

Anomaly Detection and Diagnosis in Grid Environments

Lingyun Yang1 Chuang Liu2 Jennifer M. Schopf 3 Ian Foster1,3
1
Department of

Computer Science,
University of Chicago,

Chicago, IL 60637

2
Microsoft,

Redmond, WA 98052

3
Mathematics and Computer
Science Division, Argonne

National Laboratory,
Argonne, IL 60439

 lyang@cs.uchicago.edu chuangl@microsoft.com [jms, foster]@mcs.anl.gov

ABSTRACT

Identifying and diagnosing anomalies in application behavior is
critical to delivering reliable application-level performance. In this
paper we introduce a strategy to detect anomalies and diagnose
the possible reasons behind them. Our approach extends the
traditional window-based strategy by using signal-processing
techniques to filter out recurring, background fluctuations in
resource behavior. In addition, we have developed a diagnosis
technique that uses standard monitoring data to determine which
related changes in behavior may cause anomalies. We evaluate
our anomaly detection and diagnosis technique by applying it in
three contexts when we insert anomalies into the system at
random intervals. The experimental results show that our strategy
detects up to 96% of anomalies while reducing the false positive
rate by up to 90% compared to the traditional window average
strategy. In addition, our strategy can diagnose the reason for the
anomaly approximately 75% of the time.

1. INTRODUCTION

Troubleshooting distributed Grids is a growing area of concern.
Collaborations are increasing in size, with many more resources
available for use and few ways to track or even detect failures or
performance faults. Anomalous behavior of applications occurs
frequently, but current techniques can be error prone and result in
high false positive rates. One common cause is predictable
periodic background behavior: shared network links have a daily
pattern in that they are usually busier during the daytime [4], the
number of jobs has a 24-hour pattern of many daytime
submissions and then nightly draining of the queues [9], and
periodic system administration tasks can have finer-grained, even
hourly, occurrences.

The performance degradation caused by the periodic resource
usage patterns can be predicted but is, in general, unavoidable if
the resource is to be used. Hence, we see two kinds of anomalies
in the system: true anomalies, which are caused by a failure or
unexpected event, and periodic anomalies, which for the most
part should not be considered anomalous as they are part of the
normal system behavior. Only true anomalies should cause alert
flags and be diagnosed.

Periodic behavior may differ widely, even on resources with
similar capabilities, so any approach should be resource- and
period-agnostic for wide applicability. For example, Figure 1
shows the CPU load collected on a machine in the Planetlab
testbed for one week with a daily periodic usage pattern likely
caused by the working schedule of the people sharing this
machine. In contrast, Figure 2 shows the CPU load trace from a
shared Linux machine at the University of Chicago with a usage
pattern with a period of about 30 minutes, likely caused by system
maintenance tasks.

The periodic resource behaviors will cause variations on the
performance of applications running on these resources, which in
turn may cause a large number of false positives when detecting
anomalies. To address this situation, we propose a new strategy
that uses signal-processing techniques to take normal periodic
behavior into account, which greatly reduces the number of false
positives. We extend the traditional window average-based
anomaly detection approach (Section 2). Instead of analyzing the
raw performance data collected, we automatically detect and filter

out the periodic patterns existing in the resource performance data
(Section 2.1). By analyzing the processed resource performance
data, our strategy can detect and diagnose application anomalous
behaviors (Section 2.2). We evaluate the effectiveness of our
approach by applying it to three Grid applications (Section 3). Our
results demonstrate that our strategy is able to detect up to 96%
percent of the anomalies in a system with a much smaller false

positive rate than standard statistical approaches.

(c) 2007 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored
by a contractor or affiliate of the [U.S.] Government. As such,
the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SC07 November 10-16, 2007, Reno, Nevada, USA
(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

Figure 1: Daily periodic usage pattern of CPU load observed

on a week-long trace for righthand.eecs.harvard.edu. Data

was measured every 30 seconds.

Figure 2: Typical two-hour CPU load trace from a Linux

machine at the University of Chicago, vatos.cs.uchicago.edu,

that shows a half-hour periodic variations. Data was

measured every 30 seconds for two weeks during each

monitoring period.

The main contributions of this paper are threefold:

1) A resource and period-agnostic approach to filtering out
periodic behavior from trace data to better detect
anomalies.

2) A diagnostic technique that is also resource independent
and is more than 75% effective in determining the cause
of anomalies.

3) Extensive experimentation showing these approaches
are significantly better at detecting anomalies than the
standard approach for CPU, memory-based, and
network anomalies in both simulated and actual
environments.

2. ANOMALY DECTION AND

DIAGNOSIS

Window averaging is the most commonly used statistical anomaly
detection method because of its simplicity and efficiency. It has
been used to detect unexpected slowdown in the rate of wide-area
file transfers [10], degradation in the throughput of distributed
applications [3], and aberrant behaviors in network traffic [5].
This method maintains a moving window average across the
performance data of interest as the baseline to compare against. If

the current data is higher than the window average by some
threshold value, it is tagged as an anomaly, and an alarm is sent.
To achieve more stable results, one can modify this approach to
send an alarm only after a minimum number of consecutive
violations of the threshold [22].

