

 

2. Related Work 

This section summarizes research work related to intrusion detection, feature 

selection, and SVM. 

 

2.1. Intrusion Detection 

Intrusion detection systems (IDS) protect computer networks from unauthorized users, 

including perhaps insiders. The intrusion detector (i.e., a classifier) learns to build a 

predictive model which is capable of distinguishing between bad connections (called 

intrusions or attacks) and good normal connections. IDS can be implemented by misuse-

based or anomaly-based intrusion detection techniques. 

By using Bayesian networks, Tylman [3] implements a misuse-based intrusion 

detection system, Basset (Bayesian System for Intrusion Detection), which is extended 

from Snort. The ultimate goal of Basset is to provide better detection capabilities and less 

chance of false alarms through evaluating Snort alerts by Bayesian networks. However, 

the inherent limitations of Bayesian networks and misuse-based techniques make Basset 

hard to detect new attacks, i.e., the miss rate is relative high. 

Jyothsna et al., [4] survey anomaly-based intrusion detection systems. They elaborate 

the foundations of commonly adopted anomaly intrusion detection techniques along with 

their operational architectures. They also classify these techniques based on the type of 

processing that is related to the behavioral model for the target systems. 

Goel et al., [5] propose a novel hybrid intrusion detection model, i.e., parallel misuse 

and anomaly detection. The former adopts C4.5 based binary decision trees, and the latter 

adopts CBA (Classification Based Association) based classifier. The model's performance 

is evaluated on KDD Cup 99 benchmark [6], [7]. However, the parallel nature of the 

proposed model makes it hard to be deployed upon network systems. 

Intrusion detection and corresponding techniques are always continuously 

concerned issues in literature, regardless that new computing paradigms e.g., cloud 

computing [8] have emerged. Modi et al., [8] survey different intrusions affecting 

availability, confidentiality and integrity of Cloud resources and services.  They 

examine Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) 

in Cloud, and propose corresponding proposals. Mitchell and Chen [9] survey 

intrusion detection research for Cyber-Physical Systems (CPSs), e.g., pervasive 

healthcare systems, smart grids. They classify modern CPS Intrusion Detection 

System (IDS) techniques based on two design dimensions: detection technique and 

audit material. 
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2.2. Feature Selection (FS) 

The sample data of IDS are usually high-dimensional. For example, the KDD Cup 

99 dataset ([7]) contains 41 features. Some features are valueless for anomaly 

intrusion detection. Feature selection techniques e.g., [10], [11] select an optimal 

subset of the original features based on some criteria. Existing techniques usually 

involve exhaustive searching all the possible subsets of the set of original features, 

thereby usually being time-consuming. 

Lin et al., [12] combine support vector machines (SVM) and simulated annealing 

(SA) to find the best selected features to elevate the accuracy of anomaly intrusion 

detection, where SA is adopted to adjust the best values of two parameters in SVM. 

However, they do not clearly describe how to select the best features. Guyon et al., 

[13] propose a recursive feature elimination method based on SVM, which removes a 

feature every time after executing SVM on the remaining set of features. But the number 

of selected features is a preset value, which relies on human expertise. In section 4, this 

paper proposes a more effective and reasonable feature selection algorithm based on 

SVM. 

 

2.3. Support Vector Machines (SVMs) 

The original SVM algorithm was first invented by Vladimir N. Vapnik. The current 

standard incarnation (i.e., soft margin SVM, as illustrated in Section 3.2) was proposed by 

Corinna Cortes and Vapnik in 1993 and published in 1995 ([14]). After twenty years of 

development, SVMs have been widely and successfully applied in many fields including 

text categorization, speech recognition, remote sensing image analysis, and time series 

forecasting ([15]). 

In nature, SVM is a kind of supervised learning method. SVM can be applied to 

classification, regression, and tagging. This paper only concentrates on classification 

problems. The classical applications of classification include intrusion detection (0-[5]), 

violent behavior detection ([16]), fault diagnosis ([17]). This paper introduces SVM-based 

techniques to anomaly intrusion detection. 

