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Anomaly Detection and Failure Root Cause Analysis in
(Micro)Service-Based Cloud Applications: A Survey

JACOPO SOLDANI and ANTONIO BROGI, University of Pisa, Italy

Themomentum gained bymicroservices and cloud-native software architecture pushed nowadays enterprise
IT towards multi-service applications. The proliferation of services and service interactions within applica-
tions, often consisting of hundreds of interacting services, makes it harder to detect failures and to identify
their possible root causes, which is on the other hand crucial to promptly recover and fix applications. Various
techniques have been proposed to promptly detect failures based on their symptoms, viz., observing anoma-
lous behaviour in one or more application services, as well as to analyse logs or monitored performance of
such services to determine the possible root causes for observed anomalies. The objective of this survey is
to provide a structured overview and a qualitative analysis of currently available techniques for anomaly
detection and root cause analysis in modern multi-service applications. Some open challenges and research
directions stemming out from the analysis are also discussed.

1 INTRODUCTION

With the rise of microservices, multi-service applications became the de-facto standard for deliv-
ering enterprise IT applications [81]. Many big players are already delivering their core business
through multi-service applications, with Amazon, Netflix, Spotify, and Twitter perhaps being the
most prominent examples. Multi-service applications, like microservice-based applications, hold
the promise of exploiting the potentials of cloud computing to obtain cloud-native applications,
viz., composed by loosely coupled services that can be indepedently deployed and scaled [40].

At the same time, services and service interactions proliferate in modern multi-service appli-
cations, often consisting of hundreds of interacting services. This makes it harder to monitor the
various services forming an application to detect whether they have failed, as well as to understand
whether a service failed on its own or in cascade, viz., because some of the services it interacts with
failed, causing the service to fail as well. The detection and understanding of failures in modern
multi-service applications is actually considered a concrete “pain” by their operators [81].
Various solutions have been proposed to automate the detection of failures and to automatically

determine their possible root causes. Existing solutions for failure detection rely on identifying
anomalies in the behaviour of services, which can be symptoms of their possible failures [58, 60, 90].
Once an anomaly has been detected in a multi-service application, further analyses are enacted to
determine the possible root causes for such an anomaly [42, 77]. This allows application operators
to determine whether the anomaly on a service was due to the service itself, to other services
underperforming or failing as well, or to environmental reasons, e.g., unforeseen peaks in user
requests [63] or lack of computing resources in the runtime environment [18].
Existing solutions for anomaly detection and root cause analysis are however scattered across

different pieces of literature, and often focus only on either anomaly detection or root cause anal-
ysis. This hampers the work of application operators wishing to equip their multi-service appli-
cations with a pipeline for detecting anomalies and identifying their root causes. To this end, in
this article we survey the existing techniques for detecting anomalies in modern multi-service ap-
plications and for identifying the possible root causes of detected anomalies. To further support
an application operator in choosing the techniques most suited for her application, we also dis-
cuss the instrumentation needed to apply an anomaly detection/root cause analysis technique, as
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well as the additional artifacts that must be provided as input to such techniques. We also high-
light whether the surveyed techniques already put anomaly detection and root cause analysis in
a pipeline, or whether they need to be integrated one another. In the latter case, we comment on
whether the type of anomalies that can be observed with a given anomaly detection technique can
be explained by a given root cause analysis technique.
We believe that our survey can provide benefits to both practitioners and researchers working

withmodernmulti-service applications. We indeed not only than help them in finding the anomaly
detection and root cause analysis techniques most suited to their needs, but we also discuss some
open challenges and possible research directions on the topic.

The rest of this article is organised as follows. Section 2 introduces the terminology used in our
survey. Sections 3 and 4 provide a structured overview of the existing techniques for detecting
anomalies inmulti-service applications and for identifying their root causes, respectively. Section 5
positions our survey with respect to related work. Section 6 concludes the article by discussing
possible research directions on detecting and explaining anomalies in multi-service applications.

2 TERMINOLOGY

Whilst failures denote the actual inability of a service to perform its functions [74], anomalies cor-
respond to the observable symptoms for such failures [87], e.g., a service slowing its response time,
reducing its throughput, or logging error events. The problem of anomaly detection in multi-service
applications hence consists of identifying anomalies that can possibly correspond to failures affect-
ing their services. Anomalies can be detected either at application-level or at service-level, based
on whether symptoms of a failure are observed by considering the application as whole (e.g., per-
formance degradations or errors shown by its frontend) or by focusing on specific services.
Root cause analysis then consists of identifying the reasons why an application- or service-level

anomaly has been observed, with the ultimate goal of providing possible reasons for the corre-
sponding failure to occur. Root cause analysis is enacted with techniques analysing what has ac-
tually happened while a multi-service application was running. It is hence not to be confused
with debugging techniques, which look for the possible reasons for an observed anomaly by re-
running applications in a testing environment and by trying to replicate the observed anomaly
(e.g., as in the delta debugging proposed by Zhou et al. [95]). Root cause analysis techniques in-
stead only analyse information collected while the application was running in production (e.g.,
logs or monitoring data), without re-running the application itself.
Anomaly detection and root cause analysis are typically enacted based on runtime information

collected on the services forming an application, hereafter also called application services. Such
information includes KPIs (Key Performance Indicators) monitored on application services, e.g.,
response time, availability, or resource consumption, as well as the events logged by application
services. Each logged event provide information on something happened to the service logging
such event, e.g., whether it was experiencing some error, hence logging an error event, or whether
it was invoking or being invoked by another service. The events logged by a service constitute
the service logs, whereas the union of all service logs distributed among the services forming an
application is hereafter referred as application logs.
Application logs are not to be confused with distributed traces, obtained by instrumenting ap-

plication services to feature distributed tracing. The latter is a distributed logging method used to
profile and monitor multi-service applications, which essentially consists of (i) instrumenting the
services forming an application to assign each user request a unique id, (ii) passing such id to all
services that are involved in processing the request, (iii) including the request id in all log mes-
sages, and (iv) recording information (e.g., start time, end time) about the service invocations and
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internal operations performed when handling a request in a service [72]. All the events generated
by user requests are hence tracked in the distributed “traces”, and traces of events generated by
the same request can be identified based on the request id.

3 ANOMALY DETECTION

We hereafter survey the existing techniques for detecting anomalies in multi-service applications,
viz., symptoms of failures affecting the whole application or some of its services. We organise the
survey by distinguishing three main classes of techniques: we separate the techniques enacting
anomaly detection by directly processing the logs produced by application services (Section 3.1)
from those requiring to instrument applications, viz., to feature distributed tracing (Section 3.2)
or by installing agents to monitor application services (Section 3.3). We finally discuss the sur-
veyed anomaly detection techniques, with the support of a recapping table (Table 1) and by also
highlighting some open challenges in anomaly detection (Section 3.4).

3.1 Log-based Anomaly Detection Techniques

Log-based online anomaly detection is typically enacted by exploiting unsupervisedmachine learn-
ing algorithms, which are used to process the logs produced by the services forming an application
to detect whether some anomaly is occurring in some application service.

3.1.1 Unsupervised Learning. Online anomaly detection in application services can be enacted by
exploiting unsupervised learning algorithms to learn a baselinemodelling of the logging behaviour
of the application services in failure-free runs of an application. The baseline model is then used
online to detect whether the events newly logged by a service diverge from the baseline model,
hence indicating that the service suffers from some anomaly. This technique is adopted by OASIS
[58], Jia et al. [33], and LogSed et al. [34], which we discuss hereafter.
OASIS [58] starts from the application logs generated in failure-free runs of the application,

which are used as the training data to mine a control-flow graphmodelling the baseline application
behaviour under normal conditions, viz., which events should be logged by which service, and in
which order. OASIS [58] mines log templates from the textual content in the training logs, and
it clusters the log templates so that all templates originated by the same log statement go in the
same cluster. The nodes in the control flow graph are then determined by picking a representative
template from each cluster. The edges are instead mined based on temporal co-occurrence of log
templates, uponwhich OASIS [58] determines the immediate successors of each template, together
with branching probabilities and expected time lags between each template and its successors.
Online anomaly detection is then enacted bymapping newly generated logs to their corresponding
templates and by checking whether the arriving log templates adhere to the control-flow graph.
If none of the templates that should follow a template is logged in the corresponding time lag, or
if the actual rate of templates following a given template significantly deviates from the expected
branching probabilities, OASIS [58] considers the application as affected by a functional anomaly.
Jia et al. [33] and LogSed et al. [34] provide two other techniques for the detection of functional

or performance anomalies in multi-service applications based on the analysis of their logs. They
process the logs collected in normal, failure-free runs of an application to mine, for each service,
a time-weighted control flow graph modelling its internal flow. In particular, Jia et al. [33] and
LogSed et al. [34] learn the time-weighted control flow graph for each service, with a similar
method to that in OASIS [58]: template mining is used to transform logs into templates, which
are then clustered based on events they correspond to, and the log clusters are processed to infer
the sequencing relationships among events. The resulting graph of events is then enriched by
weighting each arc with the average time passing between the logging of the source event and
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that of the target event. The topology graph and the time-weighted control flow graphs constitute
the baseline model against which to compare newly logged events. This is done by mapping the
events logged by each service to their corresponding template and by checking whether its actual
behaviour deviates from the expected one. A service suffers from functional anomalies whenever
it does not log an event that it should have been logging, or when unexpected logs occur. A service
instead suffers from performance anomalies when it logs an expected event significantly later than
when expected.

3.2 Distributed Tracing-based Anomaly Detection Techniques

Online anomaly detection is enacted also by instrumenting the target applications to feature ad-
ditional functionalities, with the most common being distributed tracing. Distributed tracing is
indeed at the basis of various techniques for anomaly detection, combined with supervised or
unsupervised machine learning,1 or with trace comparison techniques.

3.2.1 Unsupervised Learning. TraceAnomaly [45] and Nedelkoski et al. [61] collect traces in train-
ing runs of a multi-service application and use them to train unsupervised neural networks. They
then enact online anomaly detection by exploiting the trained neural networks to process the
traces generated by the application while it is running in production. In particular, TraceAnomaly
[45] trains a deep Bayesian neural network with posterior flow [59, 71], which enables associating
monitored traces with a likelihood to be normal, viz., not affected by performance anomalies. It
also stores all seen service call paths, viz., all sequences of service interactions observed in the
available traces. TraceAnomaly [45] then enacts online anomaly detection in two steps. It first
checks whether a newly produced trace contains previously unseen call paths. If this is the case,
TraceAnomaly [45] decides whether to consider the unseen call paths as functional anomalies for
the application, based on whether they appear in a whitelist manually filled by the application op-
erator to exclude false alarms (e.g., unseen call paths corresponding to new interactions occurring
after service upgrades). If there is no functional anomaly, the trace is passed to the deep Bayesian
neural network, which associates the monitored trace with its likelihood to be normal. If the like-
lihood is below a given threshold, the trace denotes a performance anomaly for the application.
Nedelkoski et al. [61] train a multi-modal long-short term memory neural network [24] mod-

elling the normal behaviour of a multi-service application, based on the traces collected in failure-
free runs of the application. The long-short term memory neural network is multi-modal in the
sense that it considers both the types of events logged in a trace and the response times of appli-
cation services. It is obtained by combining two single-modal networks, one trained to predict the
probability distribution of the events following an event in a trace, and the other trained to predict
the probability distribution of the response times for a service invocation. The trained network
is then used in online anomaly detection to predict the most probable events following an event
and the most probable response times for a service invocation. If the event following another, or
if the response time of a service are not amongst the predicted ones, the application is considered
to suffer from a functional or performance anomaly, respectively.
Jin et al. [35] allows detecting performance anomalies in multi-service applications based on

the offline analysis of the traces collected through distributed tracing, by also considering the
performance metrics of application services that can be directly collected from their runtime en-
vironment (e.g., CPU and memory consumption). Jin et al. [35] first enact principal component
analysis on logged traces to determine the services that may be involved in anomalous interac-
tions. This is done by deriving a matrix-based representation of the logged traces, by reducing

1Whilst unsupervised learning algorithms learn patterns directly from data, supervised learning algorithms rely on data
to be labelled, viz., training examples associating given input data with desired output values [57].
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the obtained matrix to its principal components, and by applying a function linearly combining
such principal components to elicit the services involved in anomalous traces. The performance
metrics collected for such services are then processed with unsupervised learning algorithms for
anomaly detection, viz., isolation forest, one-class support vector machine, local outlier factor, or
3f [16]. Such algorithms are used to determine anomalous values for such metrics, which are used
to assign an anomaly score to the services involved in anomalous traces. Jin et al. [35] then return
the list of services affected by performance anomalies, viz., the services whose anomaly score is
higher than a given threshold, ranked by anomaly score.