We extend the use of the window average-based method by
filtering the data using Fourier transforms to capture normal
periodic behavior. We also add a diagnostic phase to the standard
approach to understand the possible cause of the anomaly.

2.1 Filtering resource usage pattern using

Fourier transform

Fourier transform-based spectral analysis is a natural choice for
filtering periodic resource usage patterns because of its dominant
capability in frequency domain analysis. Every sequence of
performance measurements, called a signal in the signal-
processing field, can be expressed in both a time domain and a
frequency domain representation [23]. The time domain
representation shows the amplitude of the measurements at
successive time points, or how a signal changes over time. With
only a time domain representation, however, it is difficult to
answer questions about frequency behavior, such as “Does the
data include any periodic signals?” and “What is the frequency
and amplitude if there are any?” To answer these questions, we
need to use the frequency domain representation of the signal,
which shows how much of the signal’s energy is presented as a
function of frequency. We can transform between these time
domain and frequency domain representations of the data by using
Fourier transform and inverse Fourier transform.

Resource performance measurements are represented in the time
domain. To identify periodic resource usage patterns, we Fourier
transform the data to the frequency domain. After identifying and
filtering out the periodic resource usage patterns in the data, we
inverse Fourier transform the data back to the time domain
representation. A similar approach has been used to detect
periodic components in electrical signals [23] and photographs
[12]. We remove all strong periodic signals by setting the
amplitude of the corresponding periodic frequency to zero and
then transform the resource performance data back to the time
domain representation by applying an inverse Fourier transform to
the frequency domain representation. The grey line and black line
in Figure 3 show a before-and-after view of this process.

Figure 3: Raw CPU load and the CPU load after the pattern-

filtering process.

The advantage of the Fourier transform method as a technique for
identifying and removing periodic usage patterns in resource

performance data is that we do not need to know whether a
periodic signal exists or what its frequency, amplitude, or shape
is. The flexibility of the Fourier transform in dealing with periodic
signals makes it possible to identify various periodic usage
patterns in resource performance data automatically and
dynamically.

2.2 Detection and diagnosis

We now introduce how to extend the traditional window average
method in order to efficiently detect and diagnose anomalous
application behaviors.

In our previous work [27], we proposed a statistical data reduction
strategy for selecting related system metrics. The small subset of
system metrics selected has been shown sufficient to capture the
application behavior, thus reducing the data volume to be
analyzed for anomaly detection and diagnosis. This data reduction
strategy also builds a model between the application performance
metric and selected system metrics, as follows:

 Y=β0+β1x1+β2x2+…βn xn, Formula 1

where Y is the application performance metric, xi (i=1…n) are
system metrics that describe resource performance and are

selected by the data reduction strategy, and βi (i=0…n) are a set
of parameters obtained during the process of data reduction
(please refer to [27] for the details of the model). Given this

model, the parameters (the value of all βi s), and measurements of
system metrics (the value of all xis), we can obtain an estimated
application performance value(Y).

Using this model, we extend the traditional window average-
based algorithm as follows:

1. Calculate a moving window average of the application
performance data. This window average is used as the
baseline for the application performance.

2. Compare the application performance data with the window
average. If the current application performance value is
within a threshold value of the average, this value is normal;
go to step 6. (Section 3.1.1 discusses setting this parameter.)

3. To define whether the value is either a periodic anomaly or a
true anomaly, first filter out the periodic patterns using
Fourier transform techniques (Section 2.1). Then calculate an
application performance value using Formula 1 with the
filtered resource performance data. This value is the
estimated application performance without the influence of
the periodic resource usage patterns, which we refer to as the
estimated application performance.

4. Compare the estimated application performance value with
the window average. If the difference is more than the
threshold value, this is an anomaly, so continue to step 5 for
further diagnosis. Otherwise, the variation in the original
application performance data is caused by periodic resource
usage patterns, so this is not an anomaly. We then go to step
6 to exam the next application performance value.

5. Calculate the window average for each system metric, and
use this window average as the baseline for resource
behavior. When a real application anomaly is detected, check
whether there is a large variation in the resource performance
by comparing the current resource performance data with its

window average baseline for each system metric, as done for
the application performance. If there is a large performance
variation during the same time period, the resource may be
one of the causes of the anomalous application behavior.

6. Check the data at the next time point, and update the moving
window average of the application performance data and
resource performance data. Go back to step 2.

3. EXPERIMENTAL RESULTS

To evaluate the validity of our anomaly detection and diagnosis
strategy, we applied it in three contexts: a Cactus application
running in a shared local area network environment, a GridFTP
transferring data across a simulated wide area environment, and a
Sweep3d application running in a simulated wide area
environment. We tested our methods to see whether they were
able to detect anomalies that we introduced deliberately. In
keeping with accepted practice [17, 29], we view our technique as
effective if it can detect most of the anomalies (more than 90% in
our experiments) and significantly reduce the false positives
caused by periodic patterns of the resources.

