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~ Abstract—Anomaly detection becomes increasingly important compared to the image background and only occur in the image
in hyperspectral image analysis, since hyperspectral imagers can with low probabilities. Two approaches are of particular interest.
now uncover many material substances which were previously un- One was developed by Reed and Yu [1]-[3] and is referred to as

resolved by multispectral sensors. Two types of anomaly detection . .
are of interest and considered in this paper. One was previously the RX detector (RXD), which has shown success in anomaly

developed by Reed and Yu to detect targets whose signatures aredetection for multispectral and hyperspectral images [4], [5].
distinct from their surroundings. Another was designed to detect Another was proposed in [6], [7] and is referred to as low-
targets with low probabilities in an unknown image scene. Inter-  probability detection (LPD), which was designed to detect tar-
estingly, they both operate the same form as does a matched filter. gets with low probabilities in an image. Interestingly, both ap-

Moreover, they can be implemented in real-time processing, pro- . ) . .
vided that the sample covariance matrix is replaced by the sample proaches result in the same form of a matched filter, but differ in

correlation matrix. One disadvantage of an anomaly detector is the two aspects. The RXD uses the pixel currently being processed
lack of ability to discriminate the detected targets from another. as the matched signal, while the LPD makes use of the unity
In order to resolve this problem, the concept of target discrimina- yector (i.e., it has all ones in its components) as its matched

tion measures is introduced to cluster different types of anomahes_ signal. Therefore, the matched signal used in the RXD varies
into separate target classes. By using these class means as target in-

formation, the detected anomalies can be further classified. With _plxel-by-plxel_as opposed to the Constant-matcheq signal us_ed
inclusion of target discrimination in anomaly detection, anomaly in the LPD. Since the RXD uses the sample covariance matrix
classification can be implemented in a three-stage process, first by to take into account the sample spectral correlation, it performs
anomaly detection to find potential targets, followed by target dis- the same task as does the Mahalanobis distance [8]. On the other

crimination to cluster the detected anomalies into separate target hand, the LPD makes use of the sample correlation matrix to
classes, and concluded by a classifier to achieve target classifica- ’

tion. Experiments show that anomaly classification performs very account for spectral correlation among samples. As a result, it
differently from anomaly detection. turns out to be a special case of the constrained energy mini-
mization (CEM) filter developed in [6], [7], [9], [10] where the

Index  Terms—Anomaly _detection, Bhattacharyya  dis- desired signal is designated as the unity vector.

tance, causal RXD (CRXD), classification, correlation

matched-filter-based measure (RMFM), low-probability target In this paper, these two anomaly detectors are investigated
detector (UTD), Mahalanobis distance, RX detector (RXD), target and explored. In particular, several variants of the RXD and
discrimination measure. LPD are derived, and a real-time processing version of the RXD
is also introduced where the sample correlation matrix instead

I. INTRODUCTION of the sample covariance matrix is used. It is referred to as

causal RXD (CRXD). The term “causal” borrows from signal
T ARGET detection in remotely sensed images can be Cfyncessing terminology which means that the information
ducted spatially, spectrally, or both. The difficulty withysed for data processing is up to the pixel being processed and
using spatial image analysis for target detection in remotglygated solely based on the pixels that were already processed.
sensed imagery arises from the fact that the ground samplifgs|-time process” refers to a process that processes data
distance (GSD) is generally larger than the size of targets of gsmples when they come with no time delay. It can be imple-
terest. In this case, targets are embedded in a single pixel @hghted in two ways: line-by-line and pixel-by-pixel. As shown
cannot be detected spatially. Under such circumstances, tafg&y 1], a line-by-line real-time process can be implemented by
detection must be carried out at subpixel level. An anomaly d@bnsidering a line of pixels as an input array. It processes each
tector enables one to detect targets whose signatures are spggwhile the line is being scanned. A pixel-by-pixel real-time
trally distinct from their surroundings with na priori knowl- process considers each pixel as an input and processes a pixel
edge. In general, such anomalous targets are relatively smgije it being scanned. An experiment of a pixel-by-pixel
CRXD will be demonstrated for illustration. Two advantages
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from the fact that the sample correlation matrix accoungection VI presents a series of experiments to demonstrate the
for both the first-order and second-order statistics. For mastline process of anomaly classification. Section VII concludes
remotely sensed images which are generally consideredwith some remarks.

be nonstationary, the CRXD can capture spectral variability

more effectively than the RXD, which only takes care of II. ANOMALY DETECTION

second-order statistics.

