
1314 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 6, JUNE 2002

Anomaly Detection and Classification for
Hyperspectral Imagery

Chein-I Chang, Senior Member, IEEE,and Shao-Shan Chiang, Member, IEEE

Abstract—Anomaly detection becomes increasingly important
in hyperspectral image analysis, since hyperspectral imagers can
now uncover many material substances which were previously un-
resolved by multispectral sensors. Two types of anomaly detection
are of interest and considered in this paper. One was previously
developed by Reed and Yu to detect targets whose signatures are
distinct from their surroundings. Another was designed to detect
targets with low probabilities in an unknown image scene. Inter-
estingly, they both operate the same form as does a matched filter.
Moreover, they can be implemented in real-time processing, pro-
vided that the sample covariance matrix is replaced by the sample
correlation matrix. One disadvantage of an anomaly detector is the
lack of ability to discriminate the detected targets from another.
In order to resolve this problem, the concept of target discrimina-
tion measures is introduced to cluster different types of anomalies
into separate target classes. By using these class means as target in-
formation, the detected anomalies can be further classified. With
inclusion of target discrimination in anomaly detection, anomaly
classification can be implemented in a three-stage process, first by
anomaly detection to find potential targets, followed by target dis-
crimination to cluster the detected anomalies into separate target
classes, and concluded by a classifier to achieve target classifica-
tion. Experiments show that anomaly classification performs very
differently from anomaly detection.

Index Terms—Anomaly detection, Bhattacharyya dis-
tance, causal RXD (CRXD), classification, correlation
matched-filter-based measure (RMFM), low-probability target
detector (UTD), Mahalanobis distance, RX detector (RXD), target
discrimination measure.

I. INTRODUCTION

T ARGET detection in remotely sensed images can be con-
ducted spatially, spectrally, or both. The difficulty with

using spatial image analysis for target detection in remotely
sensed imagery arises from the fact that the ground sampling
distance (GSD) is generally larger than the size of targets of in-
terest. In this case, targets are embedded in a single pixel and
cannot be detected spatially. Under such circumstances, target
detection must be carried out at subpixel level. An anomaly de-
tector enables one to detect targets whose signatures are spec-
trally distinct from their surroundings with noa priori knowl-
edge. In general, such anomalous targets are relatively small
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compared to the image background and only occur in the image
with low probabilities. Two approaches are of particular interest.
One was developed by Reed and Yu [1]–[3] and is referred to as
the RX detector (RXD), which has shown success in anomaly
detection for multispectral and hyperspectral images [4], [5].
Another was proposed in [6], [7] and is referred to as low-
probability detection (LPD), which was designed to detect tar-
gets with low probabilities in an image. Interestingly, both ap-
proaches result in the same form of a matched filter, but differ in
two aspects. The RXD uses the pixel currently being processed
as the matched signal, while the LPD makes use of the unity
vector (i.e., it has all ones in its components) as its matched
signal. Therefore, the matched signal used in the RXD varies
pixel-by-pixel as opposed to the constant-matched signal used
in the LPD. Since the RXD uses the sample covariance matrix
to take into account the sample spectral correlation, it performs
the same task as does the Mahalanobis distance [8]. On the other
hand, the LPD makes use of the sample correlation matrix to
account for spectral correlation among samples. As a result, it
turns out to be a special case of the constrained energy mini-
mization (CEM) filter developed in [6], [7], [9], [10] where the
desired signal is designated as the unity vector.

In this paper, these two anomaly detectors are investigated
and explored. In particular, several variants of the RXD and
LPD are derived, and a real-time processing version of the RXD
is also introduced where the sample correlation matrix instead
of the sample covariance matrix is used. It is referred to as
causal RXD (CRXD). The term “causal” borrows from signal
processing terminology which means that the information
used for data processing is up to the pixel being processed and
updated solely based on the pixels that were already processed.
“Real-time process” refers to a process that processes data
samples when they come with no time delay. It can be imple-
mented in two ways: line-by-line and pixel-by-pixel. As shown
in [11], a line-by-line real-time process can be implemented by
considering a line of pixels as an input array. It processes each
line while the line is being scanned. A pixel-by-pixel real-time
process considers each pixel as an input and processes a pixel
while it being scanned. An experiment of a pixel-by-pixel
CRXD will be demonstrated for illustration. Two advantages
can be benefited from the CRXD. Since the computation of
the inverse of a sample correlation matrix can be carried out
in parallel via a QR-decomposition [11]–[13], the CRXD has
an ability of processing data in a real-time fashion. In other
words, unlike the RXD, which requires the knowledge of all
the data samples to form the sample covariance matrix prior
to processing, the CRXD processes and updates data either
line-by-line or sample-by-sample. A second advantage results
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from the fact that the sample correlation matrix accounts
for both the first-order and second-order statistics. For most
remotely sensed images which are generally considered to
be nonstationary, the CRXD can capture spectral variability
more effectively than the RXD, which only takes care of
second-order statistics.

