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We check some consistency conditions for the D9-D9 system in type I string theory.
The gravitational anomaly and gauge anomaly for SO(n) × SO(m) gauge symmetry are
shown to be cancelled when n − m = 32. In addition, we find that a string theory with
USp(n)×USp(m) gauge symmetry also satisfies the anomaly cancellation conditions. After
tachyon condensation, the theory reduces to a tachyon-free USp(32) string theory, though
there is no spacetime supersymmetry.

§1. Introduction

To this time, most research on D-branes in string theory has been carried out
in supersymmetric configurations. The BPS property of branes protects the system
from quantum corrections and provides a nice perspective to go beyond perturbation
in the weakly coupled regime. In particular, the stability of the BPS D-branes is one
of the key properties in testing various dualities in string theories and supersymmetric
gauge theories.

However, fortunately or unfortunately, the real world is not supersymmetric,
at least in the low energy scale, and we should engage ourselves in the study of
non-supersymmetric theories sooner or later. Even if one postpones consideration of
the phenomenological aspects, there are various interesting features in the non-BPS
configurations of branes, as should be the case, since most of the states in string
theory are non-BPS.

Recently, the research on the non-BPS configurations of D-branes in string the-
ory has entered a new stage. It was discussed in Refs. 1) and 2) that D-branes
can be constructed as bound states of brane-anti-brane systems and several new
non-BPS D-branes were found using this construction. In this paper, we mainly
consider the D9-D9 system in type I string theory. As shown in Ref. 2), lower
dimensional D-branes in type I string theory can be constructed by arranging non-
trivial Chan-Paton bundles for the D9- and/or D9-branes. This construction leads
to an interpretation in K-theory and it has been shown that the possible D-branes
in type I string theory can be classified by KO-groups. 2)

We will check some consistency conditions for the D9-D9 system in this paper.
The gauge group of the D9-D9 system is SO(n) × SO(m), which is potentially
anomalous. The gravitational and mixed anomalies may also arise in this system.
We will show that these anomalies are all cancelled when n−m = 32. Interestingly,

∗) E-mail: sugimoto@yukawa.kyoto-u.ac.jp
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686 S. Sugimoto

there is another solution of the anomaly cancellation conditions, which suggests the
existence of a consistent D9-D9 system with USp(n) × USp(m) gauge symmetry.
After tachyon condensation, the theory reduces to a tachyon-free USp(32) string
theory, though there is no spacetime supersymmetry.

This paper is organized as follows. In §2 we analyze the effective field theory
of the D9-D9 system. We guess the contents of massless fermions in the theory and
check that the gravitational and gauge anomalies as well as the mixed anomalies are
all cancelled by the Green-Schwarz mechanism. In §3, we make systematic analyses
in perturbative string theory and give some results that are consistent with the
analyses given in §2. In §4, we investigate the general formulation of the D9-D9
system and check the anomaly cancellations in stringy calculations. In §5, we discuss
some properties of the USp(32) string theory.

§2. Analyses in the effective field theory

2.1. Green-Schwarz mechanism in the type I D9-D9 system

In this subsection, we determine the massless fermions in the type I D9-D9 sys-
tem, imposing the Green-Schwarz anomaly cancellation conditions. Related analyses
in the type IIB D9-D9 system are given in Ref. 3).

Let us briefly review the Green-Schwarz anomaly cancellation conditions in type
I string theory. 4),∗) We consider the case in which the gauge group is SO(n). The
gaugino belongs to the adjoint representation of the gauge group and contributes to
the anomaly. The gravitational anomaly cancellation requires

496 =
1

2
n(n− 1), (2.1)

where the right-hand side is the dimension of the adjoint representation of SO(n).
Equation (2.1) implies the well-known result n = 32. Then the rest of the anomaly
is proportional to

I12 ∝ − 1

15
TrF 6 +

1

24
TrF 4 trR2 − 1

960
TrF 2(4 trR4 + 5(trR2)2)

+
1

8
trR2 trR4 +

1

32
(trR2)3, (2.2)

where F is the field strength 2-form of SO(n) and R is the curvature 2-form. One
of the important identities for the gauge anomaly cancellation is

TrF 6 = (n− 32) trF 6 + 15 trF 2 trF 4. (2.3)

Here we denote traces in the adjoint representation of SO(n) by the symbol ‘Tr’,
while traces in the fundamental representation are denoted ‘tr’. In order to cancel the
gauge anomaly, the coefficient of trF 6 on the right-hand side of (2.3) must vanish.
This condition is also satisfied when n = 32. Then all of the terms in (2.2) are

