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Abstract—Monitoring agriculture from satellite remote sensing
data, such as multispectral images, has become a powerful
tool since it has demonstrated a great potential for providing
timely and accurate knowledge of crops. Many studies have
been devoted to the early detection of anomalies in time series
of multispectral remote sensing images but few of them have
considered the identification of the abnormal factors that are
damaging the vegetation. This paper presents a framework for
anomaly detection and classification exploiting the temporal
information contained in remote sensing time series using hidden
Markov models (HMM) and machine learning. The anomaly
detection part is based on the learning of HMM parameters
associated with unlabeled nominal data, that are used to detect
abnormal crop parcels referred to as anomalies. The learned
HMM are then used in time segments to temporally localize the
anomalies affecting the crop parcels. The detected and localized
anomalies are finally classified using a supervised classifier, e.g.,
based on support vector machines. Numerical experiments are
conducted on synthetic and real data to evaluate the performance
of the proposed algorithm. The real data corresponds to vege-
tation indices extracted from several multi-temporal Sentinel-
2 images of rapeseed crops. The performance of the anomaly
detection is evaluated in terms of precision and recall whereas
the classification performance is determined using probabilities
of correct classification. The proposed approach is compared to
standard anomaly detection methods yielding better detection
rates with the advantage of allowing anomalies to be localized
and characterized.

Index Terms—Anomaly detection, anomaly classification, re-
mote sensing, Hidden Markov models, agricultural monitoring,
time series, semi-supervised learning.

I. INTRODUCTION

Multispectral images have been widely used in many studies
to explore the vegetation properties of plants through the
extraction of vegetation indices [1], [2], [3], [4]. In the
last decade, researchers have proposed to use multi-temporal
images for several applications including change detection [5]
and landcover classification [6], [7], where the challenge is
mainly to exploit the redundancy and correlation across the
spatial, spectral, and temporal dimensions of the images.
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Hidden Markov models (HMM) are classical tools to ana-
lyze time series, allowing temporal correlations to be extracted
with the introduction of latent variables interacting with the
data [8], [9], [10]. Different works have shown that HMM
are valuable tools for modeling the dynamic behavior of
crops across time, where the dynamics of vegetation is related
to the phenology, chemical nutrients, climatic conditions, or
water stress of crops [11], [12]. Some specific tasks for crop
analysis based on HMM include crop recognition [13], crop
classification [8], [14], and time evolution featuring [12]. In
addition, an analysis of the normalized difference vegetation
index (NDVI) using the HMM framework is proposed in [11],
where the NDVI changes are used to characterize the dynamics
of the vegetation during a temporal window.

An important task in crop monitoring is the detection
of anomalies that can represent risks for the harvest [3],
[15]. Detecting nutrient stresses or drought helps to better
understand the management of nutrients and, in turn, leads to
reduce cultivation costs and increases crop efficiency [2], [16],
[17]. Thus, depending on the kind of detected anomalies, the
farmers can take action to reduce the adverse effects of the
phenomenon that produces the anomaly response. Anomaly
detection (AD) (which includes outlier and novelty detection)
is a widely studied problem that relies on the identification
of patterns or events that differ from the expected normal
behavior of the majority of the data [18]. Some of the most
relevant AD techniques include the local outlier factor [19] or
its probabilistic version the local outlier probability [20], the
isolation forest [21] and the one-class support vector machine
(OC-SVM) [22]. Note that when these methods are applied to
time series, they do not fully exploit the temporal correlation
between consecutive samples.

Some recent works have proposed to include the HMM
framework in the AD problem [23], [24]. In particular, in
[23], the authors have considered an HMM-based kernel that
is used in the traditional OC-SVM method. However, this
kernel was defined assuming some specific kind of anomaly,
e.g., resulting from mean-value jumps, which is a too strong
assumption for crop monitoring. An interesting framework for
AD in multivariate time series was proposed in [24], where
a set of transformations was used to unify the time series
and estimate appropriate features. However, the resulting AD
algorithm was trained in a supervised mode, using normal and
abnormal labels for the training samples, which are difficult
to obtain in most crop monitoring applications. Finally, it
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is interesting to mention some other works such as [10],
[25], which have demonstrated that crops analyzed at a parcel
level from multi-temporal vegetation indices and vegetation
phenology provide suitable knowledge of crops across time.
However, these studies have not addressed the problem of
classifying and identifying possible factors that are damaging
the harvest.

This paper introduces a framework for anomaly detection
and classification of remote sensing time series based on
HMM. The proposed method referred to as AD-HMM learns
the normal dynamic behavior of crops using several HMM
whose parameters are estimated from nominal data (i.e., data
without any anomaly). Abnormal time series are then detected
as those being unlikely to have been generated by these HMM.
The main advantage of AD-HMM is that the learned HMM
can be used for specific time segments of the tested time
series, allowing anomalies to be localized during specific time
intervals. In a second step, the proposed AD algorithm is
complemented by standard classifiers such as SVMs in order
to determine the type of detected anomalies.