) . In this section, we describe two types of anomaly detectors
Since the images produced by the RXD are general yp y

hich are developed for different purposes. Nonetheless, both

grayscale, the t.arget. detect!on and d|scr|m|na§|on are usua&é(tectors perform the same functional form of a matched filter
carried out by visual inspection. In order to avoid such hum%th different matched signals

interpretation, an automatic thresholding method is designed to

automaticglly selectan appropriatg threshold tp segmept targetspxp

from the image background. This method is adaptive and . . .

only depends on the grayscale image resulting from anomaly! & RX detector is the RX algorithm referenced in [4], [5]
detection, but not on the original image. which was developed by Reed and Yu [1]. Suppose tha

It is often the case that an anomaly detector can detéla? ”“f.“ber of _spectral bands ands anL.>< 1-column pixel
different types of anomalies but cannot discriminate the d}é(_actorln a multispectral or hyperspectral image. Then the RXD

tected targets from one another. So, in this paper, four targgplements a filter specified by
discrimination measures are further developed to resolve this Tre—1

6 r)=(r— K r— 1
dilemma. A target discrimination measure discriminates the de- rxp(r) = (r =) Kiyp (v =) @

tected anomalies and clusters them into separate target clasgfgre , is the global sample mean ai;,. ;. is the sample
Due to the fact that the number of the detected target pixelsc§variance matrix of the image. The form &fxp(r) in (1) is
generally small, the automatic thresholding methods commoni¥tually the well-known Mahalanobis distance. In order to see
used in traditional spatial-based image processing may notfy the RXD can detect anomalous targets, an exploration of
applicable. In this case, an automatic thresholding methodnigw the RXD works is worthwhile.
proposed and modified from the zero-detection thrEShO|ding|t is known that principa| Components ana|ysis (PCA) decor-
technique proposed in [14] to cluster the detected targets ifiates the data matrix in such a manner that different amounts of
separate classes. The means of these target classes aretiefage information can be preserved in separate components
calculated and used as the target information for fO”OW-L{ﬁ]ageS, each of which represents a different piece of uncorre-
target classification. Because the resulting classification |iged information. So, PCA has been widely used to compress
supervised, the classification results may classify additionghage information into a few major principal components speci-
target pixels whose signatures are similar to the anomalies, haj by the eigenvectors & ;.. ;, that correspond to large eigen-
were not detected by the RXD. values, but it is not designed to be used for detection or classi-
In analogy with the CRXD, a real-time implementation ofication. However, if the image data contain interesting target
anomaly classification is also possible. However, in this casgsixels which occur with low probabilities in the data (i.e., the
a certain time delay is inevitable between anomaly detectigize of target samples is small), it is obvious that these targets
and target discrimination, but is negligible if the image size iill not be shown in major principal components, but rather in
manageable, such as one used in the experiments condugi@tbr components specified by the eigenvectorkgf, ;, that
in this paper. In order to make distinction of this subtle difare associated with small eigenvalues. This phenomenon was
ference, a process is referred to as an online process if it gserved and demonstrated in [10]. It is interesting to note that
be implemented in a timely manner with negligible time laghe RXD can be considered to be an inverse operation of the
So, with this definition, anomaly classification can be implePCA which searches for targets in minor components. This pro-
mented as an online process by the CRXD in conjunction witlides explanation of why the RXD works for anomaly detection.

a target discrimination measure and followed by the real-timeMore specifically, assume tha, > X, > --- > Ay are
linearly constrained minimum-variance (LCMV) classifier dethe eigenvalues dK »; with zero mean, i.e = 0 so that
veloped in [11], [15]. More specifically, anomaly classificationK ; .., = Ry .. Let {v1, Vo, ..., v1,} be a set of orthogonal
can be accomplished by three-stage processes. The anomaly,éig-eigenvectors (i.e., the length of is one,||v;|| = 1) with

tection is initiated in the first-stage process, then followed by corresponding to\;. Using the spectral decomposition of a

clustering process using a target discrimination measure in $ariance matrix in [16], [17], we can form an eigenmatrix

second stage and, finally, concluded by the LCMV classificax = [v,v,---v] with the /th column specified by théth

tion in the third stage. All these three stages can be process@genvectow;. The resulting matrA is a unitary matrix and

online with no appreciable time delay. can be used to decorreld€y, 1, into a diagonal matrixA =
This paper is organized as follows. Section I developgag{)\l’ A2, ..., Ar} such thatATK A = A. If we let

techniques for anomaly detection which include the RXD, thg = ATy, then

LPD, and their variants. Section Il demonstrates the real-time

processing capability of the CRXD. Section IV designs a new r'Ki.rr =(Ay) K« r(Ay) =y [ATK . Aly

computer-automated thresholding method for target detection. I

Section V describes an approach to anomaly classification =yTAy = Z Ayt (2)

where four target discrimination measures are introduced. —1
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NV where five signatures of interest in these images were
was demonstrated in [20]: “cinders,” “rhyolite,” “playa (dry
lakebed),” “shade,” and “vegetation.” Additionally, it was also
shown in [10] that there was a single two-pixel anomaly located
at the top edge of the lake marked by a circle in Fig. 1.

Fig. 2(a) and (b) shows the results of the LCVF in Fig. 1
produced by (2) and the RXD respectively where Fig. 2(a) pre-

ancmaly serves the vast information of the image scene while the RXD

detected a single two-pixel anomaly on the upper edge of the
lake along with a small portion of vegetation on the upper right
corner shown in Fig. 2(b).