3.1 Parameters

3.1.1 Window Average Threshold Value

If the difference between the performance data and the window
average is more than the threshold value, a potential anomaly
exists in steps 2 and 4 of our algorithm. Different applications
may have different needs when defining what should count as an
anomaly, which in turn will affect the setting of the threshold
value. For our experiments, we set the threshold value to two
standard deviations of the average application performance value.
If the data is a normal distribution, a range around the mean plus
or minus two standard deviations captures approximately 95% of
the values, so a value outside this threshold has only a 5% chance
of being normal behavior.

3.1.2 Window Size and Data Reduction Parameter

The two additional parameters that influence our anomaly
detection results are the window size and the threshold parameter
in the data reduction strategy, which determines how many system
metrics will be selected and analyzed in the anomaly detection
and diagnosis process. We selected these two values by running a
set of experiments to search the space of feasible values on a
training set of data collected by running the Cactus application on
a shared cluster with 100 anomalies at random times.

We evaluated the quality of our anomaly detection approach using
two criteria: the number of successful detections, HIT, and the
number of false positives, FP. The parameter values that achieved
the best anomaly detection results were selected for further
evaluation. We first examined the sensitivity of the anomaly
detection strategy on a selection of window sizes. We fixed the
threshold parameter of the data reduction strategy equal to 0.95, as
suggested by [27], and ran this strategy with different window
sizes. Figure 4 shows the comparison of detection results with
different window sizes. When the window size is small, the
calculated window average fluctuates widely, and our strategy
produces a higher number of false positives and lower hit rates.
As the window size increases, the number of false positives
decreases, and the hit rate increases. In this experiment, when the
window size is larger than 32, the results flatten out, and our

strategy results in similar anomaly detection quality. When the
window size is equal to 128, our strategy achieves the fewest false
positives (53) and achieves a hit rate as high as 96%. We selected
the window size equal to 128 for further evaluation.

0

40

80

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

window size

H
IT

0

60

120

180

240

F
P

HIT
FP

Figure 4: Anomaly detection results for different window

sizes. The x-axis is in log scale, HIT is the number of detected

anomalies (out of 100), and FP is the number of false positives.

We then examined the sensitivity of our anomaly detection
strategy to the data reduction threshold parameter. We fixed the
window size at 128 and ran the anomaly detection strategy with
different threshold parameters, between 0 and 1 at intervals of
0.05, then calculated the number of hits and false positives
achieved by our strategy for each value. The results are shown in
Figure 5. As the data reduction threshold increases, more system
metrics are selected, and more information is available to our
anomaly detection strategy, thus allowing the anomaly detection
strategy to achieve a higher hit rate. Our anomaly detection
strategy achieves its highest hit rate (97%) when the data
reduction threshold is equal to 0.90. The number of false positives
also increases when more system metrics are used, but flattens
quickly after the threshold value is larger than 0.3. We selected a
threshold value of 0.90 for further evaluation because our strategy
achieves the highest hit rate (97%) and produces 44 false
positives, significantly less than the 676 produced by the
traditional window average method on the same data.

0

40

80

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Threshold parameter of data reduction strategy

H
IT

0

25

50

75

F
P

HIT
FP

Figure 5: Anomaly detection with different data reduction

threshold parameter for a window size of 128.

From these two experiments, we see that for both parameters, the
detection result of our strategy fluctuates when the parameter
values are small but flattens quickly after the two parameters
reach certain values (32 for window size and 0.3 for data
reduction parameter in our experiment) and stabilizes afterwards.
We conclude that the values of these two parameters are not
sensitive to our anomaly detection strategy as long as small values
are avoided. Although we determine these parameters using the
Cactus data, we used the same values for other application data in
the following experiments. It would be possible to tune these
parameters for each data set, and doing so might improve the
performance of the anomaly detection algorithm, but it would
greatly increase the overhead.

3.2 Cactus

We first tested our strategy on the Cactus application running in a
cluster environment. Cactus [2] is a simulation of a 3D scalar field
produced by two orbiting astrophysical sources. This application
decomposes the 3D scalar field over processors and places an
overlap region on each processor. We defined Cactus performance
as the elapsed time per iteration.

3.2.1 Experimental Methodology

We ran Cactus on four shared Linux machines at the University of
Chicago and collected measurements of system metrics selected
by the data reduction strategy [27] and application performance
measurements every 30 seconds. We collected four sets of Cactus
data, each 2 weeks long. The first data set is used as training data
to determine parameters in our strategy (Section 3.1.2). The other
three data sets are used for verification purposes. We knew a
priori that the resources experienced periodic variations, as shown
in Figure 2.