 

3. Preliminaries 

Notations: 

(1) In this paper, an italic letter (maybe with a subscript) (e.g., yi) represents a 

scalar value. 

(2) A bold and italic letter (maybe with a subscript) (e.g., xi) represents a vector; 

moreover, all vectors in this paper are column ones. In addition, a bold letter (e.g., x) 

represents a vector in a Hilbert space. 

In addition, a training set contains a number of sample points; each sample point, 

(x, y), in the training set has a unique sequence number; the input, x, in a sample 

point is usually a vector. While a vector x contains several components; each 

component (scalar) also has a unique sequence number. To avoid confusion, the 

following agreements are made on these two sequence numbers. 

(1) For a sequence containing a list of vectors or scalars, the sequence number of 

each element in the sequence is represented by a subscript. For example, a training 

set can be represented by T = { (x1, y1), (x2, y2), …, (xN, yN) }, where (xi, yi) is a 

sample point, the input, xi, is a vector, while the output, yi, is a scalar. The subscripts in 

xi and yi respectively represent the sequence number of xi and yi in the whole 

sequence. For a component in a vector, its sequence number is also represented by a 

subscript, e.g., x = (x1, x2, …, xn)
T∈R

n
. 

(2) If these two sequence numbers appear at the same time, the first subscript 

represent the sequence number in the sequence, the second one represents the 
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sequence number in the vector, e.g., the input of the i-th sample point can be 

completely represented by xi = (xi1, xi2, …, xin)
T
. 

In addition, the superscript of a variable in PSO algorithm represents the 

sequence number of iteration. 

 

3.1. The Basic Idea of SVM 

SVM is essentially a binary classification model. SVM is a kind of statistical 

learning methods, which include three elements, i.e., model, strategy, and algorithm. 

The basic model of SVM is a linear classifier with maximal margin defined in the 

feature space. By introducing kernel methods, SVM can also realize nonlinear 

classification. The learning strategy of SVM is to maximize the margin between two 

supporting hyperplanes, as shown in Figure 1(a), which can be formed as a convex 

quadratic programming problem. The learning algorithm of SVM is the one to solve 

the convex quadratic programming optimization algorithm. 

 

Supporting hyperplane

O

Separating 

hyperplane

(a)
O

(b)

Outliers

x1

Positive samples

Negative samples

x1

x2 x2

 

Figure 1. Linear Separable SVM and Linear SVM 

SVM consists of three basic models: linear separable SVM, linear SVM, and 

nonlinear SVM. Figure 1 and Figure 2 illuminate these basic models in a 2-

dimensional case. When the training set are linear separable, as shown in Figure 

1(a), a linear classifier (i.e., the separating hyperplane, shown in Figure 1(a)) can be 

learned through maximizing the hard margin. The learned linear classifier is called 

linear separable SVM, also known as hard margin SVM. When the training set are 

approximately linear separable, as shown in Figure 1(b), a linear classifier can also 

be learned through maximizing the soft margin. The learned linear classifier is 

called linear SVM, also known as soft margin SVM. When the training set are not 

linear separable, as shown in Figure 2(a), kernel techniques are used to convert the 

input space x∈ R
n
 to a Hilbert space x∈, as shown in Figure 2(b), and then a 

nonlinear SVM can be learned through maximizing the soft margin. 
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Figure 2. Nonlinear SVM 

3.2. C-support Vector Classification (C-SVC) 

The most fundamental SVM is C-SVC, which is gradually deduced below. Firstly, 

the related formal definitions are given below. 

 

Definition 1 (Anomaly-based intrusion detection Problem): Let T be a training 

set, 

T = { (x1, y1), (x2, y2), …, (xN, yN) }∈ (R
n
×)

N
,                              (1) 

where xi = (xi1, xi2, …, xin)
T∈R

n
, N is the number of samples. 