∗) We mainly follow the description in §13.5 of Ref. 5).
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Anomaly Cancellations for the Type I D9-D9 System 687

cancelled by the counterterm

∆Γ =

∫
BX8 −

(
2

3
+ α

) ∫
(ω3L − ω3Y )X7, (2.4)

where B is the 2-form field and α is an adjustable parameter. The quantity X8 is
given as

X8 = trF 4 − 1

8
trF 2 trR2 +

1

8
trR4 +

1

32
(trR2)2, (2.5)

and ω3L, ω3Y and X7 are defined by

trR2 = dω3L, trF 2 = dω3Y , X8 = dX7, (2.6)

modulo exact forms. The counterterm (2.4) induces an anomaly of the form

I12 ∝ (trR2 − trF 2)X8, (2.7)

which exactly cancels the anomaly (2.2).
Now, consider type I string theory with n D9-branes and m D9-branes. The

gauge group is SO(n) × SO(m). The ordinary type I string theory corresponds to
the case in which n = 32 and m = 0. Since several observations suggest that we
can create or annihilate Dp-Dp pairs without changing the physical context, 1), 2) it
is natural to assume that the coefficients of the anomalies only depend on n − m.
Then the condition corresponding to (2.1) becomes

496 =
1

2
(n−m)(n−m− 1) (2.8)

=
1

2
n(n− 1) +

1

2
m(m+ 1)−mn, (2.9)

which implies n − m = 32. Equation (2.9) suggests that the 9-9 fermions λ and
the 9-9 fermions λ̃ are positive chirality spinors, which belong to the adjoint repre-
sentation of SO(n) and the second rank symmetric tensor representation of SO(m),
respectively, while the 9-9 or 9-9 fermions ψ are negative chirality spinors, which
belong to the bifundamental representation of SO(n)× SO(m) (Table I).

Let us show that all the anomalies are cancelled when we choose these fermions.
We denote the field strength 2-forms of SO(n) and SO(m) gauge fields by F1 and
F2, respectively. We have the identities

Tr1 F
6
1 = (n− 32) tr1 F

6
1 + 15 tr1 F

2
1 tr1 F

4
1 , (2.10)

Tr2 F
6
2 = (m+ 32) tr2 F

6
2 + 15 tr2 F

2
2 tr2 F

4
2 , (2.11)

Table I. Fermions in the D9-D9 system.

string fermion rep. of SO(n) × SO(m) chirality

9-9 string λ ( , 1) +

9-9 string λ̃ (1, ) +

9-9, 9-9 string ψ ( , ) −
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688 S. Sugimoto

Tr1 F
4
1 = (n− 8) tr1 F

4
1 + 3(tr1 F

2
1 )

2, (2.12)

Tr2 F
4
2 = (m+ 8) tr2 F

4
2 + 3(tr2 F

2
2 )

2, (2.13)

Tr1 F
2
1 = (n− 2) tr1 F

2
1 , (2.14)

Tr2 F
2
2 = (m+ 2) tr2 F

2
2 , (2.15)

where we label traces in the representations of SO(n) and SO(m) by the subscripts 1
and 2, respectively. We denote traces in the adjoint representation of SO(n) by ‘Tr1’,
while ‘Tr2’ represents the traces in the second rank symmetric tensor representation
of SO(m). Traces in the fundamental representations of SO(n) and SO(m) are
denoted ‘tri’ (i = 1, 2). Collecting all the contributions of the fermions λ, λ̃ and ψ,
the term TrF 6 in (2.2) is replaced by

TrF 6 → Tr1 F
6
1 +Tr2 F

6
2 −m tr1 F

6
1 − n tr2 F

6
2

−
(
6

2

)
(tr1 F

2
1 tr2 F

4
2 + tr1 F

4
1 tr2 F

2
2 ), (2.16)

where the first two terms in (2.16) are the contributions of the 9-9 fermion λ and
the 9-9 fermion λ̃, while the other terms are the contributions of the 9-9 fermion
ψ. Using the identities (2.10) and (2.11), it is easy to check that the coefficients of
tr1 F

6
1 and tr2 F

6
2 in (2.16) vanish if and only if n − m = 32. Similarly, TrF 4 and

TrF 2 in (2.2) are replaced by

TrF 4 → Tr1 F
4
1 +Tr2 F

4
2 −m tr1 F

4
1 − n tr2 F

4
2

−
(
4

2

)
tr1 F

2
1 tr2 F

2
2 , (2.17)

TrF 2 → Tr1 F
2
1 +Tr2 F

2
2 −m tr1 F

2
1 − n tr2 F

2
2 . (2.18)