3.2.2 Supervised Learning. Seer [23], Nedelkoski et al. [60], and Bogatinovski et al. [8] also enact
a combination of distributed tracing and deep learning, however following a supervised learn-
ing approach. They indeed collect traces in training runs of a multi-service application, labelled
to distinguish normal runs from those where anomalies are known to have occurred on specific
services. The collected traces are used to train neural networks, which are then used to enact on-
line anomaly detection by processing the traces newly generated by the application. In particular,
Seer [23] trains a deep neural network consisting of convolutional layers followed by long-short
term memory layers [24]. Input and output neurons of the network corresponds to application
services. Input neurons are used to pass the KPIs of each service, viz., latency and outstanding
requests, logged by the service itself in distributed traces, and resource consumption, obtained
by interacting with the nodes where the services are running. Output neurons instead indicate
which services are affected by performance anomalies. At runtime, Seer [23] continuously feeds
the trained deep neural network with the stream of monitored traces, and the network consumes
such traces to determine whether some application service is affected by a performance anomaly.
If this is the case, Seer [23] interacts with the runtime of the node hosting the anomalous service
to determine which computing resources are being saturated. Seer [23] then notifies the system
manager about the resource saturation happening on the node, to allow the manager to mitigate
the effects of the detected performance degradation, e.g., by providing the node with additional
computing resources.
Nedelkoski et al. [60] train two neural networks, viz., a variational autoencoder [39] modelling

the normal behaviour of the application and a convolutional neural network [24] recognising the
type of failure affecting a service when the latter is affected by a performance anomaly. The varia-
tional autoencoder is learned from the distributed traces obtained in normal runs of the application,
so that the autoencoder learns to encode non-anomalous traces and to suitably reconstruct them
from their encoding. If applied on an anomalous trace, instead, the autoencoder reconstruct them
with significant errors, hence enabling to detect anomalies. The convolutional neural network is
instead trained on the traces collected in runs of the application where specific failures were in-
jected in specific services, so that the network can recognise which failures caused a performance
anomaly in a service. In online anomaly detection, the trained networks are used in a pipeline.
The outputs of the autoencoder are passed to a post-processor to exclude false positives, viz., per-
formance anomalies affecting a service due to temporary reasons (e.g., overload of a service). If a
service is considered anomalous by the post-processor as well, the anomalous trace is passed to
the convolutional network to detect the type of anomaly affecting the service.
Bogatinovski et al. [8] work under a different assumption if compared with the other anomaly

detection techniques discussed above, viz., it assumes that the logging of an event in a particular
position in a trace is conditioned both by those logged earlier and by those appearing afterwards.
Bogatinovski et al. [8] indeed train a self-supervised encoder-decoder neural network [24] capable
of predicting the logging of an event in a given “masked” position of a trace based on the con-
text given by its neighbour events. In particular, the trained neural network provides a probability
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distribution of the possible events appearing in any masked position of an input trace, given the
context of the events appearing before and after the masked event to be predicted. The trained neu-
ral network is then used to enact anomaly detection over novel traces, viz., to obtain a sorted list
of events that should have been logged in each position of the trace. The lists generated by the net-
work are then analysed by a post-processor, which considers a truly logged event as anomalous if
it is not amongst the events predicted to appear in the corresponding position. The post-processor
then computes an anomaly score for the trace (viz., number of anomalous events divided by trace
length). If the anomaly score is beyond an user-specified threshold, the trace is considered to wit-
ness a functional anomaly affecting the application.
Finally, MEPFL [97] provides another technique applying supervised machine learning to per-

form online anomaly detection on application instrumented to feature distributed tracing. MEPFL
[97] can recognize functional anomalies by exploiting multiple supervised learning algorithms,
viz., k-nearest neighbors [3], random forests [10], and multi-layer perceptron [24]. MEPFL [97]
takes as input a multi-service application and a set of automated test cases simulating user re-
quests to load the application and to produce traces. The traces must include information on the
configuration of a service (viz., memory and CPU limits, and volume availability), as well as on
the status, resource consumption, and service interactions of its instances. This information is
fed to one of the supported supervised learning algorithms, which trains classifiers determining
whether a trace includes anomalies, which services are affected by such anomalies, and which
types of failures caused such services to experience anomalies. The training of the classifiers is
based on traces collected in training runs of an application, where the application is loaded with
the input test cases, and where the application is run both in normal conditions and by injecting
failures in its services to observe how the traces change when such type of failures affect such
services.

3.2.3 Trace Comparison. Trace comparison is another possible technique to enact online anomaly
detection on multi-service applications instrumented to feature distributed tracing. This is the
technique followed by Meng et al. [54], Wang et al. [88], and Chen et al. [17], which all rely on
collecting the traces that can possibly occur in a multi-service application and by then checking
whether newly collected traces are similar to the collected ones.

Meng et al. [54] and Wang et al. [88] enable detecting functional anomalies by collecting traces
while testing an application in a pre-production environment and by building a set of represen-
tative call trees from collected traces. Such trees model the service invocation chains that can
possibly appear in normal conditions, as they have been observed in the collected traces. Newly
monitored traces are then reduced to their call trees, whose tree-edit distance from each representa-
tive call tree is computed with the RTDM algorithm [70]. If the minimum among all the computed
distances is higher than a given threshold, the trace is considered as anomalous, and the service
from which tree edits start is identified as the service suffering from a functional anomaly. Meng
et al. [54] and Wang et al. [88] also enable detecting performance anomalies based on the services’
response time. The response times in the traces collected in the testing phase are modelled as a
matrix, whose elements represent the response time for a service in each of the collected traces.
Principal component analysis [37] is then enacted to reduce thematrix to its principal components,
which are then used to define a function determining whether the response time of a service in
newly monitored traces is anomalous. At the same time, as both Meng et al. [54] and Wang et al.

[86] explicitly notice, the computational complexity of the enacted trace comparisons makes them
better suited to enact offline anomaly detection, as they would be too time consuming to perform
online anomaly detection on medium-/large-scale multi-service applications.
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Chen et al. [17] instead uses matrix sketching to compare traces and detect anomalies. More
precisely, Chen et al. [17] adapt an existing matrix sketching algorithm [29] to detect response
time anomalies in services in monitored traces. This is done by maintaining up-to-date a “sketch”
of the high-dimensional data corresponding to the historically monitored response times of the
services forming an application. The sketch is a limited set of orthogonal basis vectors that can
linearly reconstruct the space containing the non-anomalous response times for each service in
the formerly monitored traces. The response time for a service in a newly monitored trace is
non-anomalous if it lies within or close enough to the space defined by the sketch vector, given a
tolerance threshold. If this is the case, the sketch vectors are updated. Otherwise, the corresponding
service is considered to experience a performance anomaly.

3.3 Monitoring-based Anomaly Detection Techniques

Online anomaly detection in multi-service applications can also be enacted by installing agents to
monitor KPIs on their services, and by then processing such KPIs to detect anomalies. In this per-
spective, a basic solution is comparing the KPIs monitored on the service acting as the application
frontend against the application’s SLOs: in case of SLO violations, the whole application is consid-
ered to suffer from a performance anomaly. For detecting anomalies at a finer granularity, viz., go-
ing from application-level anomalies to service-level anomalies, the most common technique is to
exploit unsupervised or supervised machine learning algorithms to processmonitored KPIs and de-
tect whether any anomaly is occurring in any application service. Another possibility is to exploit
self-adaptive heartbeat protocols to detect anomalous services, rather than processing their KPIs.
We hereafter discuss all such techniques by starting from those based on unsupervised/supervised
learning, which are then followed by those based on SLO checks and heartbeating.

3.3.1 Unsupervised Learning. Online anomaly detection can be enacted by exploiting unsuper-
vised learning algorithms to process the KPIs monitored on application services in failure-free
runs of the application and learn a baseline modelling of their behaviour. The baseline model is
then used online to detect whether the newly monitored KPIs on a service diverge from the base-
line model, hence indicating that the service suffers from some anomaly. This technique is adopted
by Gulenko et al. [27], MicroRCA [91], Wu et al. [90], LOUD [51], and DLA [75], which train the
baseline model by considering the KPIsmonitored in normal runs of the application, viz., assuming
that no anomaly occurred in such runs.
Gulenko et al. [27] and LOUD [51] are “KPI-agnostic”, meaning that they can work on any set of

KPIs for the services forming an application, monitored with probes installed in the hosts where
the application services are run. In particular, Gulenko et al. [27] enable detecting performance
anomalies in multi-service applications by building different baseline models for different services.
TheKPIsmonitored on a service at a given time aremodelled as a vector, and the BIRCH [94] online
clustering algorithm is used in an initial training phase to cluster the vectors corresponding to the
monitored KPIs. At the end of the training phase, the centroids and centroid radii of the obtained
clusters determine the baseline subspaces where the vectors of monitored KPIs should pertain to
be classified as “normal”. This enables the online processing of newly monitored KPIs for each
service, by simply checking whether the corresponding vector falls within any of the baseline
subspaces, viz., whether there exists a cluster whose centroid is less distant from the vector of
monitored KPIs than the corresponding centroid radius. If this is not the case, the corresponding
service is considered as affected by a performance anomaly.
LOUD [51] instead trains a baseline model for the whole application by pairing each monitored

KPI with the corresponding service. The KPIs monitored in the offline runs of the application are
passed to the IBM ITOA-PI [21] to build a KPI baseline model and a causality graph. The baseline
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model provides information about the average values and the acceptable variations over time for
a KPI. Each node in the causality graph correspond to a service’s KPI, and the edges indicate
the causal relationships among KPIs, with weights indicating the probability to which changes
in the source KPI can cause changes in the target KPI (computed with the Granger causality test
[4]). During the online phase, LOUD [51] again exploits the IBM ITOA-PI to detect performance
anomalies: a KPI and the corresponding service are reported as anomalous if the monitored value
for such KPI is outside of the acceptable variations coded in the baseline model, or if the causal
relationships represented in the causality graph are not respected (e.g., when a KPI significantly
changed its value, but those that should have changed as well remained unchanged).
Differently from the above discussed, “KPI-agnostic” techniques [27, 51], MicroRCA [91], Wu

et al. [90], and DLA [75] focus on given KPIs. MicroRCA [91] and Wu et al. [90] consider the
response time and resource consumption of application services, which they monitor by requir-
ing the Kubernetes (k8s) deployment of multi-service applications to be instrumented as service
meshes featuring Istio [31] and Prometheus [68]. The latter are used to collect KPIs from the appli-
cation services. MicroRCA [91] and Wu et al. [90] then follow an unsupervised learning approach
similar to that proposed by Gulenko et al. [27]. The KPIs monitored on each service are modelled
as a vector, and the BIRCH algorithm [94] is used to cluster the vectors corresponding to KPIs
monitored in normal runs of the application, viz., assuming that no anomaly occurred in such
runs. The obtained clusters determine the baseline subspaces where the vectors of monitored KPIs
should pertain to be classified as “normal”. This enables the online processing of newly monitored
KPIs for each service, by simply checking whether the corresponding vector falls within any of the
baseline subspaces. If this is not the case, the service is considered as affected by a performance
anomaly.
DLA [75] instead focuses on the response time of each application service, whilst also consid-

ering its possible fluctuations due to increase/decrease of end users’ transactions. It also focuses
on containerised multi-service applications, whose deployment in k8s is expected to be provided
by the application operator. DLA [75] installs a monitoring agent in the VMs used to deploy the
application. The agents collect the response time of the containerised services running in each VM,
by associating each monitored response time with a timestamp and with the corresponding user
transaction. This information is used to learn whether/how the response time varies based on the
number of user transactions occurring simultaneously, based on the Spearman’s rank correlation
coefficient [78]. The obtained correlation is then used to check whether a variation in a newly
monitored response time corresponds to an expected fluctuation due to an increase/decrease of
users’ transactions, or whether it actually denotes a performance anomaly affecting a service.
The above discussed techniques train a baseline model of the application behaviour in an of-

fline learning step, and then employ the trained model to detect anomalies while the application
is running. This technique works under the assumption that the conditions under which an ap-
plication is run do not change over time (e.g., no new application is deployed on the same VMs)
or that what monitored during the training phase is enough to model all possible situations for
the application [92]. CloudRanger [87] tackles the problem from a different perspective, with the
ultimate goal of continuously adapting the anomaly detection system to follow the evolution of
the application and of the context where it runs. CloudRanger [87] indeed enacts continuous learn-
ing on the frontend service of an application, to learn which is its “expected” response times in
the current conditions, viz., based on the monitored response time, load, and throughput. This is
done with the initial, offline training of a baseline model on historically monitored data for the
application frontend. When the application is running, CloudRanger [87] applies polynomial re-
gression to monitored KPIs to update the baseline model to reflect the application behaviour in the
dynamically changing runtime conditions. Online anomaly detection is then enacted by checking
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whether the response time of the application frontend is significantly different from the expected
one, viz., if the difference between the expected and monitored response times is higher than a
given threshold.
Finally, Hora [66, 67] tackles the problem of online anomaly detection from yet another perspec-

tive, different from all those discussed above. It indeed combines architectural models with statis-
tical analysis techniques to preemptively determine the occurrence of performance anomalies in a
multi-service application. Hora exploits SLAstic [85] to automatically extract a representation of
the architectural entities in a multi-service application (viz., application services and nodes used
to host them) and the degree to which a component depends on another. This information is used
to create Bayesian networks [59] modelling the possible propagation of performance anomalies
among the services forming an application. The online anomaly detection is then enacted by asso-
ciating each application service with a detector, which monitors given KPIs for such service, and
which analyses such monitored metrics to detect whether the currently monitored KPIs denote a
performance anomaly. Since monitored metrics are time series data, detectors exploit autoregres-
sive integrated moving average [79] to determine whether performance anomalies affect moni-
tored services. Whenever a performance anomaly is detected on a service, Hora [66, 67] enacts
Bayesian inference [59] to determine whether the anomaly propagates to other services. It then
returns the set of application services most probably being affected by a performance anomaly.