Since the images produced by the RXD are generally
grayscale, the target detection and discrimination are usually
carried out by visual inspection. In order to avoid such human
interpretation, an automatic thresholding method is designed to
automatically select an appropriate threshold to segment targets
from the image background. This method is adaptive and
only depends on the grayscale image resulting from anomaly
detection, but not on the original image.

It is often the case that an anomaly detector can detect
different types of anomalies but cannot discriminate the de-
tected targets from one another. So, in this paper, four target
discrimination measures are further developed to resolve this
dilemma. A target discrimination measure discriminates the de-
tected anomalies and clusters them into separate target classes.
Due to the fact that the number of the detected target pixels is
generally small, the automatic thresholding methods commonly
used in traditional spatial-based image processing may not be
applicable. In this case, an automatic thresholding method is
proposed and modified from the zero-detection thresholding
technique proposed in [14] to cluster the detected targets into
separate classes. The means of these target classes are then
calculated and used as the target information for follow-up
target classification. Because the resulting classification is
supervised, the classification results may classify additional
target pixels whose signatures are similar to the anomalies, but
were not detected by the RXD.

In analogy with the CRXD, a real-time implementation of
anomaly classification is also possible. However, in this case,
a certain time delay is inevitable between anomaly detection
and target discrimination, but is negligible if the image size is
manageable, such as one used in the experiments conducted
in this paper. In order to make distinction of this subtle dif-
ference, a process is referred to as an online process if it can
be implemented in a timely manner with negligible time lag.
So, with this definition, anomaly classification can be imple-
mented as an online process by the CRXD in conjunction with
a target discrimination measure and followed by the real-time
linearly constrained minimum-variance (LCMV) classifier de-
veloped in [11], [15]. More specifically, anomaly classification
can be accomplished by three-stage processes. The anomaly de-
tection is initiated in the first-stage process, then followed by a
clustering process using a target discrimination measure in the
second stage and, finally, concluded by the LCMV classifica-
tion in the third stage. All these three stages can be processed
online with no appreciable time delay.

This paper is organized as follows. Section II develops
techniques for anomaly detection which include the RXD, the
LPD, and their variants. Section III demonstrates the real-time
processing capability of the CRXD. Section IV designs a new
computer-automated thresholding method for target detection.
Section V describes an approach to anomaly classification
where four target discrimination measures are introduced.

Section VI presents a series of experiments to demonstrate the
online process of anomaly classification. Section VII concludes
with some remarks.

II. A NOMALY DETECTION

In this section, we describe two types of anomaly detectors
which are developed for different purposes. Nonetheless, both
detectors perform the same functional form of a matched filter
with different matched signals.

A. RXD

The RX detector is the RX algorithm referenced in [4], [5]
which was developed by Reed and Yu [1]. Suppose thatis
the number of spectral bands andis an -column pixel
vector in a multispectral or hyperspectral image. Then the RXD
implements a filter specified by

(1)

where is the global sample mean and is the sample
covariance matrix of the image. The form of in (1) is
actually the well-known Mahalanobis distance. In order to see
how the RXD can detect anomalous targets, an exploration of
how the RXD works is worthwhile.

It is known that principal components analysis (PCA) decor-
relates the data matrix in such a manner that different amounts of
the image information can be preserved in separate components
images, each of which represents a different piece of uncorre-
lated information. So, PCA has been widely used to compress
image information into a few major principal components speci-
fied by the eigenvectors of that correspond to large eigen-
values, but it is not designed to be used for detection or classi-
fication. However, if the image data contain interesting target
pixels which occur with low probabilities in the data (i.e., the
size of target samples is small), it is obvious that these targets
will not be shown in major principal components, but rather in
minor components specified by the eigenvectors of that
are associated with small eigenvalues. This phenomenon was
observed and demonstrated in [10]. It is interesting to note that
the RXD can be considered to be an inverse operation of the
PCA which searches for targets in minor components. This pro-
vides explanation of why the RXD works for anomaly detection.