For each of the four data sets, we manually inserted 100
anomalies during the execution of Cactus application by running
resource consumption tools on the four machines at random times.
The resource consumption tools were three simple programs that
consume a given amount of CPU, memory, or bandwidth.
Specifically, the CPU consumption tool ran several computation-
intensive processes to compete for CPU time with the application.
On a round-robin scheduled system (like a Linux system), if the
resource consumption tool runs N (≥10 in our experiment)
processes, the application will get only 1/(N+1) percent CPU
time; the other N/(N+1) percent of CPU time is used by the N
computation-intensive processes. The memory consumption tool
ran a process that allocated a set amount of memory space. The
network consumption tool started multiple data transfers using the
Linux scp command to transfer a large file to another computer to
decrease the bandwidth available to our focus application.

3.2.2 Detection

We applied our strategy to three sets of Cactus data. To show the
effectiveness of our strategy, we compare our modified window
average method (Modified) to the traditional window average
method (Traditional) using two metrics: the number of anomalies
successfully detected and the number of false positives. As shown
in Table 1, the traditional window average method produced about
600 false positives. Among them, about 90% are caused by the
half-hour periodic variations in the resources performance. Our
strategy, which considered the periodic resource usage pattern,
can distinguish between true anomalies and periodic anomalies
and eliminated between 84% and 91% of the false positives

produced by the traditional window average method, while still
identifying between 93% and 96% of the injected anomalies.

Table 1: Anomaly detection results on Cactus data.

Traditional Modified Data
Set # of Hits # of FPs # of Hits # of FPs

Cactus_Data 1 99 588 96 63

Cactus_Data 2 99 633 93 59

Cactus_Data 3 98 551 94 89

Our strategy extends the traditional window average method by
filtering the periodic resource usage pattern for resource
performance data. However, some anomalous variations in the
resource performance measurement may contain components with
frequencies similar to the frequencies of periodic patterns. These
are also removed by mistake when we try to filter periodic
patterns. Thus, these anomalies are weakened and cannot be
detected by our strategy, resulting in a slightly lower hit rate than
that of the traditional window method.

3.2.3 Diagnosis

To simplify the diagnosis process, we classified the system
metrics that describe resource performance into three categories,
CPU related, memory related, and network related, with a total of
12 possible causes across the four machines. Because the
anomalies are introduced at random times, some anomalies may
happen simultaneously or consecutively. Since our strategy
detects the start and end of an anomaly by checking whether
application performance exceeds the window average by some
threshold value, if multiple anomalies overlap in time, only one
alarm will be sent, but all possible reasons will be reported.

Table 2 shows the results of our analysis. For every detected
anomaly, our strategy uses the system metrics selected by the data
reduction strategy to give a diagnosis analysis and report possible
reasons. We verify the diagnosis results by comparing the reasons
reported (CPU related, memory related, or network related) with
the type of anomaly inserted. These results show that, among the
93 to 96 anomalies detected on three data sets, our strategy was
able to report the reasons for 82 to 87 anomalies correctly.

Table 2: Anomaly diagnosis results on Cactus data.

Data
Set

of Anomalies
Detected

of Anomalies
Diagnosed Correctly

Cactus_Data 1 96 87

Cactus_Data 2 93 84

Cactus_Data 3 94 82

3.3 GridFTP data transfer

We test the capability of our strategy to detect networking
anomalies using the Globus GridFTP data transfer tool on
Emulab.

3.3.1 Experimental Methodology

To have a better understanding about the performance of our
method on network anomalies, we need to control the introduction
of anomalies and network topology during the experiment.
Therefore, we ran GridFTP on the Emulab [1, 25] testbed. Emulab
is an integrated experimental environment for distributed systems

and networks. It provides a time-and space-shared platform for
research and development by leveraging nodes allocated from
resource pool and temporarily dedicated to individual users for
emulation. Researchers access these resources by specifying a
virtual topology. Users can modify the shape of the traffic of each
link by changing the bandwidth, delay, and packets loss rate
between any two nodes in the topology dynamically.

WAN

Ethernet
100Mb/s

GridFTP Server
NodeA

GridFtp Client

Node D

Router

Node B

computercomputer

Gate Way

Node C

30Mb/s 30Mb/s

Figure 6: Emulated network topology in Emulab testbed.

We constructed a virtual topology in Emulab as shown in Figure
6. In this emulated distributed environment, machines in a LAN
are connected with each other by 100 Mb/S Ethernet. They access
the Internet through a gateway, denoted as Node C for
convenience. A GridFTP server, denoted as Node A, is accessible
by the gateway via s 30 Mb/s network. For complexity, we added
a router, denoted as Node B, in the path from the GridFTP server
to the gateway. If a client machine, denoted as Node D, in the
LAN requests to transfer data from the GridFTP server, the data
needs to pass three links. It is first sent from the GridFTP server to
the router, via the link AB. The router then transmits the data to
the gateway, via link BC. Finally, the data arrives at the client
machine, via the link CD.

We ran GridFTP in this emulated distributed network and
collected system metrics selected by our data reduction strategy
and the GridFTP performance metric once every 30 seconds.
Although there are four nodes on the path of data transfer,
normally users will not (or are not allowed to) run monitors on the
router and gateway. So we collect resource performance data only
on the GridFTP server and client machines and the ping
measurements from the client and server node to other three
nodes, respectively. The performance metric for the GridFTP
transfer is the data transfer rate, in megabits per second.