3.3.2 Supervised Learning. ADS [22] and PreMiSE [52] also enact online anomaly detection by
training a baseline model on monitored KPIs. They however enact supervised learning (rather
than unsupervised learning), by also injecting specific failures in specific services during the train-
ing phase. They indeed label monitored KPIs to denote whether they correspond to normal runs
or to runs where specific failures were injected on specific services. The monitoring is enacted by
installing monitoring agents in the VMs used to deploy an application, even if the two techniques
consider different types of application deployments and KPIs. As a result, ADS [22] and PreMiSE
[52] can model both the normal behaviour of the application services and their anomalous be-
haviour when failures similar to those injected occur.
ADS [22] enables detecting performance anomalies in containerised multi-service applications,

given their k8s deployment and modules for injecting failures in their services. ADS [22] considers
a predefined set of KPIs for each containerised application service, viz., CPU,memory, and network
consumption. In the training phase, the application is loaded with a workload generator, which is
provided by the application operator to simulate end-user requests. Multiple runs of the application
are simulated, both in failure-free conditions and by exploiting the fault injectionmodules to inject
failures in the application services. The monitored KPIs are labelled as pertaining to “normal” or
“anomalous” runs of the application, in such a way that it can be processed to train a classifier with
a supervised machine learning algorithm (viz., nearest neighbour [3], random forest [10], naïve
Bayes [36], or support vector machines [76]), assuming that no more than one anomaly occurs at
the same time. The trained classifier provides the baseline model for normal/anomalous behaviour
of the application, and it is used for classifying application services as experiencing some known
performance anomaly based on their newly monitored KPIs.
PreMiSE [52] trains a baseline model for detecting anomalies in multi-service applications, as-

suming that each service runs in a different VM. Monitored KPIs are treated as time series: in an
intial, offline learning phase, PreMiSE [52] trains a baseline modelling of the normal, failure-free
execution of the application services. The baseline model captures temporal relationships in the
time series data corresponding to monitored KPIs to model trends and seasonalities, and it applies
Granger causality tests [4] to determine whether the correlation among two KPIs is such that one
can predict the evolution of the other. PreMiSE [52] also trains a signature model representing the
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anomalous behaviour of the application in presence of failures. This is done by injecting prede-
fined failures (viz., packet loss/corruption, increased network latency, memory leak, and CPU hog)
in the VMs running the application services and by monitoring the corresponding changes in KPIs.
The monitored KPIs are then used to train a classifier for detecting the occurrence of the anomalies
corresponding to the injected failures, with one out of six supported supervised machine learning
algorithms. The trained baseline model is then compared against newly monitored KPIs to enact
online anomaly detection. Once an anomaly is detected, the signature model is used to classify the
application service suffering from the detected anomaly and the failure it is suffering from.

3.3.3 SLO Check. CauseInfer [18, 19] and Microscope [25, 42] enact online anomaly detection
in multi-service applications by monitoring KPIs of the application frontend and comparing such
KPIs with the SLOs of the application. In particular, CauseInfer [18, 19] exploits a monitoring agent
to continuously monitor the response time of the service acting as frontend for an application.
Microscope [25, 42] instead relies on the k8s deployment of an application to include monitoring
agents (like Prometheus [68]), throughout which application services expose their response time.
CauseInfer [18, 19] and Microscope [42] and then compare the KPIs monitored on the frontend
of an application with that declared in the SLOs of the application. Whenever the performance of
the application frontend violates the application SLOs, CauseInfer [18, 19] and Microscope [25, 42]
consider the whole application as affected by a performance anomaly.
A similar technique is adopted by n-diagnosis [77], which also monitors SLOs on the frontend

service of an application to enact online performance anomaly detection. n-diagnosis [77] however
focuses on the tail latency of the application frontend, determined in small time windows (e.g., one
minute or one second), rather than on bigger ones as typically done. Given the k8s deployment
of the target application, the n-diagnosis system [77] enacts online anomaly detection as follows:
it partitions the stream of data into small-sized windows, it computes the tail latency for each
window, and it then compares the tail latency with the threshold declared in the application SLOs.
If the tail latency for a time window is higher than the given threshold, the whole application is
considered to suffer from a performance anomaly in such a time window.

3.3.4 Heartbeating. Adifferent, monitoring-based technique to detect anomalous services inmulti-
service applications is heartbeating. The latter requires installing a monitorer sending heartbeat
messages to the application services, which must reply to such messages within a given timeframe
to be considered as fully working. M-MFSA-HDA [93] adopts this technique, by periodically send-
ing heartbeat messages to the services forming an application. If any of such services does not
reply within a given timeframe, it is considered to suffer from a functional anomaly. In addition, to
keep a suitable trade-off between the impact of the heartbeat protocol on application performances
and the failure detection performances of the heartbeat detection system itself, M-MFSA-HDA [93]
self-adaptively changes the heartbeat rate by also monitoring the CPU consumption of the nodes
hosting application services, the network load, and the application workload.

3.4 Discussion

Table 1 recaps the surveyed anomaly detection techniques by distinguishing their classes, viz.,
whether they are log-based, distributed tracing-based, or monitoring-based, as well as the method
they apply to enact anomaly detection. The table also classifies the surveyed techniques based on
whether they can detect functional or performance anomalies, and on the “granularity” of detected
anomalies, viz., whether they just state that an application is suffering from an anomaly, orwhether
they distinguish which of its services are suffering from anomalies. Finally, the table provides
insights on the artifacts that must be provided to the surveyed anomaly detection techniques, as
input needed to actually enact anomaly detection.
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Table 1. Classification of anomaly detection techniques, based on their class (viz., L for log-based techniques,

DT for distributed tracing-based techniques, M for monitoring-based techniques), the applied method, the

type (viz., F for functional anomalies, P for performance anomalies) and granularity of detected anomalies

(viz., A for application-level anomalies, S service-level anomalies), and the input they need to run.

Anomaly
Reference Class Method Type Gran. Needed Input

OASIS [58] L unsupervised learning F A previous and runtime logs
Jia et al. [33] L unsupervised learning F, P S previous and runtime logs
LogSed [34] L unsupervised learning F, P S previous and runtime logs

TraceAnomaly [45] DT unsupervised learning F, P A previous and runtime traces
Nedelkoski et al. [61] DT unsupervised learning F, P A previous and runtime traces

Jin et al. [35] DT unsupervised learning P S previous and runtime traces
Seer [23] DT supervised learning P S previous and runtime traces

Nedelkoski et al. [60] DT supervised learning P S previous and runtime traces
Bogatinovski et al. [8] DT supervised learning P A previous and runtime traces

MEPFL [97] DT supervised learning F S app deployment, test cases
Meng et al. [54] DT trace comparison F, P S previous and runtime traces
Wang et al. [88] DT trace comparison F, P S previous and runtime traces
Chen et al. [17] DT trace comparison P S previous and runtime traces

Gulenko et al. [27] M unsupervised learning P S app deployment, workload generator
LOUD [51] M unsupervised learning P S app deployment, workload generator

MicroRCA [91] M unsupervised learning P S k8s app deployment, workload generator
Wu et al. [90] M unsupervised learning P S k8s app deployment, workload generator
DLA [75] M unsupervised learning P S k8s app deployment

CloudRanger [87] M unsupervised learning P A app deployment, prev. monitored KPIs
Hora [66, 67] M unsupervised learning P S app deployment
ADS [22] M supervised learning P S k8s app deployment, workload generator, failure injectors

PreMiSE [52] M supervised learning F, P S app deployment, workload generator
CauseInfer [18, 19] M SLO check P A app deployment, SLOs
MicroScope [25, 42] M SLO check P A k8s app deployment, SLOs
n-diagnosis [77] M SLO check P A k8s app deployment, SLOs

M-MFSA- HDA [93] M heartbeating F S app deployment

Taking Table 1 as a reference, we hereafter summarise the surveyed anomaly detection tech-
niques (Section 3.4.1). We also discuss them under three different perspectives, viz., finding a suit-
able compromise between type/granularity of detected anomalies and setup costs (Section 3.4.2),
their accuracy, especially in the case of dynamically changing applications (Section 3.4.3), and the
need for explainability and countermeasures for detected anomalies (Section 3.4.4).

3.4.1 Summary. All the surveyed techniques (but for those based on SLO checks [18, 19, 25, 42, 77]
or on heartbeating [93]) rely on processing data collected in training runs of the target applications.
The idea is to use the logs, traces, or KPIs collected in training runs of the application as a base-
line against which to compare newly produced logs or traces, or newly monitored KPIs. Machine
learning is the most used approach to train baseline models of the application behaviour: the logs,
traces, or KPIs collected during training runs of the application are indeed used to train baseline
models with unsupervised learning algorithms [27, 33–35, 45, 51, 58, 61, 66, 67, 75, 87, 90, 91], or
with supervised learning algorithms if such information is also labelled with the failures that have
happened or were injected on services during the training runs [8, 22, 23, 52, 60, 97]. The trained
baseline models are typically clusters defining the space where newly monitored KPIs should per-
tain to not be considered anomalous, or classifiers or deep neural networks to be fed with newly
monitored KPIs, logs, or traces to detect whether they denote anomalies.
An alternative approach to machine learning is trace comparison, which is enacted by Chen et

al. [17], Meng et al. [54], and Wang et al. [88], all based on instrumenting applications to feature
distributed tracing. The idea here is to store the traces that can possibly occur in an application,
and then to check whether newly generated traces are similar enough to the stored ones. This
approach however results to be quite time consuming, indeed bringing two out of the three tech-
niques enacting trace comparison to be suited only for offline anomaly detection. Only Chen et al.

[17] achieves time performances good enough to enact online anomaly detection on large-scale
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applications, whereas Meng et al. [54] and Wang et al. [88] explicitly state that their techniques
are too time consuming to be used online on medium-/large-scale applications.