Figure 1 illustrates the overview of the proposed approach,
which is decomposed into four steps, where the small square
connecting the inputs is an image preprocessing procedure.
In the first step, AD-HMM estimates some HMM by using
nominal data. In the second step, the AD algorithm classifies
test parcels (parcels that do not belong to the learning set)
as normal or abnormal. In a third step, the detected anomalies
are localized using a so-called anomaly localization algorithm.
The goal of this localization is to determine in which time
period the anomaly has occurred. The last step of the proposed
methodology classifies anomalies using a supervised classifier,
allowing specific kinds of anomalies to be identified, such as
crop heterogeneity, early or late growth and senescence (plant
degradation) [25]. The anomaly localization and classification
steps provide a complementary knowledge to the farmers and
producers for making decisions regarding both the time of the
vegetation cycle and the crop area.
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Fig. 1. General overview of the proposed AD and classification approach,
where the dotted-square at the top encloses the HMM-based AD referred to
as AD-HMM. Based on the learned HMM, AD at the parcel level is used
to declare whether a test sample is normal or not, where the AD-HMM
considers the temporal structure of the time series associated with the test
sample. The detected anomaly is then localized in a specific time interval
and finally classified into different types of anomalies that are classically
encountered in crops.

II. PROPOSED METHOD

This section presents the proposed AD and classification
approach, which is summarized in the detailed flowchart
depicted in Fig. 2. Note that the gray shaded squares highlight
the main steps of the method: (1) image preprocessing yielding
features at the parcel level, (2) learning HMM associated with
normal parcels referred to as AD-HMM learning, (3) AD at
the parcel level (point AD), which includes the localization of
anomalies, and (4) anomaly classification. Next subsections
describe each procedure following the flowchart of Fig. 2.

A. Image Preprocessing and Feature Extraction

The image preprocessing step requires multi-temporal and
multispectral images, and the corresponding parcel bound-
aries (e.g., resulting from a parcellation database such as the
land parcel identification system (LPIS)). A set of temporal
vegetation indices (VIs) is extracted from these images. For
this study, five vegetation indices derived from the visible,
near-infrared (NIR), and short-wave infrared (SWIR) were
estimated based on images acquired by the Sentinel-2 sensor1.
The VIs are summarized in Table I and the corresponding
spectral bands are detailed in Table II.

TABLE I
VEGETATION INDICES ESTIMATED FROM MULTISPECTRAL IMAGES,

WHERE NIR, R, G, SWIR, AND Re DENOTES THE NEAR-INFRARED, RED,
GREEN, SHORT-WAVE INFRARED, AND RED-EDGE BANDS.

Vegetation Index (VI) Formula

Normalized difference VI NDVI =
NIR− R

NIR + R

Green-Red VI GRVI =
G− R

G+R
Normalized difference
water Index (SWIR)

NDWISWIR =
NIR− SWIR

NIR + SWIR
Normalized difference
water Index (Green)

NDWIG =
G−NIR

G+NIR

Modified Chlorophyll Absorption
Ratio Index using the Optimized
Soil Adjusted VI [26]

MCARI/OSAVI =
(Re− IR)− 0.2(Re− R)

(1 + 0.16)
NIR− R

NIR + R+ 0.16

TABLE II
SPECTRAL BANDS OF THE SENTINEL-2A MULTISPECTRAL IMAGES

EMPLOYED IN THE VIS ESTIMATION [25].

Spectral band
Band 3
Green

Band 4
Red

Band 5
Red-Edge

Band 8
NIR

Band 11
SWIR

Wavelength (µm) 0,560 0,665 0,705 0,842 1,610
Resolution (m) 10 10 20 10 20

Two statistical indicators, namely the median and interquar-
tile range (IQR), were computed for each temporal VI, where
the IQR is defined by the difference between the 75th and 25th
percentiles. The motivation for employing statistical indicators
for the temporal VIs is that they encompass the mean and
dispersion of the VIs with a reduced computational load in the

1Sentinel-2 (S2A & S2B) level 2A images were downloaded with a spatial
resolution of 10–60 m and a spectral resolution of 13 bands. The theoretical
revisit time is 5 days. Images with a cloud coverage greater than 20% were
removed from the database.
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Fig. 2. Flowchart illustrating the main steps and outputs of the proposed approach: (a) Learning step, where multi-temporal/multispectral images and parcel
profiles are used to extract features of time series for a given parcel, and (b) Test step. Gray shaded squares indicate the different tasks, namely image
preprocessing, AD-HMM learning, AD, anomaly localization and anomaly classification.

data processing. The preprocessing step provides K features
for each parcel of the multi-temporal image and for each time
instant, i.e., N×K×T features, where N is the total number of
available parcels and T denotes the number of time instants. To
define the extracted time series, let X(n) = [x

(n)
1 , ...,x

(n)
T ]>

denotes all the time series computed for the n-th parcel (with
n = 1, ..., N ), where x(n)

t ∈ RK is the t-th feature vector
at time t ∈ {1, ..., T}, and K is the number of features.
Finally, XAD = {X(1), ...,X(N)} is the set of N time series
extracted from the normal multispectral images and included
in the learning set for AD.

