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ABSTRACT 

Identifying and diagnosing anomalies in application behavior is 
critical to delivering reliable application-level performance. In this 
paper we introduce a strategy to detect anomalies and diagnose 
the possible reasons behind them. Our approach extends the 
traditional window-based strategy by using signal-processing 
techniques to filter out recurring, background fluctuations in 
resource behavior. In addition, we have developed a diagnosis 
technique that uses standard monitoring data to determine which 
related changes in behavior may cause anomalies. We evaluate 
our anomaly detection and diagnosis technique by applying it in 
three contexts when we insert anomalies into the system at 
random intervals. The experimental results show that our strategy 
detects up to 96% of anomalies while reducing the false positive 
rate by up to 90% compared to the traditional window average 
strategy. In addition, our strategy can diagnose the reason for the 
anomaly approximately 75% of the time. 

1. INTRODUCTION  

Troubleshooting distributed Grids is a growing area of concern. 
Collaborations are increasing in size, with many more resources 
available for use and few ways to track or even detect failures or 
performance faults. Anomalous behavior of applications occurs 
frequently, but current techniques can be error prone and result in 
high false positive rates. One common cause is predictable 
periodic background behavior: shared network links have a daily 
pattern in that they are usually busier during the daytime [4], the 
number of jobs has a 24-hour pattern of many daytime 
submissions and then nightly draining of the queues [9], and 
periodic system administration tasks can have finer-grained, even 
hourly, occurrences.  

The performance degradation caused by the periodic resource 
usage patterns can be predicted but is, in general, unavoidable if 
the resource is to be used. Hence, we see two kinds of anomalies 
in the system: true anomalies, which are caused by a failure or 
unexpected event, and periodic anomalies, which for the most 
part should not be considered anomalous as they are part of the 
normal system behavior. Only true anomalies should cause alert 
flags and be diagnosed.  

Periodic behavior may differ widely, even on resources with 
similar capabilities, so any approach should be resource- and 
period-agnostic for wide applicability. For example, Figure 1 
shows the CPU load collected on a machine in the Planetlab 
testbed for one week with a daily periodic usage pattern likely 
caused by the working schedule of the people sharing this 
machine. In contrast, Figure 2 shows the CPU load trace from a 
shared Linux machine at the University of Chicago with a usage 
pattern with a period of about 30 minutes, likely caused by system 
maintenance tasks.   

The periodic resource behaviors will cause variations on the 
performance of applications running on these resources, which in 
turn may cause a large number of false positives when detecting 
anomalies. To address this situation, we propose a new strategy 
that uses signal-processing techniques to take normal periodic 
behavior into account, which greatly reduces the number of false 
positives. We extend the traditional window average-based 
anomaly detection approach (Section 2). Instead of analyzing the 
raw performance data collected, we automatically detect and filter 

out the periodic patterns existing in the resource performance data 
(Section 2.1). By analyzing the processed resource performance 
data, our strategy can detect and diagnose application anomalous 
behaviors (Section 2.2). We evaluate the effectiveness of our 
approach by applying it to three Grid applications (Section 3). Our 
results demonstrate that our strategy is able to detect up to 96% 
percent of the anomalies in a system with a much smaller false 

positive rate than standard statistical approaches. 

 

 
  
 
(c) 2007 Association for Computing Machinery. ACM 
acknowledges that this contribution was authored or co-authored 
by a contractor or affiliate of the [U.S.] Government. As such, 
the Government retains a nonexclusive, royalty-free right to 
publish or reproduce this article, or to allow others to do so, for 
Government purposes only. 
 
SC07 November 10-16, 2007, Reno, Nevada, USA 
(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00 



                                                                                                                                          

 

 

 
Figure 1: Daily periodic usage pattern of CPU load observed 

on a week-long trace for righthand.eecs.harvard.edu. Data 

was measured every 30 seconds. 

 

 

Figure 2: Typical two-hour CPU load trace from a Linux 

machine at the University of Chicago, vatos.cs.uchicago.edu, 

that shows a half-hour periodic variations. Data was 

measured every 30 seconds for two weeks during each 

monitoring period. 

The main contributions of this paper are threefold: 

1) A resource and period-agnostic approach to filtering out 
periodic behavior from trace data to better detect 
anomalies. 

2) A diagnostic technique that is also resource independent 
and is more than 75% effective in determining the cause 
of anomalies. 

3) Extensive experimentation showing these approaches 
are significantly better at detecting anomalies than the 
standard approach for CPU, memory-based, and 
network anomalies in both simulated and actual 
environments. 

2. ANOMALY DECTION AND 

DIAGNOSIS 

Window averaging is the most commonly used statistical anomaly 
detection method because of its simplicity and efficiency. It has 
been used to detect unexpected slowdown in the rate of wide-area 
file transfers [10], degradation in the throughput of distributed 
applications [3], and aberrant behaviors in network traffic [5]. 
This method maintains a moving window average across the 
performance data of interest as the baseline to compare against. If 

the current data is higher than the window average by some 
threshold value, it is tagged as an anomaly, and an alarm is sent. 
To achieve more stable results, one can modify this approach to 
send an alarm only after a minimum number of consecutive 
violations of the threshold [22]. 