3.4.2 Type andGranularity of DetectedAnomalies vs. Setup Costs. The surveyed techniques achieve
a different granularity in anomaly detection by applying different methods and requiring different
artifacts (Table 1). Independently from the required instrumentation and from whether they ap-
ply machine learning or trace comparison, the techniques comparing newly collected KPIs, logs,
or traces against a baseline turn out to be much finer in the granularity of detected anomalies,
if compared with techniques enacting SLO checks. Indeed, whilst monitoring SLOs on the fron-
tend of an application allows to state that the whole application is suffering from a performance
anomaly, the techniques based on machine learning or trace comparison often allow to detect
functional or performance anomalies at service-level. They indeed typically indicate which of its
services are suffering from functional or performance anomalies, whilst also providing informa-
tion onwhich are the KPIsmonitored on a service, the events it logged, or the portion of a trace due
to which a service is considered anomalous. In the case of supervised learning-based techniques
[8, 22, 23, 52, 60, 97], they also indicate which failures may possibly correspond to the symptoms
denoted by the detected anomalies. All such information is precious for application operators as
it eases further investigating on detected anomalies, e.g., to check whether they correspond to
services truly failing and to determine why they have failed [11].
This comes at the price of requiring to execute training runs of multi-service applications to

collect logs, traces, or KPIs to train the baseline models against which to compare those produced
at runtime. In the case of supervised learning-based techniques, it is also required to either provide
what needed to automatically inject failures or to label the collected data to distinguish whether
it corresponds to normal runs or to runs where specific failures occurred on specific services.
Then, log-based techniques does not require any application instrumentation, as they directlywork
on the event logs produced by the application services during the training phase and at runtime
[33, 34, 58]. Distributed tracing-based techniques instead assume applications to be instrumented
to feature distributed tracing [72], so as to automatically collect the traces of events produced by
their services. In this case, the traces used to train the baseline models are obtained twofold, viz.,
either only with failure-free runs of an application [8, 35, 45, 61] or by also considering runs where
specific failures occurred on specific services [23, 60, 97].
Monitoring-based techniques work with another different setup: they require deploying moni-

toring agents together with the application services, and they directly work with the application
services themselves (rather than processing their logs or the traces they produce). Whilst this is
the only need for SLO check-based techiniques [18, 19, 77] and for DLA [75], monitoring-based
techniques typically require additional artifacts to generate a baseline modelling of the KPIs moni-
tored on the application. They indeed either require KPIs already monitored in former production
runs of the application [87], or workload generators to simulate the traffic that will then be gen-
erated by end users [22, 27, 52, 90, 91]. ADS [22] also requires application operators to provide
failure injection modules to inject specific failures in specific services during the training of the
baseline model. In addition, some of the monitoring-based techniques focus on specific setups for
the deployment of an application, e.g., requiring their k8s deployment [25, 42, 75, 77, 90, 91] or
assuming their VM-based deployment to be such that each service is deployed in a separate VM
[52].
In summary, not all discussed techniques are suitable to be used on existing applications as

they are. They may require to instrument multi-service applications, to adapt their deployment
to work with a given technique, or to provide additional artifacts to configure a technique to
enact anomaly detection on an application. Hence, whilst some techniques are known to detect
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functional/performance anomalies at a finer granularity, this may not be enough to justify the cost
for setting them up to work with a given application, viz., to suitably instrument the application
or its deployment, or to provide the needed artifacts. In some other cases, an application may
already natively provide what is needed to apply it a given anomaly detection techniques, e.g.,
event logging or distributed tracing. The choice of which technique to use for enacting anomaly
detection on a given application hence consists of finding a suitable trade-off between the desired
granularity/type of detected anomalies and the cost for setting up such technique to work with
the given application. We believe that the classification provided in this paper can provide a first
support for application operators needing to take such a choice.

3.4.3 Accuracy of AnomalyDetection. The surveyed techniques (but for those based on SLO checks
or heartbeating) share a common assumption, viz., that, at runtime, the application and its services
behave similarly to the training runs. In other words, they assume that applications will feature
similar performances, log similar events, or perform similar interactions in a similar order. This
is however not always the case, since the actual behaviour of multi-service applications also de-
pends on the conditions under which they are executed, which often dynamically changes [81].
For instance, if hosted on the same virtual environments but with different sets of co-hosted appli-
cations, multi-service applications may suffer from different contentions on computing resources
and hence feature different performances [53]. Similar considerations derive from the workload
generated by end-users, which often varies with seasonalities [52]. In addition, multi-service appli-
cations can be highly dynamic in their nature, especially if based on microservices: new services
can be included to feature new functionalities, or existing services can be replaced or removed as
becoming outdated [81]. As a result, all techniques assuming that multi-service applications keep
running under the same conditions as in training runs may lower their accuracy if the running con-
ditions of an application change, as theymay end upwith detecting false positives orwith suffering
from false negatives. They may indeed detect functional or performance anomalies in a running
application, even if these are not anomalous changes, but rather correspond to the “new normal
behaviour” in the new conditions under which an application runs. They may instead consider the
actual behaviour of an application as normal, even if such behaviour may denote anomalies in the
latest running conditions of an application.
The problem of false positives and false negatives is not to be underestimated. Anomaly detec-

tion is indeed enacted as anomalies are possible symptoms of failures. A detected anomaly on a
service hence provides a warning on the fact that such service can have possibly failed, and it
may also be used to determine the type of failure affecting such service. A false positive, viz., a de-
tected anomaly that is actually not an anomaly, would result the application operator in spending
resources and efforts on application services that could have possibly failed, e.g., to recover them
or to understand why they have failed, even if this was not the case. Even worse is the case of
false negatives: if some anomalies would not be detected, the symptoms of some failures may not
get detected, which in turn means that the application operator would not be warned in case such
failures actually occur in a multi-service application.
Tomitigate this issue, the baseline used to detect anomalies should be kept up to date by adapting

it to the varying conditions under which a multi-service application runs. A subset of the surveyed
techniques explicitly recognise this problem, e.g., PreMiSE [52] prescribes to use a huge amount
of training data to include as many evolutions of the application as possible, therein including
seasonalities of workloads, to mitigate the effects of the “training problem” as much as possible.
Some of the surveyed techniques also propose solutions to address the training problem by keeping
the baseline model up to date. For instance, DLA [75], Seer [23], andWang et al. [88], among others,
propose to periodically re-train the baseline model by considering newly collected data as training
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data. They also observe that the re-training period should be tailored as a trade-off between the
effectiveness of the trained models and the computational effort needed to re-train the model, as
re-training is typically resource and time consuming. CloudRanger [87] instead keeps the baseline
continuously updated by enacting continuous learning on the services forming an application.
Among trace comparison-based techniques, Chen et al. [17] actually try to address the issue with
false positives by exploiting matrix sketching to keep track of the entire prior for each service.
They hence compare newly collected information with all what has been observed formerly, both
during the offline reference runs and while the application was running in production.
In the case of supervised learning-based techniques [8, 22, 23, 52, 60, 97], the false positives and

false negatives possibly caused by the training problem impact not only on anomaly detection, but
also on the identification of the failure corresponding to a detected anomaly. Failure identification
is indeed based on the correlation of symptoms, assuming that the same failure happening on the
same service would result in a similar set of symptoms. Again, the varying conditions under which
an application runs, as well as the fact that the service forming an application may dynamically
change themselves, may result in the symptoms observed on a service to change over time. The
failures that can possibly affect a service may also change over time, hence requiring to adapt the
supervised learning-based techniques not only to the varying conditions under which an applica-
tion runs, but also to the varying sets of possible failures for a service. To tackle this issue, Seer
[23] re-trains the baseline modelling of the application by also considering the failures that were
observed on the application services while they were running in production. Seer [23] is actually
the only technique dealing with the training problem among those enacting supervised learning.
This is mainly because Seer [23] is designed to be periodically trained on the data monitored while
an application is running in production, whereas the other supervised learning-based techniques
rely on predefined failures being artificially injected during the training runs.
The above however only constitute mitigation actions, viz., actions allowing to mitigate the

false positives/negatives due to the training problem. False positives/negatives are indeed a price
to pay when detecting anomalies by comparing the runtime behaviour of an application with a
baseline modelling of its normal, failure-free behaviour. A quantitative comparison of the accuracy
of the different techniques on given applications in given contexts would further help application
operators in this direction, and it will complement the information in this survey in supporting
application in choosing the anomaly detection techniques best suited to their needs. Such a quan-
titative comparison is however outside of the scope of this survey and a direction for future work.

3.4.4 Explainability and Countermeasures. The problem of false positives/negatives is also moti-
vated by a currently open challenge in the field of anomaly detection for multi-service applica-
tions, viz., “explainability”. This is tightly coupled with the problem of explainable AI [26], given
that anomaly detection is mainly enacted with machine learning-based techniques. If giving ex-
planations for answers given by learned models is generally important, it is even more important
in online anomaly detection. Explanations would indeed allow application operators to directly
exclude false positives, or to exploit such explanations, e.g., to investigate the root causes for the
corresponding failures, as well as to design countermeasures avoiding such failures to happen
again [11]. Root cause analysis techniques do exist and —as we show in Section 4— they still suffer
from the training problem potentially causing false positives or false negatives, as well as from the
need for explainability.
Another interesting research direction would be to take advantage of the information processed

to detect anomalies to enact countermeasures to isolate (the failures causing) detected anomalies,
e.g., by proactively activating circuit breakers/bulkheads [72] to avoid that a service anomaly prop-
agates to other services. A first attempt in this direction is made by Seer [23], which notifies the
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system manager about the anomaly detected on a service and the failure that can have possibly
caused it, e.g., CPU hog or memory leak. With such information, Seer [23] envisions the system
manager to be able to enact policies mitigating the effects of the failure causing a detected anomaly,
e.g., by providing the node hosting an anomalous service with additional computing resources.

4 ROOT CAUSE ANALYSIS

We hereafter survey the existing techniques for determining the possible root causes for anom-
alies observed in multi-service applications. Similarly to Section 3, we first present the class of
techniques enacting root cause analysis by directly processing the logs produced by application
services (Section 4.1). We then present the root cause analysis techniques requiring multi-service
applications to feature distributed tracing (Section 4.2) or to install agents to monitor their services
(Section 4.3). We finally discuss the surveyed root cause analysis techniques, with the support of
a recapping table (Table 2) and by also highlighting some open challenges in root cause analysis
(Section 4.4).

4.1 Log-based Root Cause Analysis Techniques

Root cause analysis can be enacted by only considering the logs natively produced by the services
forming an application (and without requiring further instrumentation like distributed tracing or
monitoring agents). This is done by processing the application logs to derive a “causality graph”,
whose vertices model application services, and whose directed arcs model that an anomaly in the
source service may possibly cause an anomaly in the target service. The causality graph is then
visited to determine a possible root cause for an anomaly observed on a multi-service application.

4.1.1 Causality Graph-based Analysis. Aggarwal et al. [1] allow to determine the root causes for
functional anomalies observed on the frontend of a multi-service application, viz., frontend errors
that users face when the application fails. Aggarwal et al. [1] consider the subset of application
services including the frontend and the services that logged error events. They model the logs of
considered services as multivariate time series, and they compute Granger causality tests [4] on
such time series to determine causal dependencies among the errors logged by the correspond-
ing services. The obtained cause-effect relations are used to refine the topology specified in an
input application specification, so as to derive a causality graph, viz., a graph whose nodes model
application services, and where an arc from a service to another that the errors logged by the
source service can have caused those logged by the target service. The services that, according to
the causality graph, can have caused directly or indirectly the error observed on the application
frontend are considered as the possible root causes for the corresponding faults. The candidate ser-
vices are scored by visiting the causality graph with the random walk-based algorithm proposed
by MonitorRank [38] (which we present in Section 4.2.3). Aggarwal et al. [1] then return the high-
est scored candidate, which is considered the most probable root cause for the observed functional
anomaly.

4.2 Distributed Tracing-based Root Cause Analysis Techniques

The information available in distributed traces can be exploited to support application operators in
determining the possible root causes for anomalies observed in their applications. In this perspec-
tive, the most basic technique consists of providing a systematic methodology to visually compare
traces, so that application operators can manually determine what went wrong in the “anomalous
traces”, viz., the traces corresponding to observed anomalies.
To automate the root cause analysis, the alternatives are twofold. An alternative is the directly

analysing traces to detect which services experienced anomalies, which may have possibly caused
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the observed anomalies. The other possibility is to automatically determine the topology of an ap-
plication (viz., a directed graph whose vertices model the application services and whose directed
arcs model the service interactions) from the available traces, and to use such topology to drive
the analysis for determining the possible root causes for anomalies observed on an application.

4.2.1 Visualization-based Analysis. Zhou et al. [96] and GMTA [28] allow application operators to
manually determine the possible root causes for application-level anomalies, based on a trace com-
parison methodology to be enacted with the support of a trace visualisation tool. Zhou et al. [96]
propose to use ShiViz [7] to visualise the traces produced by a multi-service application as inter-
active time-space diagrams. This allows to determine the root causes for the traces corresponding
to some anomaly observed in the application frontend by means of pairwise comparison of traces.
The idea is that the root causes for an anomalous trace are contained in a portion of such trace
that is different from what contained in a successful trace for the same task, whilst shared with
other anomalous traces. Zhou et al. [96] hence propose to consider the traces corresponding to the
observed anomaly and a set of reference, successful traces for the same set of tasks. They then pro-
pose to compare a successful trace and an anomalous trace corresponding to the same task. This
allows obtaining a set of so-called “diff ranges”, each of which corresponds to multiple consecutive
events that are different between the two traces. Zhou et al. [96] propose to repeat this process for
any pair of successful and anomalous traces for the same task, by always restricting the set of “diff
ranges” to those that are shared among all analysed traces. The “diff ranges” obtained at the end
of the process are identified as the possible root causes for the observed anomaly.
GMTA [28] provides a framework to collect, process, and visualise traces, which can be used

to determine the root causes for functional anomalies observed on a multi-service application.
GMTA [28] collects the traces produced by the application services, and it automatically process
them to determine interaction “paths” among services. A path is an abstraction for traces, which
onlymodels the service interactions in a trace and their order with a tree-like structure. GMTA [28]
also groups paths based on their corresponding “business flow”, defined by application operators to
indicate which operations could be invoked to perform a task and in which order. GMTA [28] then
allows to manually enact root cause analysis by visually comparing the paths corresponding to
traces of successful executions of a given business flow with that corresponding to the anomalous
trace where the functional anomaly was observed. This allows to determine whether the paths
diverge and, if this is the case, which events possibly caused the paths to diverge. In addition, if
the anomalous traces include error events, GMTA [28] visually displays such errors together with
the corresponding error propagation chains. This further allows to determine the services that
first logged error events in the anomalous trace, hence possibly causing the observed anomaly.
Both Zhou et al. [96] and GMTA [28] allow to determine the root causes for anomalies observed

on the frontend of an application, viz., the events that caused the trace to behave anomalously,
and their corresponding services. They also highlight that by looking at the root cause events,
or by inspecting the events logged by the corresponding services close in time to such events,
application operators can determine the reasons for such services to cause the observed anomaly,
viz., whether they failed internally, because of some unexpected answer from the services they
invoked, or because of environmental reasons (e.g., lack of available computing resources).