More specifically, assume that are
the eigenvalues of with zero mean, i.e., so that

. Let be a set of orthogonal
unit eigenvectors (i.e., the length of is one, ) with

corresponding to . Using the spectral decomposition of a
covariance matrix in [16], [17], we can form an eigenmatrix

with the th column specified by theth
eigenvector . The resulting matrix is a unitary matrix and
can be used to decorrelate into a diagonal matrix

such that . If we let
, then

(2)
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Fig. 1. An LCVF AVIRIS image scene.

Fig. 2. (a) AVIRIS result produced byr K r given by (2). (b) AVIRIS
result produced by the RXD given by (1).

Using (2), expression (1) which specifies the RXD can be fur-
ther expressed by

(3)

According to (2), the larger the eigenvalue is, the greater the
value of is. So, (2) performs a similar task that PCA
does. It can compress data by retaining only a few principal
components specified by eigenvectors that corresponds to the
first few largest eigenvalues. By contrast, using (3) the RXD de-
tects anomalous targets with small energies that are represented
by small eigenvalues. This is because the smaller the eigenvalue
is, the greater the value of is. In this case, it is crucial
to determine , the number of targets present in the image scene
so that the eigenvalues beyond the firsteigenvalues will be
considered to be noise energies. This issue is beyond the scope
of this paper and was addressed in [18], [19].

In order to demonstrate these two concepts specified by
(2) and (3), we consider an airborne visible/infrared imaging
spectrometer (AVIRIS) image shown in Fig. 1 that was studied
in [20]. It is a scene of size 200 200 and is a part of the
Lunar Crater Volcanic Field (LCVF) in Northern Nye County,

NV where five signatures of interest in these images were
was demonstrated in [20]: “cinders,” “rhyolite,” “playa (dry
lakebed),” “shade,” and “vegetation.” Additionally, it was also
shown in [10] that there was a single two-pixel anomaly located
at the top edge of the lake marked by a circle in Fig. 1.

Fig. 2(a) and (b) shows the results of the LCVF in Fig. 1
produced by (2) and the RXD respectively where Fig. 2(a) pre-
serves the vast information of the image scene while the RXD
detected a single two-pixel anomaly on the upper edge of the
lake along with a small portion of vegetation on the upper right
corner shown in Fig. 2(b).

It is worth noting from (1) that the RXD performs some kind
of a matched filter specified by

(4)

where is the matched signal andis a constant, but can be
also a function of . The performance of (4) is completely de-
termined by two parameters: the matched signaland the scale
constant that appears in front of the matched filter. By using
(4), we can interpret the RXD as a matched filter operating on

with the matched signal by setting
. By taking advantage of (4), two variants of the RXD—re-

ferred to as normalized RXD and denoted by , and
modified RXD, denoted by —can be derived from
(1) and (4) for anomaly detection as follows:

(5)

and

(6)

where and
is the normalized .

The specified by (5) can be interpreted in two dif-
ferent ways. One is viewed as the normalized version of the
RXD. Another interpretation of is a matched filter
with the matched signal as used in the RXD
but a different scale constant or a matched filter
with the matched signal given by
with . The specified by (6) can be interpreted
as an RXD with the scale constant or a matched
filter with the matched signal and .

B. Uniform Target Detector

Another type of anomaly detector, referred to as the low-prob-
ability detector, was first derived in [6]. Its design was based on
the sample correlation matrix . If we replace in the
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Fig. 3. (a) AVIRIS result produced by the NRXD. (b) AVIRIS result produced
by the MRXD. (c) AVIRIS result produced by the UTD. (d) AVIRIS result
produced by the RXD–UTD.

Fig. 4. (a) A 15-panel HYDICE image scene. (b) Ground truth map of
Fig. 4(a).

LPD with the sample covariance matrix , a uniform target
detector (UTD) can be defined as

(7)

where

is the unity vector with ones in all the components. Unlike the
RXD specified by (1), which uses the image pixel vectoras
the matched signal, the UTD uses the unity vector as its matched
signal. The reason for choosing the unity vector is the following.
Because there is no prior information available, the best scenario
is not to introduce any information into the detector. In this case,
an anomalous target is assumed to have radiance uniformly dis-
tributed over all the spectral bands. In this case, it is expected to
extract background signatures which are uniformly distributed
in the image. Fig. 3(c) shows the result of the LCVF in Fig. 1
produced by the UTD where it did not detect the anomaly shown
in Fig. 2(b); instead, it detected most of the image background.