It is worth noting from (1) that the RXD performs some kind
of a matched filter specified by

" ow“

Ma(r) =k -dr (4)

whered is the matched signal andis a constant, but can be
also a function ot. The performance of (4) is completely de-
Fig. 1. An LCVF AVIRIS image scene. termined by two parameters: the matched sighahd the scale
constants that appears in front of the matched filter. By using
(4), we can interpret the RXD as a matched filter operating on
r — 1 with the matched signal = (r — x)TK L, by setting

x = 1. By taking advantage of (4), two variants of the RXD—re-
ferred to as normalized RXD and denoted &k xp(r), and
modified RXD, denoted byrxp(r)—can be derived from
(1) and (4) for anomaly detection as follows:

(r— ) K (r—p)

R I E
" = e — ol 72 = ) K (r = 1)
Fig. 2. (a) AVIRIS result produced by K .« .. r given by (2). (b) AVIRIS r— T r—
result produced by the RXD given by (1). = <ﬁ) Z>1<L <ﬁ)
r—u r—u
— -1 —
Using (2), expression (1) which specifies the RXD can be fur- = TKLer (6)
ther expressed by and
T
r—u _
S N o) = (=0 ) Kkt )
r'Kolr =Y A7 A3) .
=1 = (@) Ky (r—p) (6)

According to (2), the larger the eigenvalue is, the greater th _ T 1/2 L
value ofr K, rr is. So, (2) performs a similar task that PCAW%ereHr_“H._ ((r=p)™ (r—p))" = andr = (r—po)/[|r—p]
Is,the normalized — 1.

does. It can compress data by retaining only a few principal o . . .
components specified by eigenvectors that corresponds to %gér hedxrxn(r) specified by (5) can be interpreted in two dif-

! A . rent ways. One is viewed as the normalized version of the
first few largest eigenvalues. By contrast, using (3) the RXD d % Angither interpretation o8 (r) is a matched filter
tects anomalous targets with small energies that are represen ﬁé) h NRXD

. _ _ T —1 .

by small eigenvalues. This is because the smaller the eigenve}\j;ﬁ? € matched signal = (r —.) KLX_LQaS used in the RXD

is, the greater the value of K. , ris. In this case, itis crucial Ura different scale constamt= |[r — || or a matched filter
’ It = ' with the matched signal given k= ||r — p||~2(r — 1)K}

to determinep, the number of targets present in the image scene 7 /T LXL
so that the eigenvalues beyond the fisstigenvalues will be with s = 1. Theymxn(r) specified by (6) Cf? be interpreted
) ) . T . as an RXD with the scale constant= ||r — || ~! or a matched

considered to be noise energies. This issue is beyond the SCﬂPE?r with the matched signal = (£)7K=. , andx = 1
of this paper and was addressed in [18], [19]. - LxL -

In order to demonstrate these two concepts specified by |
(2) and (3), we consider an airborne visible/infrared imagirB' Uniform Target Detector
spectrometer (AVIRIS) image shown in Fig. 1 that was studied Another type of anomaly detector, referred to as the low-prob-
in [20]. It is a scene of size 20@ 200 and is a part of the ability detector, was first derived in [6]. Its design was based on
Lunar Crater Volcanic Field (LCVF) in Northern Nye Countythe sample correlation matrR; « ;.. If we replaceR ;,  , inthe
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However, if there is some partial knowledge available, the unity
vector can be replaced by a certain specific vector. For example,
if we are interested in short wavelengths, we can set zeroes for
all visible bands while assigning ones to all the near-infrared
bands.

In [4], Ashton and Schaum showed that background subtrac-
tion could enhance the RXD detection performance. This sug-
gests that incorporating the UTD into the RXD may allow us to
remove the background as was done in [4]. Such a detector, de-
i) noted bySrxp_uTp(r), can be derived by subtracting the UTD
from the RXD as follows:

Srxp—vrn(r) = (r — D) K 1 (r — p). 8

Fig. 3(d) shows the result of the:xp_urp(r) where no vis-
ible improvement was observed. This is because the total en-
ergy of the background in the LCVF scene is less than that of
the anomaly. In this case, background subtraction using (8) did
not improve much over the RXD.
) As shown in Fig. 2(b), the RXD detected only one two-pixel

anomaly in Fig. 2(b). One of main attributes may be due to the
Fig. 3. (a) AVIRIS result produced by the NRXD. (b) AVIRIS result producedow 20 m spatial resolution. In order to further evaluate the per-
by the MRXD. (c) AVIRIS result produced by the UTD. (d) AVIRIS resultformance of the RXD and the UTD, a high spatial resolution
produced by the RXD-UTD. R . .

hyperspectral digital imagery collection experiment (HYDICE)
scene considered in [21] was also used for experiments.
The HYDICE image shown in Fig. 4(a) has a size of 64