4.2.2 Direct Analysis. CloudDiag [56] and TraceAnomaly [45] determine the root causes of anom-
alies observed on the frontend of an application by directly analysing the response times in the
service interactions involved in collected traces. Their aim is determining other anomalies that
may have possibly caused the observed one. CloudDiag [56] and TraceAnomaly [45] however ap-
ply two different methods for analysing such response times.
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CloudDiag [56] allows application operators to manually trigger the root cause analysis when
a performance anomaly is observed on the application frontend. It then processes collected traces
to determine “anomalous groups”, viz., groups of traces sharing the same service call tree and
where the coefficient of variation [73] of response times in service interactions is above a given
threshold. Anomalous groups are processed to identify the services that most contributed to the
anomaly, based on Robust Principal Component Analysis (RPCA). When a matrix is corrupted by
gross sparse errors, RPCA can extract the columns where the errors appear [13]. CloudDiag [56]
represents the traces in a category as amatrix, and it exploits RPCA to determine the error columns
corresponding to services with anomalous response times. Such services constitute the possible
root causes for the observed anomaly, which are returned byCloudDiag [56]. Root causing services
are ranked based on the number of times they appeared as anomalous in anomalous categories:
the larger the number of times is, the more possible is that a service caused the observed anomaly.
TraceAnomaly [45] instead determines the possible root causes for the functional and perfor-

mance anomalies it detects while a multi-service application is running. As discussed in Sec-
tion 3.2.1, functional anomalies are detected when previously unseen call paths occur in a trace.
The root causes for functional anomalies hence obviously coincides with the services starting
the first interaction of the previously unseen call paths. Performance anomalies are instead de-
tected by means of a deep Bayesian neural network, which classifies newly produced traces as
normal/anomalous, without providing insights on the services which caused a trace to get clas-
sified as anomalous. TraceAnomaly [45] hence enacts a root cause analysis by correlating the
response times of service interactions in the anomalous trace with the average response times in
normal conditions: each service interaction whose response time significantly deviates from the
average response time is considered as anomalous. This results in one ormore sequences of anoma-
lous service interactions. The root causes for the detected performance anomaly are extracted from
such anomalous service interactions sequences, by picking the last invoked services as possible
root causes.

4.2.3 Topology Graph-based Analysis. The approach of building and processing topology graphs
for determining the possible root causes of performance anomalies is adopted byMonitorRank [38]
andMicroHECL [44]. They indeed both rely on services to produce interaction traces, including the
start and end times of service interactions, their source and target services, performance metrics
(viz., latency, error count, and throughput), and the unique identifier of the corresponding user
request. This information is then processed to reconstruct service invocation chains for the same
user request, which are then combined to build the application topology. They however differ
because they consider different time slices for building topologies, and sinceMonitorRank [38] and
MicroHECL [44] exploit topologies to determine the root causes of application-level and service-
level anomalies, respectively. MonitorRank [38] and MicroHECL [44] also differ in the method
applied to enact root cause analysis: MonitorRank [38] performs a random walk on the topology
graph, whereas MicroHECL explores it through a breadth-first search (BFS).
MonitorRank [38] enacts batch processing to periodically process the traces produced by appli-

cation services to generate a topology graph for each time period. Based on such graphs, Monitor-
Rank [38] allows to determine the possible root causes of a performance anomaly observed on the
application frontend in a given time period. This is done by running the personalised PageRank
algorithm [32] on the topology graph corresponding to the time period of the observed anomaly
to determine its root causes. MonitorRank [38] starts from the frontend service, and it visits the
graph by performing a random walk with a fixed number of random steps. At each step, the next
service to visit is randomly picked in the neighbourhood of the service under visit, viz., among the
service under visit, those it calls, and those calling it. The pickup probability of each neighbour is
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proportional to its relevance to the anomaly to be explained, computed based on the correlation
between its performance metrics and those of the frontend service (with such metrics available
in the traces produced in the considered time period). MonitorRank [38] then returns the list of
visited services, ranked by the number of times they have been visited. The idea is that, given that
services are visited based on the correlation of their performances with those of the application
frontend, the more are the visits to a service, the more such service can explain the performance
anomaly observed on the application frontend.
MicroHECL [44] instead builds the topology based on the traces produced in a time window

of a given size, which ends at the time when a service experienced the performance anomaly
whose root causes are to be determined. Based on such topology, MicroHECL [44] determines the
anomaly propagation chains that could have led to the observed anomaly. This is done by start-
ing from the service where the anomaly was observed and by iteratively extending the anomaly
propagation chains along the possible anomaly propagation directions, viz., from callee to caller
for latency/error count anomalies, and from caller to callee for throughput anomalies. At each it-
eration, the services that can be reached through anomaly propagation directions are included in
the anomaly propagation chains if they experienced corresponding anomalies. This is checked by
applying formerly trained machine learning models for offline detection of anomalies on each ser-
vice, viz., support vector machines [76] for latency anomalies, random forests [10] for error count
anomalies, and 3-sigma rule [16] for throughput anomalies. When anomaly propagation chains
cannot be further extended, the services at the end of each determined propagation chain are con-
sidered as possible root causes for the initial anomalous service. MicroHECL [44] finally ranks
the possible root causes, based on the Pearson correlation between their performance metrics and
those of the service where the performance anomaly was initially observed.

4.3 Monitoring-based Root Cause Analysis Techniques

Root cause analysis is also enacted by processing the KPIs monitored on the services forming an
application, throughout monitoring agents installed alongside the application services. The tech-
niques enacting such a kind of analysis can be further partitioned in three sub-classes, based on
the method they apply to determine the possible root causes for an anomaly observed on a service.
A possibility is to directly process monitored KPIs to determine other services that experienced
anomalies, which may have possibly caused that actually observed. Other alternatives rely on
topology/causality graphs modelling the dependencies among the services in an application, as
they visit such graphs to determine which services may have possibly caused the observed anom-
aly.

4.3.1 Direct Analysis. When an anomaly is detected on the frontend of a multi-service application,
its possible root causes can be determined by identifying the KPIs monitored on the application
services that were anomalous in parallel with the frontend anomaly. The idea is indeed that the
anomalous KPIs —and their corresponding services— can have possibly caused the detected fron-
tend anomaly. This technique is actually enacted by n-diagnosis [77] to automatically determine
the possible root causes of the performance anomalies it detects while the application is running
(Section 3.3.3). n-diagnosis [77] considers the time series of KPIs monitored on each container
running the application services, from which it extracts two same-sized samples. A sample cor-
responds to the time period where the frontend anomaly was detected, while the other sample
corresponding to a time period where no anomaly was detected. To determine whether a KPI can
have determined the detected anomaly, the similarity between the two samples is computed: if
the similarity between the two samples is beyond a given threshold, this means that no change
on the KPI occurred while the frontend anomaly was monitored, hence meaning that such KPI
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cannot have caused such anomaly. Instead, if the similarity is below the given threshold, the two
samples are diverse enough to consider the change in such KPI as anomalous and possibly causing
the frontend anomaly. The list of anomalous KPIs, together with the corresponding services, is
returned by n-diagnosis [77] as the set of possible root causes.
Wang et al. [86], PAL [63], and FChain [62] also exploit offline detection of anomalous KPIs to

determine the possible root causes for performance anomalies detected on the frontend of a multi-
service application, by however relying on external monitoring tools to detect such anomalies.
The root cause analysis proposed by Wang et al. [86] processes both the logs natively produced
by the services forming an application and the time series of KPIs monitored on such services by
devoted monitoring agents. They first train a long-short term memory neural network for each
service, which models its baseline behaviour in failure-free runs. When an anomaly is observed
on the application, each trained neural network processes the logs produced by the corresponding
service in the time interval when the anomaly was observed. The outputs of all trained neural
networks are combined to obtain a time series of anomaly degrees for the application. Wang et al.
[86] then apply mutual information [64] to determine the dependency of the anomaly degree on
the KPIs monitored on application services in the same interval. The obtained correlation values
are used to provide the list of KPIs thatmay have possibly caused the observed application anomaly,
together with the services on which they have been monitored. The list of root causes is sorted
by decreasing correlation value, with the goal of first showing the services’ KPIs having higher
probability to have caused the observed anomaly.
PAL [63] and FChain [62] propose two similar techniques to determine the possible root causes

for an application-level performance anomaly, both based on the analysis of system-level KPIs
monitored on application services (viz., CPU usage, free memory, and network traffic). Their as-
sumption is indeed that performance anomalies are manifested also as observable changes in one
or multiple system-level KPIs. When a performance anomaly is detected on the application fron-
tend, PAL [63] and FChain [62] examine each system-level KPI monitored on each application
service in a look-back window of a given size. Each KPI is analysed with a combination of CUSUM
(Cumulative Sum) charts and bootstrapping [6]. CUSUM charts are used to measure the magnitude
of changes for the monitored KPI values, both in the original sequence of monitored values and
in “bootstraps”, viz., permutations of the monitored KPI values obtained by randomly reordering
them. If the original sequence of monitored KPI values has a magnitude of change higher than
most bootstraps, it is considered anomalous and the time when the anomaly started is identified
based on the CUSUM charts of the original sequence. PAL [63] and FChain [62] then checkwhether
anomalies affected all application services. If this is the case, the anomaly is classified as due to ex-
ternal reasons (e.g., workload spikes). Instead, if only a subset of application services is affected by
anomalies, such services are considered as the possible root causes for the frontend anomaly. PAL
[63] and FChain [62] return the possible root causing services sorted by chronologically ordering
the start times of their anomalies. The idea is indeed that the earliest anomalies may have prop-
agated from their corresponding services to other services up to the application frontend, hence
most probably being the root causes for the observed frontend anomaly.

4.3.2 Topology Graph-based Analysis. MicroRCA [91], Wu et al. [90], Sieve [84], and Brandón et

al. [9] automatically reconstruct the graph modelling the topology of a running application, which
they then use to drive the analysis of the possible root causes for observed anomalies. DLA [75]
also exploits a topology graph to identify the possible root causes for observed anomalies, but
rather relying on the application operator to provide such graph. The above techniques however
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differ in the methods applied over topology graphs to determine the possible root causes of ob-
served anomalies, either enacting a random walk over topology graph or applying other analysis
methods.

Random Walk. MicroRCA [91] considers the status of the Kubernetes deployment of an appli-
cation when an anomaly was detected, viz., which containerised service were running, on which
nodes they were hosted, and the interactions that occurred among services. MicroRCA [91] ex-
ploits this information to generate a topology graph, whose vertices model the running applica-
tion services and the node used to host them, and whose oriented arcs model service interactions
or service hosting. The topology graph is enriched by also associating each vertex with the time
series of KPIs monitored on the corresponding service or node. MicroRCA [91] then extracts an
“anomalous subgraph” from the topology graph. The anomalous subgraph is obtained by extract-
ing the vertices corresponding to the services where anomalies were detected, by including the
vertices and arcs corresponding the interactions to/from the anomalous services, and by including
other vertices and arcs from the topology graph so as to obtain a connected subgraph. The anoma-
lous subgraph constitutes the search space where MicroRCA [91] looks for the services that may
have possibly caused the detected anomalies. The actual search for the root causing services is
enacted by adapting the random walk-based search proposed in MonitorRank [38] (Section 4.2.3)
to work with the information modelled by the anomalous subgraph.
Wu et al. [90] refine MicroRCA [90] to determine the services’ KPIs that may have possibly

caused some anomalies to be detected on some services. They reuse the topology-driven search
proposed by MicroRCA [91] to determine the services that can have possibly caused the detected
anomalies. In addition, Wu et al. [90] process the KPIs monitored on root causing services with the
autoencoder [24], viz., a neural network that learns to encode input values and to suitably recon-
struct them from their encoding. Wu et al. [90] first train an autoencoder with values for such KPIs
monitoredwhile no anomalywas affecting the application. They then feed the trained autoencoder
with the KPI values monitored on the application services when the considered anomalies were
detected. The KPIs whose values are not well-reconstructed, together with their corresponding
services, are considered as the possible root causes for the detected anomalies.