We extend the use of the window average-based method by 
filtering the data using Fourier transforms to capture normal 
periodic behavior. We also add a diagnostic phase to the standard 
approach to understand the possible cause of the anomaly. 

2.1 Filtering resource usage pattern using 

Fourier transform 

Fourier transform-based spectral analysis is a natural choice for 
filtering periodic resource usage patterns because of its dominant 
capability in frequency domain analysis. Every sequence of 
performance measurements, called a signal in the signal-
processing field, can be expressed in both a time domain and a 
frequency domain representation [23]. The time domain 
representation shows the amplitude of the measurements at 
successive time points, or how a signal changes over time. With 
only a time domain representation, however, it is difficult to 
answer questions about frequency behavior, such as “Does the 
data include any periodic signals?” and “What is the frequency 
and amplitude if there are any?” To answer these questions, we 
need to use the frequency domain representation of the signal, 
which shows how much of the signal’s energy is presented as a 
function of frequency. We can transform between these time 
domain and frequency domain representations of the data by using 
Fourier transform and inverse Fourier transform.  

Resource performance measurements are represented in the time 
domain. To identify periodic resource usage patterns, we Fourier 
transform the data to the frequency domain. After identifying and 
filtering out the periodic resource usage patterns in the data, we 
inverse Fourier transform the data back to the time domain 
representation. A similar approach has been used to detect 
periodic components in electrical signals [23] and photographs 
[12]. We remove all strong periodic signals by setting the 
amplitude of the corresponding periodic frequency to zero and 
then transform the resource performance data back to the time 
domain representation by applying an inverse Fourier transform to 
the frequency domain representation. The grey line and black line 
in Figure 3 show a before-and-after view of this process.  

 

Figure 3: Raw CPU load and the CPU load after the pattern-

filtering process. 

The advantage of the Fourier transform method as a technique for 
identifying and removing periodic usage patterns in resource 



                                                                                                                                          

 

performance data is that we do not need to know whether a 
periodic signal exists or what its frequency, amplitude, or shape 
is. The flexibility of the Fourier transform in dealing with periodic 
signals makes it possible to identify various periodic usage 
patterns in resource performance data automatically and 
dynamically.  

2.2 Detection and diagnosis 

We now introduce how to extend the traditional window average 
method in order to efficiently detect and diagnose anomalous 
application behaviors. 

In our previous work [27], we proposed a statistical data reduction 
strategy for selecting related system metrics. The small subset of 
system metrics selected has been shown sufficient to capture the 
application behavior, thus reducing the data volume to be 
analyzed for anomaly detection and diagnosis. This data reduction 
strategy also builds a model between the application performance 
metric and selected system metrics, as follows: 

  Y=β0+β1x1+β2x2+…βn xn,              Formula 1 

where Y is the application performance metric, xi (i=1…n) are 
system metrics that describe resource performance and are 

selected by the data reduction strategy, and βi  (i=0…n) are a set 
of parameters obtained during the process of data reduction 
(please refer to [27] for the details of the model). Given this 

model, the parameters (the value of all βi s), and measurements of 
system metrics (the value of all xis), we can obtain an estimated 
application performance value(Y). 

Using this model, we extend the traditional window average-
based algorithm as follows: 

1. Calculate a moving window average of the application 
performance data. This window average is used as the 
baseline for the application performance.  

2. Compare the application performance data with the window 
average. If the current application performance value is 
within a threshold value of the average, this value is normal; 
go to step 6. (Section 3.1.1 discusses setting this parameter.) 

3. To define whether the value is either a periodic anomaly or a 
true anomaly, first filter out the periodic patterns using 
Fourier transform techniques (Section 2.1). Then calculate an 
application performance value using Formula 1 with the 
filtered resource performance data. This value is the 
estimated application performance without the influence of 
the periodic resource usage patterns, which we refer to as the 
estimated application performance. 

4. Compare the estimated application performance value with 
the window average. If the difference is more than the 
threshold value, this is an anomaly, so continue to step 5 for 
further diagnosis. Otherwise, the variation in the original 
application performance data is caused by periodic resource 
usage patterns, so this is not an anomaly. We then go to step 
6 to exam the next application performance value. 

5. Calculate the window average for each system metric, and 
use this window average as the baseline for resource 
behavior. When a real application anomaly is detected, check 
whether there is a large variation in the resource performance 
by comparing the current resource performance data with its 

window average baseline for each system metric, as done for 
the application performance. If there is a large performance 
variation during the same time period, the resource may be 
one of the causes of the anomalous application behavior.   

6. Check the data at the next time point, and update the moving 
window average of the application performance data and 
resource performance data. Go back to step 2. 

3. EXPERIMENTAL RESULTS  

To evaluate the validity of our anomaly detection and diagnosis 
strategy, we applied it in three contexts: a Cactus application 
running in a shared local area network environment, a GridFTP 
transferring data across a simulated wide area environment, and a 
Sweep3d application running in a simulated wide area 
environment. We tested our methods to see whether they were 
able to detect anomalies that we introduced deliberately. In 
keeping with accepted practice [17, 29], we view our technique as 
effective if it can detect most of the anomalies (more than 90% in 
our experiments) and significantly reduce the false positives 
caused by periodic patterns of the resources.   