64 with 10 nm spectral resolution and 1.5 m spatial resolution.
There are 15 panels located on the field, and they are arranged
in a 5x 3 matrix. The low signal/high noise bands (bands 1-3
and bands 202-210) and water vapor absorption band (bands
101-112 and bands 137-153) were removed. This results in
a total of 169 bands. Fig. 4(b) shows the ground truth map of
Fig. 4(a) and provides the precise spatial locations of these
15 panels. Black pixels are panel center pixels, considered to
Fig. 4. (a) A 15-panel HYDICE image scene. (b) Ground truth map dhe pure pixels, and the pixels in the white masks are panel
Fig. 4(@). boundary pixels mixed with background pixels, considered to

) ) ) be mixed pixels. Each element in this matrix is a square panel
LPD with the sample covariance mati;, « ., a uniformtarget gnd is denoted by;; with rows indexed byi = 1,2,...,5

detector (UTD)urp(r) can be defined as and columns indexed by = 1,2, 3. For each row, the three
B Ter1 panelsp;:, pi2, p;3 were made from the same material but
Surp(r) = (1 —w) K, p(r—p) (") have three different sizes. For each colugiarihe five panels
P1j, P2, P34, P4j, ps; have the same size but were made from
where k ) . .
three materials and were painted by five different substances.
1=(1,1,..., )7 The sizes of the panels in the first, second, and third columns
~— are3mx 3m,2mx 2m, and 1 mx 1 m, respectively. The

1.5 m spatial resolution of the image scene suggests, that except
is the unity vector with ones in all the components. Unlike th®r p11, p21, P31, pa1, P51 Which are two-pixel panels, all the
RXD specified by (1), which uses the image pixel veatas remaining panels are only one pixel in size.

the matched signal, the UTD uses the unity vector as its matchedxperiments similar to those conducted for the AVIRIS
signal. The reason for choosing the unity vector is the followingnage were performed for the 15-panel HYDICE image scene
Because there is no prior information available, the best scendrid-ig. 4(a). Fig. 5(a)—(e) shows the results of RXD, NRXD,
is not to introduce any information into the detector. In this casklRXD, UTD, and RXD-UTD respectively. In analogy with
an anomalous target is assumed to have radiance uniformly die results in Fig. 3, the RXD and the RXD-UTD performed
tributed over all the spectral bands. In this case, it is expectediearly the same as they did in Figs. 2(b) and 3(d), while the
extract background signatures which are uniformly distributédRXD, MRXD, and UTD extracted the image background,
in the image. Fig. 3(c) shows the result of the LCVF in Fig. &.g., tree and grass.

produced by the UTD where it did not detect the anomaly shownThe hyperspectral image experiments conducted in Figs. 3
in Fig. 2(b); instead, it detected most of the image backgrourethd 5 may lead to a conclusion that the NRXD, MRXD, and
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Fig.5. (a) HYDICE result produced by the RXD. (b) HYDICE result producef9- 6- (2) AVIRIS result produced lby the RXD usilRy ;. (b) AVIRIS

by the NRXD. (c) HYDICE result produced by the MRXD. (d) HYDICE resultresult produced by the NRXD usidg , ; , () AVIRIS result produced by the

produced by the UTD. (€) HYDICE result produced by the RXD-UTD. MRXD usingR 7}, , (d) AVIRIS result produced by the UTD usil@; > , ,
(e) AVIRIS result produced by the RXD-UTD usily; & ; .

UTD can only perform background extraction. As a matter of

fact, itis generally not the case. This is due to the fact that the i#etected the shade in Fig. 6(b) and (c). In addition to detecting
formation used in the detectors WK, . ;, which had removed the shade, the MRXD also detected the anomaly in Fig. 6(c).
the information of the first-order statistics. If a target’s spectrdflost interestingly is Fig. 7(b) and (c). Compared to Fig. 5(b)
properties can be characterized only by the first-order statistiegid (c), where the NRXD and MRXD extracted only image
this target may not be detected by a detector solely desigri#atkground, Fig. 7(b) and (c) showed that the NRXD and
based on the second-order statistics. This is particularly true MRXD detected panels that were also detected by the RXD.
nonstationary images such as remotely sensed imagery. In oftleaddition, they both also extracted some tree signatures and
to account for both the first-order and second-order statistics, iéerferers. These two experiments simply demonstrated, that
replaceK ;. ;, with Ry, andr — z with r in (1), (5)—(8), and When images are not stationary, the sample correlation matrix
this yields the following sample correlation matixbased de- Rirxz is more appropriate and effective than the sample
tectors: covariance matri¥y, . . to capture image characteristics.