However, if there is some partial knowledge available, the unity
vector can be replaced by a certain specific vector. For example,
if we are interested in short wavelengths, we can set zeroes for
all visible bands while assigning ones to all the near-infrared
bands.

In [4], Ashton and Schaum showed that background subtrac-
tion could enhance the RXD detection performance. This sug-
gests that incorporating the UTD into the RXD may allow us to
remove the background as was done in [4]. Such a detector, de-
noted by , can be derived by subtracting the UTD
from the RXD as follows:

(8)

Fig. 3(d) shows the result of the where no vis-
ible improvement was observed. This is because the total en-
ergy of the background in the LCVF scene is less than that of
the anomaly. In this case, background subtraction using (8) did
not improve much over the RXD.

As shown in Fig. 2(b), the RXD detected only one two-pixel
anomaly in Fig. 2(b). One of main attributes may be due to the
low 20 m spatial resolution. In order to further evaluate the per-
formance of the RXD and the UTD, a high spatial resolution
hyperspectral digital imagery collection experiment (HYDICE)
scene considered in [21] was also used for experiments.

The HYDICE image shown in Fig. 4(a) has a size of 64
64 with 10 nm spectral resolution and 1.5 m spatial resolution.
There are 15 panels located on the field, and they are arranged
in a 5 3 matrix. The low signal/high noise bands (bands 1–3
and bands 202–210) and water vapor absorption band (bands
101–112 and bands 137–153) were removed. This results in
a total of 169 bands. Fig. 4(b) shows the ground truth map of
Fig. 4(a) and provides the precise spatial locations of these
15 panels. Black pixels are panel center pixels, considered to
be pure pixels, and the pixels in the white masks are panel
boundary pixels mixed with background pixels, considered to
be mixed pixels. Each element in this matrix is a square panel
and is denoted by with rows indexed by
and columns indexed by . For each row, the three
panels were made from the same material but
have three different sizes. For each column, the five panels

have the same size but were made from
three materials and were painted by five different substances.
The sizes of the panels in the first, second, and third columns
are 3 m 3 m, 2 m 2 m, and 1 m 1 m, respectively. The
1.5 m spatial resolution of the image scene suggests, that except
for which are two-pixel panels, all the
remaining panels are only one pixel in size.

Experiments similar to those conducted for the AVIRIS
image were performed for the 15-panel HYDICE image scene
in Fig. 4(a). Fig. 5(a)–(e) shows the results of RXD, NRXD,
MRXD, UTD, and RXD–UTD respectively. In analogy with
the results in Fig. 3, the RXD and the RXD–UTD performed
nearly the same as they did in Figs. 2(b) and 3(d), while the
NRXD, MRXD, and UTD extracted the image background,
e.g., tree and grass.

The hyperspectral image experiments conducted in Figs. 3
and 5 may lead to a conclusion that the NRXD, MRXD, and
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Fig. 5. (a) HYDICE result produced by the RXD. (b) HYDICE result produced
by the NRXD. (c) HYDICE result produced by the MRXD. (d) HYDICE result
produced by the UTD. (e) HYDICE result produced by the RXD–UTD.

UTD can only perform background extraction. As a matter of
fact, it is generally not the case. This is due to the fact that the in-
formation used in the detectors was which had removed
the information of the first-order statistics. If a target’s spectral
properties can be characterized only by the first-order statistics,
this target may not be detected by a detector solely designed
based on the second-order statistics. This is particularly true for
nonstationary images such as remotely sensed imagery. In order
to account for both the first-order and second-order statistics, we
replace with and with in (1), (5)–(8), and
this yields the following sample correlation matrix-based de-
tectors:

(9)

with (10)

with (11)

(12)

(13)

Figs. 6 and 7 show the detection results of the AVIRIS
and HYDICE images, respectively. As we can see from these
figures, the performance of the RXD and the RXD–UTD was
nearly the same, with the UTD still detecting background
and noise. To our surprise, the NRXD and MRXD performed
quite differently. Unlike in Fig. 3, both NRXD and MRXD

Fig. 6. (a) AVIRIS result produced by the RXD usingR , (b) AVIRIS
result produced by the NRXD usingR , (c) AVIRIS result produced by the
MRXD usingR , (d) AVIRIS result produced by the UTD usingR ,
(e) AVIRIS result produced by the RXD–UTD usingR .

detected the shade in Fig. 6(b) and (c). In addition to detecting
the shade, the MRXD also detected the anomaly in Fig. 6(c).
Most interestingly is Fig. 7(b) and (c). Compared to Fig. 5(b)
and (c), where the NRXD and MRXD extracted only image
background, Fig. 7(b) and (c) showed that the NRXD and
MRXD detected panels that were also detected by the RXD.
In addition, they both also extracted some tree signatures and
interferers. These two experiments simply demonstrated, that
when images are not stationary, the sample correlation matrix

is more appropriate and effective than the sample
covariance matrix to capture image characteristics.