Then, using the identities (2.10)–(2.15), the anomaly (2.2) can be written as

I12 ∝ (trR2 − tr1 F
2
1 + tr2 F

2
2 )X

′

8, (2.19)

X ′

8 = tr1 F
4
1 − tr2 F

4
2 − 1

8
(tr1 F

2
1 − tr2 F

2
2 ) trR

2

+
1

8
trR4 +

1

32
(trR2)2. (2.20)

This anomaly can be cancelled by the counterterm

∆Γ =

∫
BX ′

8 −
(
2

3
+ α

) ∫
(ω3L − ω3Y1 + ω3Y2)X

′

7, (2.21)

where we have defined tri F
2 = dω3Yi

and X ′
8 = dX ′

7. The gauge invariant combina-
tion of the field strength of the 2-form field B is now

H = dB + ω3L − ω3Y1 + ω3Y2 . (2.22)

2.2. Coupling to the tachyon fields

There are tachyon fields in the D9-D9 system. After tachyon condensation, the
D9-D9 brane pairs are expected to vanish, and the field content of the theory turns
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Anomaly Cancellations for the Type I D9-D9 System 689

out to be the same as that of type I SO(32) string theory. Let us show that the
fermion contents given in Table I are also suitable to explain the brane-anti-brane
pair annihilation.

The tachyon fields Tij̄ belong to the bifundamental representation of SO(n) ×
SO(m). We denote i, j = 1, · · · , n as the vector indices of SO(n) and ī, j̄ = 1, · · · ,m
as the vector indices of SO(m). The following Yukawa interactions are consistent
with the symmetry:

LY ∼ ψ
īi
λijTjī,+ψ

īi
λ̃īj̄Tij̄ , (2.23)

where ψ = ψTΓ 0.
The tachyon VEV is of the form

←− n −→

(Tij̄) =




∗
. . .

∗




↑
m
↓

(2.24)

← 32 →← m →
up to gauge symmetry. It is plausible to assume that the symbols ∗ in (2.24) are all
non-zero, although we do not know the precise form of the tachyon potential. Then,
the Yukawa terms (2.23) will induce mass terms for ψ, λ̃ and λij (i > 32 or j > 32).
The number of the components of λ̃ and λij (i > 32 or j > 32) are 1

2 m(m+ 1) and
1
2 m(m − 1) + 32m, respectively, and the sum is just enough to be paired with ψ,
which has mn = m2 + 32m components. As a result, the massless components of
the fermions after the tachyon condensation are λij (i, j = 1, · · · , 32), which belong
to the adjoint representation of the unbroken SO(32) gauge group, as expected.

§3. Analyses in string theory

3.1. Physical states in the type I D9-D9 system

The D9-brane is a 9-brane with −1 units of R-R charge. It can be obtained
by flipping the sign of the R-R charge of a D9-brane. Using this fact, we can
compute the vacuum amplitudes in the D9-D9 system, from which the physical
spectrum can be extracted, as discussed in Ref. 1). As a preliminary step, let us
first collect here the one-loop vacuum amplitudes for the 9-9 strings. 6) There are the
contributions from the NS sector and the Ramond sector, which are denoted as ZNS

and ZR. We decompose these terms into the contributions of NS-NS exchange and
R-R exchange in the closed string channel, denoted ZNS NS and ZRR. We also label
the contributions from the cylinder diagram and the Möbius strip diagram for the
amplitudes with superscripts as Z(C2) and Z(M2):

Z9-9 = ZNS
9-9 + ZR

9-9, (3.1)

ZNS
9-9 = Z

NS (C2)
NS NS + Z

NS (M2)
NS NS + Z

NS (C2)
RR + Z

NS (M2)
R R , (3.2)

ZR
9-9 = Z

R (C2)
NS NS + Z

R (M2)
NS NS + Z

R (C2)
R R + Z

R (M2)
R R , (3.3)
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690 S. Sugimoto

Z
NS (C2)
NS NS =

∫
∞

0

dl

8l
TrNS (exp(−Hl)) , (3.4)

= in2V10

∫
∞

0

dt

4t
(8π2α′t)−5η(it)−8Z0

0 (it)
4, (3.5)

= in2V10

∫
∞

0

dt

4t
(8π2α′t)−5(q−1/2 + 8 +O(q1/2)), (3.6)

Z
NS (M2)
NS NS =

∫
∞

0

dl

8l
TrNS

(
Ω(1 + (−1)F ) exp(−Hl)

)
, (3.7)