The construction of the set XAD is referred to as parcel-
wise feature extraction, since it extracts statistics from the
temporal VIs to build a set of features from the multi-temporal
images and their parcel boundaries. The obtained time series
are then validated by experts to make sure that they correspond
to a normal behavior for AD-HMM learning. Note that the
anomalies identified by the expert are excluded from the
database and saved (with an anomaly label) in another set
denoted as XAC for the anomaly classification procedure (see
[25] for further details about the database construction).

B. Anomaly Detection based on HMM Learning

1) HMM for Temporal Vegetation Indices: Hidden Markov
models (HMM) are doubly stochastic processes defined using
an unobservable (hidden) state process, which can be observed
via another set of stochastic processes produced by a sequence
of observations [9]. HMM allow the characterization of dy-
namic systems via a set of hidden states s = {s1, ..., sD}
which are inferred from the observations of the system, where
D is the number of states in the model. Concisely, an HMM
can be formally described by the unknown parameters θ =
{π,A,B}, where π ∈ RD is the initial probability vector,
which defines the initial probabilities of the system to be in
the different states; A ∈ RD×D is the transition probability
matrix, which relates the state changes of the hidden latent
variable; and B is the emission probability matrix, which is
the probability of observing a given value in state s.

In particular, given the n-th time series of temporal VIs
X(n), the hidden state sequence that reveals a possible state
si of x(n)

t across time is denoted as Z(n) = [z
(n)
1 , ...,z

(n)
T ]>,

with 1 ≤ i ≤ D. On the other hand, the entries of the
transition probability matrix A are given by ai,j = P (zt =
si|zt−1 = sj), which is the probability of transition from

a state si to the state sj , for i, j ∈ {1, ..., D}. Finally, the
entries of the emission probability matrix B are given by
bi,t = P (xt|zt = si), which defines the probability density
function of the time-sample xt at time t given that xt is in the
state si. More precisely, in the proposed analysis, the emission
probability distribution B is assumed to be a mixture of
Gaussian distributions, with M multivariate normal densities.
Note that the set of states s is typically related to the changes
of the life vegetation cycle [8], [10].

The discrimination of anomalies in the AD-based HMM
decides between two hypotheses defined as follows

H0 : Absence of anomaly

H1 : Presence of anomaly,

where under hypothesis H1 a given parcel X(n) is supposed
to be abnormal whereas it corresponds to a normal behavior
under hypothesis H0. The likelihood of a given parcel is then
defined as

P (X(n)|θ) =
∑

allZ(n)

P (X(n)|Z(n),θ)P (Z(n),θ),

=
∑

z
(n)
1 ,...,z

(n)
T

π
z
(n)
1
b
z
(n)
1 ,1

a
z
(n)
1 ,z

(n)
2
... a

z
(n)
T−1,z

(n)
T

b
z
(n)
T ,T

.
(1)

To correctly model and learn the temporal structure of the
underlying data for AD, the HMM model parameter vector θ
is estimated by maximizing the log-likelihood, i.e.,

θ̂ = argmax
θ

log

N∑
n=1

P (X(n)|θ), (2)

where θ̂ is the parameter vector that better explains X . A
local optimal solution of Problem (2) can be found via the
Baum-Welch algorithm [9].

2) Generating Different HMM-models: The estimator θ̂
defined in (2) is associated with all the parcels contained
in the training set XAD. In order to account for different
possible structures in the underlying data, this paper proposes
to build several HMM associated with subsets of Ns samples
chosen in XAD, with Ns � N . These subsets are built
using blocks of time series chosen randomly in XAD, which
leads to L HMM models denoted as Θ̂ = {θ̂1, ..., θ̂L}, with
θ̂` = {π(`),A(`),B(`)} for ` = 1, ..., L. These subsets of time
series will be denoted as {X `}L`=1 with X ` ∈ RNs×K×T and
XAD =