III. REAL-TIME PROCESSING OFRXD

By real-time processing referred in this paper we mean that
the data can be processed in a timely manner with negligible
time lag. It requires only one scan and can be used for online data
processing. As a matter of fact, the real-time processing pre-
sented in this section for anomaly detection can be implemented
in the same manner demonstrated in [11] that the computation
of the sample correlation matrix can be carried out via a
QR-decomposition. In this case, the proposed anomaly detector
(i.e., causal RXD described below) can be implemented in par-
allel as a parallel processor. It processes a pixel as it is received.
The RXD defined by (1) cannot be implemented in such a way.
This is because the computation of requires to calculate
the mean of the entire image. Comparing Fig. 2(b) against Fig.
6(a) and Fig. 5(a) against Fig. 7(a), we see that there is no visible
and appreciable difference between using specified by
(1) and using specified by (9). As demonstrated also
in Fig. 6(b)–(c) and Fig. 7(b)–(c), it was suggested that
might be better than in characterizing spectral properties
of nonnatural targets. So, in order to implement the RXD in real
time, it is advantageous to use the RXD with replaced
by and by . The resulting RXD is the
specified by (9) and will be referred to as causal RXD. Since the
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Fig. 7. (a) HYDICE result produced by the RXD usingR , (b) HYDICE
result produced by the NRXD usingR , (c) HYDICE result produced by the
MRXD usingR , (d) HYDICE result produced by the UTD usingR ,
(e) HYDICE result produced by the RXD–UTD usingR .

information used in the CRXD is updated in a causal manner,
it may yield results slightly different from that produced by the
RXD. As demonstrated in the following experiments, it is in-
deed the case. In order to demonstrate how the causal informa-
tion is updated, Figs. 8 and 9 show the real-time implementation
of the CRXD on the AVIRIS line-by-line as was done in [11]
and HYDICE images pixel-by-pixel due to high spatial resolu-
tion, respectively. Fig. 8(a)-(c) show the results of the AVIRIS
image. The vegetation was first detected in Fig. 8(a) and stayed
unchanged in Fig. 8(b), then faded away after the anomaly was
detected in Fig. 8(c) and finally vanished in Fig. 8(d) while the
anomaly was enhanced. It is more interesting to note the results
of the 15-panel HYDICE image shown in Fig. 9(a)–(g). If we
compare the result of Fig. 9(h) against Fig. 7(a), the interferer
shown in Fig. 7(a) faded away in Fig. 9(h). This experiment pro-
vides a good example to illustrate the difference between RXD
and CRXD.

IV. A UTOMATIC THRESHOLDINGMETHOD

In view of the fact that the images generated by RXD are gen-
erally grayscale, the detection is usually carried out by visual
inspection. However, in order to avoid such human interven-
tion and to make an objective assessment, we need to develop
a computer-automated thresholding method that will automati-
cally extract the anomalous target pixels and segment them from
the background. In doing so, a threshold criterion is required to
convert a grayscale image to a binary image where the detected
targets can be extracted from the image background.

Recalling (1), RXD operates the form which allows one to de-
tect anomalies in a large background by finding high peaks of
gray levels in homogeneous regions. Therefore, the larger the
gray values of the pixels, the more likely the pixels are anoma-
lous pixels. This suggests that the gray-level values of anomalies
should behave as outliers and fall in the right tail of the image
distribution. For a given grayscale value, we define a rejection

Fig. 8. (a) Detection of vegetation. (b) Before detection of anomaly.
(c) Detection of anomaly. (d) Completion of the CRXD process.