) -
drxp(r) =r Ry, r 9) ll. REAL-TIME PROCESSING OFRXD

By real-time processing referred in this paper we mean that
T the data can be processed in a timely manner with negligible
SnrxD(T) = <L> R;%, <L> time lag. Itrequires only one scan and can be used for online data
] ] processing. As a matter of fact, the real-time processing pre-
with ||r]| = VrTr (10) sented in this section for anomaly detection can be implemented
in the same manner demonstrated in [11] that the computation
of the sample correlation matrR; % ; can be carried out via a
QR-decomposition. In this case, the proposed anomaly detector
(i.e., causal RXD described below) can be implemented in par-
allel as a parallel processor. It processes a pixel as it is received.
~ The RXD defined by (1) cannot be implemented in such a way.
durn(r) =1TR; 1 (12) This is because the computationI§f; ;. ; requires to calculate
the mean of the entire image. Comparing Fig. 2(b) against Fig.
6(a) and Fig. 5(a) against Fig. 7(a), we see that there is no visible
z e 1\TR-1 and appreciable difference between usipgp (r) specified by
Srxp—urn(r) = (r = 1) Rspr (13) (1) and using?RXD(r) specified by (9). As d(eranstrated also
Figs. 6 and 7 show the detection results of the AVIRI® Fig. 6(b)—(c) and Fig. 7(b)—(c), it was suggested Rat, ;.
and HYDICE images, respectively. As we can see from theseght be better thalK ., 7, in characterizing spectral properties
figures, the performance of the RXD and the RXD-UTD wagf nonnatural targets. So, in order to implement the RXD in real
nearly the same, with the UTD still detecting backgrountime, it is advantageous to use the RXD wiy ) ; replaced
and noise. To our surprise, the NRXD and MRXD performebly RZiL andr — u by r. The resulting RXD is théRXD(r)
quite differently. Unlike in Fig. 3, both NRXD and MRXD specified by (9) and will be referred to as causal RXD. Since the

Surxn(r) = e rTREL,, with e = ViTr (1)
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Fig. 7. (a) HYDICE result produced by the RXD usiy; & ; , (b) HYDICE (e
result produced by the NRXD usif); & ; , (c) HYDICE result produced by the

MRXD usingR . ;, (d) HYDICE result produced by thle UTDusii; 5., Fig. 8. (a) Detection of vegetation. (b) Before detection of anomaly.
(e) HYDICE result produced by the RXD-UTD usilRy; & ; . (c) Detection of anomaly. (d) Completion of the CRXD process.

information used in the CRXD is updated in a causal manne _

it may yield results slightly different from that produced by the
RXD. As demonstrated in the following experiments, it is in-
deed the case. In order to demonstrate how the causal inform
tion is updated, Figs. 8 and 9 show the real-time implementatic
of the CRXD on the AVIRIS line-by-line as was done in [11] —

and HYDICE images pixel-by-pixel due to high spatial resolu = s

tion, respectively. Fig. 8(a)-(c) show the results of the AVIRIS_

image. The vegetation was first detected in Fig. 8(a) and stay|

unchanged in Fig. 8(b), then faded away after the anomaly w! !

detected in Fig. 8(c) and finally vanished in Fig. 8(d) while the| | [ ]

anomaly was enhanced. It is more interesting to note the resu|
of the 15-panel HYDICE image shown in Fig. 9(a)—(g). If we-— -

. | | ) ) ..
i} [151] i
compare the result of Fig. 9(h) against Fig. 7(a), the interferer
shown in Fig. 7(a) faded away in Fig. 9(h). This experiment pro-
vides a good example to illustrate the difference between RXD
and CRXD.
IV. AUTOMATIC THRESHOLDING METHOD

In view of the fact that the images generated by RXD are gen-
erally grayscale, the detection is usually carried out by visugl. 9. (a) Nothing detected. (b) Detection of the panels in row 1. (c) Detection
inspection. However, in order to avoid such human interveptthe interferer. (d) Detection of the panels in row 2. (e) Detection of the panels
. R in roqw 3. (f) Detection of the panels in row 4. (g) Detection of the panels in
tion and to make an objective as_sessment, we nee_d to devé!_) - (h) Completion of the CRXD process.
a computer-automated thresholding method that will automati-

cally extract the anomalous target pixels and segment them fr?g&ion denoted by¥(«) = {r|érxp(r) < a}, by the set made

the background. In d_omg S0, ath_reshqld criterion is required lﬁg’ of all the image pixels in the RXD-detected image whose
convert a grayscale image to a binary image where the detec

. ray-level values are less than We use the histogram of the
targets can be extracted from the image background. orey 9

Recalling (1), RXD operates the form which allows one to déQ_XD—detected image to define the rejection probabifftyx) as

tect anomalies in a large background by finding high peaks of P(a) = Pr(R(a)). (14)
gray levels in homogeneous regions. Therefore, the larger the

gray values of the pixels, the more likely the pixels are anom@hen, a thresholdy, for detecting the anomalies can be
lous pixels. This suggests that the gray-level values of anomalietermined by setting a confidence coefficientsuch that
should behave as outliers and fall in the right tail of the image(«o) = v. If Srxp(r) > «o, thenr will be detected as an
distribution. For a given grayscale valaewe define arejection anomaly. For example, Fig. 10(a) plots the gray-level values of
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gray value Fig. 11. A binary-thresholded image of Fig. 2(b) resulting from the automatic
(©) thresholding method with the confidence coefficient 0.99.