Other Methods. Sieve [84] and Brandón et al. [9] monitor network system calls to collect infor-
mation on service interactions, which they then exploit to automatically reconstruct the topology
of a running application. When a performance anomaly is observed on the application frontend,
Sieve [84] exploits such topology to drive the analysis of the possible root causes for the observed
anomaly. It first reduces the dimensionality of to-be-considered KPIs, by removing those whose
variance is too small to provide some statistical value, and by clustering the KPIs monitored on
each service so as to consider only one representative KPI for each cluster, viz., that closest to the
centroid of the cluster. Sieve [84] then explores the possibilities of a service’s representative KPIs
to influence other services’ KPIs using a pairwise comparison method: each representative KPI of
each service is compared with each representative KPIs of another service. The choice of which
services to compare is driven by the application topology: Sieve [84] indeed enacts a pairwise com-
parison of KPIs monitored only on interacting services, by exploiting Granger causality tests [4]
to determine whether changes in the values monitored for a service’s KPI were caused by changes
in those monitored for another service’s KPI. The obtained cause-effect relations are used to only
keep the KPIs whose changes were not caused by other services. Such KPIs, together with their
corresponding services, are considered as the possible root causes for the observed anomaly.
Brandón et al. [9] enrich the derived topology by associating each service with its monitored

KPIs and with the possibility of marking services as anomalous, by however relying on existing
anomaly detection techniques to actually detect anomalous services. Whenever the root cause for
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an anomaly in a service is looked for, the proposed system extracts subgraph modelling the neigh-
bourhood for an anomalous service, viz., it includes the vertices close to that modelling the anoma-
lous service up to a given distance. The anomalous subgraph is compared with “anomaly graph
patterns” provided by the application operator, viz., with graphs modelling already troubleshooted
anomalies and whose root causing service is known. If the similarity between an anomalous sub-
graph and an anomaly graph pattern is above a given threshold, the corresponding root causing
service is included among the possible root causes for the considered anomaly. If multiple root
causing services are detected, they are ranked by similarity between the corresponding anomaly
graph patterns and the anomalous subgraph.
DLA [75] instead starts from the application topology provided by the application operator,

which represents the services forming an application, the containers used to run them, and the VMs
where the containers are hosted, together with the communication/hosting relationships between
them. DLA [75] transforms the input topology into a Hiearchical Hidden Markov Model (HHMM)
[14] by automatically determining the probabilities of an anomaly affecting a service, container,
or VM to be caused by the components it relates to, viz., by the components it interacts with,
or by those used to host it. Such probabilities are automatically determined when an anomaly
is detected, by processing the latest monitored KPIs (viz., response time and CPU, memory, and
network consumption) with a combination of the Baum-Welch and Viterbi algorithms [14]. The
possible root causes for the detected anomaly are then determined by exploiting the obtained
HHMM to compute the likelihood of the anomaly to be generated by KPI anomalies monitored at
container- or VM-level. More precisely, DLA computes the path in the HHMM that has the highest
probability to have caused the anomaly observed on a service. The obtained path is then used to
elicit the KPIs (and corresponding components) that most probably caused the observed anomaly.

4.3.3 Causality Graph-based Analysis. Various existing techniques determine the possible root
causes for an anomaly observed on some application service by suitably visiting an automatically
derived causality graph [18, 19, 25, 42, 43, 48–50, 87]. The vertices in the causality graph typi-
cally model application services, with each oriented arc indicating that the performance of the
source service depend on that of the target service. Causality graph are typically built by exploit-
ing the well-known PC-algorithm [65]. More precisely, the causality graph is built by starting from
a complete and undirected graph, which is refined by dropping and orienting arcs to effectively
model causal dependencies among the KPIs monitored on services. The refinement is enacted by
pairwise testing conditional independence between the KPIs monitored on different services: if
the KPIs monitored on two services result to be conditionally independent, the arc between the
services is removed. The remaining arcs are then oriented based on the structure of the graph.
The existing causality graph-based techniques however differ in the methods applied to process

causality graphs to determine the possible root causes for observed anomalies. The most common
methods are visiting the causality graph through a BFS or a random walk, but there exist also
techniques enacting other causality graph-based analysis methods.

BFS. CauseInfer [18, 19] and Microscope [25, 42] determine the possible root causes for the
response time anomalies they detect on the frontend of a multi-service application. They rely on
monitoring agents to collect information on service interactions and their response time, with Cau-
seInfer [18, 19] installing them in the nodes where the application services run, whilst Microscope
[25, 42] assuming monitoring agents to be included in the k8s deployment of an application. The
monitored information is processed with the PC-algorithm to build a causality graph, by exploit-
ing�2 cross-entropy [65] to test conditional independence between the response times monitored
on different services. The causality graph is enriched by also including arcs modelling the depen-
dency of each service with the services it invokes. On this basis, CauseInfer [18] and Microscope
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[25, 42] enact root cause inference by recursively visiting the obtained causality graph, starting
from the application frontend. For each visited service, they consider the services on which it
depends: if all such services were not affected by response time anomalies, the currently visited
service is considered a possible root cause. Otherwise, CauseInfer [18, 19] and Microscope [25, 42]
recursively visit all services that were affected by response time anomalies to find the possible root
causes for the anomaly observed on the currently visited service. To determine anomalies in the
response times of visited services, CauseInfer [18, 19] computes an anomaly score based on the
cumulative sum statistics on the history of monitored response times. Microscope [25, 42] instead
exploits standard deviation-based heuristics to determine whether the latest monitored response
times were anomalous. When all possible root causes have been identified, CauseInfer [18, 19]
ranks them based on their anomaly score, whilst Microscope [25, 42] ranks them based on the
Pearson correlation between their response times and that of the application frontend.
Qiu et al. [69] instead consider service-level performance anomalies, viz., they aim at determin-

ing the possible root causes for an anomaly observed in the KPIs monitored on any service in an
application (rather than on the application frontend). To determine such root causes, they exploit
the PC-algorithm [65] to build causality graphs whose vertices correspond to KPIs monitored on
application services (rather than to the services themselves), viz., their response times, error count,
queries per second, and resource consumption. Qiu et al. [69] also enrich the causality graph by
including arcs among KPIs also when a dependency between the corresponding services is indi-
cated in the application specification provided as input by the application operator. The arcs in
the causality graph are also weighted, with each arc’s weight indicating how much the source KPI
influences the target KPI. The weight of each arc is computed by determining the Pearson corre-
lation between the sequence of significant changes in the source and target KPIs, with significant
changes being determined by processing the corresponding time series of monitored KPI values
with the solution proposed by Luo et al. [47]. The root cause analysis is then enacted with a BFS in
the causality graph, starting from the KPI whose anomaly was observed. This allows to determine
all possible paths outgoing from the anomalous KPI in the causality graph, which all correspond
to possible causes for the anomaly observed on such KPI. The paths are then sorted based on the
sum of the weights associated to the edges in the path by prioritizing shorter paths in the case of
paths whose sum is equivalent. In this way, Qiu et al. [69] prioritize the paths including the KPIs
whose changes most probably caused the observed anomaly.

RandomWalk. CloudRanger [87],MS-Rank [48, 49], andAutoMAP [50] exploit the PC-algorithm
to build a causality graph by processing the KPIs monitored on application services. As for KPIs,
CloudRanger [87] considers response time, throughput, and power. Such KPIs are also considered
by MS-Rank [48, 49] and AutoMAP [50], in addition to the services’ availability and resource con-
sumption. CloudRanger [87], MS-Rank [48, 49], and AutoMAP [50] however differ fromCauseInfer
[18] and Microscope [25, 42] because they exploit 3-separation [20] (rather than�2 cross entropy)
to test conditional independence while building the causality graph with the PC-algorithm [65].
They also differ in the way they enact root cause analysis on obtained causality graphs: a causality
graph indeed provides the search space where CloudRanger [87], MS-Rank [48, 49], and AutoMAP
[50] perform a random walk to determine the possible root causes for a performance anomaly ob-
served on the application frontend. The random walk starts from the application frontend and
it consists of repeating = times (with = equal to the number of services in an application) a ran-
dom step to visit one of the services in the neighbourhood of the currently visited service, viz.,
the set including the currently visited service, together with the services that can be reached by
traversing forward/backward arcs connected to the currently visited service. At each iteration, the
probability of visiting a service in the neighbourhood is proportional to the correlation of its KPIs
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with those of the application frontend. CloudRanger [87], MS-Rank [48, 49], and AutoMAP [50]
rank the application services based on how many times they have been visited, considering that
most visited services constitute the most probable root causes for the anomaly observed on the
frontend.
Differently from the above discussed techniques [48–50, 87], MicroCause [55] determines the

root causes of service-level performance anomalies by exploiting the PC-algorithm [65] to build a
causality graph whose vertices correspond to KPIs monitored on application services (rather than
to the services themselves). In particular, MicroCause [55] considers the response time monitored
on application services, their error count, queries per second, and resource consumption. Micro-
Cause [55] then determines the KPIs that experienced anomalies and the time when their anomaly
started by exploiting the SPOT algorithm [80]. MicroCause [80] also computes an anomaly score
for each KPI, essentially by measuring the magnitude of its anomalous changes. This information
is then used to drive a random walk over the causality graph to determine the possible root causes
for an anomalous KPI being observed on a service. MicroCause [55] starts from the anomalous KPI
and repeats a given number of random steps, each consisting of staying in the currently visited KPI
or randomly visiting a KPI that can be reached by traversing forward/backward arcs connected to
the currently visited KPI. At each step, the probability of visiting a KPI is based on the time and
score of its anomaly, if any, and on the correlation of its values with those of the anomalous KPI
whose root causes are being searched. The KPIs visited during the random walk constitute the
set of possible root causes returned by MicroCause [55], ranked based on their anomaly time and
score.

Other Methods. FacGraph [43] exploits the PC-algorithm [65] with 3-separation [20] to build
causality graphs, whilst also assuming the same frontend anomaly to be observed in multiple time
intervals. It indeed exploits the PC-algorithm to build multiple causality graphs, each built on
the latency and throughput monitored on application services during the different time intervals
when the frontend anomaly was observed. FacGraph [43] then searches for anomaly propagation
subgraphs in the obtained causality graphs, with each subgraph having a tree-like structure and
being rooted in the application frontend. The idea is that an anomaly originates in some application
services and propagates from such services to the application frontend. All identified subgraphs are
assigned a score based on the frequency with which they appear in the causality graphs. Only the
subgraphs whose score is higher than a given threshold are kept, as they are considered as possible
explanations for the performance anomaly observed on the application frontend. FacGraph [43]
then returns the set of services corresponding to leaves in the tree-like structure of each of the
kept subgraphs, which constitute the possible root causes for the observed frontend anomaly.
Differently from FacGraph [43], LOUD [51] determines the root causes of service-level perfor-

mance anomalies by building causality graphswhose vertices correspond to KPIs monitored on ap-
plication services (rather than to the services themselves). In addition, LOUD [51] is “KPI-agnostic”,
as it works with any set of KPIs for monitored on the services forming an application. LOUD [51]
relies on the IBM ITOA-PI [21] to detect anomalous KPIs monitored on the services forming an
application (Section 3.3.1), and to automatically determine the possible root causes for such anom-
alies. The IBM ITOA-PI [21] is indeed exploited to automatically build a causality graph and to
process such graph. This is done under the assumption that the anomalous KPIs related to a de-
tected anomaly are highly correlated and form a connected subgraph of the causality graph. In
particular, LOUD assumes that the anomalous behaviour of the service whose KPIs are anoma-
lous is likely to result in the anomalous behaviour of services it interacts with, either directly or
through some other intermediate services. Based on this assumption, LOUD exploits graph cen-
trality indices to identify the anomalous KPIs that best characterize the root cause of a detected
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performance anomaly: the KPIs with the highest centrality scores likely correspond to the services
that are responsible for the detected anomaly.