1) Binary classification: the task is to determine whether a connection 

(represented by a vector, x, consisting of a set of features) is a normal one or an 

attack, then 

yi∈ = {1, –1}, i = 1, 2, …, N,                                     (2) 

yi is the label of xi. When yi = +1, xi is called a positive sample; while when yi = -

1, xi is called a negative sample. (xi, yi) is called a sample point. The goal is to find 

a real function g(x) in R
n
, 

y = f(x) = sgn(g(x)),                                                         (3) 

where sgn() is the sign function and f(x) derives the value of y for any x. 

2) Multiclass (or M-class) classification: the task is to not only determine a 

connection is normal or not, but also determine the type of attack for an anomaly 

connection, then 

yi∈ = { 0, 1, ..., M-1 }, i = 1, 2, …, N,                           (4) 

M is the number of states including the normal state. The goal is to find a 

decision function f(x) in R
n
, 

y = f(x) : R
n
→,                                                           (5) 

such that the class number y for any x can be predicted by y = f(x). 

 

Definition 2 (Linearly separable problem): Consider the training set (1)~(2), if 

there exist w∈R
n
, b∈ R and a positive number ε such that for any subscripts i with yi 

= 1, (w·xi) + b > ε hold; and for any subscripts i with yi = −1, (w·xi) + b < −ε hold; 

then the training set and its corresponding classification problem are called linearly 

separable. 
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For a linearly separable training set, finding the separating hyperplane through 

maximizing the hard margin can deduce the following primal optimization algorithm: 

2

, 2

1
    min w

w b
,                                                                          (6) 

s.t.     yi((w·xi) + b) ≥ 1，i = 1, 2, …, N.                                (7) 

The intuitive interpretation of maximal margin is to separate the training samples 

with fully confident degree. Namely, it not only separates the positive sample points 

and negative ones, but also separates the sample points very close to the separating 

hyperplane with enough confidence level. Such a separating hyperplane has  good 

classification ability for unknown new samples. 

The following dual optimization algorithm can be obtained by applying Lagrange 

duality: 

∑∑ ∑
N

i

N

j

N

j
jjijiji αααyy

1= 1= 1=

–)·(
2

1
    min xx

α
,                              (8) 

s.t.    0=
1=
∑

N

i
iiαy ,                                                                 (9) 

ai≥0, i = 1, 2, …, N.                                                    (10) 

where α = (α1, α2, ..., αN)
T
 is the Lagrange multiplier vector. 

If most of the sample points are linearly separable except for few outliers, as 

shown in Figure 1(b), a set of relaxation variable, ξi≥0, should be introduced into 

the constraints (7); meanwhile a penalty item should be introduced into the object 

function (6). Therefore, finding the separating hyperplane through maximizing the 

soft margin can deduce the following primal optimization algorithm: 

∑
l

i
i

b
ξC

1=

2

,,
+

2

1
    min w

w ξ
,                                                      (11) 

s.t.    yi((w·xi) + b)≥1 – ξi, i = 1, 2, …, N,                         (12) 

ξi≥0, i = 1, 2, …, N.                                                  (13) 

where C>0 is a penalty parameter, and ξ = (ξ1, ξ2,…, ξN)
T
. In the objective function 

(11), the former item (
2

w ) represents the inverse of the margin, the latter item 

represents a measurement of violation of the constraints, yi((w·xi) + b)≥1. The 

parameter C determines the weighting between the two terms. 

Similarly, the following dual optimization algorithm can be obtained by applying 

Lagrange duality: 

∑∑ ∑
N

i

N

j

N

j
jjijiji αααyy

1= 1= 1=

–)·(
2

1
    min xx

α
,                           (14) 

s.t.    0=
1=
∑

N

i
iiαy ,                                                             (15) 

0≤ai≤C, i = 1, 2, …, N.                                            (16) 
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When a training set is not linear separable, through finding a proper mapping Φ 

which transforms the input space R
n
 to the feature space , it is possible to solve a 

linear classifier in the feature space  to separate the transformed data set. By 

introducing a kernel function, it does not need to explicitly define the map Φ. 