⋃L
`=1 X `. The choice of parameter L will be discussed
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in Section III.
3) AD-HMM Learning Algorithm: Algorithm 1 summa-

rizes the main steps of the proposed AD-HMM learning,
corresponding to the second gray box in Fig. 2(a). This
algorithm receives the set of time series parcels XAD, the
number Ns of subsets used to learn a single model, the number
of the HMM states D, and the number of models to be learned
L. Default values resulting from simulations conducted on real
images are provided for each parameter. In the initialization
step (Line 1), the number of Gaussian distributions M used
in the mixtures is estimated directly from the input data.
A strategy to estimate this number of Gaussians is to use
the number of local maxima in the data histogram and to
reduce this number until the algorithm performance decreases
significantly. In the next step, a random index selection of
Ns time series stacked in X ` is performed, indicating the
parcels to be selected from the set XAD, as detailed in the
previous subsection. The HMM model parameters θ are then
randomly initialized [9]. Finally, the HMM model parameters
are estimated using the Baum-Welch procedure and stacked
into the set Θ̂ = {θ̂1, ..., θ̂L}, where θ̂` = {π(`),A(`),B(`)}.

Algorithm 1: AD-HMM Learning Procedure
Input: XAD: Set of time series associated with parcels;

Ns: # of images per model (default Ns = 100);
L: # of models to be learned (default L = 10);
D : # of states (default D = 18);

1 Initialize: M : Estimate the number of Gaussian
mixtures;

2 for ` = 1 to L do
3 Built X ` by randomly selecting Ns parcels in XAD;
4 Initialize θ` = {π(`),A(`),B(`)};
5 θ̂` ← BAUM-WELCH(X `,θ`,M,D);

Output: L HMM models Θ̂ = {θ̂1, ..., θ̂L} and their
subsets of time series X `.

C. HMM-based Anomaly Detection

For the testing part (see Fig. 2(b)), AD is first performed
at the parcel level to detect abnormal parcels. The detected
anomalies are then localized in time as explained in Section
II-C2. The proposed strategy is composed of 1) a point
anomaly detection step detecting abnormal parcels, and 2)
a contextual anomaly detection [18] step which allows the
starting time of the anomaly to be estimated.

1) AD at the parcel level: The probability that a time series
Y = [y1, ...,yT ]

> has been generated by the `-th learned
model is written as

w` = logP (Y |θ̂`), (3)

for ` = 1, ..., L, where w = [w1, ..., wL]
> ∈ RL is a vector

containing the log-probabilities of the test signal with respect
to the L HMM models learned using Algorithm 1. Note also
that these log-probabilities can be estimated using the forward-
algorithm [9], which is summarized in Table III, where αi,t
is the forward variable, a(`)i,j and b

(`)
j,t are the elements of the

matrices A(`) and B(`) for the `-th model with parameter
vector θ̂`. Note that the estimated log-probability in (3) is
determined using the procedure in Table III, which sums the
forward variables to determine a unique probability for a given
parcel. The final AD rule (at the parcel level) is defined as:

q = max
`=1,...,L

w`
H1

≶
H0

τ, (4)

where q ∈ {0, 1} is the predicted class (with the highest
probability) and τ is a threshold related to the probability of
false alarm of the test [27]. Looking carefully at the proposed
AD rule (4), a tested time series is declared as normal if at
least one probability w` (probability of Y given θ̂`) exceeds
the threshold τ . This detection rule is motivated by the fact
that the different HMM models capture the possible temporal
structures of all normal time series.

TABLE III
ESTIMATION OF LOG-PROBABILITIES FOR A TEST SIGNAL.

Forward-procedure for the ` = 1, ..., L models

1) αi,1 = π
(`)
i b

(`)
i,t (Initialization)

2) αi,t+1 =
[∑D

j=1 αt a
(`)
i,j

]
b
(`)
j,t (Induction)

3) logP (Y |θ̂`) =
∑D

j=1 αi,T (Ending)

2) Anomaly localization via segmentation: When a tested
time series Y has been declared as abnormal in (4) (i.e.,
when q = 1), it goes into the second step devoted to anomaly
localization. In this step, the HMM models Θ̂ = {θ̂1, ..., θ̂L}
determined using Algorithm 1 are used on time segments[
tρ1 , tρ2

]
= {t | tρ1 ≤ t ≤ tρ2} (instead of analyzing the

complete time series) to determine the starting point of the
anomaly in the time series. Consider the forward variable
αi,t−1 at time t− 1 in its scaled version defined as α̃i,t−1 =