= −inV10

∫
∞

0

dt

4t
(8π2α′t)−5Z

0
1 (2it)

4Z1
0 (2it)

4

η(2it)8Z0
0 (2it)

4
, (3.8)

= −inV10

∫
∞

0

dt

4t
(8π2α′t)−5(16 +O(q)), (3.9)

Z
NS (C2)
R R =

∫
∞

0

dl

8l
TrNS

(
(−1)F exp(−Hl)

)
, (3.10)

= in2V10

∫
∞

0

dt

4t
(8π2α′t)−5η(it)−8

(
−Z0

1 (it)
4
)
, (3.11)

= in2V10

∫
∞

0

dt

4t
(8π2α′t)−5(−q−1/2 + 8 +O(q1/2)), (3.12)

Z
NS (M2)
R R = 0, (3.13)

Z
R (C2)
NSNS = −

∫
∞

0

dl

8l
TrR (exp(−Hl)) , (3.14)

= in2V10

∫
∞

0

dt

4t
(8π2α′t)−5η(it)−8

(
−Z1

0 (it)
4
)
, (3.15)

= in2V10

∫
∞

0

dt

4t
(8π2α′t)−5(−16 +O(q)), (3.16)

Z
R (M2)
NS NS = 0, (3.17)

Z
R (C2)
RR = −

∫
∞

0

dl

8l
TrR

(
(−1)F exp(−Hl)

)
= 0, (3.18)

Z
R (M2)
R R = −

∫
∞

0

dl

8l
TrR

(
Ω(1 + (−1)F ) exp(−Hl)

)
, (3.19)

= +inV10

∫
∞

0

dt

4t
(8π2α′t)−5Z

0
1 (2it)

4Z1
0 (2it)

4

η(2it)8Z0
0 (2it)

4
, (3.20)

= +inV10

∫
∞

0

dt

4t
(8π2α′t)−5(16 +O(q)), (3.21)

where q = e−2πt, and

Z0
0 (it) = q−1/24

∞∏

m=1

(1 + qm−1/2)2, (3.22)

Z0
1 (it) = q−1/24

∞∏

m=1

(1− qm−1/2)2, (3.23)
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Anomaly Cancellations for the Type I D9-D9 System 691

Z1
0 (it) = 2q1/12

∞∏

m=1

(1 + qm)2. (3.24)

Then we have

ZNS
9-9 = iV10

∫
∞

0

dt

t
(8π2α′t)−5

(
8 · 1

2
n(n− 1) +O(q)

)
, (3.25)

ZR
9-9 = iV10

∫
∞

0

dt

t
(8π2α′t)−5

(
−8 · 1

2
n(n− 1) +O(q)

)
. (3.26)

The contributions of the 9-9 strings can be obtained by replacing n by m and
flipping the sign of the R-R charge of the D9-brane. In the one-loop vacuum ampli-

tudes, we should flip the sign of Z
R (M2)
R R , since the contribution of the R-R exchange

between the D9-brane boundary state and the cross-cap state is proportional to the
R-R charge of the D9-brane. Thus we obtain

ZNS
9-9 = iV10

∫
∞

0

dt

t
(8π2α′t)−5

(
8 · 1

2
m(m− 1) +O(q)

)
, (3.27)

ZR
9-9 = iV10

∫
∞

0

dt

t
(8π2α′t)−5

(
−8 · 1

2
m(m+ 1) +O(q)

)
. (3.28)

Equation (3.27) is the contribution of the SO(m) gauge fields, and (3.28) is the
contribution of the massless fermions. Equation (3.28) suggests that the fermions
belong to a second rank symmetric tensor representation of the gauge group SO(m),
as discussed in the last section. To confirm this observation in a more systematic
way, note that we have taken an opposite Ω projection in the Ramond sector, which

corresponds to the sign flip Z
R (M2)
R R → −Z

R (M2)
R R . The action of Ω on the massless

fermions is

Ω | s ; ij 〉 (λ̃s)ij = − | s ; ij 〉 γ−1
jj′ (λ̃s)j′i′γi′i, (3.29)

where γij = δij for SO(m) theory and γij = iJij for USp(m) theory. For the Ramond
sector of the 9-9 string, we take the states with Ω = −1 as the physical states, and
thus (3.29) implies

λ̃ = λ̃T . (3.30)

The one-loop vacuum amplitudes for 9-9 and 9-9 strings are obtained by replac-
ing n2 with 2nm in the cylinder diagrams and flipping the sign of the contributions
of the R-R exchange between the D9-brane and D9-brane boundary states. Then we
have