3.1 Parameters 

3.1.1 Window Average Threshold Value 

If the difference between the performance data and the window 
average is more than the threshold value, a potential anomaly 
exists in steps 2 and 4 of our algorithm. Different applications 
may have different needs when defining what should count as an 
anomaly, which in turn will affect the setting of the threshold 
value. For our experiments, we set the threshold value to two 
standard deviations of the average application performance value. 
If the data is a normal distribution, a range around the mean plus 
or minus two standard deviations captures approximately 95% of 
the values, so a value outside this threshold has only a 5% chance 
of being normal behavior.  

3.1.2 Window Size and Data Reduction Parameter 

The two additional parameters that influence our anomaly 
detection results are the window size and the threshold parameter 
in the data reduction strategy, which determines how many system 
metrics will be selected and analyzed in the anomaly detection 
and diagnosis process. We selected these two values by running a 
set of experiments to search the space of feasible values on a 
training set of data collected by running the Cactus application on 
a shared cluster with 100 anomalies at random times.  

We evaluated the quality of our anomaly detection approach using 
two criteria: the number of successful detections, HIT, and the 
number of false positives, FP. The parameter values that achieved 
the best anomaly detection results were selected for further 
evaluation. We first examined the sensitivity of the anomaly 
detection strategy on a selection of window sizes. We fixed the 
threshold parameter of the data reduction strategy equal to 0.95, as 
suggested by [27], and ran this strategy with different window 
sizes. Figure 4 shows the comparison of detection results with 
different window sizes. When the window size is small, the 
calculated window average fluctuates widely, and our strategy 
produces a higher number of false positives and lower hit rates. 
As the window size increases, the number of false positives 
decreases, and the hit rate increases. In this experiment, when the 
window size is larger than 32, the results flatten out, and our 



                                                                                                                                          

 

strategy results in similar anomaly detection quality. When the 
window size is equal to 128, our strategy achieves the fewest false 
positives (53) and achieves a hit rate as high as 96%. We selected 
the window size equal to 128 for further evaluation. 
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Figure 4: Anomaly detection results for different window 

sizes. The x-axis is in log scale, HIT is the number of detected 

anomalies (out of 100), and FP is the number of false positives. 

We then examined the sensitivity of our anomaly detection 
strategy to the data reduction threshold parameter. We fixed the 
window size at 128 and ran the anomaly detection strategy with 
different threshold parameters, between 0 and 1 at intervals of 
0.05, then calculated the number of hits and false positives 
achieved by our strategy for each value. The results are shown in 
Figure 5. As the data reduction threshold increases, more system 
metrics are selected, and more information is available to our 
anomaly detection strategy, thus allowing the anomaly detection 
strategy to achieve a higher hit rate. Our anomaly detection 
strategy achieves its highest hit rate (97%) when the data 
reduction threshold is equal to 0.90. The number of false positives 
also increases when more system metrics are used, but flattens 
quickly after the threshold value is larger than 0.3. We selected a 
threshold value of 0.90 for further evaluation because our strategy 
achieves the highest hit rate (97%) and produces 44 false 
positives, significantly less than the 676 produced by the 
traditional window average method on the same data. 
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Figure 5: Anomaly detection with different data reduction 

threshold parameter for a window size of 128. 

From these two experiments, we see that for both parameters, the 
detection result of our strategy fluctuates when the parameter 
values are small but flattens quickly after the two parameters 
reach certain values (32 for window size and 0.3 for data 
reduction parameter in our experiment) and stabilizes afterwards. 
We conclude that the values of these two parameters are not 
sensitive to our anomaly detection strategy as long as small values 
are avoided. Although we determine these parameters using the 
Cactus data, we used the same values for other application data in 
the following experiments. It would be possible to tune these 
parameters for each data set, and doing so might improve the 
performance of the anomaly detection algorithm, but it would 
greatly increase the overhead.  

3.2 Cactus 

We first tested our strategy on the Cactus application running in a 
cluster environment. Cactus [2] is a simulation of a 3D scalar field 
produced by two orbiting astrophysical sources. This application 
decomposes the 3D scalar field over processors and places an 
overlap region on each processor. We defined Cactus performance 
as the elapsed time per iteration.  

3.2.1 Experimental Methodology 

We ran Cactus on four shared Linux machines at the University of 
Chicago and collected measurements of system metrics selected 
by the data reduction strategy [27] and application performance 
measurements every 30 seconds. We collected four sets of Cactus 
data, each 2 weeks long. The first data set is used as training data 
to determine parameters in our strategy (Section 3.1.2). The other 
three data sets are used for verification purposes. We knew a 
priori that the resources experienced periodic variations, as shown 
in Figure 2. 

For each of the four data sets, we manually inserted 100 
anomalies during the execution of Cactus application by running 
resource consumption tools on the four machines at random times. 
The resource consumption tools were three simple programs that 
consume a given amount of CPU, memory, or bandwidth. 
Specifically, the CPU consumption tool ran several computation-
intensive processes to compete for CPU time with the application. 
On a round-robin scheduled system (like a Linux system), if the 
resource consumption tool runs N (≥10 in our experiment) 
processes, the application will get only 1/(N+1) percent CPU 
time; the other N/(N+1) percent of CPU time is used by the N 
computation-intensive processes. The memory consumption tool 
ran a process that allocated a set amount of memory space. The 
network consumption tool started multiple data transfers using the 
Linux scp command to transfer a large file to another computer to 
decrease the bandwidth available to our focus application. 