Fig. 10. (a) Plot of the gray values produced by RXD. (b) Histogram of (aEi = Y; = ¥, then theBhattacharyya distance in (15) is re-
() An enlargement of right tail in (b). duced to the Mahalanobis distance

the 15-panel HYDICE scene produced by the RXD in Fig. 5(a), (m; — mj)Tg—l(mi —my). (16)
and Fig. 10(b) shows its corresponding histogram. If the

confidence coefficient was set by= 0.99, the corresponding  As we recalled, RXD specified by (1) has the same identical
thresholda was found to be 484.75 as shown in Fig. 10(cHetector structuréx — ;)" K7L, (x — p) with x = my, 1 =
Using thisay to threshold the RXD-detected grayscale imagen;, andK ;. ; = X. This suggests that

in Fig. 5(a) resulted in a binary-thresholded image shown in

Tyr—1
Fig. 11 where there were 39 target pixels; }32,, segmented (6 = t5)" Ky (b — £5)
by ap = 484.75. It should be noted that the confidencey ich is referred to as the Mahalanobis distance in this paper)

cz_efflcu(ajnt o:lfy :h 0.99 \;\_/gs selectegf_e_mpwu:la”y and car: b&an be used to measure the discrepancy between two target
adjusted. When the confidence coefficients close to 1, only ;qis ¢, andt;. So, the smaller the value is, the harder the dis-
a few targets will be detected as anomalies. If the Co”f'dengﬁmination between the two targets is

Eoefkhuentg Is set too lOV‘_’”@b« Il), weak mgerferers andr The Mahalanobis distance specified by (16) is not the only
ackground signatures will be also extracted as anomaligi,,nce measure that can be used for target discrimination. An

Fortunately, with the proposed thresholding technique, t%‘f‘ternative discrimination measure can be derived by the con-

sensitivity of Se'ec_“Pg an approprate thresh<_)ld value can 98 t of a matched filter to calculate the match between two target
reduced because it is based on the detected images rather Hﬁ%\st andt; after the global meap. is removed. It is re-
3 J .

the original image. ferred to as the covariance matched-filter measure (CMFM) and
is given by
V. ANOMALY CLASSIFICATION

Tyr—1
The goal of the anomaly detectors described in Section Il was (b — )" Kpyp(t; — ). (17)

to find anomalies in an unknown image scene. However, thereAdditionaIIy, if the KZ>1<L in (16) and (17) is replaced by

is a dilemma. RXD can detect anomalous targets but cannot djf- . . )
: e inverse of the sample correlation matRx ;. ; two more
ferentiate them one another. The hyperspectral measures such as o xL "5
) . fneasures can be modified from (16) and (17) and is referred to
the spectral angle mapper (SAM) [22] and spectral informatiqn . L .
. ; as the correlation Mahalanobis distance (RMD) given by
divergence [21] may be used for this purpose. However, these

measures did not take advantage of the spectral correlation pro- (t; — ;)" R L, (6; — t;) (18)
. . . . . z J LXx L\ J
vided by the sample covariance matrix that is already available
in the RXD. The Bhattacharyya distance defined in [23] by and the correlation matched-filter measure (RMFM) given by

Bjj = g (m; —m;)"((Z; + %;)/2)7 (m; — my) ti Ryt (19)
1 (2 +%;)/2] It is worth paying particular attention to (19). It is very close
+§ In PABA (15) o the form of the orthogonal subspace projection (OSP) classi-

fier (derived in [20]) and the form of the constrained energy min-
seem a good candidate. It classifies two spectral signatures imization (CEM) detector (derived in [10]) whekg is desig-
andm; using their respective class sample covariance matricested as the desired target signature and wiecan be viewed
%.; and>}; to account for sample correlation. If we assume thass the image pixel vectar that was chosen fronjt; }52, in
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Fig. 12. Online target discrimination results of the AVIRIS scene resulting from the CRXD using RMFM.

Fig. 11 to match the desired target So, the larger the matchedused for target detection may not be directly applicable to target
value is, the more likely the two targets belong to the same cladsscrimination. However, it can be modified as follows. Instead
It basically performs a similar task as a matched filter does. &é plotting the gray-level values of detected target pixels as was
a result, the measures specified by (17) and (19) are referreditme in Fig. 10(b), we plot the histogram of the RMFM values
as matched-filter-based measures. of {tj}]’»‘;l using (19) with each target designatedtasor the

The above three discrimination measures were proposedigsired target signature. Then, the first zero of the histogram
[24]. They have been shown to perform very similarly in conis selected as the threshold value to determine if a target pixel
parison with the Mahalanobis distance specified by (16). A dandt; should be clustered into the same class. As an example,
tailed study of these measures along with the Mahalanobis dfswe want to cluster target;, we lett; = t; and calculate

tance proposed in this section can be found in [24], [25].  the RMFM values of(t;} 7}, tTR, L, t;foralll < j < N.