We collected three sets of GridFTP data. Each data set is about
two weeks long. For each data set, we inserted 100 anomalies
across the three links in the path between the client machine to the
GridFTP server during the GridFTP data transfer by changing the
traffic shaping parameters of each link in a random order. Emulab
emulates the change of network traffic by a control network,
which is invisible to applications, enforcing delay and bandwidth
limitation of a network link. We introduced the anomalies into
network links by changing the network configuration in the
simulated network environment. For each anomaly, we decreased
the bandwidth to a value less than 10% of its original value or
increased the delay (or loss ratio) by 5 to 10 times of original
value to cause significant performance slowdown in the GridFTP
transfer rate.

We also tried inserting CPU and memory anomalies for GridFTP
on Emulab testbed by introducing high CPU and memory load
using the resource consumption tools as we did for Cactus

application. However, the results show that even very high CPU
load and memory load (e.g., CPU load increases of more than 100
times) have no effect on the performance of GridFTP. One
possible reason is that the GridFTP is implemented efficiently: it
can scale to 1500 concurrent connections or more, so bandwidth is
the only bottleneck.

3.3.2 Detection

To show the effectiveness of our strategy, we applied our
modified window average method (Modified) and the traditional
window average method (Traditional) to the three sets of GridFTP
data and compared the results of these two strategies as we did for
Cactus application. We used the same two metrics, namely, the
number of hits and number of false positives, to evaluate the two
strategies. Because Emulab emulates the network topology by
allocating physical nodes temporally dedicated to a user, there is
no usage pattern caused by resource sharing or periodic system
maintenance jobs in these resources. Hence, the traditional
window average method produces only several false positives
caused by noise. Our strategy reduces the number of false
positives to 2 to 7 and can still detect more than 90 anomalies
successfully, as shown in Table 3.

Table 3: Anomaly detection results on GridFTP data.

Traditional Modified Data
Set # of Hits # of FPs # of Hits # of FPs

GridFTP_Data 1 99 5 92 2

GridFTP_Data 2 97 9 95 7

GridFTP_Data 3 100 6 90 4

From this result, we can see that our method is not as efficient as
the traditional method for detecting anomalies when there is no
periodic usage pattern in the resource performance. When
preprocessing the resource performance measurements, we tried
to remove the periodic patterns from the original performance
data. Although doing so helps remove false positives caused by
periodic patterns, it possibly incorrectly treats a very small
fraction of anomalies as false positives. On actual networks we
would expect to see various periodoc behaviors, so our results
would likely improve.

3.3.3 Diagnosis

The anomalous network behaviors in the Emulab testbed are
emulated network environment. Although applications running on
the emulated network can “sense” anomalous network behaviors,
these anomalous system behaviors are not really reflected in the
low-level system metrics. To diagnose anomalous network
behaviors, we used an application-level command, ping, to
measure network behaviors. We show an example in Figure 7.

Client

Node DFTP Server

NodeA

Router

Node B Gate Way

Node C

Figure 7: Network path from GridFTP server to client

machine.

There is a delay increment in the link A-B, shown as a crooked
line. Using ping measurements, we can determine this
phenomenon because we will see a performance hit on the ping
tests A_B, A-C, A-D and D-A, but not on D-B and D-C. In Table
4 we show the relation between network links and ping
measurements between nodes. The table shows that for any
anomalous link combination, except the last two, we can
determine what is affected simply by using pings.

Table 4: Anomalous links and corresponding anomalous ping
measurements.

Anomalous Links Anomalous Ping Measurements

Link AB A to B, A to C, A to D, D to A

Link BC A to C, A to D, D to A, D to B

Link CD A to D, D to A, D to B, D to C

Link AB and Link BC A to B, A to C, A to D, D to A, D to B

Link BD and link CD A to C, A to D, D to A, D to B , D to C

Link AB and Link CD A to B, A to C, A to D, D to A, D to B,
D to C

Link AB, Link BD,
Link CD

A to B, A to C, A to D, D to A, D to B,
D to C

The experimental results of our detection algorithm on the
GridFTP data are shown in Table 5. For the 92 to 95 anomalies
detected, our strategy finds the problematic links for 73 to 81
anomalies correctly. Remember we diagnose the application
anomalies by relating the resource anomalous behaviors to the
anomalous application behaviors. As discussed in Section 3.3.2,
the signal-processing techniques will remove some resource
anomalies information incorrectly as noise or periodic usage
pattern. Moreover, some resource anomalous behavior cannot be
detected. Thus we cannot find the proper reasons for the
anomalous application behavior.

Table 5: Anomaly diagnosis results on GridFTP data.