Fig. 9. (a) Nothing detected. (b) Detection of the panels in row 1. (c) Detection
of the interferer. (d) Detection of the panels in row 2. (e) Detection of the panels
in row 3. (f) Detection of the panels in row 4. (g) Detection of the panels in
row 5. (h) Completion of the CRXD process.

region, denoted by , by the set made
up of all the image pixels in the RXD-detected image whose
gray-level values are less than. We use the histogram of the
RXD-detected image to define the rejection probability as

(14)

Then, a threshold for detecting the anomalies can be
determined by setting a confidence coefficientsuch that

. If , then will be detected as an
anomaly. For example, Fig. 10(a) plots the gray-level values of
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Fig. 10. (a) Plot of the gray values produced by RXD. (b) Histogram of (a).
(c) An enlargement of right tail in (b).

the 15-panel HYDICE scene produced by the RXD in Fig. 5(a),
and Fig. 10(b) shows its corresponding histogram. If the
confidence coefficient was set by , the corresponding
threshold was found to be 484.75 as shown in Fig. 10(c).
Using this to threshold the RXD-detected grayscale image
in Fig. 5(a) resulted in a binary-thresholded image shown in
Fig. 11 where there were 39 target pixels, , segmented
by . It should be noted that the confidence
coefficient of was selected empirically and can be
adjusted. When the confidence coefficientis close to 1, only
a few targets will be detected as anomalies. If the confidence
coefficient is set too low ( ), weak interferers and
background signatures will be also extracted as anomalies.
Fortunately, with the proposed thresholding technique, the
sensitivity of selecting an appropriate threshold value can be
reduced because it is based on the detected images rather than
the original image.

V. ANOMALY CLASSIFICATION

The goal of the anomaly detectors described in Section II was
to find anomalies in an unknown image scene. However, there
is a dilemma. RXD can detect anomalous targets but cannot dif-
ferentiate them one another. The hyperspectral measures such as
the spectral angle mapper (SAM) [22] and spectral information
divergence [21] may be used for this purpose. However, these
measures did not take advantage of the spectral correlation pro-
vided by the sample covariance matrix that is already available
in the RXD. The Bhattacharyya distance defined in [23] by

(15)

seem a good candidate. It classifies two spectral signatures
and using their respective class sample covariance matrices

and to account for sample correlation. If we assume that

Fig. 11. A binary-thresholded image of Fig. 2(b) resulting from the automatic
thresholding method with the confidence coefficient = 0:99.

, then theBhattacharyya distance in (15) is re-
duced to the Mahalanobis distance

(16)

As we recalled, RXD specified by (1) has the same identical
detector structure with ,

, and . This suggests that

(which is referred to as the Mahalanobis distance in this paper)
can be used to measure the discrepancy between two target
pixels and . So, the smaller the value is, the harder the dis-
crimination between the two targets is.

The Mahalanobis distance specified by (16) is not the only
distance measure that can be used for target discrimination. An
alternative discrimination measure can be derived by the con-
cept of a matched filter to calculate the match between two target
pixels and after the global mean is removed. It is re-
ferred to as the covariance matched-filter measure (CMFM) and
is given by

(17)

Additionally, if the in (16) and (17) is replaced by
the inverse of the sample correlation matrix two more
measures can be modified from (16) and (17) and is referred to
as the correlation Mahalanobis distance (RMD) given by

(18)

and the correlation matched-filter measure (RMFM) given by

(19)

It is worth paying particular attention to (19). It is very close
to the form of the orthogonal subspace projection (OSP) classi-
fier (derived in [20]) and the form of the constrained energy min-
imization (CEM) detector (derived in [10]) where is desig-
nated as the desired target signature and wherecan be viewed
as the image pixel vector that was chosen from in
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Fig. 12. Online target discrimination results of the AVIRIS scene resulting from the CRXD using RMFM.

Fig. 11 to match the desired target. So, the larger the matched
value is, the more likely the two targets belong to the same class.
It basically performs a similar task as a matched filter does. As
a result, the measures specified by (17) and (19) are referred to
as matched-filter-based measures.

The above three discrimination measures were proposed in
[24]. They have been shown to perform very similarly in com-
parison with the Mahalanobis distance specified by (16). A de-
tailed study of these measures along with the Mahalanobis dis-
tance proposed in this section can be found in [24], [25].

Using the RMFM as a target differentiation measure,we can
implement an anomaly classifier as follows.

Anomaly Classification Algorithm

1) Apply an anomaly detector and the automatic thresh-
olding method in Section IV to detect potential anoma-
lous targets, denoted by , and segment these
targets from the background.

2) Use the RMFM to group the targets detected in step 1)
into separate target classes, denoted by .

3) Find the mean of each target class, denoted by .
4) Classify targets in the image using as the desired

target information. The classifier used in this step can be
selected at discretion, such as OSP in [20], LCMV in [11],
[12]. It is worth noting that, in this step, the classification
is done based on the target information provided in step
3). As a result, targets that match will be detected
and also classified. These may also include those which
were missed by the anomaly detector.