4.4 Discussion

Table 2 recaps the surveyed root cause analysis techniques by distinguishing their classes, viz.,
whether they are log-based, distributed tracing-based, or monitoring-based, as well as the method
they apply to determine the possible root causes for an observed anomaly. The table classifies
the surveyed techniques based on whether they identify the possible root causes for functional
or performance anomalies, observed at application-level (e.g., on the application frontend) or on
specific services in the application, as well as on whether they are already integrated with any of
the anomaly detection techniques surveyed in Section 3. Table 2 also provides some insights on
the artifacts that must be provided to the surveyed root cause analysis techniques, as input needed
to actually search for possible root causes of observed anomalies, and it recaps the root causes
they automatically identify. In the latter perspective, the table distinguishes whether the surveyed
techniques identify the services, events, or KPIs that possibly caused an observed anomaly, and
whether the identified root causes are ranked, with higher ranks assigned to those that have higher
probability to have caused the observed anomaly.
Taking Table 2 as a reference, we hereafter summarise the surveyed techniques for identify-

ing the possible root causes for detected anomalies (Section 4.4.1). We also discuss them under
three different perspectives, viz., finding a suitable compromise between the identified root causes
and setup costs (Section 4.4.2), their accuracy (Section 4.4.3), and the need for explainability and
countermeasures (Section 4.4.4).

4.4.1 Summary. The surveyed root cause analysis techniques allow to determine the possible root
causes for anomalies observed onmulti-service applications. In some cases, the root cause analysis
techniques are enacted in pipeline with anomaly detection. Whenever an anomaly is detected to
affect the whole application or one of its services, a root cause analysis is automatically started to
determine the possible root causes for such an anomaly [18, 19, 25, 42, 45, 51, 75, 77, 86, 87, 90, 91].
In this case, the pipeline of techniques can be used as-is to automatically detect anomalies and
their possible root causes. The other techniques instead determine the possible root causes for
anomalies observed with external monitoring tools, by end users, or by application operators
[1, 9, 28, 38, 43, 44, 48–50, 55, 56, 62, 63, 69, 84, 96]. By combining the information on the type and
grain of detected/analysed anomalies available in Tables 1 and 2, application operators can deter-
mine which root cause analysis technique can be used in pipeline with a given anomaly detection
technique, after applying the necessary integration to both techniques to let them successfully
interoperate.
Whichever is the way of detecting anomalies, their root cause analysis is typically enacted on

a graph modelling the multi-service application where anomalies have been observed (Table 2).
A possibility is to visit a graph modelling the application topology, which can be automatically
reconstructed by monitoring service interactions [9, 84, 90, 91] or from distributed traces [38, 44],
or which must be provided as input by the application operator [75]. The most common, graph-
based approach is however reconstructing a causality graph from the application logs [1] or from
the KPIs monitored on the services forming an application [18, 19, 25, 42, 43, 48–51, 55, 69, 87],
typically to model how application services influence each other. The vertices in a causality graph
either model the application services [18, 19, 25, 42, 43, 48–50, 87] or the KPIs [51, 55, 69] monitored
on such services, whereas each arc indicates that the performanceof the target service/KPI depends
on that of the source service/KPI. Causality graphs are always obtained (but for the case of LOUD
[51]) by applying the PC-algorithm [65] to the time series of logged events/monitored KPIs, as such
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Table 2. Classification of root cause analysis techniques, based on their class (viz., L for log-based techniques,

DT for distributed tracing-based techniques, M for monitoring-based techniques), the applied method,

whether the detection of analysed anomalies is integrated or done with external tools (viz., I for integrated

pipelines, E for external tools), the type (viz., F for functional anomalies, P for performance anomalies) and

grain of explained anomalies (viz., A for application-level anomalies, S for service-level anomalies), the iden-

tified root causes, and the input they need to run.

Anomaly
Class Method Det. Type Gran. Root Causes Needed Input

Aggarwal et al. [1] L random walk on causality graphs E F A service runtime logs, app spec
Zhou et al. [96] DT visual trace comparison E F, P A events previous and runtime traces
GMTA [28] DT visual trace comparison E F, P A services previous and runtime traces

CloudDiag [56] DT RPCA on traces E P A ranked services app deployment
TraceAnomaly [45] DT direct KPI correlation I F, P A services previous and runtime traces
MonitorRank [38] DT random walk on topology graphs E P A ranked services app deployment
MicroHECL [44] DT BFS on topology graphs E P S ranked services previous and runtime traces
n-diagnosis [77] M direct KPI correlation I P A service KPIs k8s deployment
Wang et al. [86] M direct KPI correlation I F, P S service KPIs runtime logs, monitored KPIs

PAL [63] M direct KPI correlation E P A ranked services app deployment
FChain [62] M direct KPI correlation E P A ranked services app deployment

MicroRCA [91] M random walk on topology graphs I P S services k8s deployment, workload generator
Wu et al. [90] M random walk on topology graphs I P S service KPIs k8s deployment, workload generator
Sieve [84] M KPI correlation on topology graphs E P A service KPIs app deployment

Brandón et al. [9] M pattern matching on topology graphs E F, P S ranked services app deployment, anomaly patterns
DLA [75] M Markov analysis on topology graphs I P S service KPIs k8s deployment, app spec

CauseInfer [18, 19] M BFS on causality graphs I P A ranked services target app deployment
Microscope [25, 42] M BFS on causality graphs I P A ranked services target app deployment

Qiu et al. [69] M BFS on causality graphs E P S ranked service KPIs monitored KPIs, app spec
CloudRanger [87] M random walk on causality graphs I P A ranked services app deployment, prev. monitored KPIs
MS-Rank [48, 49] M random walk on causality graphs E P A ranked services monitored KPIs
AutoMAP [50] M random walk on causality graphs E P A ranked services monitored KPIs
MicroCause [55] M random walk on causality graphs E P S ranked service KPIs monitored KPIs
FacGraph [43] M correlation of causality graphs E P A ranked services monitored KPIs
LOUD [51] M centrality on causality graphs I P S ranked service KPIs app deployment, workload generator

algorithm is known to allow determining causal relationships in time series, viz., by identifying
whether the values in a time series can be used to predict those of another time series.

The search can then be performed by visiting the topology/causality graph, starting from the
application frontend in the case of application-level anomalies [1, 18, 19, 25, 38, 42, 43, 48–50, 84, 87]
or from the KPI/service where the anomaly was actually observed [44, 51, 55, 69, 90, 91]. Different
methods are then applied to visit the graph, the most intuitive being a BFS over the graph to
identify all possible paths that could justify the observed anomaly [69]. To reduce the paths to be
visited, the BFS is often stopped when no anomaly was affecting any of the services that can be
reached from the currently visited service, which is hence considered a possible root cause for the
observed anomaly [18, 19, 25, 42, 44]. The most common method is however that first proposed
in MonitorRank [38] and then reused by various techniques [48–50, 55, 87, 90, 91]. In this case,
the graph is visited through a random walk, where the probability of visiting a service with a
random step is proportional to the correlation between the performances of such service and of
the service where the anomaly was observed. Rather than returning all possible root causes (as
per what modelled by the graph), random walk-based techniques return a ranked list of possible
root causes, under the assumption that the more a service gets visited through the random walk,
the more is probable that it can have caused the observed anomaly [38, 48, 49].
Other graph-based root cause analysis techniques anyhow exist, either using the application

topology to drive the pairwise comparison of monitored performances [84], or based on processing
the whole topology/causality graph to determine the possible root causes for an observed anomaly
[9, 51, 75]. As for processing the application topology, the alternatives are twofold, viz., enacting
pattern matching to reconduct the observed anomaly to some already troubleshooted situation [9],
or transforming the topology into a probabilistic model to elict the most probable root causes for
the observed anomaly [75]. In the case of causality graph, instead, graph processing corresponds to
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computing graph centrality indexes to rank the KPIs monitored on services, assuming that highest
ranked KPIs best characterise the observed anomaly [51].
Quite different methods are trace comparison and direct KPI correlation. In the case of trace

comparison, the idea is to provide application operators with a graphical support to visualise and
compare traces, in such a way that they can troubleshoot the traces corresponding to anomalous
runs of an application [28, 96]. Direct KPI correlation is instead based the idea here is that an
anomaly observed on a service can be determined by the co-occurrenceof other anomalies on other
services. The proposed method is hence to directly process the traces produced by application
services [45, 56] or their monitored KPIs [62, 63, 77, 86] to detect co-occurring anomalies, viz.,
occurring in a time interval including the timewhen the initially considered anomalywas observed.
Such co-occurring anomalies are considered as the possible root causes for the observed anomaly.

4.4.2 Identified Root Causes vs. Setup Costs. The surveyed techniques determine possible root
causes for anomalies of different types and granularity, by requiring different types of artifacts
(Table 1). Independently from the applied method, trace-based and monitoring-based techniques
reach a deeper level of detail for considered anomalies and identified root causes, if compared with
the only available log-based technique. The log-based technique byAggarwal et al. [1] determines a
root causing service, whichmost probably caused the functional anomaly observed on the frontend
of an application. The available trace-based and monitoring-based techniques instead determine
multiple possible root causes for application-level anomalies [18, 19, 25, 28, 38, 42, 43, 45, 48–
50, 56, 62, 63, 77, 84, 87, 96] or service-level anomalies [9, 44, 51, 55, 69, 75, 86, 90, 91]. They can
also provide more details on the possible root causes for an observed anomaly, from the application
services that may have caused it [9, 18, 19, 28, 38, 43–45, 48–50, 56, 62, 63, 87, 91] up to the actual
events [96] or KPIs monitored on such services [51, 55, 69, 75, 77, 84, 86, 90]. To help application
operators in troubleshooting the multiple root causes identified for an observed anomaly, some
techniques also rank the possible root causing services [9, 18, 19, 25, 38, 42–44, 48–50, 56, 62, 63, 87]
or KPIs [51, 55, 69]. The idea is that highest ranked root causes are more likely to have caused an
observed anomaly, hence helping application operators to earlier identify the actual root causes
for the observed anomaly, often saving them from troubleshooting all possible root causes.
At the same time, the log-based root cause analysis proposed by Aggarwal et al. [1] directly

works with the event logs produced by application services, by inferring causal relationships
among logged events based on an application specification provided by the application operator.
The log-based root cause analysis technique proposed by Aggarwal et al. [1] hence assumes that
application services log events, which is typically the case, whilst not requiring any further ap-
plication instrumentation. As we already discussed in Section 3.4.2, distributed tracing-based and
monitoring-based techniques instead require applications to be instrumented to feature distributed
tracing or to be deployed together with agents monitoring KPIs on their services, respectively. The
surveyed techniques also often rely on specific technologies, such as k8s [75, 77, 90, 91], assume
the deployment of an application to be such that each service is deployed on a different VM [62, 63],
or require the application operator to provide additional artifacts, e.g., a specification of the appli-
cation topology [1, 69, 75], known anomaly patterns [9], or workload generators [51, 90, 91].
The surveyed root cause analysis techniques hence differ in the type and granularity of observed

anomalies they can explain, in the root causes they identify, and in their applicability to a multi-
service application as it is. In particular, whilst some techniques can achieve a deeper level of detail
in identified root causes and rank them based on their probability to have caused an observed
anomaly, this is paid with the cost for setting them up to work with a given application, viz.,
to suitably instrument the application or its deployment, or to provide the needed artifacts. The
choice of which technique to use for enacting root cause analysis on a given application hence
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consists of finding a suitable trade-off between the level and ranking of identified root causes and
the cost for setting up such technique to work with the given application. We believe that the
classification provided in this paper can provide a first support for application operators wishing
to choose the root cause analysis technique most suited to their needs.

4.4.3 Accuracy of Enacted RootCause Analyses. As for the case of anomaly detection (Section 3.4.3),
false positives and false negatives can affect the accuracy of root cause analysis techniques. False
positives here correspond to the services or KPIs that are identified as possible root causes for an
observed anomaly, even if they actually have nothing in commonwith such anomaly. The only sit-
uation in which no false positive is returned by a root cause analysis technique is when Aggarwal
et al. [1] returns the service that is actually causing an observed anomaly. In all other cases, false
positives are there: if Aggarwal et al. [1] returns a service different from that actually causing an
observed anomaly, the returned service is a false positive. The other surveyed techniques instead
return multiple possible root causes, often including various false positives. Such false positives
put more effort on the application operator, who is required to troubleshoot the corresponding
services, even if they actually not caused the anomaly whose root causes are being searched.
At the same time, returning multiple possible root causes reduces the risk for false negatives,

viz., for the actual root causes of an observed anomaly to not be amongst those determined by the
enacted root cause analysis. The impact of false negatives is even more severe than that of false
positives, which puts more effort on the application operator [69]. The main purpose of root cause
analysis is indeed to automatically identify the actual root causes for an observed anomaly, and
missing such actual root causes (as in the case of false negatives) may make the price to enact root
cause analysis not worthy to be paid. This is the main reason whymost of the surveyed techniques
opt to return multiple possible root causes, amongst which the actual one is likely to be. As we
already highlighted in Section 4.4.1, to reduce the effort to be put on the application operator to
identify the actual root cause among the returned ones, some techniques also rank them based on
their likelihood to have caused the observed anomaly [38].
False negatives are however always around the corner. The common driver for automatically

identifying root causes with the surveyed techniques is correlation, which is used to correlate
offline detected anomalies or to drive the search within the application topology or in a causality
graph. It is however known that correlation is however not ensuring causation [12], hencemeaning
that the actual root cause for an anomaly observed in a service may not be amongst the services
whose behaviour is highly correlated with that of the anomalous service, but rather in some other
service. Spurious correlations impact more on those techniques determining causalities by relying
on correlation only, e.g., to determine which is the root cause among co-occurring anomalies, or
to build a causality graph. One may hence think that topology-driven techniques are immune
to spurious correlations, as they rely on the explicit modelling of the interconnections between
the services forming an application and their hosting nodes. However, those techniques enacting
correlation-guided random walks over the topology of an application are still prone to spurious
correlations. At the same time, even if a technique enacts an extensive search over the application
topology and considers all modelled dependencies, it may miss the actual root cause in some cases.
For instance, if a topology is just representing service interactions, a technique analysing such
topology may miss the case of performance anomalies affecting a service because other services
hosted on the same node are consuming all computing resources. It may also be the case that
—independently from the applied method— a root cause technique actually determines the root
cause for an observed anomaly, but the latter is excluded from those returned because its estimated
likelihood to have caused the observed anomaly is below a given threshold.
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All the surveyed techniques are hence subject to both false positives and false negatives, as they
are actually inherent to the root cause analysis problem itself. False positives/negatives are indeed
a price to pay when enacting root cause analysis. A quantitative comparison of the accuracy of
the different techniques on given applications in given contexts would further help application
operators in this direction, and it will complement the information in this survey in supporting
application in choosing the root cause analysis techniques best suited to their needs. Such a quan-
titative comparison is however outside of the scope of this survey and left for future work.