αi,t−1/
∑D
i=1 αi,t−1, where i = 1, ..., D, and D is the number

of HMM states. The probability of having Y generated by the
model θ̂ at time t can be written it terms of αi,t−1 as follows

ut = 1/
(∑D

i=1 α̃i,t−1ai,jbi,t−1
)
, (5)

where ut depends on the scaled forward variable α̃i,t−1, the
transition probability ai,j and the emission probability at time
t − 1. Note that this expression for ut results from the first-
order Markov chain rule, which assumes that the current state
(at time t) depends only on its predecessor state (at time t−1)
[9]. Note also that the forward variable αi,t−1 is used in its
scaled version α̃i,t−1 to avoid overflow. Indeed, this variable
relies on the sum of a large number of terms, as shown in the
induction step of the forward procedure. The log-likelihood of
the time series in the time segment [tρ1 , tρ2 ] is defined as

logP (ytρ1 , ...,ytρ2 |π,A, bi,[tρ1−1,tρ2−1]) = −
tρ2∑
t=tρ1

ut, (6)

where ut has been defined in (5), and bi,[tρ1−1,tρ2−1] is
the emission probability for the time interval

[
tρ1 , tρ2

]
, for

i = 1, ..., D. As a result, the probability that a time series
[ytρ1 , ...,ytρ2 ] has been generated by the `-th learned model
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on the segment [tρ1 , tρ2 ] can be computed as

w`,[tρ1 ,tρ2 ]
= logP

(
ytρ1 , ...,ytρ2 |π

(`),A(`), b
(`)
i,[tρ1−1,tρ2−1]

)
,

(7)
where w`,[tρ1 ,tρ2 ]

is the vector containing the log-probabilities
of the different models in the time interval [tρ1 , tρ2 ].

The anomaly localization studied in this paper considers
four time intervals associated with different crop life cycles to
identify potential anomalies. These intervals are referred to as
Growing, Flowering, Adult-phase, and Senescence, as in [11],
[13]. The hypothesis test to localize the anomaly in a given
cycle is defined as

wcycle = max
`=1,...,L

w`,[tρi ,tρj ]

H1

≶

H0

τcycle, (8)

where cycle ∈ {Growing, Flowering, Adult-phase, Senes-
cence}, τcycle is a threshold depending on a pre-defined proba-
bility of false alarm for a given cycle, tρi , tρj are the beginning
and the end of the cycle, and wcycle is a vector containing
the highest probabilities for each cycle given the tested time
series. Note that (4) defines the parcel detection rule whereas
(8) localizes the anomaly in one of the pre-defined cycles.

D. Anomaly Classification

A final step can be included in the analysis to identify the
anomaly that has affected the parcel Y using a supervised
classifier. After an anomaly has been localized using the steps
displayed in Fig. 2(b), we propose to classify the detected
anomaly into one of the C classes defined by the user and
corresponding to the possible types of anomalies affecting the
analyzed crop.

The set of features used for the classification is composed
of the detected time series, which are introduced as column-
features in the input matrix. More precisely, the feature matrix
for training the classifier is of the form XAC = [x1, ...,xR],
where xr = [xr,1, ..., xr,KT ]

> is a vector containing the KT
features extracted from the r-th time series at all time instants.
It is important to highlight that each time series xr selected for
training the classifier contains an abnormal time series from
XAC with the corresponding label, denoted by vr ∈ {1, ..., C},
where C is the total number of classes. In the testing part, the
classifier generates for each time series y = [y1, ..., yKT ]

> a
label vy ∈ {1, ..., C} indicating the class of the anomaly y.

III. SIMULATIONS RESULTS

The performance of the proposed methodology is evaluated
on both simulated and real data2. AD is evaluated in terms of
precision, recall, and area under the precision-vs-recall curve
(AUC), whereas the probabilities of correct classification are
used for anomaly classification3. The precision, and recall are
defined as

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

2We used the HMM toolbox available online at https://www.cs.ubc.ca/
∼murphyk/Software/HMM/hmm.html.

3The higher the value of the metric, the better the detection or classification.

where TP, TN, FP, and FN are the numbers of true positives,
true negatives, false positives, and false negatives4. On the
other hand, the probability of correct classification for class c
(denoted as Pc) is defined as:

Pc =
1

Rc

Rc∑
r=1

δ(vr, v̂r), (8)

where Rc is the total number of training vectors of the class
c ∈ {1, ..., C}, vr and v̂r are the true and estimated labels of
the r-th training vector of class c and δ(·) is an indicator such
that δ(vr, v̂r) = 1, if vr = v̂r, and zero otherwise.

A. Synthetic data

Synthetic data are first considered to evaluate the AD-HMM
approach for point and contextual AD. For point AD, the
proposed approach is compared against three state-of-the-art
algorithms: the OC-SVM with a Gaussian (RBF) kernel, the
isolation forest (IF), and the hidden-Markov AD (HMAD)
[23] with a linear kernel. Note that OC-SVM and IF are
considered here for novelty detection, using both training
and testing phases (denoted as OC-SVM-N and IF-N), for a
fair comparison with the proposed approach. The parameters
of each algorithm were adjusted by cross validation leading
to 1000 isolation trees and a sub-sampling ratio of 256 for
IF, an outlier ratio of ν = 0.1 for HMAD, and an outlier
fraction of ν = 0.1 for OC-SVM. Note that the value of the
kernel bandwidth γ used in for the RBF kernel was estimated
using the median of the pairwise Euclidean distances between
vectors of the feature set (i.e, using Jaakkola’s heuristic [28]).