ZNS
9-9,9-9 = iV10

∫
∞

0

dt

t
(8π2α′t)−5

(
mn · q−1/2 +O(q1/2)

)
, (3.31)

ZR
9-9,9-9 = iV10

∫
∞

0

dt

t
(8π2α′t)−5 (−8 ·mn+O(q)) . (3.32)

From (3.31), we conclude that there are mn tachyon fields in the open string
channel. Equation (3.32) is the contribution of mn massless fermions. It may be
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692 S. Sugimoto

useful to write down the physical state conditions for 9-9 and 9-9 strings, as given in

Ref. 1). The sign flip Z
(C2)
RR → −Z

(C2)
R R means that we have taken an opposite GSO

projection for 9-9 and 9-9 strings, i.e., (−1)F = −1. Since we have

Ω2 = (−1)F , (3.33)

in the NS sector, we should take the states with Ω = ±i as physical states in the NS
sector. We choose the convention Ω = i in the following. Since the action of Ω on
the NS ground state is given by

Ω | 0; ij̄ 〉NS = i (γ9̄)j̄j̄′
∣∣ 0; j̄′i′

〉
NS (γ

−1
9 )i′i, (3.34)

where i, i′ = 1, · · · , n are D9-brane Chan-Paton indices and j̄, j̄′ = 1, · · · ,m are
D9-brane Chan-Paton indices. In the present case, since the gauge group is the SO
group, we have (γ9)i′i = δi′i and (γ9̄)j̄j̄′ = δj̄j̄′ . The tachyon field created by the 9-9
and 9-9 strings are combined as

T =

(
Tīj

Tij̄

)
, (3.35)

which is an (n+m)×(n+m) Hermitian matrix. Imposing the physical state condition
Ω = i, we have

T T = γ−1Tγ, (3.36)

where

γ =

(
γ9

γ9̄

)
, (3.37)

leaving nm components as the physical tachyon.
For the Ramond sector ground states, the operator (−1)F is equivalent to the

chirality operator Γ . Thus, if we take an opposite GSO projection for 9-9 and 9-9
strings, the chirality of the fermions created by these string is opposite to the chirality
of 9-9 and 9-9 fermions. This result is consistent with the anomaly cancellation
conditions discussed in the previous section.

3.2. The R-R tadpole cancellation in the type I D9-D9 system

The R-R tadpole cancellation is one of the most important constraints in a
consistent string theory. In the D9-D9 system, the R-R tadpole cancellation requires
the condition n − m = 32, which we encountered in the previous section, (2.9).
Though this condition can be easily understood by counting the R-R charges of D9-
branes, D9-branes and an O9−-plane, it would be instructive to demonstrate the
explicit calculation in our framework.

The divergences due to the R-R tadpole can be extracted by the modular trans-
formation in one-loop vacuum amplitudes ZR R. Using the identities

η(it) = t−1/2η(i/t), Zα
β (it) = Zβ

α(i/t), (3.38)
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Anomaly Cancellations for the Type I D9-D9 System 693

and defining s = π/t for the cylinder and s = π/4t for the Möbius strip, we have

Z
NS (C2)
R R = n2 · iV10

8π(8π2α′)5

∫
∞

0
ds

(
−16 +O(e−2s)

)
, (3.39)

Z
R (M2)
R R = +26n · iV10

8π(8π2α′)5

∫
∞

0
ds

(
16 +O(e−2s)

)
. (3.40)

There are also the contributions from the Klein bottle diagram,

Z
(K2)
R R = 210 · iV10

8π(8π2α′)5

∫
∞

0
ds

(
−16 +O(e−2s)

)
. (3.41)

The contributions from the 9-9, 9-9 and 9-9 strings can be obtained similarly.

Table II. The divergences due to R-R tadpole.

string Z
(C2)
R R Z

(M2)
R R Z

(K2)
R R

9-9 string n2 −26n

9-9 string m2 +26m

9-9, 9-9 string −2mn

closed string 210

The results are summarized in
Table II, where we have suppressed the
divergent factor

iV10

8π(8π2α′)5

∫
∞

0
ds

(
−16 +O(e−2s)

)
.

(3.42)

The total contribution is

n2 +m2 − 2mn− 26n+ 26m+ 210 = (n−m− 32)2, (3.43)

which is cancelled if and only if n−m = 32, as expected.

3.3. The USp(n)× USp(m) theory

The analyses in §2 can also be applied to the case in which the gauge group is
the symplectic group. The 9-9 strings will create fields in the adjoint representation
of USp(n), which is equivalent to the second rank symmetric tensor representation.
Then, we can guess the fermions of the theory as in Table III.