3.2.2 Detection 

We applied our strategy to three sets of Cactus data. To show the 
effectiveness of our strategy, we compare our modified window 
average method (Modified) to the traditional window average 
method (Traditional) using two metrics: the number of anomalies 
successfully detected and the number of false positives. As shown 
in Table 1, the traditional window average method produced about 
600 false positives. Among them, about 90% are caused by the 
half-hour periodic variations in the resources performance. Our 
strategy, which considered the periodic resource usage pattern, 
can distinguish between true anomalies and periodic anomalies 
and eliminated between 84% and 91% of the false positives 



                                                                                                                                          

 

produced by the traditional window average method, while still 
identifying between 93% and 96% of the injected anomalies.   

 

Table 1: Anomaly detection results on Cactus data. 

Traditional Modified Data  
Set # of Hits # of FPs # of Hits # of FPs 

Cactus_Data 1 99 588 96 63 

Cactus_Data 2 99 633 93 59 

Cactus_Data 3 98 551 94 89 

 

Our strategy extends the traditional window average method by 
filtering the periodic resource usage pattern for resource 
performance data. However, some anomalous variations in the 
resource performance measurement may contain components with 
frequencies similar to the frequencies of periodic patterns. These 
are also removed by mistake when we try to filter periodic 
patterns. Thus, these anomalies are weakened and cannot be 
detected by our strategy, resulting in a slightly lower hit rate than 
that of the traditional window method.  

3.2.3 Diagnosis    

To simplify the diagnosis process, we classified the system 
metrics that describe resource performance into three categories, 
CPU related, memory related, and network related, with a total of 
12 possible causes across the four machines. Because the 
anomalies are introduced at random times, some anomalies may 
happen simultaneously or consecutively. Since our strategy 
detects the start and end of an anomaly by checking whether 
application performance exceeds the window average by some 
threshold value, if multiple anomalies overlap in time, only one 
alarm will be sent, but all possible reasons will be reported.  

Table 2 shows the results of our analysis. For every detected 
anomaly, our strategy uses the system metrics selected by the data 
reduction strategy to give a diagnosis analysis and report possible 
reasons. We verify the diagnosis results by comparing the reasons 
reported (CPU related, memory related, or network related) with 
the type of anomaly inserted. These results show that, among the 
93 to 96 anomalies detected on three data sets, our strategy was 
able to report the reasons for 82 to 87 anomalies correctly.    

Table 2: Anomaly diagnosis results on Cactus data. 

Data  
Set 

# of Anomalies 
Detected 

# of Anomalies 
Diagnosed Correctly 

Cactus_Data 1 96 87 

Cactus_Data 2 93 84 

Cactus_Data 3 94 82 

3.3 GridFTP data transfer 

We test the capability of our strategy to detect networking 
anomalies using the Globus GridFTP data transfer tool on 
Emulab. 

3.3.1 Experimental Methodology 

To have a better understanding about the performance of our 
method on network anomalies, we need to control the introduction 
of anomalies and network topology during the experiment. 
Therefore, we ran GridFTP on the Emulab [1, 25] testbed. Emulab 
is an integrated experimental environment for distributed systems 

and networks. It provides a time-and space-shared platform for 
research and development by leveraging nodes allocated from 
resource pool and temporarily dedicated to individual users for 
emulation. Researchers access these resources by specifying a 
virtual topology. Users can modify the shape of the traffic of each 
link by changing the bandwidth, delay, and packets loss rate 
between any two nodes in the topology dynamically.  

WAN

Ethernet
100Mb/s

GridFTP Server
NodeA

GridFtp Client

Node D

Router

Node B

computercomputer

Gate Way

Node C

30Mb/s 30Mb/s

 

Figure 6: Emulated network topology in Emulab testbed. 

We constructed a virtual topology in Emulab as shown in Figure 
6. In this emulated distributed environment, machines in a LAN 
are connected with each other by 100 Mb/S Ethernet. They access 
the Internet through a gateway, denoted as Node C for 
convenience. A GridFTP server, denoted as Node A, is accessible 
by the gateway via s 30 Mb/s network. For complexity, we added 
a router, denoted as Node B, in the path from the GridFTP server 
to the gateway. If a client machine, denoted as Node D, in the 
LAN requests to transfer data from the GridFTP server, the data 
needs to pass three links. It is first sent from the GridFTP server to 
the router, via the link AB. The router then transmits the data to 
the gateway, via link BC. Finally, the data arrives at the client 
machine, via the link CD.   

We ran GridFTP in this emulated distributed network and 
collected system metrics selected by our data reduction strategy 
and the GridFTP performance metric once every 30 seconds. 
Although there are four nodes on the path of data transfer, 
normally users will not (or are not allowed to) run monitors on the 
router and gateway. So we collect resource performance data only 
on the GridFTP server and client machines and the ping 
measurements from the client and server node to other three 
nodes, respectively. The performance metric for the GridFTP 
transfer is the data transfer rate, in megabits per second.  