Synthetic time series were generated as zero-mean Gaussian
sequences with unit variance for the nominal data, i.e., with
mean µ = 0 and variance σ2 = 1. Mean-value jumps (first
scenario) and variance changes (second scenario) were then
introduced as anomalies in the testing sequences to evaluate
two anomaly scenarios. Specifically, the number of nominal
time series generated for the learning phase was N = 1000
with T = 300 temporal samples. For the testing phase, a set
of 500 sequences was generated, with 10%, 20%, 30%, and
50% of abnormal time series with anomaly blocks having
90 samples. Fig. 3 compares the different AD algorithms in
terms of average AUC (the AUC values were obtained from
10 Monte Carlo runs for each probability of anomalies). Fig.
4 shows examples of AUC curves obtained when there are
30% of anomalies in the testing set. In general, the proposed
AD-HMM reaches comparable results to those obtained with
the OC-SVM algorithm. In the case of variance changes, Fig.
3 shows that the HMAD performance decreases for large per-
centage of anomalies, reflecting the fact that this algorithm was
designed for anomalies characterized by mean value jumps. An
additional controlled experiment was conducted to evaluate
the robustness of the AD algorithms to possible anomalies
present in the training set, with percentages of anomalies of
5%, 10%, 20%, 30%, and 50%. The results displayed in Fig.
5 show that the proposed method seems to be more robust to

4The detection threshold was determined using the point of the AUC curve
located the closest to the ideal point (0, 1).

https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
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the presence of anomalies in the training set, when compared
to the state-of-the-art.

Fig. 3. AD performance in terms of area under the precision-vs-recall curve
(AUC) for different percentages of anomalies in the testing set.

Fig. 4. Illustration of the precision-vs-recall curves for each AD algorithm
when the percentage of mean-value jumps and variance changes anomalies in
the testing set is 30%.

Fig. 5. AD performance in terms of AUC for different percentages of
anomalies in the training set when the testing set has 30% of anomalies.

In order to evaluate the performance of the proposed
anomaly localization (contextual AD) on data with a controlled
ground truth, we simulated anomaly cycles by considering
time segments of 60 time samples, leading to 5 artificial cycles
or intervals. The time series detected as abnormal after the
proposed AD-HMM approach were then analyzed to localize
the detected anomalies. Note that the synthetic anomalies
were generated according to the two scenarios corresponding
to mean-value jumps with amplitude µ = 1.2 and variance
changes with a ratio of variances equal to 1.5. These scenarios
correspond to examples of typical anomalies that can affect
crop parcels due to growing or heterogeneity problems. Fig. 6
summarizes the AUC, precision, and recall obtained on each
time interval using these synthetic data considering the two
scenarios.

As a complement, Fig. 7 displays some anomaly localization
results obtained for time series subjected to anomalies defined
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Fig. 6. Summary of the time anomaly localization (contextual AD) perfor-
mance on each synthetic time interval.

by mean-value jumps (top) or variance changes (bottom). Note
that the abnormal time series are represented using a solid
line and that the ? labels indicate the samples affected by the
anomaly (ground truth). The time intervals considered by the
algorithm are located between the dotted vertical lines and
those detected as abnormal using the algorithm are shown
using the shaded orange boxes. These results illustrate the
anomaly localization performance of the proposed method.
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Fig. 7. Examples of anomaly localization for synthetic data subjected to mean-
value jumps (top) and variance changes (bottom). The solid line represents
the tested time series and the ? line indicates the time samples affected by
the anomaly. The time intervals considered in the analysis are delimited by
the gray dotted vertical lines and the segments detected as abnormal are
highlighted with a shaded orange box.

B. Experiments on real data: multispectral rapeseed images

1) Study Area: The research site is located in Beauce,
North of France. This site contains a lot of crop fields such
as rapeseed and wheat. A set of 13 multispectral Sentinel-2
images was selected between October 2017 and June 2018.
The dataset was processed by the THEIA land data center
to level 2A. A set of 2218 rapeseed parcels was extracted
from the images with the support of agronomists, as illustrated
in Fig. 2(a). The resulting dataset was analyzed with the
aim of labeling part of the data for evaluation purposes. The
anomalies found in the data were related to heterogeneity and
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vegetation phenology problems (which are popular agronomic
anomalies), and boundary errors and wrong shape (also-called
non-agronomic anomalies). Note that the labeling done in [25]
was used in this work.