The condition corresponding to (2.9) is satisfied if m − n = 32. In addition,
if we interchange n and m, the identities (2.10)–(2.15) are also satisfied for the
USp(n)× USp(m) gauge theory, and all the anomalies are cancelled in the manner
as discussed in §2.1.

The interpretation in string theory is as follows. We fill the spacetime with n
D9-branes and m D9-branes, and we take the Sp-type Ω projection. It is easy to
repeat the analyses of §§3.1 and 3.2. For example, taking into account that γ in
(3.29) is iJ, the condition corresponding to (3.30) is now

Jλ̃ = −(Jλ̃)T , (3.44)

implying that the 9-9 fermions λ̃ij ≡ Jikλ̃
k
j belong to the second rank anti-symmetric

tensor representation of USp(m), as expected.

Table III. Fermions in the Sp-type D9-D9 system.

string fermion rep. of USp(n) × USp(m) chirality

9-9 string λ ( , 1) +

9-9 string λ̃ (1, ) +

9-9, 9-9 string ψ ( , ) −
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694 S. Sugimoto

Table IV. The divergences due to R-R tadpole

in Sp-type theory.

string Z
(C2)
R R Z

(M2)
R R Z

(K2)
R R

9-9 string n2 +26n

9-9 string m2 −26m

9-9, 9-9 string −2mn

closed string 210

The divergences due to the R-R
tadpole are summarized in Table IV.
The total contribution is again cancelled
when m− n = 32.

We can also derive this result by
counting R-R charges. The Sp-type Ω
projection can be understood as an ef-
fect of an O9+-plane filling the space-

time. In ordinary type I string theory, there is an O9−-plane, which induces the
SO-type Ω projection, and 32 D9-branes are needed to cancel the R-R 10-form
charge. In the Sp-type theory, however, since the sign of the R-R charge of the
O9+-plane is opposite to that of the O9−-plane, we need 32 D9-branes. Therefore,
in the system with n D9-branes and m D9-branes, we must impose the condition
m− n = 32 to cancel the R-R charge.

§4. General formulation of the D9-D9 system

4.1. Generalization to arbitrary amplitudes

Adding D9-D9 pairs in type I or type IIB string theory can be understood as
adding additional open strings in the theory. We have observed from the vacuum
amplitudes that the 9-9 and 9-9 strings have the opposite GSO projection, and the
Ramond sector of the 9-9 strings have the opposite Ω projection as the ordinary 9-9
strings. This observation should be confirmed in arbitrary amplitudes, as required
by the unitarity of the S-matrix.

When we compute the amplitudes in superstring theory, we must sum over spin
structures of the world-sheet. The spin structures are characterized by the bound-
ary conditions for the world-sheet fermions. When we move the fermions around
a non-trivial cycle of the world-sheet, the sign of the fermions can be flipped. We
represent the sign flip by including a cut in the world-sheet. The cut may end at
a boundary of the world-sheet or a position where a Ramond vertex operator is in-
serted. There are holomorphic and anti-holomorphic sectors, and the spin structures
are chosen for each sector. If the world-sheet has no boundary, the spin structures for
the holomorphic and anti-holomorphic sectors are chosen independently. However,
if the world-sheet has boundaries, holomorphic sectors and anti-holomorphic sectors
are related at the boundaries by the open string boundary conditions. Accordingly,
if the cuts end at the boundary in the holomorphic sector, the same holds in the
anti-holomorphic sector. We refer to the boundary, at which odd numbers of cuts
end, as an “R-R boundary”. In §3, we have assigned an extra minus sign for each
R-R boundary with D9-brane Chan-Paton indices in the vacuum amplitudes. This
prescription can be easily generalized to the case with arbitrary numbers of bound-
aries without open string vertex operators. However, a problem may arise when
there are 9-9 or 9-9 string vertex operators at a boundary of the world-sheet. In this
case, the boundary is broken into pieces with D9-brane and D9-brane Chan-Paton
indices, and it is ambiguous which sign should be assigned. In order to resolve this
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Anomaly Cancellations for the Type I D9-D9 System 695

problem, we propose that an extra minus sign should be assigned for each endpoint
of the cut at the boundary with D9-brane Chan-Paton indices. The position of the
cuts can be continuously moved without changing any physical quantities, and hence
we must show that the amplitudes are not changed when we move the cut ending at
the boundary across the 9-9 or 9-9 string vertex operators (Fig. 1).

�
�
�

�
�
�

+1
=
?