We collected three sets of GridFTP data. Each data set is about 
two weeks long. For each data set, we inserted 100 anomalies 
across the three links in the path between the client machine to the 
GridFTP server during the GridFTP data transfer by changing the 
traffic shaping parameters of each link in a random order. Emulab 
emulates the change of network traffic by a control network, 
which is invisible to applications, enforcing delay and bandwidth 
limitation of a network link. We introduced the anomalies into 
network links by changing the network configuration in the 
simulated network environment. For each anomaly, we decreased 
the bandwidth to a value less than 10% of its original value or 
increased the delay (or loss ratio) by 5 to 10 times of original 
value to cause significant performance slowdown in the GridFTP 
transfer rate.  

We also tried inserting CPU and memory anomalies for GridFTP 
on Emulab testbed by introducing high CPU and memory load 
using the resource consumption tools as we did for Cactus 



                                                                                                                                          

 

application. However, the results show that even very high CPU 
load and memory load (e.g., CPU load increases of more than 100 
times) have no effect on the performance of GridFTP. One 
possible reason is that the GridFTP is implemented efficiently: it 
can scale to 1500 concurrent connections or more, so bandwidth is 
the only bottleneck. 

3.3.2 Detection 

To show the effectiveness of our strategy, we applied our 
modified window average method (Modified) and the traditional 
window average method (Traditional) to the three sets of GridFTP 
data and compared the results of these two strategies as we did for 
Cactus application. We used the same two metrics, namely, the 
number of hits and number of false positives, to evaluate the two 
strategies. Because Emulab emulates the network topology by 
allocating physical nodes temporally dedicated to a user, there is 
no usage pattern caused by resource sharing or periodic system 
maintenance jobs in these resources. Hence, the traditional 
window average method produces only several false positives 
caused by noise. Our strategy reduces the number of false 
positives to 2 to 7 and can still detect more than 90 anomalies 
successfully, as shown in Table 3.   

Table 3: Anomaly detection results on GridFTP data. 

Traditional Modified Data 
Set  # of Hits  # of FPs # of Hits # of  FPs 

GridFTP_Data 1 99 5 92 2 

GridFTP_Data 2 97 9 95 7 

GridFTP_Data 3 100 6 90 4 

From this result, we can see that our method is not as efficient as 
the traditional method for detecting anomalies when there is no 
periodic usage pattern in the resource performance. When 
preprocessing the resource performance measurements, we tried 
to remove the periodic patterns from the original performance 
data. Although doing so helps remove false positives caused by 
periodic patterns, it possibly incorrectly treats a very small 
fraction of anomalies as false positives. On actual networks we 
would expect to see various periodoc behaviors, so our results 
would likely improve.   

3.3.3 Diagnosis    

The anomalous network behaviors in the Emulab testbed are 
emulated network environment. Although applications running on 
the emulated network can “sense” anomalous network behaviors, 
these anomalous system behaviors are not really reflected in the 
low-level system metrics. To diagnose anomalous network 
behaviors, we used an application-level command, ping, to 
measure network behaviors. We show an example in Figure 7.  

Client

Node DFTP Server

NodeA

Router

Node B Gate Way

Node C  
 

Figure 7: Network path from GridFTP server to client 

machine. 

There is a delay increment in the link A-B, shown as a crooked 
line. Using ping measurements, we can determine this 
phenomenon because we will see a performance hit on the ping 
tests A_B, A-C, A-D and D-A, but not on D-B and D-C. In Table 
4 we show the relation between network links and ping 
measurements between nodes. The table shows that for any 
anomalous link combination, except the last two, we can 
determine what is affected simply by using pings.  

Table 4: Anomalous links and corresponding anomalous ping 
measurements. 

Anomalous Links Anomalous Ping Measurements 

Link AB A to B,  A to C,  A to D,  D to A 

Link BC A to C,  A to D,  D to A,  D to B 

Link CD A to D,  D to A,  D to B,  D to C 

Link AB and Link BC A to B, A to C, A to D, D to A, D to B 

Link BD and link CD A to C, A to D, D to A, D to B , D to C 

Link AB and Link CD A to B, A to C, A to D, D to A, D to B, 
D to C 

Link AB, Link BD, 
Link CD 

A to B, A to C, A to D, D to A, D to B, 
D to C 

The experimental results of our detection algorithm on the 
GridFTP data are shown in Table 5. For the 92 to 95 anomalies 
detected, our strategy finds the problematic links for 73 to 81 
anomalies correctly. Remember we diagnose the application 
anomalies by relating the resource anomalous behaviors to the 
anomalous application behaviors. As discussed in Section 3.3.2, 
the signal-processing techniques will remove some resource 
anomalies information incorrectly as noise or periodic usage 
pattern. Moreover, some resource anomalous behavior cannot be 
detected. Thus we cannot find the proper reasons for the 
anomalous application behavior. 

Table 5: Anomaly diagnosis results on GridFTP data. 

Data 
SSet 

# of Anomalies 
Detected 

# of Anomalies 
Diagnosed 

GridFTP_Data 1 92 73 

GridFTP_Data 2 95 81 

GridFTP_Data 3 90 74 

 

3.4 Sweep3d 

We used Sweep3d [16] to validate our strategy for applications 
running in Grid environment. Sweep3D is a 3D discrete ordinates 
neutron transport application that runs on multiple processors 
using domain decomposition and MPI message passing. The 
performance metric is the elapsed time per iteration. The 
execution of Sweep3d includes both network communications and 
computation. With varying problem size, the 
computation//communication ratio will change, so the application 
shifts from network-bound to CPU-bound.  