The partitioning of the dataset for AD was randomly
performed as follows: N = 500 normal parcels for AD-
HMM learning and the remaining parcels (1021 abnormal
parcels and 697 normal parcels) for AD-HMM testing. The
test parcels detected as anomalies were then considered for
the classification experiments. Based on the anomalies found
in the database, the anomaly classification step considers the
following classes: late growth, early/late senescence and other,
where “other” is a class containing all the anomalies that do
not belong to the other classes. These anomalies are non-
agronomic anomalies (such as errors in parcel boundaries,
wrong crop type, or shadow perturbations produced by clouds)
or agronomic anomalies affecting a very small number of
parcels (such as early growth, early flowering, and crop
heterogeneity).

For illustration purposes, Fig. 8 displays (a) the expected
temporal profile of the NDVI median with anomalies related
to problems in the vegetation phenology such as early/late
growth, early/late senescence, and early flowering, and (b)
the distribution of a set of 500 nominal and abnormal NDVI
medians. As can be seen in the histograms and in the zoom,
the normal and abnormal data have different distributions,
allowing anomalies to be detected. Note that the different
vegetation cycles for the rapeseed crops indicated in the top
of Fig. 8(a) are located between the vertical gray dotted lines
and were selected based on [2], [25].

2) Analysis of vegetation indices: To analyze the impact of
using different time series of VIs for AD, Fig. 9 compares the
performance of the proposed AD-HMM algorithm using the
median and IQR of different combinations of VIs introduced in
Table I. More precisely, Fig. 9 shows the AUC values obtained
for different VI combinations after averaging the results of
10 Monte Carlo runs. Note that all the VIs were scaled such
that each column of the feature matrix take its values in the
interval (0, 1) (minimum-maximum scaling). One can observe
that the performance of AD-HMM is very similar when using
different VI combinations. Therefore, the remaining analyses
will be performed with NDVI only.

The overall performance of the proposed AD-HMM algo-
rithm depends on the parameters Ns, L, and D, that need
to be adjusted. The number of states was varied in the set
{3, 9, 12, 15, 18} whereas the values of Ns and L were chosen
in the set {10, 25, 50, 100, 200}. For D = 18, the averaged
AUC metrics vary in the interval [0.80, 0.83], and the best
performance for all the VIs was obtained when Ns = 100 and
L = 10. These values were selected in the rest of the analysis,
in particular to display Fig. 9.

3) Anomaly detection results: The experiments conducted
on real data using the proposed AD approach were com-
pared to different algorithms including IF-N, OC-SVM-N, and
HMAD. All the algorithms were run using the NDVI features.
The parameters of the algorithms were set by cross validation.
For OC-SVM-N, the outlier ratio was set to ν = 0.1, and
the kernel parameter for the RBF kernel was estimated using
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Fig. 8. Temporal profiles and distribution of nominal (blue) and abnormal
data. a) Five typical time series profiles for agronomic anomalies are shown,
where the shaded blue section corresponds to the normal time series. b)
Histogram of 500 time series of normal (blue) and abnormal (gray) NDVI
median for three dates, which illustrates how the distribution of abnormal
data deviates respect to the nominal data, leading potential anomalies to be
detected by the proposed approach.

Precision vs Recall

Fig. 9. Performance of the AD-HMM detection using the median and IQR
of different temporal vegetation indices.

Jaakkola’s heuristic [28]. The IF-N algorithm was run using
1000 isolation trees and a sub-sampling ratio of 256. The
outlier fraction used in HMAD was set to ν = 0.3. Fig. 10
summarizes the performance of the different algorithms, where
the proposed approach obtains slightly better results against
OC-SVM-N and IF-N. The poor performance obtained with
HMAD is probably due to the fact that the anomalies affecting
crop parcels are not limited to changes in the mean of NDVI.
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Fig. 10. Performance of different AD methods to detect abnormal parcels in
the real dataset.

4) Time Anomaly Localization: The signals detected as
abnormal in the previous step were then analyzed to localize
the anomalies affecting the crop. For an easier interpretation,
the acquisition dates presented in Fig. 8 were transformed
into integer values following the cycle time intervals of
rapeseed crops as follows: Growing= {t|1 ≤ t ≤ 4},
Flowering= {t|5 ≤ t ≤ 6}, Adult= {t|7 ≤ t ≤ 9}, and
Senescence= {t|10 ≤ t ≤ 13}.

Fig. 11 shows the results obtained for three time series with
growth and wrong type problems, where the cycle detected
by the proposed AD-HMM is indicated in the top of each
figure as “Cycle Detected” whereas the class of the anomaly
is referred to as “True Class”. The lattice box on the plots in
Fig. 11 highlights the detected cycle. Note that based on the
learned models, the proposed approach can estimate when the
temporal structure deviates from the nominal behavior, even,
for subtle deviations as shown in the plot of the middle for
Late Senescence problems.
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Fig. 11. Time anomaly localization for three tested parcels of rapeseed crops
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anomaly and the detected cycle. The lattice box highlights the detected cycle.