By introducing the map Φ, the inner product in (14) should be replaced with 

(Φ(xi)·Φ(xj)), while by further introducing the kernel function, the inner product can 

be expressed as K(xi, xj), which results the following basic SVM algorithm, C-SVC. 

 

Algorithm 1: C-Support Vector Classification (C-SVC) 

Input: the training set T = { (x1, y1), (x2, y2), …, (xN, yN) }, where xi∈R
n
, 

yi∈= {1, -1}, i = 1, 2, ..., N; choose an appropriate kernel K(x, x'), and a penalty 

parameter C>0. 

Output: the decision function f(x). 

(1) Construct and solve the convex quadratic programming problem below: 

∑∑ ∑
N

i

N

j

N

j
jjijiji αKααyy

1= 1= 1=

–),(
2

1
    min xx

α
                           (17) 

s.t.    0=
1=
∑

N

i
iiαy ,                                                               (18) 

0≤ai≤C, i = 1, 2, …, N,                                              (19) 

thus obtaining a solution α* = (α1*, α2*, …, αN*)
T
; 

(2) Compute w* = ∑
N

i
iii yα

1=

* )(Φ x . If only the decision function is needed, w* do 

not need to be explicitly calculated. 

(3) Compute 
*b : Choose a component of 

*α , 
*

jα ∈ (0, C), and compute 

∑
N

i
jiiij Kαyyb

1=

** ),(–= xx ;                                            (20) 

(4) Construct the decision function: 

f(x) = sgn(g(x)),                                                         (21) 

where 

g(x) =
*

1=

* +),( bKαy
N

i
iii∑ xx .                                               (22) 

 

The most commonly adopted kernel function is Gauss kernel function, which is 

defined by: 

K(x, x') = exp(
22

′–– σxx ),                                                 (23) 

or: 

K(x, x') = exp(
2
′–– xxλ ).                                             (24) 

Gauss kernel function maps the original input space to an infinite dimensional 

one. If σ is set as a much bigger value, the weights of high order features decay very 

fast. Actually the infinite dimensional space numerically approximates a low-

dimensional subspace. On the other hand, if σ is set as a much smaller value, Gauss 
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kernel can map an arbitrary training set into a linearly separable one. Of course, this 

is not necessarily good since it may result in serious overfitting. On the whole, 

Gauss kernel is quite flexible through adjusting the parameter σ (or λ), which makes 

it be one of the most widely adopted kernel functions. 

 

4. A Feature Selection Algorithm based on SVM (FS-SVM) 

This paper proposes a feature selection algorithm (termed FS-SVM) based on C-

SVC, which gradually removes subordinate features from the original feature set. 

The basic idea of FS-SVM is illustrated as follows. 

When a training set is classified by applying C-SVC, the obtained normal vector 

of the separating hyperplane is given by: 

w* = (w1, w1, …, wn)
T
,                                                 (25) 

If a component wj = 0, then the decision function 

f(x) = ]+)sgn[( *

1=

bxw
N

i
ii∑ .                                             (26) 

does not contain the j-th feature and this feature can be removed. Generally, a 

component of w* with a much smaller absolute value can also be removed. In order 

to remove features more efficiently, FS-SVM applies C-SVC and finds the normal 

vector w* several times. Each time, it only removes a feature that corresponds to the 

component with the smallest absolute value of w*. This process continues until the 

classification accuracy is less than a predifined threshold. The selected features are 

used in the training and the test periods of the designed intrusion detection 

algorithm. The proposed algorithm is listed as follows. 

 

Algorithm 2: Feature selection based on SVM (FS-SVM) 

Input: the training set T = { (x1, y1), (x2, y2), …, (xN, yN) }∈ (R
n
×)

N
, where xi = 

(xi1, xi2, …, xin)
T∈R

n
, yi∈ = { 1, –1 }, i = 1, 2, …, N, n is the number of original 

features, N is the number of samples; the threshold of classification accuracy, h. 