Using the RMFM as a target differentiation measure,we cden we plot the histogram of the values{of R}, t;} 1, .
implement an anomaly classifier as follows. Then, the first zero of the histogram is chosen as the threshold
value. Those target pixels whose RMFM values are above or

Anomaly Classification Algorithm equal to the selected threshold value are clusteredtwithto

1) Apply an anomaly detector and the automatic thresHle same class; those whose RMFM value_s are below the se-
olding method in Section IV to detect potential anomdected threshold value are clustered into a different cluster from

lous targets, denoted bft;} ;, and segment thesethatoft;. In.casethatrthe histogram dqes not haveazero,.th_en all
targets from the background. the target pixelgt;}1_, are clustered into one class. A similar

2) Use the RMFM to group the targets detected in step &pProach was also investigated in [14] and has shown success
into separate target classes, denoteddy}?_, . in unsupervised subpixel target detection.

3) Find the mean of each target class, denotegithy’_, .

4) Classify targets in the image usifig; }_, as the desired VI. EXPERIMENTS

target information. The classifier used in this step can be|n order to demonstrate the anomaly classification, we
selected at discretion, such as OSP in [20], LCMV in [11}yill implement the CRXD-LCMV hybrid classifier using the
[12]. Itis worth noting that, in this step, the classificatiorRMFM specified by (19) as the target discrimination measure
is done based on the target information provided in steflong with the automatic thresholding described in Section V.
3). As aresult, targets that matghy }7_, will be detected  Since there was no appreciable difference between the Maha-
and also classified. These may also include those whigthobis distance in (18) and RMFM as shown in [24], [25], we
were missed by the anomaly detector. chose the RMFM over the Mahalanobis distance due to the
It should be noted that in order to implement step 2) it aldact that the RMFM can be easily implemented by a QR-de-
requires a threshold value for the RMFM. Unfortunately, thisomposition. The whole processing consists of three stages:
knowledge is not available for anomaly classification. Since tlee implementation of CRXD in step 1), a target-clustering
number of detected targe{i;j}f’:l, N, generated in step 1) is process using the RMFM, and a real-time processing of the
usually small, itis not sufficiently large to provide reliable statistCMV classification developed in [11]. Like the RXD, which
tics for (14). Consequently, the automatic thresholding methodn be implemented in real time, the CRXD-LCMV anomaly



1322 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 6, JUNE 2002

{mh Limex L0 b Line 30 foh Lime= S0 i Line B0
(&b Lz 510 () Limes 1200 (g} Ling 160 rhis Lime 200

Fig. 13. Online target classification results of the AVIRIS scene resulting from the CRXD using RMFM in conjunction with the LCMV classifier.

detection and classification can be also implemented in onliRdMFM in conjunction with the LCMV classifier. This image ac-
processing with negligible time lag. Since it requires a two-patiglly classified the cinders, playa, rhyolite, shade, vegetation,
process, a time delay is inevitable. Nevertheless it can be miaind the two-pixel anomaly.
mized. The first process works in the same manner as does th&he 15-panel HYDICE scene provides even more
CRXD does to detect anomalies in real time. The second pasteresting results than the AVIRIS image after a target
of the discrimination and classification process takes place omliscrimination measure was incorporated into the classification
a few-lines delay (or a set-of-pixels delay if it is implementegdrocess. According to Fig. 11, the 39 target pixels were
on a pixel-by-pixel basis) right after the CRXD took place. Thdetec’[ed:{tj}'j?i1 which are labeled by the order that they
algorithm takes advantage of a few-line time lag to generatere detected in a top-to-bottom and left-to-right manner.
sufficient target information for follow-up classification. Sincelo further classify these 39 detected targets into separate
the classifier used in the anomaly classification is the LCMYarget classes, we used the RMFM specified by (19) to
classifier that can be also implemented in real time as descril@dt their values as shown in Fig. 14(a)—(k) wherewas
in [11], the two-pass anomaly detection and classification caesignated as a seed pixel, with running through all the
be essentially executed in a timely manner with a few-line89 target pixels. For example, in Fig. 14(as was used
delay between the two passes. In order to distinguish from the a seed pixel fot;, andt; was chosen to be any target
real-time processing of the CRXD, such real-time processitigfrom {tj}j’?il. As shown in the plot, the peak values of
with a few-lines time delay is referred to as an online process! R ., t; produced by the RMFM werd;,t2,t.. They