C. Anomaly Classification After AD and Localization

The last step of the proposed algorithm classifies some
classes of anomalies detected in the rapeseed crops. To evalu-
ate the classification performance on the available samples, the

TABLE IV
PROBABILITIES OF CORRECT CLASSIFICATION (Pc) COMPUTED USING

LEAVE-ONE-OUT CROSS-VALIDATION FOR THE DIFFERENT CLASSIFIERS

# Classes # Samples SVM-LN SVM-RBF KNN RF

1 Late Growth 179 0,79 (0,01) 0,82 (0,01) 0,80 (0,01) 0,81 (0,02)
2 Early Senescence 51 0,92 (0,03) 0,93 (0,03) 0,84 (0,03) 0,72 (0,01)
3 Late Senescence 29 0,96 (0,01) 1,00 (0,00) 0,90 (0,03) 0,71 (0,05)
4 Other 352 0,58 (0,01) 0,60 (0,01) 0,61 (0,01) 0,76 (0,01)

Average Pc 0,81 (0,01) 0,84 (0,01) 0,79 (0,02) 0,75 (0,02)

TABLE V
CONFUSION MATRIX FOR THE SVM-RBF CLASSIFIER

Predicted Class
Classes Late Growth Early Senescence Late Senescence Other

Tr
ue

C
la

ss Late Growth 146 6 14 13
Early Senescence 1 46 0 3
Late Senescence 0 0 29 0
Other 54 59 28 211

leave-one-out cross-validation (LOOC) strategy was consid-
ered. LOOC consists in leaving one vector out of the database,
training the classifier with all the remaining samples, testing
the classifier with the vector removed from the database and
repeating these operations R times, where R is the size of
the database. This strategy was selected given the few number
of training samples available for anomaly classification. The
classifiers considered in this section were the random forest
(RF) algorithm with 100 trees, the k-nearest neighbor (k-
NN) classifier with k = 3, and the support vector machine
algorithm with linear (SVM-LN) and Gaussian (SVM-RBF)
kernels. The multi-class strategy used in the SVM-based clas-
sifiers was based on the One-Against-One voting strategy [29].
In addition, the synthetic minority over-sampling technique
(SMOTE) was used to oversample the training set to mitigate
the unbalanced nature of the dataset [30].

Table IV shows the the estimated probabilities of correct
classification for the different classifiers (where the highest
values are highlighted in bold and the corresponding standard
deviations are indicated into brackets). As can be observed,
the highest classification performance is obtained from the
SVM-RBF classifier, where the resulting confusion matrix is
shown in Table V. Note that the class other, which contains
anomalies such as heterogeneity, wrong crop type, errors in
parcel boundaries, and shadow perturbations, allows us to
be close to a real scenario where anomalies that cannot be
explained by abnormal plant growing are often present. It
is important to mention here that in the rapeseed crops of
this study, those classes (wrong crop type, heterogeneity, and
shadow perturbations) affect either the whole time series or
some time intervals in a random way, yielding anomalies
located in any time interval. This lack of structured patterns
increases the complexity of the classification, which explains
the relatively poor classification performance obtained for this
class. Additional information resulting from other data, e.g.,
from synthetic aperture radar images, might be considered to
improve the classification performance. This work is currently
under investigation.
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IV. CONCLUSIONS

This paper studied a method for detecting, localizing and
classifying anomalies that affect agricultural crops based on
hidden Markov models (HMM) and machine learning. The
proposed anomaly detection based on HMM (AD-HMM)
exploited the temporal structure of time series of vegetation
indices extracted from multispectral images to perform both
point (parcel-wise) and contextual (temporal-wise) anomaly
detection. The proposed method also allowed the detected
anomalies to be temporally localized and classified into pre-
defined classes, information that is valuable for crop mon-
itoring. A comparison with classical anomaly detection al-
gorithms, in terms of precision and recall, provided very
promising results. An interesting property of the proposed
anomaly detection algorithm is its capacity of localizing and
classifying the anomalies located within each time series by
exploiting the previously learned HMM models.

Further investigation should be conducted to evaluate the
interest of the proposed approach for detecting anomalies in
other kinds of crops to characterize their dynamic behavior.
Another interesting further work is the extension of the pro-
posed AD-HMM to time series of vegetation indices estimated
from multiple remote sensing sources, e.g., extracted from
synthetic aperture radar (SAR) images or vegetation optical
depth (VOD) retrievals derived from microwave sensors (these
vegetation indices have been used in phenology studies in
[4]). Finally, it could also be interesting to investigate the
application of the proposed approach to features estimated
from other kinds of sensors such as compressive multi-
temporal/multispectral sensors [31], [32], which acquire the
images using a compressed format.
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