Output: the selected feature set, {x1, x2, …, xd}, where d is the number of 

selected features. 

(1) set k = 0, and construct the training set T0 = T; 

(2) Apply C-SVC on the training set Tk, compute the normal vector w* of the 

separating hyperplane, and compute the corresponding classification accuracy, Racc. 

(3) if Racc<h, the algorithm ends, Tk is the selected feature set, moreover, d = n – k; 

otherwise, remove the feature in Tk which has the smallest absolute value of the 

components of w*, and obtain Tk+1, set k = k + 1, and go to step 2. 

 

5. An Anomaly-Based Intrusion Detection Algorithm based on 

Multiclass SVM with Parameters Optimized by PSO 

This section presents an anomaly-based intrusion detection algorithm based on 

one-versus-the-rest multiclass SVM with parameters optimized by PSO. 

 

5.1. A multi-Class Classification Algorithm based on SVM 

SVM is powerful for binary classification. Several methods have been proposed 

to extend SVM for multiclass classification. Two commonly adopted methods are 

one-versus-one (i.e., pairwise) classification and one-versus-the-rest classification. 

The former needs to solve M(M-1)/2 decision functions for M-class classification. 

Therefore, this paper adopts the latter method. 
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For an M-class classification problem with training set (1), (4), the one-versus-

the-rest method constructs M binary classification problems. The j-th one separates 

the j-th class from the rest, yielding the decision function )(x
jf  = sgn( )(x

jg ), j = 

0, ..., M-1. The next step is doing multiclass classification according to )(0
xg , ..., 

)(1-
x

Mg , which classify the input x to class J, where J is the superscript of the 

largest among )(0
xg , ..., )(1-

x
Mg . The specific process is listed as follows ([15]). 

 

Algorithm 3: One-versus-the-rest multiclass SVM 

Input: the training set T = { (x1, y1), (x2, y2), …, (xN, yN) }∈(R
n
×)

N
, where xi = 

(xi1, xi2, …, xin)
T∈ R

n
, yi∈ = { 0, 1, ..., M-1 }, i = 1, 2, …, N. 

Output: a decision function, f(x), to determine the class of an input x. 

(1) For j = 0, ..., M-1, construct the training set of the j-th binary problem with 

the training set 

)},(,),,(),,{(= 2211

j

NN

jjj yyyT xxx  ,                                 (27) 

where 



 


.,0

; ,1

otherwise

jyif
y

ij

i                                               (28) 

Find the corresponding decision function by applying C-SVC. 

))(sgn(=)( xx
jj gf .                                            (29) 

(2) Construct the decision function 

)(maxarg)( 1,1,0 xx
j

Mj gf   .                                   (30) 

where )(maxarg 1,1,0 x
j

Mj g   means the superscript of the largest among 

)(0
xg , ..., )(1-

x
Mg . 

 

5.2. Parameter Optimization by PSO 

There are two important parameters in Algorithm 1, 2, and 3, i.e., C and λ. This paper 

adopts particle swarm optimization (PSO) algorithm to seek the optimal values of these 

two parameters. PSO is originally attributed to Kennedy and Eberhart ([18]). A latest 

overview on PSO ([19]) can be found in the initial issue of Swarm Intelligence. 

PSO is an evolutionary algorithm. Assume a swarm consists of n particles. For 

the i-th particle, the position vector is represented by Xi = (xi1, xi2, …, xiD), and the 

velocity vector is represented by Vi =(vi1, vi2, …, viD), i = 1, 2, …, n. Each particle 

denotes a possible solution to a problem in a D-dimensional space. During each 

iteration, each particle is accelerated approaching the particle's previous best 

position and the global best position. Pi = (pi1, pi2, …, piD) and Pg = (pg1, pg2, …, pgD) 

respectively represent the best previously visited position of the i-th particle and 

that of the swarm. The new velocity is used to calculate the next position of the i-th 

particle. This iteration process will end when a maximum number of iterations finish 

or a minimum error is achieved. The velocity and position of the i-th particle can be 

updated by [20]: 

)–(××+)–(××+×= 2211

1+ l

id

l

gd

ll

id

l

id

ll

id

l

id xprdcxprdcvwv ,                 (31) 
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l

id

l

id

l

id xvx += 1+1+
.                                                                                  (32) 

where i = 1, 2, ..., n, d = 1, 2, ..., D. 