3.4.1 Experimental Methodology 

To have a better understanding about the relationship between 
different resource periodic patterns, application behaviors, and 
their effects on anomaly detection and diagnosis, we ran Sweep3d 



                                                                                                                                          

 

on a simulated Grid environment using Emulab to control the 
introduction of resource periodic patterns and anomalies. 

W AN
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100M b/s

N odeA

com puter

30M b/s

N odeB

N ode D

N ode C

30M b/s
30M b/s

 

Figure 8: Emulated network topology in Emulab testbed for 

Sweep3d application. 

 
We constructed a distributed virtual WAN environment in Emulab 
testbed, shown in Figure 8. In this emulated distributed 
environment, Sweep3d runs on four machines from three 
domains. Machines from different domains communicate via 30 
Mb/s network links. Machines C and D belong to the same 
domain and are connected via 100 Mb/S Ethernet. We use the 
one-dimensional decomposition to partition the workload of 
Sweep3d application. Therefore, communication happens on three 
network links in this experiment: the link between machine A and 
B, the link between machine B and C, and the link between 
machine C and D. 

For this experiment, we also emulated various periodic CPU load 
patterns for machines from different domains by running some 
CPU-intensive programs on these machines. Machine A has a 
daily periodic CPU load pattern, with amplitude equal to 5; 
machine B has a two-hourly periodic CPU load pattern, with 
amplitude equal to 3. There are no periodic patterns on machines 
C and D.  

We ran Sweep3d in this emulated distributed environment and 
collected resource performance data selected by our data 
reduction strategy and the Sweep3d elapsed iteration time every 
30 seconds. We collected resource performance data on all four 
computing machines and ping measurements from each pair of 
machines. To show how our anomaly detection strategy works on 
different application settings, we also varied the problem size of 
the Sweep3d application to change its 
computation/communication ratio and thus show different 
application behavior.    

We chose three problem sizes to change the computation and 
communication ratio of the Sweep3d application. When the 
problem size is small, the computation/communication ratio is 
small. The communication is the application performance 
bottleneck, and periodic CPU usage patterns do not have a 
significant influence on the performance of the Sweep3d 
application. When the problem size increases, so does the 
computation /communication ratio. We collected three sets of 
Sweep3d data. Each data set includes performance data for three 
problem sizes for 9 days, with each problem size running for 
about 3 days. 

For each data set, we inserted 100 anomalies into each of the three 
communication links by changing the traffic shaping parameters 

of each link in a random order. The performance data for the three 
problem sizes includes 33, 33, and 34 anomalies, respectively. We 
also tried introducing high memory load by using resource 
consumption tools as we had done for the Cactus application, but 
this did not affect the performance of the Sweep3d application 
because it is not memory bound for any problem size we tested. 

3.5 Detection 

To show the effectiveness of our strategy, we compared our 
modified window average method (Modified) to the traditional 
window average method (Traditional) for the three sets of 
Sweep3d data using the same two metrics, number of hits and 
number of false positives. The experimental results are shown in 
Table 6. 

Table 6: Anomaly detection results for Sweep3d data. 

Traditional Modified               
Problem 
Size        

 
Data  
Set 

# of Hits  # of FPs # of Hits # of FPs 

Sweep3d Data 1 33 1 31 0 

Sweep3d Data 2 33 4 29 3 

Small 

Sweep3d Data3 32 3 32 3 

Sweep3d Data1 33 9 32 5 

Sweep3d Data 2 33 8 31 4 

Medium 

Sweep3d Data 3 33 10 31 7 

Sweep3d Data 1 32 43 30 6 

Sweep3d Data 2 32 54 29 9 

Large 

Sweep3d Data 3 33 52 32 19 

For the small problem size, there is no statistical difference 
between the two approaches, likely because the background CPU 
periodic behavior does not have a significant influence on the 
application performance, so there are few false positives to weed 
out. For the medium problem size, the traditional window average 
method produces several more false positives due to the daily 
periodic resource usage pattern. The Modified approach reduces 
about half of the false positives and misses 5 of the 99 anomalies, 
while the Traditional approach finds all of them; however, the 
Modified approach has a 40% reduced false positive rate. For the 
large problem size, the Traditional method produces about 50 
false positives. Among them, approximately 90% are caused by 
the daily and 2 hourly periodic resource usage patterns. The 
Modified approach again misses some of the anomalies, this time 
8 of 99, but has a significantly smaller false positive rate (as much 
as 7 times smaller) than that of the Traditional approach.  

3.5.1 Diagnosis    

Since the only anomalies of interest in this set of experiments 
were the result of network perturbations, we used logs of ping 
measurements in our diagnosis step to determine which network 
link was affected, as shown in Table 7. The experimental results 
show that, for the mixed Sweep3d application behaviors, our 
strategy diagnosed 85 to 89 anomalies on three sets of Sweep3d 
data, respectively. 

 

 

 

 



                                                                                                                                          

 

Table 7: Diagnosis results on Sweep3d data. 