Data
SSet

of Anomalies
Detected

of Anomalies
Diagnosed

GridFTP_Data 1 92 73

GridFTP_Data 2 95 81

GridFTP_Data 3 90 74

3.4 Sweep3d

We used Sweep3d [16] to validate our strategy for applications
running in Grid environment. Sweep3D is a 3D discrete ordinates
neutron transport application that runs on multiple processors
using domain decomposition and MPI message passing. The
performance metric is the elapsed time per iteration. The
execution of Sweep3d includes both network communications and
computation. With varying problem size, the
computation//communication ratio will change, so the application
shifts from network-bound to CPU-bound.

3.4.1 Experimental Methodology

To have a better understanding about the relationship between
different resource periodic patterns, application behaviors, and
their effects on anomaly detection and diagnosis, we ran Sweep3d

on a simulated Grid environment using Emulab to control the
introduction of resource periodic patterns and anomalies.

W AN
Ethernet

100M b/s

N odeA

com puter

30M b/s

N odeB

N ode D

N ode C

30M b/s
30M b/s

Figure 8: Emulated network topology in Emulab testbed for

Sweep3d application.

We constructed a distributed virtual WAN environment in Emulab
testbed, shown in Figure 8. In this emulated distributed
environment, Sweep3d runs on four machines from three
domains. Machines from different domains communicate via 30
Mb/s network links. Machines C and D belong to the same
domain and are connected via 100 Mb/S Ethernet. We use the
one-dimensional decomposition to partition the workload of
Sweep3d application. Therefore, communication happens on three
network links in this experiment: the link between machine A and
B, the link between machine B and C, and the link between
machine C and D.

For this experiment, we also emulated various periodic CPU load
patterns for machines from different domains by running some
CPU-intensive programs on these machines. Machine A has a
daily periodic CPU load pattern, with amplitude equal to 5;
machine B has a two-hourly periodic CPU load pattern, with
amplitude equal to 3. There are no periodic patterns on machines
C and D.

We ran Sweep3d in this emulated distributed environment and
collected resource performance data selected by our data
reduction strategy and the Sweep3d elapsed iteration time every
30 seconds. We collected resource performance data on all four
computing machines and ping measurements from each pair of
machines. To show how our anomaly detection strategy works on
different application settings, we also varied the problem size of
the Sweep3d application to change its
computation/communication ratio and thus show different
application behavior.

We chose three problem sizes to change the computation and
communication ratio of the Sweep3d application. When the
problem size is small, the computation/communication ratio is
small. The communication is the application performance
bottleneck, and periodic CPU usage patterns do not have a
significant influence on the performance of the Sweep3d
application. When the problem size increases, so does the
computation /communication ratio. We collected three sets of
Sweep3d data. Each data set includes performance data for three
problem sizes for 9 days, with each problem size running for
about 3 days.

For each data set, we inserted 100 anomalies into each of the three
communication links by changing the traffic shaping parameters

of each link in a random order. The performance data for the three
problem sizes includes 33, 33, and 34 anomalies, respectively. We
also tried introducing high memory load by using resource
consumption tools as we had done for the Cactus application, but
this did not affect the performance of the Sweep3d application
because it is not memory bound for any problem size we tested.

3.5 Detection

To show the effectiveness of our strategy, we compared our
modified window average method (Modified) to the traditional
window average method (Traditional) for the three sets of
Sweep3d data using the same two metrics, number of hits and
number of false positives. The experimental results are shown in
Table 6.

Table 6: Anomaly detection results for Sweep3d data.

Traditional Modified
Problem
Size

Data
Set

of Hits # of FPs # of Hits # of FPs

Sweep3d Data 1 33 1 31 0

Sweep3d Data 2 33 4 29 3

Small

Sweep3d Data3 32 3 32 3

Sweep3d Data1 33 9 32 5

Sweep3d Data 2 33 8 31 4

Medium

Sweep3d Data 3 33 10 31 7

Sweep3d Data 1 32 43 30 6

Sweep3d Data 2 32 54 29 9

Large

Sweep3d Data 3 33 52 32 19

For the small problem size, there is no statistical difference
between the two approaches, likely because the background CPU
periodic behavior does not have a significant influence on the
application performance, so there are few false positives to weed
out. For the medium problem size, the traditional window average
method produces several more false positives due to the daily
periodic resource usage pattern. The Modified approach reduces
about half of the false positives and misses 5 of the 99 anomalies,
while the Traditional approach finds all of them; however, the
Modified approach has a 40% reduced false positive rate. For the
large problem size, the Traditional method produces about 50
false positives. Among them, approximately 90% are caused by
the daily and 2 hourly periodic resource usage patterns. The
Modified approach again misses some of the anomalies, this time
8 of 99, but has a significantly smaller false positive rate (as much
as 7 times smaller) than that of the Traditional approach.

3.5.1 Diagnosis

Since the only anomalies of interest in this set of experiments
were the result of network perturbations, we used logs of ping
measurements in our diagnosis step to determine which network
link was affected, as shown in Table 7. The experimental results
show that, for the mixed Sweep3d application behaviors, our
strategy diagnosed 85 to 89 anomalies on three sets of Sweep3d
data, respectively.

Table 7: Diagnosis results on Sweep3d data.