Notations: 

(1) the superscript l denotes the l-th iteration; 

(2) w is the nonnegative inertial weight coefficient, which affect the overall 

optimization ability; 

(3) c1 and c2 are learning factors; 

(4) 
lrd1  and 

lrd2  are positive random number ranging from 0 to 1 under normal 

distribution; 

(5) 
l

idx  is the d-th component in the D-dimensional position vector of the i-th 

particle, which represents the current value of SVM parameters, C and λ; 

(6) vid∈ [vmin, vmax] denotes the d-th component in the D-dimensional velocity 

vector of the i-th particle, which determines the update direction and distance of the 

next generation of C and λ. 

This paper adopts linear decreasing inertia weight ([20]). It is computed by: 

max

–
×–=)(

T

ww
lwlw

endstart

start .                                     (33) 

where l is the current iteration number, Tmax is the maximum number of iteration, 

wstart and wend are the maximum and the minimum values of w. 

A constriction factor  is adopted to the velocity evolution equation (31) to 

improve the convergence speed of PSO [20]: 

))–(××+)–(××+×{= 2211

1+ l

id

l

gd

ll

id

l

id

ll

id

l

id xprdcxprdcvwv  ,              (34) 

 

6. Experiments and Analyses 

This section conducts experiments on KDD Cup dataset and presents analyses. 

 

6.1. Dataset Description 

KDD Cup dataset ([7]) includes a wide variety of intrusions simulated in a 

military network environment. The dataset contains a training dataset and a test 

dataset. The former includes 7 weeks of network traffic, and 4,898,431 connection 

records totally. The latter includes 2 weeks of network traffic, and 2,984,154 

connection records totally. Each connection is labeled as either normal, or as an 

attack, with exactly one specific attack type. 

KDD Cup dataset contains the following four main categories of attacks: 

(1) Denial-Of-Service (DOS): e.g., syn flood. 

(2) Surveillance or probe (Probe): surveillance and other probing, e.g., port 

scanning. 

(3) User to Root (U2R): unauthorized access to local superuser (root) privileges, 

e.g., various “buffer overflow” attacks. 

(4) Remote to Local (R2L): unauthorized access from a remote machine, e.g., 

guessing password. 

Since the training dataset and the test dataset contain too much samples, usually a 

subset of 10% dataset are adopted. The 10% training dataset contains 494,021 

connection records, while the 10% test dataset contains 311,029 connection records. 

The number and percentage of each attack category contained in these two 10% 

datasets are shown in Table 1. 
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Table 1. Attack Categories in the 10% KDD Cup Dataset 

Attack 

category 

10% Training Data 10% Test Data 

# of samples Percentage # of samples Percentage 

Normal (0) 97278 19.69% 60593 19.48% 

Probe (1) 4116 0.83% 4166 1.34% 

DOS (2) 391458 79.24% 229853 73.90% 

U2R (3) 52 0.01% 228 0.07% 

R2L (4) 1126 0.23% 16189 5.20% 

Total 494021  311029  

 

More importantly, the test dataset is not from the same probability distribution as 

the training dataset ([7]), and it includes specific attack types not in the training 

dataset, which is helpful to verify the effectiveness of the designed IDS. Table 2 

lists the number of samples of each kind of attack in these two 10% datasets. Totally, 

there are 23 kinds of attacks in the 10% training dataset, while there are 38 kinds of 

attacks in the 10% test dataset (both including the normal connection). In the 10% 

testing dataset, there are 19.48% normal, 74.50% old attack, and 6.02% new attack 

connections which have not been shown in training set  ([5]). 