Problem 
Size      

Data  
Set 

 # of Anomalies 
Detected 

#  of Anomalies 
Diagnosed 

Sweep3d Data 1 31 30 

Sweep3d Data 2 29 28 

Small 

Sweep3d Data3 32 31 

Sweep3d Data 1 32 31 

Sweep3d Data 2 31 28 

Medium 

Sweep3d Data 3 31 27 

Sweep3d Data 1 30 28 

Sweep3d Data 2 29 29 

Large 

Sweep3d Data 3 32 31 

 

4. RELATED WORK 

Anomaly detection and diagnosis have been studied widely in 
many areas, including chemical processes management [8, 14, 
30], materials control [26], mechanical fault detection [11, 19], 
and medical diagnosis [18]. In computer science, there is 
significant previous work for resource-level anomaly detection, 
especially network congestion detection [13, 24], and computer 
security management [7, 17, 20].   

Anomaly detection and diagnosis in application-level performance 
often involve monitoring and analyzing the application or 
resource performance data and deducing the anomalous 
application behaviors. Allen et al. [3] detect performance contract 
violations using a window average-based method on the execution 
time of an application. Zhang et al. [29] show how to detect 
compliance with service-level objectives in a dynamic 
environment by managing an ensemble of Bayesian network 
models. Kelly [15] proposes using queuing theory observations 
together with standard optimization methods to yield accurate 
performance models to distinguish performance faults from mere 
overload. However, none of these approaches considers the 
influence of periodic resource usage patterns on application 
behavior.  

Other anomaly detection work has considered periodic resource 
usage patterns but in a less flexible way. Burgess [6] proposes a 
memory-economic algorithm for detecting resource anomalies in 
event streams with either Poisson or long-tailed arrival processes 
using a pseudo-periodic function to address periodic variations in 
the performance data. Roughan et al. [21] present a simple and 
robust method that integrates routing and traffic data streams to 
detect forwarding anomalies using a number of models for 
anomaly detection, depending on the properties of the data in 
question. Both of these approaches require knowledge about the 
frequencies of the periodic patterns, if any, with a limited set of 
choices (generally only daily or weekly) and then select different 
models, formulas, or parameter values in the process of anomaly 
detection, instead of having a general approach, such as we do.  

Zhang et al.[28] proposed using wavelet transforms to detect 
disease outbreaks (anomalies in this case) to filter seasonal 
periodicity before detection. However, the wavelet-based filtering 
method requires knowledge about the approximate range of the 
period and is has a coarser granularity than the Fourier transform-
based method, which makes it inefficient when dealing with 
periodic signals whose frequencies do not fit the predetermined 
granularity of the wavelet decomposition well. Our strategy, using 

a Fourier-based method to filter periodic signal in the 
performance data, is much more flexible and efficient when 
dealing periodic signals with any frequencies and needs no 
knowledge of the periodicity a priori. 

5. SUMMARY AND FUTURE WORK 

Periodic variations in resource performance is normal and 
inevitable and can cause a high false positive rate when doing 
anomaly detection with standard approaches. In this paper we 
present an approach to anomaly detection and diagnosis strategy 
that extends traditional methods by using signal processing 
techniques to filter out periodic resource variation, regardless of 
the type of resource or period. In addition, we develop a diagnosis 
technique to determine which resource is the probable cause of an 
anomaly.  

Independent of the periodic resource usage patterns, applications, 
and network configurations, our experimental results show that 
our strategy detects up to 96% of anomalies while reducing the 
false positive rate up to 90% when compared to the traditional 
window average strategy. In addition, our strategy can diagnose 
about 70% to 90% of reasons correctly.  

Our anomaly detection and diagnosis strategy uses a window 
average-based method to detect anomalies. We plan to study other 
anomaly detection methods such as artificial neural networks 
methods and hidden Markov model methods, and compare them 
with window-based methods. We argue that our idea of 
considering periodical usage patterns when detecting application 
anomalies is also applicable to these methods. Indeed, the 
techniques that we have described here can be used as a 
complement to these advanced anomaly detection techniques to 
de-noise and filter periodically usage patterns before we apply 
these anomaly detection methods on resource performance data. 
In this way, we could reduce the false alarms caused by noise and 
by periodical resource usage patterns. 

 

ACKNOWLEDGEMENTS 

This work was supported in part by the U.S. Department of 
Energy under Contract DE-AC02-06CH11357. 

REFERENCES  

[1] "Emulab Tutorial: 
http://www.emulab.net/tutorial/docwrapper.php3?docname=t
utorial.html." 

[2] G. Allen, W. Benger, T. Goodale, et al., "The Cactus Code: 
A Problem Solving Environment for the Grid,"  9th IEEE 
International Symposium on High Performance Distributed 
Computing (HPDC9), 2000. 

[3] G. Allen, D. Angulo, I. Foster, et al., "The Cactus Worm: 
Experiments with Dynamic Resource Discovery and 
Allocation in a Grid Environment," University of Chicago, 
Chicago TR-2001-28, 2001. 

[4] P. Barford, J. Kline, D. Plonka, et al., "A Signal Analysis of 
Network Traffic Anomalies,"  Proceedings of ACM 
SIGCOMM Internet Measurement Workshop, 2002. 

[5] J. D. Brutlag, "Aberrant Behavior Detection in Time Series 
for Network Monitoring,"  Proceedsing of the 14th Systems 
Administration Conference, 2000. 