It should be noted that in order to implement step 2) it also
requires a threshold value for the RMFM. Unfortunately, this
knowledge is not available for anomaly classification. Since the
number of detected targets , , generated in step 1) is
usually small, it is not sufficiently large to provide reliable statis-
tics for (14). Consequently, the automatic thresholding method

used for target detection may not be directly applicable to target
discrimination. However, it can be modified as follows. Instead
of plotting the gray-level values of detected target pixels as was
done in Fig. 10(b), we plot the histogram of the RMFM values
of using (19) with each target designated asfor the
desired target signature. Then, the first zero of the histogram
is selected as the threshold value to determine if a target pixel
and should be clustered into the same class. As an example,
if we want to cluster target , we let and calculate
the RMFM values of , for all .
Then we plot the histogram of the values of .
Then, the first zero of the histogram is chosen as the threshold
value. Those target pixels whose RMFM values are above or
equal to the selected threshold value are clustered withinto
the same class; those whose RMFM values are below the se-
lected threshold value are clustered into a different cluster from
that of . In case that the histogram does not have a zero, then all
the target pixels are clustered into one class. A similar
approach was also investigated in [14] and has shown success
in unsupervised subpixel target detection.

VI. EXPERIMENTS

In order to demonstrate the anomaly classification, we
will implement the CRXD–LCMV hybrid classifier using the
RMFM specified by (19) as the target discrimination measure
along with the automatic thresholding described in Section V.
Since there was no appreciable difference between the Maha-
lanobis distance in (18) and RMFM as shown in [24], [25], we
chose the RMFM over the Mahalanobis distance due to the
fact that the RMFM can be easily implemented by a QR-de-
composition. The whole processing consists of three stages:
the implementation of CRXD in step 1), a target-clustering
process using the RMFM, and a real-time processing of the
LCMV classification developed in [11]. Like the RXD, which
can be implemented in real time, the CRXD–LCMV anomaly



1322 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 6, JUNE 2002

Fig. 13. Online target classification results of the AVIRIS scene resulting from the CRXD using RMFM in conjunction with the LCMV classifier.

detection and classification can be also implemented in online
processing with negligible time lag. Since it requires a two-pass
process, a time delay is inevitable. Nevertheless it can be mini-
mized. The first process works in the same manner as does the
CRXD does to detect anomalies in real time. The second pass
of the discrimination and classification process takes place only
a few-lines delay (or a set-of-pixels delay if it is implemented
on a pixel-by-pixel basis) right after the CRXD took place. The
algorithm takes advantage of a few-line time lag to generate
sufficient target information for follow-up classification. Since
the classifier used in the anomaly classification is the LCMV
classifier that can be also implemented in real time as described
in [11], the two-pass anomaly detection and classification can
be essentially executed in a timely manner with a few-lines
delay between the two passes. In order to distinguish from the
real-time processing of the CRXD, such real-time processing
with a few-lines time delay is referred to as an online process.

Fig. 12 shows the target discrimination result produced by the
CRXD using the RMFM as the target discrimination measure
where the line number underneath each image indicates that the
result was obtained by using the causal information up to that
particular line. As we can see, the results in Fig. 12 are com-
pletely different from that in Fig. 2(b). Other than the two-pixel
anomaly detected in Fig. 2(b), many additional anomalies were
picked up and discriminated by the RMFM. This is because the
process of the target discrimination took place immediately after
the detection process. As a consequence, a weak anomaly of
one type would be dominated by a strong anomaly of another
type. This explains why there was only one two-pixel anomaly
detected by the RXD in Fig. 2(b), because its abundance dom-
inated other anomalies which may belong to different types of
targets, but had relatively low abundances. Fig. 13 further shows
the target classification result produced by the complete process
of anomaly classification which implements the CRXD using

RMFM in conjunction with the LCMV classifier. This image ac-
tually classified the cinders, playa, rhyolite, shade, vegetation,
and the two-pixel anomaly.