4.4.4 Explainability and Countermeasures. The problem of false positives/negatives amongst iden-
tified root causes can be mitigated by addressing one of the open challenges in root cause analysis:
explainability. Identified root causes should be associated with explanations on why they may
have caused an observed anomaly, as well as why they are ranked higher than other possible root
causes, in the case of techniques returning a ranking of possible root causes. Such information
would indeed help application operators in identifying the false positives to get excluded, or in
considering the possible root causes in some order different from that given by the ranking, if they
believe that their associated explanations are more likely to have caused an observed anomaly.
In addition, as we discussed in Section 4.4.3, false negatives may be due to the fact that a root

cause analysis technique excluded possible root causes if their likelihood to have caused an ob-
served anomaly was below a given threshold. If returned root causes would be associated with
explanations on why they were considered such, we may avoid cutting the returned set of pos-
sible root causes, hence reducing the risk of techniques to consider as false negatives those root
causes that they actually determined. Again, application operators could exploit provided expla-
nations to directly exclude the root causes corresponding to false positives.
Recommending countermeasures to be enacted to avoid the identified root causes to cause again

the correspondingly observed anomalies is also an open challenge. All the surveyed techniques
allow to determine possible root causes for an observed anomaly, viz., the set of services that may
have caused the anomaly, or the trace events or KPIs collected on such services. The possible root
causes are returned to the application operator, who is in charge of further troubleshooting the
potentially culprit services to determine whether/why they actually caused the observed anomaly.
At the same time, the possible root causes are identified based on data collected on the services
forming an application, which is processed only to enact root cause analysis. Such data could
however be further processed to further support the application operator, e.g., to automatically
extract possible countermeasures to avoid it to cause the observed anomaly [11]. For instance, if
a service logged an error event that caused a cascade of errors reaching the service where the
anomaly was observed, the root cause analysis technique could further process the error logs to
suggest how to avoid such error propagation to happen again, e.g., by introducing circuit breakers
or bulkheads [72]. If a service was responding too slowly and caused some performance anomaly
in another service, this information can be used to train machine learningmodels to predict similar
performance degradations in the root causing service, which could then be used to preemptively
scale such service and avoid the performance degradation to again propagate in future runs of an
application. The above are just two out of many possible examples, deserving further investigation
and opening new research directions.

5 RELATED WORK

Anomaly detection and root cause analysis are crucial in nowadays enterprise IT applications
[45, 87]. Techniques for solving both problems have already been discussed in existing surveys,
which however differ from ours as they consider either anomaly detection or root cause analysis.
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Chandola et al. [16] and Akoglu et al. [2] survey the research on detecting anomalies in data.
In both surveys, the focus is on the generic problem of significant changes/outlier detection in
data, independently of whether this is done online or offline, or what the data is about. We differ
from both surveys as we focus on online anomaly detection in a specific type of data, viz., logs,
traces, or KPIs monitored on application services. This allows us to provide a more detailed de-
scription of how such techniques can detect anomalies in running multi-service applications, as
well as to compare and discuss them under dimensions peculiar to such problem, e.g., whether
they can detect application- or service-level anomalies, the cost for their setup, or their accuracy
in dynamically changing applications. In addition, the studies surveyed by Chandola et al. [16] and
Akoglu et al. [2] are dated 2015 at most, hence meaning that various anomaly detection techniques
for multi-service applications are not covered by such surveys. Such techniques have indeed been
proposed after 2014, when microservices were first proposed [41] and gave rise to the widespread
use of multi-service architectures [81]. Finally, differently from Chandola et al. [16] and Akoglu
et al. [2], we also survey the analysis techniques that can be used in a pipeline with the surveyed
anomaly detection techniques to determine the possible root causes for detected anomalies.
Steinder and Sethi [83], Wong et al. [89], and Sole et al. [82] survey solutions for determining the

possible root causes for failures in software systems. In particular, Steinder and Sethi [83] survey
techniques for determining the root causes of anomalies in computer networks. Wong et al. [89]
instead provide an overview of the techniques allowing to identify the root causes of failures in
the source code of a single software program. Both Steinder and Sethi [83] and Wong et al. [89]
hence differ from our survey as they focus on software systems different than multi-service ap-
plications. In this perspective, the survey by Sole et al. [82] is closer to ours, since they focus on
techniques allowing to determine the root causes of anomalies observed in multi-component soft-
ware systems, therein included multi-service applications. The focus of Sole et al. [82] is however
complementary to ours: they analyse the performance and scalability of the surveyed root cause
analysis techniques, whilst we focus on more qualitative aspects, e.g., what kind of anomalies can
be analysed, which analysis methods are enacted, which instrumentation they require, or which
actual root causes are determined. In addition, we also survey existing techniques for detecting
anomalies in multi-service application, with the aim of supporting application operators in set-
ting up their pipeline to detect anomalies in their applications and to determine the root causes of
observed anomalies.
Another noteworthy secondary study is that by Arya et al. [5], who evaluate several state-of-the-

art techniques for root cause analysis, based on logs obtained from a publicly available benchmark
multi-service applications. In particular, they consider Granger causality-based techniques, by pro-
viding a first quantitative evaluation of their performance and accuracy on a common dataset of
application logs. They hence complement the qualitative comparison in our survey with a first
result along a research direction emerging from our survey, viz., quantitatively comparing the
performance and accuracy of the existing root cause analysis techniques.
In summary, to the best of our knowledge, ours is the first survey on the techniques for detecting

anomalies that can be symptoms of failures in multi-service applications, while at the same time
presenting the analysis techniques for determining possible root causes for such anomalies. It is
also the first survey providing a more detailed discussion of such techniques in the perspective of
their use with multi-service applications, e.g., whether they can detect and analyse anomalies at
application- or service-level, which instrumentation they require, and how they behave when the
services forming an application and their runtime environment change over time.
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6 CONCLUSIONS

To support application operators in detecting failures and identiying their possible root causes,
we surveyed existing techniques for anomaly detection and root cause analysis in modern multi-
service applications. Other than presenting the methods applied by such techniques, we discussed
the type and granuality of anomalies they can detect/analyse, their setup costs (viz., the instrumen-
tation that application operators must apply to their applications to use such techniques, and the
additional artifacts they must produce), their accuracy and applicability to dynamically changing
applications, and open challenges on the topic.
We believe that our survey can provide benefits to practicitioners working with modern multi-

service applications, such as microservice-based applications, for instance. Our survey provides
a first support for setting up a pipeline of anomaly detection and root cause analysis techniques,
so that failures are automatically detected and analysed in multi-service applications. We indeed
not only highlighted which existing techniques already come in an integrated pipeline, but we
also discussed the type and granularity of anomalies they consider. This provides a baseline for
application operators to identify the anomaly detection and root cause analysis techniques that
—even if coming as independent solutions— could be integrated in a pipeline, since they identify
and explain the same type/granularity of anomalies. This, togeter with our discussion on the tech-
niques’ setup costs (Sections 3.4.2 and 4.4.2), provides a first support to practitioners for choosing
the most suited techniques for their needs.
In this perspective, a quantitative comparison of the performance of the surveyed techniques

would further support practitioners, and it definitely deserves future work. Indeed, whilst the sur-
veyed techniques already measure their performance or accuracy, sometimes also in comparison
with other existing techniques, this is typically done with experiments on different reference ap-
plications running in different environments. This makes it complex to quantitatively compare the
existing anomaly detection and root cause analysis techniques, hence opening the need for studies
quantitatively comparing the performance of such techniques by fixing the reference applications
and runtime environments, much in a similar way as Arya et al. [5] did for a subset of existing
root cause analysis techniques. Quantitative performance comparisons would complement the re-
sults of our qualitative comparison, providing practitioners with more tools to choose the anomaly
detection and root cause analysis techniques most suited to their applications’ requirements.
Our survey can also help researchers investigating failures and their handling in modern multi-

service applications, as it provides a first structured discussion of anomaly detection and root cause
analysis techniques in such a kind of applications. For instance, we discussed how false positives
and false negatives can negatively affect the accuracy of observed anomalies/identified root causes
(Sections 3.4.3 and 4.4.3). Whilst false positives could result in unnecessary work for application
operators, false negatives could severely impact on the outcomes of the surveyed technique: false
negatives indeed correspond to considering a service as not anomalous or not causing an observed
anomaly, even if this was actually the case. In both cases, false positives/negatives can occur if the
services forming an application or its runtime conditions change over time. Whilst some of the sur-
veyed techniques already consider the issue of accuracy losses in the case of application changing
over time, this is done with time consuming processes, e.g., by re-training the machine learning
models used to detect anomalies [23, 75, 88] or by relying on application operators to provide up-
dated artifacts to identify possible root causes [9]. Re-training or manual updates, as well as the
other proposed updates, are hence not suited to get continuously enacted, but rather require to find
a suitable tradeoff between the update period and the accuracy of enacted anomaly detection/root
cause analysis [23, 75]. However, modern software delivery practices are such that new versions of
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the services forming an application are continuously released [30], and cloud application deploy-
ments are such that services are often migrated from one runtime to another [15]. An interesting
research direction is hence to devise anomaly detection and root cause analysis techniques that
can effectively work also in presence of continuous changes in multi-service applications, either
adapting the surveyed ones or by devising new ones, e.g., by exploiting the recently proposed
continual learning solutions [46].
Other two interesting research directions already emerged in Sections 3.4.4 and 4.4.4, where we

discussed the need for explainability and countermeasures. On the one hand, associating observed
anomalies and their identified root causes with explanations of why they are considered so would
allow application operators to directly exclude false positives, which in turn means that, e.g., we
could avoid cutting the possible root causes for an observed anomaly to only the most probable
ones. Indeed, an application operator could be provided with all possible root causes and she could
later decide which deserve to be troubleshooted based on their explanations. This hence calls for
anomaly detection and root cause analysis techniques that are “explainable by design”, much in
the same way as the need for explainability is nowadays recognized in AI [26].
On the other hand, recommending potential countermeasures to be enacted to avoid (the fail-

ures corresponding) to observed anomalies and their root causes would enable avoiding such fail-
ures to happen again in the future. This could be done both for anomaly detection and for root
cause analysis. Indeed, whilst avoiding (the failure corresponding to a) detected anomaly of course
needs acting on the root causes for such an anomaly, countermeasures could anyhow be taken to
avoid the anomaly in a service to propagate to other services. At the same time, the possible root
causes for an observed anomaly are identified based on data collected on the services forming an
application, which is processed only to enact root cause analysis. Such data could however be fur-
ther processed to automatically extract possible countermeasures to avoid it to cause the observed
anomaly. For instance, if a service logged an error event that caused a cascade of errors reaching the
service where the anomaly was observed, the root cause analysis technique could further process
the error logs to suggest how to avoid such error propagation to happen again, e.g., by introducing
circuit breakers or bulkheads [72]. If a service was responding too slowly and caused some perfor-
mance anomaly in another service, this information can be used to train machine learning models
to predict similar performance degradations in the root causing service, which could then be used
to preemptively scale such service and avoid the performance degradation to again propagate in
future runs of an application. The above are just two out of many possible examples, deserving
further investigation and opening a new research direction.
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