Table 2. The Number of Samples of each Kind of Attack in Two 10% 
Datasets 

Attack 
category

10% Training Data

Attacks (23)
# of 

samples

Normal 
(0)

normal 97278

10% Test Data

Attacks (38)
# of 

samples

normal 60593

ip sweep 1247 ip sweep 306

nmap 231 nmap 84

portsweep 1040 portsweep 354

satan 1589 satan 1633

saint 736

mscan 1053

Probe
(1)

back 2203 back 1098

land 21 land 9

neptune 107201 neptune 58001

pod 264 pod 87

smurf 280790 smurf 164091

apache2 794

mailbomb 5000

udpstorm 2

processtable 759

DOS
(2)

perl 3 perl 2

rootkit 10 rootkit 13

loadmodule 9 loadmodule 2

buf_overflow 30 buf_overflow 22

httptunnel 158

ps 16

sqlattack 2

xterm 13

DOS
(2)

continue

teardrop 979 teardrop 12

imap 12 imap 1

spy 2 spy

warezclient 1020 warezclient

warezmaster 20 warezmaster 1602

named 17

xsnoop 4

xlock 9

sendmail 17

worm 2

R2L
(4)

ftp-write 8 ftp-write 3

guess-passwd 53 guess-passwd 4367

multihop 7 multihop 18

phf 4 phf 2

snmpgetattack 7741

snmpguess 2406

Total 311029494021

 
 

Both the training dataset and the test dataset are in ASCII format, and adopt the 

same record format. Each line represents a connection record, which contains 41 

features ([7]), excluding the label of attack category. 
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6.2. The Selected Features 

Although the KDD Cup dataset contains 41 features, most of them are valueless 

for anomaly intrusion detection. Therefore, the proposed FS-SVM algorithm (the 

threshold h is set as 97.5%) is first applied on the training dataset to select the best 

features. After applying FS-SVM, 18 features are selected, which are listed in Table 

3, where the first column represents the original sequence number of each selected 

feature. Therefore, the sample data reduction achieved by FS-SVM is over 57.14% 

(=24/42), where the denominator is the number of features including the label. 

For fair comparison, all these four algorithms adopt the selected features.  

Table 3. The Selected Features of KDD Cup Dataset 

Number Name Description Data type 

2 protocol_type type of the protocol, e.g. tcp, udp, etc. symbolic 

3 service network service on the destination, e.g., http, telnet, etc. symbolic 

4 flag normal or error status of the connection symbolic 

5 src_bytes number of data bytes from source to destination continuous 

6 dst_bytes number of data bytes from destination to source continuous 

11 num_failed_logins number of failed login attempts continuous 

16 num_root number of "root" accesses continuous 

23 count 
number of connections to the same host as the current 

connection in the past two seconds 
continuous 

24 srv_count 
number of connections to the same service as the 

current connection in the past two seconds 
continuous 

27 rerror_rate % of connections that have "REJ" errors continuous 

29 same_srv_rate % of connections to the same service continuous 

30 diff_srv_rate % of connections to different services continuous 

33 dst_host_srv_count 
Count of connections having the same destination host 

and using the same service 
continuous 

34 dst_host_same_srv_rate 
% of connections having the same destination host and 

using the same service 
continuous 

35 dst_host_diff_srv_rate % of different services on the current host continuous 

36 dst_host_same_src_port_rate 
% of connections to the current host having the same 

src port 
continuous 

37 dst_host_srv_diff_host_rate 
% of connections to the same service coming from 

different hosts 
continuous 

39 dst_host_srv_serror_rate 
% of connections to the current host and specified 

service that have an S0 error 
continuous 

 

6.3. Experimental Results and Analyses 

Compared with the actual state of connections, the detection results can be 

classified into four categories: 

(1) False positive (FP): a normal connection is falsely detected as an attack. 

(2) False negative (FN): an attack is falsely detected as a normal connection. 