The 15-panel HYDICE scene provides even more
interesting results than the AVIRIS image after a target
discrimination measure was incorporated into the classification
process. According to Fig. 11, the 39 target pixels were
detected: which are labeled by the order that they
were detected in a top-to-bottom and left-to-right manner.
To further classify these 39 detected targets into separate
target classes, we used the RMFM specified by (19) to
plot their values as shown in Fig. 14(a)–(k) wherewas
designated as a seed pixel, with running through all the
39 target pixels. For example, in Fig. 14(a), was used
as a seed pixel for , and was chosen to be any target

from . As shown in the plot, the peak values of
produced by the RMFM were . They

were clustered together. So, and were considered
to be in the same class. It is clearly shown in Fig. 14(a)–(j)
that the 39 detected targets were further clustered into ten
target classes, denoted by , ,

, , ,
, ,

, , and where
15 panels are classified in the images in Fig. 14(a) and
Fig. (e)–(i). The results of Fig. 14 were further used for
target discrimination. Fig. 15 shows the results of target
discrimination produced by the CRXD using the RMFM.
Finally, the means of these 10 target classes were calculated
and used as desired target signatures for the LCMV classifier.
The classification of these ten target classes is shown in Fig. 16
with different colors.

To verify our classification results, we need to find what these
targets were. According to the ground truth map provided by
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Fig. 14. Plot of the values of RMFM for 39 target pixels detected by the RXD in Fig. 2(b).

Fig. 15. Online target discrimination results of the 15-panel HYDICE scene resulting from the CRXD using RMFM.

Fig. 4(b), there are two pixels in the panels of size 3 m 3
m, , , , except for which has only one pixel,
and one pixel in all panels of size 2 m 2 m and 1 m 1 m.
Based on this information the 39 detected target pixels can be
identified into ten classes as follows.

1) Panels in row 1: pixel of ; pixels
of ; pixel of

2) anomalies located in the forest
3) anomalies located in the forest

4) anomalies located in the forest
5) Panels in row 2: , pixels of ;

pixel of ; pixel of
6) Panels in row 3: pixels of ;

pixels of ; pixel of ; pixel
of

7) Panels in row 4: pixels of ;
pixels of ; pixel of ; pixel

of
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Fig. 16. Online target classification results of the 15-panel HYDICE scene resulting from the CRXD using RMFM in conjunction with the LCMV classifier.

8) anomaly in the forest
9) Panels in row 5: ; pixels of ; ,

pixels of ; pixel of ;
pixel of

10) anomaly in grass pixel.

These ten classes coincide with those classified by Fig. 14.
It should be also noted that the RXD failed to detect all the five
1 m 1 m panels , , due to small amounts of
abundance contained in these five-panel pixels and their size
smaller than the 1.5 m spatial resolution. This was also due to
the fact that the RXD does not require any prior knowledge.
As noted above, these missing panels can be extracted if we
used the Mahalanobis distance target discrimination measure
to generate the target information for target classification. As
shown in Fig. 14(a), (f)–(h), and (j), it was indeed the case.
This advantage results from the use of the target discrimination
measure.

As a final comment, in order for the four target discrimination
measures specified by (17)–(19) to work effectively, the number
of samples that form the sample covariance matrix must be suf-
ficiently large to avoid the ill-rank singularity problem resulting
from calculating the inverse of the sample covariance matrix. In
this case, the number of data samples must be greater than or
equal to the number of spectral bands. Since the size of the re-
motely sensed imagery is generally larger than the total number
of spectral bands used for acquisition, this requirement is gen-
erally satisfied. For the real-time implementation of the CRXD
described in Sections III and VI which uses the sample corre-
lation matrix, the real-time processing does not take place until
the number of samples is greater than the number spectral bands.
In other words, there is no real-time processing in the first few
lines before we collect enough data samples to form the nonsin-
gular sample correlation matrix.

VII. CONCLUSIONS

Anomaly detection has been widely studied in literature. Un-
fortunately, very little work on anomaly classification has been
reported. In this paper, both anomaly detection and classifica-
tion are investigated where four contributions are made. First,
two types of anomaly detectors—RXD and LPD, along with
their variants—were developed. In particular, a causal RXD was
presented for real-time processing. Since an anomaly detector
does not necessarily classify or discriminate the anomalies it de-
tects, a second contribution is to design Mahalanobis distance-
based and matched-filter-based target discrimination measures
for target discrimination. This is then followed by a third con-
tribution: that an automatic thresholding method was proposed
for target detection after target discrimination. Finally, it is con-
cluded by a fourth contribution where an LCMV classifier was
employed in conjunction with the thresholding method so as to
achieve anomaly classification. In summary, anomaly classifi-
cation is made up of these four contributions. Its entire process
can be implemented by four stages: anomaly detection, target
discrimination, thresholding, and classification, each of which
can take place nearly simultaneously with negligible time delay.
This was demonstrated by experiments.
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