                                                                                                                                          

 

[6] M. Burgess, "Probabilistic Anomaly Detection in Distributed 
Computer Networks," Science of Computer Programming, 
vol. 60, pp. 1-26, 2006. 

[7] K. Das, "Protocol Anomaly Detection for Network-based 
Intrusion Detection," 2001. 

[8] S. Dash, R. Rengaswamy, and V. Venkatasubramanian, 
"Fuzzy-logic based trend classification for fault diagnosis of 
chemical processes," Computers and Chemical Engineering, 
pp. 347-362, 2002. 

[9] A. B. Downey, "A Parallel Workload Model and its 
Implications for Processor Allocation," Cluster Computing, 
vol. 1, pp. 133-145, 1998. 

[10] D. Gunter, M. Rodriguez, B. Tierney, et al., "Dynamic 
Anomaly Detection of a Wide Area File Transfer Service,"  
Submitted to SC06, 2006. 

[11] J. M. House, W. Y. Lee, and D. R. Shin, "Classification 
Techniques for Fault Detection and Diagnosis of an Air-
Handling Unit," ASHRAE Transactions, vol. 105, pp. 1987-
1997, 1999. 

[12] A. Igor, B. Constantine, D. E. R, et al., "Frequency domain 
median-like filter for periodic and quasi-periodic noise 
removal," International Society for Optical Engineering 

Proceedings Series, 2002. 
[13] V. Jacobson and M. J. Karel, "Congestion Avoidance and 

Control,"  Proceedings of the SIGCOMM '88 Symposium, 
1988. 

[14] M. Kano, K. Nagao, S. Hasebe, et al., "Comparison of 
Statistical Process Monitoring Methods: Application to the 
Eastman Challenge Problem," Computer and Chemical 

Engineering, vol. 24, pp. 175-181, 2000. 
[15] T. Kelly, "Detecting Performance Anomalies in Global 

Applications,"  Second USENIX Workshop on Real, Large 
Distributed Systems (WORLDS 2005), 2005. 

[16] K. R. Koch, R.S.Baker, and R. E. Alcouffe, "Solution of the 
First-order Form of the 3-D Discrete Ordinates Equation on a 
Massively Parallel Processor," Trans. Amer. Nuc. Soc., vol. 
65, 1992. 

[17] M. V. Mahoney, "Network Traffic Anomaly Detection Based 
on Packet Bytes,"  Proc. ACM-SAC, 2003. 

[18] A. S. Minhas and M. R. Reddy, "Neural Network Based 
Approach for Anomaly Detection in Lungs Region by 
Electrical Impedance Tomography," Physiological 

Measurement, vol. 26, pp. 489-502, 2005. 

[19] A. G. Parlos, K. Kim, and R. Bharadwaj, "Sensorless 
Detection of Mechanical Faults in Electromechanical 
Systems," Mechatronics, vol. 13, pp. 357-380, 2004. 

[20] A. G. Pennington, J. D. Strunk, J. L. Griffin, et al., "Storage-
based Intrusion Detection: Watching Storage Activity for 
Suspicious Behavior,"  12th USENIX Security Symposium, 
2002. 

[21] M. Roughan, T. Griffin, Z. M. Mao, et al., "IP Forwarding 
Anomalies and Improving Their Detection Using Multiple 
Data Sources,"  Proceedings of the ACM SIGCOMM 
workshop on Network Troubleshooting: research, theory and 
operation practice meet malfunctioning reality, 2004. 

[22] V. A. Siris and F. Papagalou, "Application of anomaly 
detection algorithms for detecting SYN flooding attacks,"  
Global Telecommunications Conference, 2004. 
GLOBECOM '04. IEEE, 2004. 

[23] S. W. Smith, The Scientist and Engineer's Guild to Digital 

Signal Processing. San Diego, California: California 
Technical Publishing, 1999. 

[24] M. Welzi, Network Congestion Control: Managing Internet 

Traffic: Wiley, 2005. 
[25] B. White, J. Lepreau, L. Stoller, et al., "An Integrated 

Experimental Environment for Distributed Systems and 
Networks,"  5th Symposium on Operating Systems Design 
and Implementation (OSDI), 2002. 

[26] R. Whiteson, F. Kelso, C. Baumgart, et al., "An Anomaly 
Detector Applied to a Materials Control and Accounting 
System,"  35th Annual Meeting of the Institute of Nuclear 
Materials Management, 1994. 

[27] L. Yang, J. M. Schopf, C. L. Dumitrescu, et al., "Statistical 
Data Reduction for Efficient Application Performance 
Monitoring,"  CCGrid 2006, 2006. 

[28] J. Zhang and F. C. Tsui, "Detection of Outbreaks from Time 
Series Data Using Wavelet Transform,"  AMIA Annu Symp 
Proceeding, 2003. 

[29] S. Zhang, I. Cohen, M. Goldszmidt, et al., "Ensembles of 
Models for Automated Diagnosis of System Performance 
Problems,"  IEEE Conference on Dependable Systems and 
Networks (DSN), 2005. 

[30] Y. Zhou, J. Hahn, and M. S. Mannan, "Fault Detection and 
Classification in Chemical Processes Based on Neural 
Networks with Feature Extraction," ISA Transaction, vol. 42, 
pp. 651-664, 2003. 

 
 