�
�
�

�
�
�

−1

Fig. 1. The solid and dashed boundaries are equipped with D9 and D9-brane Chan-Paton indices,

respectively. We assign an extra minus sign for each endpoint of the cut at the D9-brane

boundary.

Before solving this problem, let us confirm that the 9-9 and 9-9 strings have
the opposite GSO projection. In the open string channel, making a cut parallel to
the spatial direction of the open string corresponds to the insertion of the operator
(−1)F in the operator formalism. If the open string is a 9-9 or 9-9 string, one of the
endpoints of the cut is at the D9-boundary, and thus we should assign an extra −1
factor. Therefore, in our prescription, making a cut parallel to the spatial direction
of the 9-9 or 9-9 string corresponds to the insertion of −(−1)F in the operator
formalism, as desired (Fig. 2).

�
�
�

�
�
�

−1
VT

= − 1×
〈

· · · (−1)F VT

〉
.

Fig. 2.

Now consider the cut ending at the D9-boundary, as illustrated in the left-hand
side of Figs. 1 and 3. This cut can be deformed as in the right-hand side of Fig. 3.

�
�
�

�
�
�

= ��
��
��

��
��
��

−1−1

Fig. 3.

Then, if the 9-9 string vertex operator in the figure is projected to satisfy the physical
condition −(−1)F = 1, the amplitude is equivalent to the right-hand side of Fig. 1.
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696 S. Sugimoto

This is the desired result in order for the amplitudes to be invariant under continuous
deformations of the cut in the world-sheet.

Next we wish to reconfirm that the Ramond sector of the 9-9 string has the
opposite Ω projection. The open string vertex operator in the Ramond sector creates
a cut in the world-sheet of either the holomorphic or anti-holomorphic sector.∗) Let
us consider the case in which the vertex operator VR creates a cut in the holomorphic
sector. Then Ω VR will create a cut in the anti-holomorphic sector. In order to
connect the cut consistently, it should end at the boundary, and hence we need an
extra −1 factor (Fig. 4). Summing up these terms, we have the projection Ω = −1,
as desired.

�
�
�

�
�
� = 〈 · · · VR〉 .

��
��
��
��

−1
= − 1× 〈 · · · Ω VR〉 .

Fig. 4. The solid and dashed cuts in the world-sheet are the cuts in the holomorphic and anti-

holomorphic sectors, respectively.

Note that the cut created by the Ramond sector vertex operator could be taken
in the anti-holomorphic sector. Then the sign of the amplitude will be flipped. But
this is not a problem, since the overall sign of the amplitude is unphysical.

4.2. Anomaly cancellations in string theory

To confirm our prescription, let us show that the gauge anomaly is cancelled
in the D9-D9 system. There are three types of diagrams that contribute to the
anomaly, 7), 5) planer, non-orientable, and non-planer orientable diagrams, as de-
picted in Figs. 5–7.

��
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��
��

��
��
��
��

��
��
��
��
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��
��
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��
��
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��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Fig. 5. Planer.
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Fig. 6. Non-orientable.
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��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

Fig. 7. Non-planer.

We consider these diagrams as open string one-loop diagrams. Then, only the
Ramond sector of the open strings with the (−1)F insertion will contribute to the
anomaly, since the parity-conserving terms are not anomalous. As explained in
Refs. 7) and 5), the non-planer diagrams are not divergent and do not contribute
to the anomaly. Hence we consider the sum of the contribution from the planer
and non-orientable diagrams. Let us consider the case that all the external gauge

∗) If necessary, we deform the cut so that it does not lie along the boundary of the world-sheet.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

0
2
/3

/6
8
5
/1

8
5
1
6
3
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Anomaly Cancellations for the Type I D9-D9 System 697

fields are created by 9-9 strings. The case with 9-9 gauge fields can be treated
similarly. The (−1)F insertion will create a cut in the world-sheet, and hence we
need an extra −1 factor for each D9-brane boundary in the planer diagrams. Thus
the contributions from the planer diagrams are proportional to n−m, where n and
m are the numbers of D9 and D9-branes, respectively. The explicit calculations are
exactly the same as those given in Ref. 7), except for this factor. The result is

A = (n−m+ 32 l )G, (4.1)

where G is a non-vanishing factor, for which we do not need detailed structure, and
l is given as

l =





+1, USp(n),
0, U(n),
−1, SO(n).

(4.2)

As a result, the anomaly is cancelled when n−m = 32 l; namely, n = m for the type
IIB D9-D9 system, n−m = 32 for the type I D9-D9 system, and m−n = 32 for the
D9-D9 system of USp-type theory.