(3) True positive (TP): an attack is correctly detected as an attack. 

(4) True negative (TN): a normal connection is correctly detected as a normal 

connection. 

Three performance measures are introduced in this paper to evaluate the 

performance of the designed intrusion detection system: 

(1) Detection accuracy is the proportion of correctly detected attacks and normal 

connections to the total number of connections. It is computed by: 

NPNP

NP

FFTT

TT
Accuracy

+++

+
= .                                      (35) 

(2) FP rate is the probability of identifying a normal connection as an attack. It is 

computed by: 
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NP

P

TF

F
rateFP

+
= .                                              (36) 

(3) FN rate is the probability of identifying an attack as a normal connection. It is 

computed by: 

PN

N

TF

F
rateFN

+
= .                                              (37) 

A well-designed intrusion detection system should ensure as high detection 

accuracy as possible, meanwhile as low FP rate and FN rate as possible.  

This paper implements FS-SVM and MSVM-PSO in Matlab with LIBSVM ([21]). The 

parameter C and of λ SVM varies from 0.01 to 50,000. 

This paper also compares MSVM-PSO with three commonly adopted models, i.e., 

Bayesian, K-Means and MSVM-grid. 

Taking the 10% training dataset, the classifiers are respectively trained by 

MSVM-PSO, MSVM-grid, Bayesian, and K-Means. Then taking the 10% test dataset, 

the trained classifiers are adopted to classify each connection into five categories. 

Figure 3 illustrates the resulting confusion matrices of these four algorithms. 

 

Actual
Predict

Normal 
(0)

Probe
(1)

Normal 
(0)

DOS
(2)

U2R
(3)

59368

R2L
(4)
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(1)

453 3536 152 0 25

DOS
(2)

5147 23 224674 0 9

U2R
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5 0 12 201 10

R2L
(4)
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(a) MSVM-PSO
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(b) MSVM-grid
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(c) Bayesian
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(d) K-Means  

Figure 3. The Confusion Matrices of MSVM-PSO, MSVM-grid, Bayesian, and 
K-Means 

According the confusion matrices, the above three performance measures of these 

four algorithms are calculated and plotted in Figure 4. 
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Figure 4. The Performance Measures of MSVM-PSO, MSVM-grid, Bayesian, 
and K-Means 

From Figure 3 and Figure 4, it can be concluded that the performance of Bayesian 

obviously outperforms that of K-Means; the performance of MSVM-grid is close to that 

of Bayesian; while the performance of MSVM-PSO outperforms that of all other three 

algorithms. The underlying reasons are summarized as follows. 

(1) K-Means is a clustering-based and unsupervised method, while the other three 

methods are supervised. The supervised methods take full advantage of the label 

information of KDD Cup dataset. Therefore, they obviously outperform K-Means. 

(2) SVM-based techniques are powerful for nonlinear and high dimensional 

classification problems. Even though MSVM-grid adopts the most simple and primitive 

parameter optimization method (i.e., grid), its performance is very close to that of 

Bayesian. Equipped with a more effective parameter optimization method (i.e., PSO), 

the performance of MSVM-PSO is obviously enhanced. The detection accuracy of 

MSVM-PSO is 97.64%; while the FP rate and the FN rate are 2.02% and 2.45% 

respectively. 

 

7. Conclusion and Future Work 

This paper proposes SVM-based techniques to implement anomaly intrusion 

detection. A SVM-based feature selection algorithm (FS-SVM) is proposed to 

reduce the dimensionality of sample data. A multiclass SVM algorithm with 

parameters optimized by PSO (MSVM-PSO) is presented to learn a classifier to 

detect multiclass attacks. The experimental results verify the effectiveness and 

performance of the proposed techniques. The future work of this paper will extend 

the proposed techniques to new computing environments (e.g., Cloud) to detect 

anomalous physical or virtual nodes. Extensive experiments will be conducted to 

testify the performance of the SVM-based techniques. 
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