Problem
Size

Data
Set

 # of Anomalies
Detected

of Anomalies
Diagnosed

Sweep3d Data 1 31 30

Sweep3d Data 2 29 28

Small

Sweep3d Data3 32 31

Sweep3d Data 1 32 31

Sweep3d Data 2 31 28

Medium

Sweep3d Data 3 31 27

Sweep3d Data 1 30 28

Sweep3d Data 2 29 29

Large

Sweep3d Data 3 32 31

4. RELATED WORK

Anomaly detection and diagnosis have been studied widely in
many areas, including chemical processes management [8, 14,
30], materials control [26], mechanical fault detection [11, 19],
and medical diagnosis [18]. In computer science, there is
significant previous work for resource-level anomaly detection,
especially network congestion detection [13, 24], and computer
security management [7, 17, 20].

Anomaly detection and diagnosis in application-level performance
often involve monitoring and analyzing the application or
resource performance data and deducing the anomalous
application behaviors. Allen et al. [3] detect performance contract
violations using a window average-based method on the execution
time of an application. Zhang et al. [29] show how to detect
compliance with service-level objectives in a dynamic
environment by managing an ensemble of Bayesian network
models. Kelly [15] proposes using queuing theory observations
together with standard optimization methods to yield accurate
performance models to distinguish performance faults from mere
overload. However, none of these approaches considers the
influence of periodic resource usage patterns on application
behavior.

Other anomaly detection work has considered periodic resource
usage patterns but in a less flexible way. Burgess [6] proposes a
memory-economic algorithm for detecting resource anomalies in
event streams with either Poisson or long-tailed arrival processes
using a pseudo-periodic function to address periodic variations in
the performance data. Roughan et al. [21] present a simple and
robust method that integrates routing and traffic data streams to
detect forwarding anomalies using a number of models for
anomaly detection, depending on the properties of the data in
question. Both of these approaches require knowledge about the
frequencies of the periodic patterns, if any, with a limited set of
choices (generally only daily or weekly) and then select different
models, formulas, or parameter values in the process of anomaly
detection, instead of having a general approach, such as we do.

Zhang et al.[28] proposed using wavelet transforms to detect
disease outbreaks (anomalies in this case) to filter seasonal
periodicity before detection. However, the wavelet-based filtering
method requires knowledge about the approximate range of the
period and is has a coarser granularity than the Fourier transform-
based method, which makes it inefficient when dealing with
periodic signals whose frequencies do not fit the predetermined
granularity of the wavelet decomposition well. Our strategy, using

a Fourier-based method to filter periodic signal in the
performance data, is much more flexible and efficient when
dealing periodic signals with any frequencies and needs no
knowledge of the periodicity a priori.

5. SUMMARY AND FUTURE WORK

Periodic variations in resource performance is normal and
inevitable and can cause a high false positive rate when doing
anomaly detection with standard approaches. In this paper we
present an approach to anomaly detection and diagnosis strategy
that extends traditional methods by using signal processing
techniques to filter out periodic resource variation, regardless of
the type of resource or period. In addition, we develop a diagnosis
technique to determine which resource is the probable cause of an
anomaly.

Independent of the periodic resource usage patterns, applications,
and network configurations, our experimental results show that
our strategy detects up to 96% of anomalies while reducing the
false positive rate up to 90% when compared to the traditional
window average strategy. In addition, our strategy can diagnose
about 70% to 90% of reasons correctly.

Our anomaly detection and diagnosis strategy uses a window
average-based method to detect anomalies. We plan to study other
anomaly detection methods such as artificial neural networks
methods and hidden Markov model methods, and compare them
with window-based methods. We argue that our idea of
considering periodical usage patterns when detecting application
anomalies is also applicable to these methods. Indeed, the
techniques that we have described here can be used as a
complement to these advanced anomaly detection techniques to
de-noise and filter periodically usage patterns before we apply
these anomaly detection methods on resource performance data.
In this way, we could reduce the false alarms caused by noise and
by periodical resource usage patterns.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. Department of
Energy under Contract DE-AC02-06CH11357.

REFERENCES

[1] "Emulab Tutorial:
http://www.emulab.net/tutorial/docwrapper.php3?docname=t
utorial.html."

[2] G. Allen, W. Benger, T. Goodale, et al., "The Cactus Code:
A Problem Solving Environment for the Grid," 9th IEEE
International Symposium on High Performance Distributed
Computing (HPDC9), 2000.

[3] G. Allen, D. Angulo, I. Foster, et al., "The Cactus Worm:
Experiments with Dynamic Resource Discovery and
Allocation in a Grid Environment," University of Chicago,
Chicago TR-2001-28, 2001.

[4] P. Barford, J. Kline, D. Plonka, et al., "A Signal Analysis of
Network Traffic Anomalies," Proceedings of ACM
SIGCOMM Internet Measurement Workshop, 2002.

[5] J. D. Brutlag, "Aberrant Behavior Detection in Time Series
for Network Monitoring," Proceedsing of the 14th Systems
Administration Conference, 2000.