§5. Discussion of the USp(32) theory

As the D9-D9 pairs are expected to vanish after the tachyon condensation, it is
interesting to examine the case with m = 32 and n = 0, which is the tachyon-free
case. This theory contains closed strings and open strings with USp(32) Chan-
Paton indices. The formulation is almost the same as that of the type I SO(32)
string theory, except we take the opposite Ω projection for the Ramond sector of
the open strings, and accordingly, we associate an extra minus sign for each R-R
boundary of the world-sheet in calculating the amplitudes.

Unlike the type I SO(32) theory, the USp(32) theory does not have a space-
time supersymmetry, since the fermion λ, created by the open strings, belongs to
the second rank anti-symmetric tensor representation of USp(32) and cannot be a
supersymmetric partner of the USp(32) gauge field. Therefore, there is no reason
for the vacuum energy to be cancelled. Indeed, there is a divergence in the vacuum
amplitude due to the NS-NS tadpole, that needs to be cancelled by the Fischler-
Susskind mechanism. 8) This induces the cosmological constant term

√−g e−φ in the
effective action.

The K-theory analyses given in Ref. 2) suggest that there are D1, 3, 4, 5, 9-branes
in this theory (Table V). The analyses in Ref. 9) show that D1-branes and D5-branes
have Sp and SO-type Chan-Paton indices, respectively. We can also understand this
fact using the isomorphism of K-theory groups KSp(Rn) ≃ KO(Rn±4). Suppose

Table V. D-branes in the USp(32) theory.

k 10 9 8 7 6 5 4 3 2 1 0

KSp(Rk) Z Z2 Z2 Z Z

p-brane −1 0 1 2 3 4 5 6 7 8 9
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698 S. Sugimoto

Table VI. D-branes in the D5-D5 system.

k 6 5 4 3 2 1 0

KO(Rk) Z Z2 Z2 Z

p-brane −1 0 1 2 3 4 5

that we wish to construct lower dimensional D-branes in the D5-D5 system, as given
in Refs. 1) and 2). In order to obtain the same D-branes as in Table V, the suitable

K-group for the D5-D5 system is KO(Rk), rather than KSp(Rk) (Table VI). Thus,
we conclude that the Chan-Paton indices for D5-branes are of the SO-type. A similar
argument for D1-branes shows that D1-branes have Sp-type Chan-Paton indices.

The analysis of the spectrum of open strings ending on the D1-branes is similar
to the ordinary type I D-strings, which is given in Ref. 10). Consider n D1-branes
lying along the x0, x9 direction in the USp(32) string theory. Note that n should
be even, since the gauge group on the D1-branes is USp(n).

1-1 strings in the NS sector create an USp(n) gauge field Aµ (which can be
gauged away) and eight massless scalar fields X i (i = 1, · · · , 8), which belong to
the second rank anti-symmetric tensor representation of the gauge group. World-
sheet massless fermions created by the 1-1 strings in the Ramond sector are Sa

+

and Sâ
− (a, â = 1, · · · , 8). The subscripts + and − represent the chirality of the

world-sheet Lorentz group SO(1, 1), and the superscripts a and â are indices of
the 8s and 8c spinor representations of the transverse spacetime Lorentz group
SO(8). Sa

+ is a right-moving fermion that belongs to the adjoint representation of

Table VII. Massless spectrum on D1-branes.

USp(n) SO(8) USp(32)

Aµ 1 1

Xi 8v 1

Sa
+ 8s 1

Sâ
− 8c 1

λI
− 1

USp(n), while Sâ
− is a left-moving

fermion that belongs to the second rank
anti-symmetric tensor representation of
the gauge group. 1-9 and 9-1 strings
will create a left moving fermion λI

−

(I = 1, · · · , 32), which belongs to the
fundamental representation of USp(n).
The superscript I comes from the Chan-
Paton indices associated with 32 D9-
branes.

Let us consider the minimal case n = 2. In this case, the gauge group is USp(2) ≃
SU(2), and the second rank anti-symmetric tensor representation is a singlet. The
action is

S =

∫
d2σ

(
−1

4
(Fµν)

2 +
1

2
(∂µX

i)2 + Sa
+[D−, S

a
+] + Sâ

−∂+Sâ
− + λI

−D+λI
−

)
,

(5.1)

where we have defined D± = ∂± + iA±. In analogy to the argument in S-duality for
type I and heterotic string theory, 10) it has been suggested that this action is the
action of the fundamental string in the heterotic version of USp(32) string theory.
It would be interesting to investigate the detailed structure of this theory.
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