Fig. 12 shows the target discrimination result produced by theere clustered together. Sty;, andty, to,t4 were considered
CRXD using the RMFM as the target discrimination measute be in the same class. It is clearly shown in Fig. 14(a)—(j)
where the line number underneath each image indicates thatttiet the 39 detected targets were further clustered into ten
result was obtained by using the causal information up to tharget classes, denoted Hyi,ts,ts,ta}, {ts,te, t17,t21},
particular line. As we can see, the results in Fig. 12 are cof¥z,tg, t1o,t12}, {ts,t11}, {t13,t14,t15,t16},
pletely different from that in Flg 2(b) Other than the tWO'pixe{tlg, ti19,t20,t22,t23, t24}, {tgg, tog, tar, tag, tag, tgo},
anomaly detected in Fig. 2(b), many additional anomalies wefes; }, {ts2, tss, t34,t35,t36,t37,t38}, and {tsg} where
picked up and discriminated by the RMFM. This is because th& panels are classified in the images in Fig. 14(a) and
process of the target discrimination took place immediately aftéig. (e)—(i). The results of Fig. 14 were further used for
the detection process. As a consequence, a weak anomalyaajet discrimination. Fig. 15 shows the results of target
one type would be dominated by a strong anomaly of anothdiscrimination produced by the CRXD using the RMFM.
type. This explains why there was only one two-pixel anomahinally, the means of these 10 target classes were calculated
detected by the RXD in Fig. 2(b), because its abundance doamd used as desired target signatures for the LCMV classifier.
inated other anomalies which may belong to different types ®he classification of these ten target classes is shown in Fig. 16
targets, but had relatively low abundances. Fig. 13 further showgh different colors.
the target classification result produced by the complete proces3o verify our classification results, we need to find what these
of anomaly classification which implements the CRXD usintargets were. According to the ground truth map provided by
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Fig. 14. Plot of the values of RMFM for 39 target pixels detected by the RXD in Fig. 2(b).
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Fig. 15. Online target discrimination results of the 15-panel HYDICE scene resulting from the CRXD using RMFM.

Fig. 4(b), there are twad pixels in the panels of size 3 m 3
m, p21, P31, P41, Ps1 €xcept forpy; which has only oné3 pixel,

and oneB pixel in all panels of size 2 nx

identified into ten classes as follows.

1) Panelsinrow 1t; = B pixel of p1;
of p11; t4 = B pixel of p1o

2mand 1 mx 1 m.

1, t3 = W pixels

2) {ts5,te,t17,t21 } = anomalies located in the forest
3) {t7,t9,t10,t12} = anomalies located in the forest

4) {ts,t;; } = anomalies located in the forest

1323

5) Panels in row 2t;3, t1¢ = B pixels of poy; t14 = W

piXE' of po1; t1s = B piXEl of P22
Based on this information the 39 detected target pixels can be 6) Panels in row 3tss, to3 = B pixels of ps;; t1g,t19 =
W pixels of ps1; toy = B pixel of pso; tog = W pixel

of p32

7) Panels in row 4tsg, tog = B pixels of pyy; tas,tag =
W pixels of pyi; t3o = B pixel of pyo; tor = W pixel

of pso
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Fig. 16. Online target classification results of the 15-panel HYDICE scene resulting from the CRXD using RMFM in conjunction with the LCMV classifier

8) t3; = anomaly in the forest VIlI. CONCLUSIONS
9) Panels in row 5t32,t35; = B pixels of p51; to7,

X . Anomaly detection has been widely studied in literature. Un-
t33,t36, t3s = W pixels of ps1; tzz = B pixel of ps2;

. fortunately, very little work on anomaly classification has been
b3 = W pixel of ps _ reported. In this paper, both anomaly detection and classifica-
10) t3p = anomaly in grass pixel. tion are investigated where four contributions are made. First,
These ten classes coincide with those classified by Fig. ko types of anomaly detectors—RXD and LPD, along with
It should be also noted that the RXD failed to detect all the fiu@eir variants—were developed. In particular, a causal RXD was
1 mx 1m panels;s, 1 < ¢ < 5, due to small amounts of presented for real-time processing. Since an anomaly detector
abundance contained in these five-panel pixels and their sitges not necessarily classify or discriminate the anomalies it de-
smaller than the 1.5 m spatial resolution. This was also duetéxts, a second contribution is to design Mahalanobis distance-
the fact that the RXD does not require any prior knowledgbased and matched-filter-based target discrimination measures
As noted above, these missing panels can be extracted if fsetarget discrimination. This is then followed by a third con-
used the Mahalanobis distance target discrimination meastrfgution: that an automatic thresholding method was proposed
to generate the target information for target classification. Aer target detection after target discrimination. Finally, it is con-
shown in Fig. 14(a), ()—(h), and (j), it was indeed the casé€luded by a fourth contribution where an LCMV classifier was

This advantage results from the use of the target discriminati®fployed in conjunction with the thresholding method so as to

measure. achieve anomaly classification. In summary, anomaly classifi-
As a final comment, in order for the four target discriminatiofation is made up of these four contributions. Its entire process

measures specified by (17)—(19) to work effectively, the numb&fn Pe implemented by four stages: anomaly detection, target

of samples that form the sample covariance matrix must be sgfécrimination, thresholding, and classification, each of which

ficiently large to avoid the ill-rank singularity problem resulting?@" take place nearly simultaneously with negligible time delay.

from calculating the inverse of the sample covariance matrix. ,{“S was demonstrated by experiments.

this case, the number of data samples must be greater than or

equal to the number of spectral bands. Since the size of the re- ACKNOWLEDGMENT
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