[6] M. Burgess, "Probabilistic Anomaly Detection in Distributed
Computer Networks," Science of Computer Programming,
vol. 60, pp. 1-26, 2006.

[7] K. Das, "Protocol Anomaly Detection for Network-based
Intrusion Detection," 2001.

[8] S. Dash, R. Rengaswamy, and V. Venkatasubramanian,
"Fuzzy-logic based trend classification for fault diagnosis of
chemical processes," Computers and Chemical Engineering,
pp. 347-362, 2002.

[9] A. B. Downey, "A Parallel Workload Model and its
Implications for Processor Allocation," Cluster Computing,
vol. 1, pp. 133-145, 1998.

[10] D. Gunter, M. Rodriguez, B. Tierney, et al., "Dynamic
Anomaly Detection of a Wide Area File Transfer Service,"
Submitted to SC06, 2006.

[11] J. M. House, W. Y. Lee, and D. R. Shin, "Classification
Techniques for Fault Detection and Diagnosis of an Air-
Handling Unit," ASHRAE Transactions, vol. 105, pp. 1987-
1997, 1999.

[12] A. Igor, B. Constantine, D. E. R, et al., "Frequency domain
median-like filter for periodic and quasi-periodic noise
removal," International Society for Optical Engineering

Proceedings Series, 2002.
[13] V. Jacobson and M. J. Karel, "Congestion Avoidance and

Control," Proceedings of the SIGCOMM '88 Symposium,
1988.

[14] M. Kano, K. Nagao, S. Hasebe, et al., "Comparison of
Statistical Process Monitoring Methods: Application to the
Eastman Challenge Problem," Computer and Chemical

Engineering, vol. 24, pp. 175-181, 2000.
[15] T. Kelly, "Detecting Performance Anomalies in Global

Applications," Second USENIX Workshop on Real, Large
Distributed Systems (WORLDS 2005), 2005.

[16] K. R. Koch, R.S.Baker, and R. E. Alcouffe, "Solution of the
First-order Form of the 3-D Discrete Ordinates Equation on a
Massively Parallel Processor," Trans. Amer. Nuc. Soc., vol.
65, 1992.

[17] M. V. Mahoney, "Network Traffic Anomaly Detection Based
on Packet Bytes," Proc. ACM-SAC, 2003.

[18] A. S. Minhas and M. R. Reddy, "Neural Network Based
Approach for Anomaly Detection in Lungs Region by
Electrical Impedance Tomography," Physiological

Measurement, vol. 26, pp. 489-502, 2005.

[19] A. G. Parlos, K. Kim, and R. Bharadwaj, "Sensorless
Detection of Mechanical Faults in Electromechanical
Systems," Mechatronics, vol. 13, pp. 357-380, 2004.

[20] A. G. Pennington, J. D. Strunk, J. L. Griffin, et al., "Storage-
based Intrusion Detection: Watching Storage Activity for
Suspicious Behavior," 12th USENIX Security Symposium,
2002.

[21] M. Roughan, T. Griffin, Z. M. Mao, et al., "IP Forwarding
Anomalies and Improving Their Detection Using Multiple
Data Sources," Proceedings of the ACM SIGCOMM
workshop on Network Troubleshooting: research, theory and
operation practice meet malfunctioning reality, 2004.

[22] V. A. Siris and F. Papagalou, "Application of anomaly
detection algorithms for detecting SYN flooding attacks,"
Global Telecommunications Conference, 2004.
GLOBECOM '04. IEEE, 2004.

[23] S. W. Smith, The Scientist and Engineer's Guild to Digital

Signal Processing. San Diego, California: California
Technical Publishing, 1999.

[24] M. Welzi, Network Congestion Control: Managing Internet

Traffic: Wiley, 2005.
[25] B. White, J. Lepreau, L. Stoller, et al., "An Integrated

Experimental Environment for Distributed Systems and
Networks," 5th Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

[26] R. Whiteson, F. Kelso, C. Baumgart, et al., "An Anomaly
Detector Applied to a Materials Control and Accounting
System," 35th Annual Meeting of the Institute of Nuclear
Materials Management, 1994.

[27] L. Yang, J. M. Schopf, C. L. Dumitrescu, et al., "Statistical
Data Reduction for Efficient Application Performance
Monitoring," CCGrid 2006, 2006.

[28] J. Zhang and F. C. Tsui, "Detection of Outbreaks from Time
Series Data Using Wavelet Transform," AMIA Annu Symp
Proceeding, 2003.

[29] S. Zhang, I. Cohen, M. Goldszmidt, et al., "Ensembles of
Models for Automated Diagnosis of System Performance
Problems," IEEE Conference on Dependable Systems and
Networks (DSN), 2005.

[30] Y. Zhou, J. Hahn, and M. S. Mannan, "Fault Detection and
Classification in Chemical Processes Based on Neural
Networks with Feature Extraction," ISA Transaction, vol. 42,
pp. 651-664, 2003.

